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Vortex breakdown control by adding near-axis swirl and temperature gradients

Miguel Angel Herrad&a
Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla, Spain

Vladimir Shtern
Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006, USA
(Received 2 June 2003; published 14 October 2003

Vortex breakdown(VB) is an intriguing effect of practical and fundamental interest, occurring, e.g., in
tornadoes, above delta-wing aircraft, and in vortex devices. Depending on application, VB is either beneficiary
or harmful and therefore requires a proper control. This study shows that VB can be efficiently controlled by
a combination of additional near-axis swirl and heat. To explore the underlying mechanism, we address a flow
in a cylindrical container driven by a rotating bottom disk. This model flow has been extensively studied being
well suited for understanding both the VB mechanism and its control. Our numerical analysis explains experi-
mentally observed effects of control corotation and counter-rotétiith no temperature gradigraand reveals
some flaws of dye visualization. An important feature found is that a moderate ne@adisitive axial
gradient of temperature can significantly enfofdéeminish) the VB enhancement by the counter-rotation. A
strong positive temperature gradient stimulates the centrifugal instability and time oscillations in the flow with
counter-rotation. An efficient time-evolution code for axisymmetric compressible flows has facilitated the
numerical study.
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[. INTRODUCTION for numerical simulations, as well as a detailed comparison
of experimental and numerical results. In particular, the con-
Vortex breakdown is an intriguing and practically impor- tainer flow driven by a rotating disk is the subject of a num-
tant phenomenon occurring in many natural and technologiber of experimentdl7—9] and numerica] 10—12 works. An
cal swirling flows. These flows have a vortex core—a thinunderstanding of the physics and the VB control can then be
(compared with the flow scalend axially elongated region extended to practical flows, confined or open.
where swirl is of the solid-body type and vorticity has a In recent studies, two means of VB control have been
sharp peak. Under some circumstances, the core abruptly egroposed: a rotation of a near-axis rpt3] and an axial
pands into a bubblelike circulatory zone or into a helical ortemperature gradieftl4]. The numerical simulations made
multihelical pattern. This transformation isva@rtex break- here clarify the mechanism of VB control experimentally
down (VB). investigated in Ref[13] and show that a combination of
VB has been observed over delta wings of aircfaftin  rotational and thermal means can provide even more efficient
tornadoeg 2], in vortex burners and other technological de-y/g control. To this end, a new powerful time-evolution code
vices[3]. VB on a delta wing causes an abrupt drop in lift, aNfor compressible flows has been developed.
increase in drag, and the development of a rolling moment;
these effects can lead to the loss of aircraft confddl In
contrast, VB is desirable in vortex burners, providing stabl
combustion with VB bubbles acting as flame holdé&k VB

Compressibility effects are twofold: kinematicharacter-
ized by the Mach number Maand buoyant(due to
etemperature—induced density variatipnghe Ma-related ef-
in a tornado decreases its swirl velocity and thus makes thﬁgtlbelng |mp_ortant for the VB deve_lopment In pipe f!ows
tornado less destructivies]. Thus, the VB control—either 16| is negligible for the VB flow in a closed contglner
suppression or enhancement—is of practical importance. When Ma<0.5[14]. In contrast, the effect of buoyancy is so

VB is also of theoretical interest: despite more than fourSirong here that it does not permit use of the Boussinesq
decades of extensive studies, there is no consensus on wifgProximation.
constitutes VB, let alone on its mechanism. A few competing !N the remainder of the paper we formulate the problem
theories attempt to explain VB5], and much experimental (Sec. 1), describe a new numerical codgec. 1), study the
and numerical work has been done to clarify its nature. FunVB control by near-axis swirl and thermal convection in a
damental studies of VB often employ a flow in a cylindrical container flow driven by rotation of the bottom disBec.
container. This confined flow has the following important V), and summarize the resulSec. \).
advantages: (i) absence of unpredictable ambient distur-
bances(ii) well-defined boundary conditions, ariii) pre-
cise variation of control parameters. These features facilitate Il. PROBLEM FORMULATION
both well-organized experiments and well-posed problems _ _

A. Governing equations
We use the Navier-Stokes equations for a compressible

*Email address: herrada@eurus2.us.es axisymmetric flow in the form
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FIG. 1. Schematic of the problem.
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Here{u,v,w} are the velocity components in cylindrical

coordinateqr, 6,z} (Fig. 1), p is the pressureyp is the fluid

density, andr is the temperature. We have made all variables

dimensionless by using the following scalés:for length,
1/Q for time, QR for velocity, T for temperaturep, for
density, andRyp, T, for pressureR is the radius of the cy-

lindrical container() is the angular velocity of the rotating
bottom disk(Fig. 1), To andp, are initial values of tempera-

ture and density when the fluid is at rest, dg=(c,—c,)
is the gas constant.

Dimensionless parameters in Eq$)—(6)—h=H/R, Re
=poQR% 1, Ma=QR(poRyTo) ¥4 Pr=pec,/\, and y
=cy/c,—are the aspect ratiH is the cylinder height the
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specific heatg, andc, are kept constant in our analysis. We
take P=0.72 andy=1.4 as values typical of gases.

The base flow is controlled by a rotation of the central rod
and the axial gradient of temperature. The control rotation is
characterized by the Reynolds numberi:R@QiRiZ/M based
on the radiugR; and on the angular velocit§); of the rotat-
ing rod. The thermal control is characterized by the dimen-
sionless temperature  difference g = (Tyor— Tiop)/ (Thot
+ Tiop), WhereT,, and Ty, are the temperatures of the bot-
tom and top disksT o= (Tport Tiop)/2.

B. Initial and boundary conditions
Integration of Eqs(1)—(6) runs fromt=0 when the fluid
is at rest and has a uniform temperature and density, with
u(r,z,00=v(r,z,0)=w(r,z,0) =0,
T(r,z,00=p(r,z,00=1. (7)

Then we set the bottom disk and the rod to rotate and impose
an axial gradient of temperature at the container wall. There-
fore, the boundary conditions are

u(r,0t)=w(r,0t)=0, o(r,0t)=r, T(r,0t)=1+¢

)
at the bottom disk=0),

u(r,h,t)=w(r,h,t)=0, wv(r,h,t)=0, T(r,ht)=1—¢

9
at the top disk £=h), and

u(lzt)y=w(1,zt)=0, v(1,zt)=0, T(lzt)=1l+e

—2e7/h (10)
at the sidewall (=1).
Finally, at the rotating rodr(=r,=R;/R)
u(ry,z,t)=w(r;,z,t)=49T/dr(r;z,t)=0,
v(ri,z,t)=Re/(r; Re). (12

Equations(1)—(6) together with condition$7)—(11) formu-
late a closed mathematical problem.

I1l. NUMERICAL PROCEDURE

The spectral methodl17] appears to be more efficient

than a finite difference or finite element approximation for

spatial variables, because it resolves thin boundary layers

typical of the flow addressed with relatively few collocation

points. In addition, spectral methods can be easily applied
here due to the simplicity of the computational domain. We
integrate Eqgs(1)—(6) under conditions(7)—(11) using 61
X 61 spectral Chevychev collocation poifi¥] in the physi-

cal space. With this resolution, our resulist Re=2700,

Re=0,e=0,r;,=0,h=2.5) are very close to those obtained

Reynolds, Mach, and Prandtl numbers, and specific heat ran Ref. [14] by using a compact Padeheme in spacgl 8]

tio, respectively. Viscosity:, thermal conductivity\, and the

with a mesh with 12X 301 points.
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The explicit time advancement is performed by using a
fourth-order low-storage Runge-Kutta metHdd]. In all the b)
cases considered, a characteristic time of a remarkable varia
tion of any physical quantity involved is much larger than a
time step. We use a small time stégpecified below to
guarantee the numerical stability of the explicit time proce-
dure used. Since the required time step drastically decrease
with the Mach number, we use a moderate value of Ma
(=0.3) to save the calculation time. Here we exploit the fact
that the effect of the Mach number for this kind of flow is
negligibly small in the range€Ma=<0.5. This allowed us to
use time ste@\t from the interval(0.005, 0.00Y.

We would like to emphasize that our code for a compress-
ible fluid does not involve the Boussinesq approximation. A
reason is that variations of temperature and density are no
small here. The numerical scheme, although being noncon-
servative(and therefore not applicable for supersonic flpws
works quite satisfactorily for the well subsonic flow consid-
ered.

24.7 (cm)

15.24 (cm)

IV. RESULTS FIG. 2. Comparison ofa) experimenta[13] and (b) numerical

A. Vortex breakdown control by adding near-axis rotation results at Re2720, Re=0, and ri=0.04. R=7.62cm, H
=24.7 cm. Contours ifb) are solid(broken for positive(negative

Using the code described above, we first compare OUgiream function and show ten stream functigi values: contours
numerical results with experimental observati¢h3] of the 1 ,;—0.01x X (i—1)/2,i=1, 3; contours—, =i X /5, i

flow controlled by the corotating or counter-rotating rod with =1, 8, y, .. =0.0069, and,;=—5x10°.

no thermal control. Also we investigate speculations made in

Ref.[13] by calculating relevant flow characteristics. To this the numerical results, two vortex rings shown in Fith)2are

end, we take the same parameters as those in[R&f. h completely suppressed in Fig(k3, but streamlines remain
=3.25, Re=2720,r;=0.04 and first apply no temperature Wavy in the former-vortex-ring regions with nearly stagnant
gradient £=0). zones near the axis. These zones also can accumulate the dye

Figure 2 shows streamline patterns (ay flow visualiza- ~ resulting, e.g., in bubbléi) in Fig. 3@ [13]. Therefore, a
tion [13] and(b) our calculation of the flow where the rod is flow pattern interpreted as a bubble from the dye visualiza-
at rest (Re=0). Although the Mach number used in the nu- tion might be not a bubble at all, except those identified in
merical simulation (Ma0.3) is a few orders of magnitude both the experimeritl3] and our calculation.
|arger than that in the experiment (Mao_s), the results DeSpite these minor differences, the numerical and ex-
are close. A minor difference is that the visualization seemgerimental results well agree concerning the main effect—
to show three vortex ringfFig. 2(a)] while the numerical
results reveal only two vortex rindg&ig. 2(b)]. In numerical CI) b)
simulations, the stream function is zero at walls and vortex-
ring boundariegbeing negative inside vortex rings and posi-
tive outsidg. This feature helps us to unambiguously deter-
mine whether a vortex ring occurs in the flow. To visualize
vortex rings, we plot at least one streamline inside each ring.

To check whether this disagreement is due to the different
Ma values, we have performed calculations at=Mal and,
in addition, by using a different code for an incompressible
fluid, at Ma= 0. These three runs—for M&0, 0.1, and 0.3—
yielded very close streamline patterns all with two vortex
rings only. We conclude that there is another reason for the
disagreement and explore one conjecture below.

Figure 2b) shows that streamlines are wavy in the region
where the bubbléii) is visualized in Fig. £a). Our calcula-
tions yield that the flow is nearly stagnant in the near-axis
core of the wavy region. Therefore, the Fluorecein dye can
fill this nearly stagnant region and thus mimic a vortex-
breakdown “bubble” in the experiment. FIG. 3. As in Fig. 2, but at Re-21. Contours+: =0.01

This conjecture is consistent with the results presented it i, < (i—1)/2,i=1, 3; contours—: =i X /5, i =1, 8, max
Fig. 3 for the flow at Re=21 (corotating rod. According to  =0.0069, and/,,=—6.2x1075.
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FIG. 4. As in Fig. 2, but at Re—12. Contours+: =0.01 -1 0 r
X hmaxX (i—1)/2,i=1, 3; contours—: =i X Inin/5, i=1, 8, max
=0.0068, andy,=—1.04x10 5. FIG. 5. Pressure contours at R2720, Re=0, h=3.24, and

ri=0.04. Contours are for 41 pressure valuep= pPmint(Pmax

suppression of vortex breakdown even by a weak co-rotation Pmin)(i ~1)/40; i =1,41, pyiy=1.0002, andpa,=1.0062.

of the rod. Now we address the flow with the rod counter- o ) ) )
rotation. curve in Fig. 6. A region of a small negative gradient of

Figure 4 compares the experimental and numerical resuldréssure retained at Re2l corresponds to a still wavy
at Re=—12 (negative Recorrespond to the counter-rotating streamline but with no flow reversal region near pdint
rod). These results are in excellent agreement both showing_ In contrast, the absolute values of negative pressure gra-
that the counter-rotatiofe) significantly enlarges the vortex dients become larger at Re-12 compared with those at
ring (iii), (b) shifts the vortex ringjiii) downstream, an¢c) Re=0; these larger unfavorable pressure gradients enlarge
the flow is still steady at this Re the vortex—brgakdown bubbles when t.he rod cpunter—rotates.

An advantage of a simulation is that it is capable of pro- Qur numerical results also agree W|th expgrlmental obser-
viding numerical values of any quantity of physical interest.Vations[13] that the flow becomes time oscillating for Re
In particular, we can check the speculation made in R} ~ <—14. Figure 7 depicts oscillations %, the value of cir-
concerning the role of pressure in the vortex-breakdown occulation, I'=rv, in the middle of the domainat r=(1
currence. To this end, Fig. 5 depicts pressure contours for the Ii)/2 andz=h/2], at Rg=—18. The flow is clearly time
flow shown in F|g 2 (Rezo) Husainet al. [13] Supposed periOQiC with Sma!l but saturated amplitude. To show that the
that pressure is nearly constant along the sidewall. In conMost intense oscillations occur near the rod, we plot the in-
trast, our calculations reveal that pressure significantly varies
along the sidewall. Fortunately, Fig. 5 also shows a region in  1.001 T y y T y y
between the sidewall and the rod where pressure contours are
nearly parallel to the sidewall, i.e., pressure is neaiityde-
pendent in this region. Therefore, the speculation made in
Ref.[13] is valid if this in-between region can serve as the
periphery(wherep~p..) of the near-axis vortex core.

Figure 6 depicts the pressure distribution along the rod !
surface as a function of for the Re values shown near the . {
curves. The large positive gradient of pressure observed near0.9995 i
the top accelerate_s the. n_ear—axis flow. Asiecrgases, the _ Nommmmm = §;i:_-1~2 __________ - ?
pressure reaches its minimum and starts to increase. This g gqq N/ |
unfavorable pressure gradient decelerates the flow and ever
reverses ifthe arrows with symbols in Fig. 6 show locations
of corresponding vortex-breakdown bubbles and wavy re- ¢.9g985 . . ‘ : . .
gions in Figs. 2—% 0 05 1 1.5 2 25 3 35

It follows that the circulatory zones observed in Figs. 2—4 z
are intimately related to the near-rod regions where the pres- F|G. 6. Pressure along the rotating rod normalized by values at
sure gradient is unfavorable. The rod corotation completelg=0 for three Revalues shown near the curves. Symb@)sand
suppresses vortex breakdown because it significantly reduces) indicate locations of the VB bubbles or their remnafitsthe
the unfavorable pressure gradiersg., see the Re21  Re=21 casg

i
]
]
}
1.0005} [
]
!

041202-4



VORTEX BREAKDOWN CONTROL BY ADDING NEAR . ..

0.026866

0.0268
ro
0.026869

0.026867

0.026866
2000

2100 2200 2300

t

2400

FIG. 7. Establishment of time-periodic oscillation in the flow
with the counter-rotating rod at Re—18. T’y is the circulation
value atr =(1-r;)/2 andz=h/2.

stantaneous streamline patterns at two different time values

corresponding to the maximurfFig. 8a)] and minimum
[Fig. 8(b)] of I'y in Fig. 7. Figure 8 also indicates the peri-

odic appearance and disappearance of the small near-rod c]f-

culatory region upstream of the larger one. For=Rel9,

the flow becomes weakly nonperiodic and for even smalle
values of Rg the oscillations become strongly nonperiodic

and intense.

Thus, our results agree with the experimil&] that coro-
tation (counter-rotatiop being induced near the axis sup-
presses(enhances VB. In addition, the numerical results
clearly demonstratéa) the role of unfavorable pressure gra-
dients in the VB developmentp) the appearance of first

periodic and then nonperiodic time oscillations as the

counter-rotation intensifies, arid) possible misidentification
of bubbles by dye visualization.

This VB control can be significantly enforced by impos-
ing a temperature gradieif¢). In the prior study[14], we

Q) b)

1
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addressed the VB control kywith no additional corotation

or counter-rotation near the axis. Now we consider these two
control means—the rod rotation and temperature gradient—
acting together.

B. Addition of a temperature gradient

The underlying mechanism of the VB control by a tem-
perature gradient is centrifugal and/or gravitational convec-
tion [14]. Here we focus on the centrifugal convection only
motivated by the fact that centrifugal acceleration is signifi-
cantly larger than gravity in practical flows.

An additional thermal-convection flow directed oppo-
sitely to the base flow suppresses VB while a coflow en-
hances the VB. In Sec. IVB we explore the effects of a
temperature gradient for the counter-rotating central rod
where the flow with no temperature gradient is still steéaty
Re=-12, Fig. 3.

1. Enhancing the VB and inducing oscillation
by centrifugal convection

The axial gradient of temperature with<O provides a
ontrol meridional flow of the same direction as that of the
ase flow. This coflowing intensifies the transport of angular

omentum from the bottom disk toward the top lid and then
oward the rod and thus strengthens concentration of the
axial vorticity in the vortex core. This focusing results in two
effects: (i) enlargement of VB bubbles and) flow oscil-
lation. Figure 9 shows the streamline patterns gt=Rel2
for a few values ofe: (@) e=0 (steady flow, for compari-
son), (b) e=—0.3 (still steady flow, and(c) e=—0.6 (un-
steady flow. We see that the size of the VB bubbles in-
creases ag decreases; this occurs even when the flow
becomes unsteady. In addition, we pl&g as a function of
time fore=0, —0.4, and—0.45 in Fig. 10. This figure illus-
trates the development of time-periodic oscillation due to the
control coflow intensifying the base meridional motion. Fig-
ure 10 also shows that the flow rotation around the axis
(characterized by'y) speeds up as well. For even smaller
values ofe (<—0.45, the flow oscillation becomes nonpe-
riodic.

Now we consider effects of the>0 temperature gradi-
ent.

2. Suppressing the VB by centrifugal convection

The direction of thes>0 control flow is opposite that of
the base flow outside the VB region. Such a control flow
reduces the strength of the meridian motion and, therefore,
the transport of the axial vorticity from the rotating bottom
disk toward the upper lid. Another important feature of the
control flow is its bulk convergence toward the aixid] that
reduces the spreading of streamlines away from the axis,
typical of the base flow. Figure 11 shows the streamline pat-
terns for(a) e=0.2 and(b) €=0.7. The upper bubble ob-
served in Fig. 88) (¢=0) is completely suppressed even at

FIG. 8. Instantaneous streamline patterns at two different timee = 0.2 and the lower bubble shifts toward the bottom disk as

values corresponding to the maximua and minimum(b) of I’

¢ increases. The meridian flows in Figs(dland 11b) look

in Fig. 7. The top vortex ring near the rod appears and disappeasimilar, but they significantly differ in the strength of the

periodically.

meridian motion, which is reduced nearly by half when
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FIG. 9. Effect of the negative temperature gradiesnt.Q) in addition to a counter-rotation (Re—12). The VB bubbles increase as
decreases and the flow became unste@ays =0 (steady flow, (b) e=—0.3 (still steady flow, and(c) ¢ = — 0.6 (unsteady flow.

increases from 0.2 to 0.7. This reduction and the corresponds possible only due to combined effects of the-0 tem-
ing decrease in the advection of the axial vorticity from theperature gradient and the counter-rotating rod. Indeed, no

rotating disk have an important effect discussed below.  instability and no vortex ring develop wherincreases with-
out the rod counter-rotatioii4]. Also, our calculations have
3. The development of centrifugal instability revealed no instability and no vortex ring generation in the
The straightforward extrapolation of the flow trend@as case of the corotating rod.
increases from 0 up to 0.[Figs. 9a), 11(a), and 11b)] To verify the centrifugal mechanism of the instability ob-

might lead to a conjecture that the further increases in served, we explore the dependence of the Taylor number Ta
(beyond 0.7 should result in the total suppression of the VB on the temperature gradient, asncreases. To this end, we
bubble. However, our calculation at=0.9 has revealed the define Ta in the following way. According to the Rayleigh
opposite effect: the flow becomes unsteady and several voeriterion for the centrifugal instability20], a flow can be
tex rings appear near the r¢gig. 11(c)]. unstable only if the squared circulatiofi=r2v?, decreases
We speculate that this flow developmenta@sncreases asr increases. In the flow with the counter-rotating rdd,
from 0.7 to 0.9 occurs due to the centrifugal instability changes its sign at= 8, r;< <1, asr increases fron; to
stimulated by the intense control counterflow. This scenariq Accordingly,I'2 first decreases down to zerormcreases

from r; to 6, and then increases together witin the inter-

0.035 val, 6<r<1.
£=-0.45 :
0.03 The 6 value depends om in the way shown by curves
0.3 I'=0 in Fig. 12. This figure plot contourE= const for(a)
0.025 &0 =0 and(b) £=0.7 at Re=—12; the solid(dashed lines
are forI'>0 (=<0). We see that thd’>0 contours shrink
0.02 : while theI'<<0 region enlarges, especially near the bottom
r, disk, ase increases. We characterize the radial extent of the
0.015 : I'<0 region by§,a—the maximum value ob asz varies—
and introduce the Taylor number, F&Q;| RiRo(Smax—Ti)/v,
0.01 where Ry(Smax—Tri) IS a dimensional radial width of thE
<0 flow region. As Ta exceeds some threshold value, the
0.005 centrifugal instability should develop according to the Ray-
leigh condition(becauseI'?/ar <0 in theI'<0 region.
% 500 000 3500 Figure 13 shows Ta as a function efat Re=—12. The

t Taylor number nearly linearly increases withOur numeri-

FIG. 10. Establishment of circulatiod’) at (1—r;)/2 andz cal results show that multiple vortex rings appear near the
=h/2 as time(t) increases for temperature gradient valyes rod and the flow becomes for ¥&5 [Fig. 11(c)]. Compare
shown near the curves and jRe-12. Whene decreases below this critical value of Ta with that known from the literature
—0.4 the flow became unsteady. on the centrifugal instability. For the Taylor-Couette flow,

041202-6



VORTEX BREAKDOWN CONTROL BY ADDING NEAR . .. PHYSICAL REVIEW E 68, 041202 (2003

Q)

FIG. 11. Effect of the positive temperature gradieat>0) in addition to a counter-rotation (Re—12). As ¢ increases froma) ¢
=0.2 to(b) £=0.7, the vortex-breakdown bubbles decreases Ascreases further, new vortex rings appear near the rod as shofeh in
£=0.9, and the flow becomes unsteady.

where only the inner cylinder rotates and the outer/inner raticity to the near-rod flow region decreases. Figure 12 clearly

dius ratio is 0.5, the critical value qb64/9 (QiRizlv)2 is  shows this effect: th& >0 contours shrink as the>0 tem-

3.31x 10 according to both numericf20] and experimen- perature gradient increases, e.g., compare curves 1 in Fig.

tal [21,22 results. This corresponds to ¥#8 which is close  12(a) and Fig. 12b). The reduction of the positive axial vor-

to the critical value of T{=75) in our flow. This agreement ticity naturally results in the increase of the radial extent of

is surprisingly well though the flows are very different. the negative circulation region, especially near the bottom
Let us discuss why the>0 temperature gradient causes Where the supply of the positive axial vorticity by the me-

the increases in Ta. A&=0, the intense meridional motion ridional flow is minimal. Therefore, Ta grows and the cen-

transports the positive axial vorticity generated by the rotatirifugal instability develops when Ta exceeds its critical

ing disk toward the top lid, then toward the rod, and finally value.

downward along the rod. This transport decreases the radial

extent of the negative circulation due to annihilation of the V. CONCLUSIONS

positive and negativégenerated by the rod counter-rotation . o

axial vorticities. Since the >0 temperature gradient weak- ~ Our investigation of the vortex breakdowk'B) control

ens the meridional flow, the supply of the positive axial vor-Py adding near-axis rotation and temperature gradients can
be summarized as follows.

80
76}
70}
T.
65 S
60
. . _ 58 . , . .
FIG. 12. Circulation contours at Re—12 and(a) e=0 and(b) 0 0.2 0.4 0.6 08 1
£=0.7. Contours are solitbroken for positive(zero and negative g
circulation values: 1/3@curve 1, 1/10 (curve 2, 1/3 (curve 3,
2/3 (curve 9 of T ax, O (curve Q, 1/3 (curve —1), and 2/3(curve FIG. 13. The Taylor numbe(Ta) as a function of the tempera-
—2) of I i - ture gradiente) at Rg=—12.
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(1) The results for the flow with no temperature gradientin the cylindrical-container flow, we expect that the conclu-
(e=0). sions listed above might be valid for a variety of natural and

(i) Our simulations explain experimental observationstechnological flows as well, because the effects of additional
[13] that near-axis corotation suppresses the VB, whereas thsyirl and temperature gradients have generic physical
counter-rotation increases the size of the VB bubbles anghechanisms. It is clear that in practical systems, the rod ro-
makes the flow unsteady. Changes in the pressure distribgation may not be feasible for control. In that case, an addi-
tion are crucial for the VB suppression and enhancement. tional near-axis swirling(hot or cold jet could help to

(i) Corotation (counter-rotation diminishes (enhances  gchieve similar effects—the suppression or stimulation of the
the unfavorable pressure gradients—pressure increasggriex preakdown and flow instability.

downstream and thus suppresgstimulate the VB. 5 practical flows, VB can be asymmetrisingle or mul-
~ (iiit) Our results show the possibility of bubble misidenti- e helix) and unsteady. We expect that the effects of the
fication by dye visualization in the experiment. additional swirl and temperature gradients in such flows

(2) The addition of a negative temperature gradiesit (' should be similar to those revealed here. We plan to explore
<0) induces a control meridional coflow, which enforces theypis issue using a three-dimensional code which is under de-
counter-rotation effect, i.e., enhances the VB and makes thgs|opment. On the other hand, a number practical and labo-
flow unsteady. ratory VB flows (e.g., [13]) are nearly axisymmetric and

(3) A moderate positive temperature gradient<(®  steady.
<&*) enforces the corotation effect, i.e., suppresses the VB, Based on the results reported above, we speculate that
and diminishes the counter-rotation effect blowing of a corotating cold swirling jet should help to avoid

(4) A strong positive temperature gradiestt e*) stimu- 3 VB occurrence above a delta wing. Vice versa, a control
lates the development of centrifugal instabilithe appear- counter-rotating hot jet could help to enhance mixing in vor-

ance of multiple vortex rings near the counter-rotating) rod tex purners and thus to reduce harmful emissions.
and makes the flow unsteady. This occurs due to the reduc-

tion of positive axial vorticity transport from the rotating

disk toward the axis. Th|s leads to the radlgl enlarg.e'ment of ACKNOWLEDGMENT
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