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Real space origin of temperature crossovers in supercooled liquids

Ludovic Berthiet? and Juan P. Garrahan
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
2Laboratoire des Verres, Universitdontpellier 1, 34095 Montpellier, France
(Received 18 June 2003; published 14 October 2003

We show that the various crossovers between dynamical regimes observed in experiments and simulations of
supercooled liquids can be explained in simple terms from the existence and statistical properties of dynamical
heterogeneities. We confirm that dynamic heterogeneity is responsible for the slowing down of glass formers
at temperatures well above the dynamic singulaFitypredicted by mode-coupling theory. Our results imply
that activated processes govern the long-time dynamics even in the temperature regime where they are ne-
glected by mode-coupling theory. We show that alternative interpretations based on topographic properties of
the potential energy landscape are inefficient ways of describing simple physical features which are naturally
accounted for within our approach. We show in particular that the reported links between mode coupling and
landscape singularities do not exist.
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I. INTRODUCTION [1-4,10,11. Numerical simulations are now able to investi-
gate the first five decades in time of this slowing dduf],
The aim of this paper is to critically reconsider the physi-so this is also the regime which has been studied in greatest
cal origin of the onset of dynamical arrest and the associateghicroscopic detail. The degree of success of MCT is still a
crossovers between distinct dynamical regimes displayed byatter of debate. This is due to the fact that the central MCT

quuiéjstr?uptlercoc?tled t_?r?iugz t\?\/eir p mt?]l_ting teTpec:aturteh Oprediction, a complete dynamical arrest at a temperafyre
wards the glass transl iqd—4]. We do this by exten NG IN€ \vhere the a-relaxation time diverges as a power law,
real space theoretical framework based on dynamic facilita-

tion of Refs.[5—8] to the moderately supercooled regime Ta(T)N(T_TC) 7, is actually never observed: but a power-
corresponding to the region where mode coupling theor)}aw fit to the data apparently works on a restnpted time win-
(MCT) [9] supposedly applies, as reviewed in Réf0,11. do_w [10,17. The appe%ran_ce of new mechan,!sms for relax-
Our approach takes directly into account the spatial aspecfdion. often termed “activated processes,” but seldom
of the dynamics, in particular those related to dynamic hetdescribed in any detail, is then invoked to explain the dis-
erogeneity[12], in contrast with many other theori€3,4,9.  crepancy between observations and MCT predictions. In
Our analysis shows that the onset of slowing down can béact, activated processes are actually quantitatively defined,
understood in a simple physical way in terms of the dynamiWwithin MCT, by deviations between data and predictions
cal properties of effective excitations, or defects, as a prof11,13,14. Itis believed that activated processes become rel-
gressive crossover from a regime of fast dynamics dense igvant close to the dynamical singularity, their main effect
defect clusters, to one of slow heterogeneous dynamickeing to prevent the predicted transition.
dominated by isolated localized defects. We demonstrate that From T, downwards it is assumed that the physics is
this real space picture explains the observed crossover terdominated by activated processes, which determine also the
peratures, challenges the idea that these crossovers are tgmonical features of glass transition phenomfgfd: non-
lated to changes in the topography of the energy surface or texponential relaxation, strong and fragile liquid behaviors,
MCT singularities, and is able to account for the apparentecoupling between transport coefficients, etc. It is some-
correlations observed between “landscape” and dynamicafimes said that the relevant physics for the glass transition
properties. sets in atT., and is therefore out of reach of numerical
The paper is organized as follows. In the rest of the introsimulations[16]. Crossovers into the activated dynamics re-
duction we review the MCT and energy landscape points 0fjime are also reported to occur at temperafiy¢17] or Ty
view, discuss their problems and limitations, and describe th?l8], depending on which aspect of the physics is considered.
alternative real space perspective we will pursue. In Sec. ljt js believed that all these temperatures are close enough to
we develop the physical picture of the onset of slowing dowrpe taken as equivalerit,~T,~Tg [19].
and dynamical crossovers which emerges from our theoreti- The above scenario is apparently corroborated by the
cal approach. In Sec. Ill we discuss its quantitative consestydy of the statistical properties of the potential energy land-
guences and compare them to published numerical results. Btape of model liquidg3,20—23. From the properties of the
Sec. IV we show how our approach also enables to derive thendscape two temperatures seem to eméfgend T, [23].
observed properties of the potential energy landscape of strhe onset of slowing down of the dynamics takes place at
percooled liquids. Finally, in Sec. V we discuss our resultst | and coincides with the temperature below which the
and state our conclusions. average energy of inherent structuf&s), i.e., local minima
of the potential energj21], e;5(T), starts to decrease mark-
edly, see Fig. 1. This has been interpreted as the sign that the
It is often assumed that the initial slowing down of the landscape starts to “influence” the dynamical behay2s].
dynamics of supercooled liquids can be rationalized by MCTAt T, it is further argued, a second change in the landscape

A. MCT /landscape scenario
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T, T, On closer inspection, however, the above scenario is less
| 0.15 robust. Several qualitative and quantitative observations do
not fit into the picture presented above.
(i) Activated dynamics above,T The main idea behind
the landscape approa¢®0] is that vibrations and structural
0.10 relaxations take place on very different time scales, so that
the system is “trapped” and vibrates in one minimum before
“hopping” to another minimum. This is indeed observed us-
ing the mapping from trajectories to [31] in simulations of
0.05 sufficiently small system$44,45. We have also discussed
theoretically this issue in a recent wol&]. Given that nu-
merical studies were performed much abdvge a crucial
conclusion of Refg[6,44,43 is that “activated dynamics” is
0.00 indeed present in this temperature regime.
(i) Heterogeneous dynamics above.Tlt is now well
) ) . documented that the dynamics of supercooled liquids, even
.FIG. 1. Onset of slowing do_v_vn in the binary Lennard-gonesabove the mode-coupling temperatdig, is heterogeneous
mixture of Ref.[13]. Three quantities are reported as a function ofj, the sense that the local relaxation time has nontrivial spa-
temperaturd. (i) The logarithm of the relaxation time, lag. (N {j3| correlationg46]. This phenomenon is not very different
arbitrary units extending over four decades in §meMCT power- 00 \yhat happens experimentally close to the glass transi-
law divergence, withT;=0.435, was used to fit this data in Ref. tion T, [12]. Besides, the decoupling between transport co-
[13]. (ii) The energy of inherent structuresg, taken from Ref. fici gt .h' hi ’I int ted in t fd ical
[43], which decreases markedly when the temperature decreas%ICIen S, w Ich 1S a.so in erpreg N erms 0. ynamlca
eterogeneityf12,47), is observed in numerical simulations

below T,=1.0. (iii) The anharmonic part of Cartesian distance be- . L
tween configurations and their corresponding ISAr) aboveT, [13], although the effect is quantitatively less pro-

=N"13(r;—r’)2—aT, which displays a qualitative change nounced than in experiments nely [48]. _
aroundT,, taken from Ref[23]. (iif) Presence of saddles below, T Despite claims based

on numerical results that, marks a real change in the to-

properties takes place, which is indicated by several obsegology of the landscap@3—35, there are strong indications
vations[23—-29. For example, the mean-square displacemenihat this is at best only a crossov@6,37], and at worst a
from an equilibrated configuration to its corresponding inherpjased interpretation of numerical daa8]. For instance,
ent structureN*=(r;—r{"®)?, is proportional toT below  careful numerical studies have shown that the saddle index
T., as expected from pure vibrations in quadratic wells, buin(T) remains positive even beloWl, [36]. Moreover, Ref.
the temperature dependence changes aliQuerevealing [38] argues convincingly that the data fog(T) can be de-
“anharmonicities” in the landscap23,24], see Fig. 1. scribed by an Arrhenius lawy(T) ~exp(—E/T), with E an

Another indication of a topological change in the energyenergy scale, which means thEt does not mark any par-
landscape was discussed in Ref0], in analogy with what ticular change in the saddle index.
happens in mean-field model81,32: the vanishing ast
approachesT of the mean intensive number of negative c_Ajternative: real space physics and coarse-grained models

directions(intensive index of stationary points of the poten- )
tial energy,n(T). Numerical simulationg33—3§ found that The problems described above can be overcome through

n.(T) decreases with decreasifigand fits were performed an_alternative perspective on glass transition. phenomena
to show thaing(T,) =0 [33—35. The physical interpretation wh.|ch puts the real space aspects of the dynamics at its core.
of this result is the apparent existenceTatof a “geometric This is the .approach developed in Ref5--8. Interestingly,

transition” between a “saddle dominated regime” abowge several of its central concepts, such as the relevance to the

and a “minima dominated regime” belot, [39]. T, would dynamics of localized excitatiorjd9,50 and the importance

then really coincide with the appearance of activated pro-Of effective kinetic constraintg51,53, have been present in

cesses, described in a topographic language as *hoppin e Iiterature_for many years. Moreover, one of the original
between minima of the landscape. Analogous findings ha ey observations of dynamic heterogeneity in glass formers

been previously reported from instantaneous normal mod as made by Harrowell and co-work¢fs] in the models of

analysis of equilibrium configuratiorig0], also supporting a 68[52]' See Rhef[?4] for an Iexthausk}ive; re\t/Jiew. i
qualitative change in the landscape topology closeT{o Jur approach reties on only two basic observations.
(41,47 (i) At low temperature mobility within a supercooled lig-

Figure 1 summarizes this MCT/landscape scenario witIJrJid s sparse and very few particles are mot_)ile. This is some-
published numerical datfi3,23,43 obtained for the stan- what equivalent to the statement that particles are “caged”

dard supercooled liquid model of Ré.3] for long period of times, as reflected by a plateau in the
' mean-square displacement of individual particles.

(i) When a microscopic region of space is mobile it in-
fluences the dynamics of neighboring regions, enabling them

At first sight Fig. 1 appears as convincing evidence into become mobile, and thus allowing mobility to propagate
favor of the MCT/landscape interpretation of the dynamicsin the system. This is the concept of dynamic facilitation
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B. Problems and contradictions
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[50,52. The observation that very mobile particles in a su-g
percooled liquid move along correlated “stringf46] is a  §
confirmation of this fundamental idea.

grained over a length scaléx of the order of the static |
correlation length given by the pair correlation function. This}
removes any static correlations between coarse-grained rkss
gions of linear sizeSx. Cells are then identified according to
their mobility by performing a coarse-graining on a micro- [,
scopic time scalest. In its simplest version cells are identi-
fied by a scalar “mobility field,’n(r,t)=0,1, the values 0/1
corresponding to an immobile/mobile cell at positiomnd

time t. The next step is to replace continuous space by #
lattice, n(r,t)—n;(t). Mobile or excited cells carry a free
energy cost, so when mobility is low it is reasonable to defuz
scribe their static properties with a noninteracting Hamil-f =%
tonian[52], ¢

N
H=§lni, (1)

for a lattice ofN sites. The link between mobility and poten-
tial energy[5] has also been observed in numerical simula
tions[46].
The coarse-graining procedure described above will gen””
erate local dynamical rules for the mobility field. The promi- =
nent feature of this dynamics will be dynamic facilitation,  FiG. 2. Representative trajectories in the 1D FA model. The
which in its simplest version states that a cell at $it8  vertical axis is space, the horizontal one time. The three trajectories
allowed to move only if it has an excited nearest neighborfare for L=150 andt=2000. Excited cellgor defect} are black,
[52], unexcited ones white. The top frame is f6=2.5, in the high-
temperature regime where almost no isolated defects are present.

cie The middle frame is fol = 1.0, the temperature regime where slow
n=0 - n=1 2) bubbles start to appear, seen here as large white domains. The bot-
: — ’ tom frame is forT=0.5, where almost all defects are isolated. For
G(l-o T=0.5, the mean relaxation time #5120, the mean dynamic cor-

o relation length~9, but it is clear that times and lengths are broadly
where C;=1—1I;;y(1—n;), and (j,i) indicates nearest istibuted.

neighbor, and: represents the average concentration of ex-
cited cells easily deduced from EQ.), Il. PHYSICAL PICTURE OF DYNAMIC CROSSOVERS

c(T)=(n)=(1+eV")"1, 3 In order to understand the physics captured by the coarse-
grained facilitated models defined above, it is useful to look
Explicit examples where dynamic facilitation is generatedat trajectories, that is, space-time representations of the dy-
under coarse graining can be found in REE5]. Clearly, namics[5]. We show in Fig. 2 three representative trajecto-
different models are defined simply by changing the kineticries for the 1D FA model, where mobile celldefects are
rules, e.g., the number or directionality of mobile neighborshlack, and immobile ones are white. From the trajectories,
required to movd54]. Also, a more complex mobility field the principal observation is the appearance at low tempera-
may be required to account quantitatively for all glass trantures of nontrivial spatiotemporal correlations, seen as spa-
sition featureg7]. tially and temporally extended domains of immobile cells
Crucially, we will show that the physical mechanisms delimited by isolated defect§5]. In 1D they look like
which explain the onset of slowing down and crossovershubbles” [6], and trajectories are dense assemblies of these
between different dynamical regimes in supercooled liquidsslow bubbles. This nanoscopic ordering in trajectory space is
are generic to this class of models. This means that we caihe cause of the phenomenon of dynamic heterogeneity ob-
use the simplest of them, the Fredrickson-Andergefy)  served experimentally and in simulatiof§. Dynamic het-
model defined by Eqq1) and (2) in one spatial dimension erogeneity is the central aspect of the physics of supercooled
(hereafter 1D FA modeglto make detailed predictions and liquids: it is naturally captured by our approach.
calculations. The statistical mechanics of trajectories, rather than con-
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figurations, determines the dynamical behavior. For example
due to the noninteracting Hamiltoniah), static correlations
are trivial. However, when trajectories are considered, it is
clear that cells become dynamically correlated. In othel
words, these models naturally predict the existence of a dy
namical correlation?(T) which grows when the dynamics & (.2
slows down. This statement can be quantifie®,56,51 by &
studying multipoint functions, for exampleC(li—jl,t) B
=(Pi(t)P;(t)) —(Pi(t)){P;(t)), whereP;(t) is a dynamical
correlator at siteé (below we will consider the persistence of 0.1
sitei). The spatial decay of a function liké(|i—j|,t) de-

fines unambiguously the dynamical correlation lenggf),

as already discussed theoreticdl5;8,56 and measured in comaiifll sl
numerical simulationg46,56—59. Furthermore, the joint 107 10°
distributions of time and length scales give rise to the ca
nonical features of glass formers, such as stretched relax-

ation, decoupling between transpor.t Coeﬁ|C|gnts, datstic individual cells,(In7) for various temperature3,= 1.0 marks the
and thermodynamjcstrong and fragile behavio{§—7]. appearance of a shoulder in the high-temperature distribution. For
Let us take a closer look at the temperature evolution off <T=0.6<T,, two “processes” coexist. Fast processes disap-
the trajectories in Fig. 2. Starting from the very low tempera-pear close tor,=0.3.
tures where trajectories consist of a mixture of slow bubbles,
the dynamics can be understood in terms of the opening arieémperature corresponds therefore to the onset temperature
closing of bubbles, that is, the branching of an excitation linel ,=1.0.
or the coalescence of two. As shown in Réf, these events Decreasing further the temperature, we clearly see a re-
are the “hopping between minima” described in REZ0]. gime of mixed dynamics. AT=0.6, for instance, there are
Therefore, we have a clear understanding of “activated protwo peaks in the distribution, reflecting the coexistence of
cesses” and of their statistical propertie. clusters and isolated defects. At this temperature, the time
As temperature is increased, more and more defects agcale has already mcrease_d by severa! orders of magnitude,
present. This has several consequences. First, the typical sgld the dynamic correlation length is abotT=0.6)
tial and temporal extension of bubbles reduces, that is, theC_(T=0.6)~6. _
system becomes faster and less heterogeneous. Second, clusFinally, further decrease in temperature makes clusters of
ters of defects become more common. These objects are irfefects very rare and we are left only with the contribution of
portant because their dynamics is completely different fronisolated defects. This low-temperature distribution is the one
that of isolated defects. In a cluster, defects do not have tfiscussed in Ref45,6], which in turn implies the stretched
diffuse and create or annihilate other defects but can instar@xponential decay of dynamical correlators. The contribution
taneously relax in a much faster process. At high temperadf clusters becomes negligible beyond a second crossover
ture, the dynamics is fast because almost no bubbles atgémperature, heré.=0.3. While this crossover temperature
present, and the dynamics is governed by clusters of defecti$ not linked in any way to the mode-coupling singularity
Interestingly, at some intermediate temperatyreiddle  Tc. this choice of notation will become clear shortly.
frame in Fig. 2 a coexistence between clusters and isolated From these distributions, it is possible to propose an em-
defects is observed, so that the dynamics has a “mixed®pirical but quantitative determination df, andT.. At each
character. temperaturd, the distribution is composed of fast processes
Clusters of defects disappear much faster with decreasing<7.(T), and slow processes>r,(T), where 7*(T) can
temperature than the overall concentration of defects. Thee defined, e.g., as in Ref60]. Requiring that slow pro-
probability to have a cluster ok defects is indeeg(k) cesses are a significant fractiGgay 90% of the distribution

0.3

(=)

FIG. 3. Distribution of the logarithm of the persistence time of

xcK, so that at lowT we havep(1)>p(2)>- - -. leads to the definition of ¢,

The coexistence of fast and slow processes with different .
temperature behavior has a direct influence on the distribu- f dr' 7(7')=0.9, (4)
tion of local relaxation times, which we present in Fig. 3 for 7(Te)

various temperatures. At high temperatufe> 1.0, where . ) o
fast processes are dominant, the distribution is exponentiayVhere in an abuse of notation we also callr) the distri-
with a mean which depends weakly on temperatbaow but_lon of persistence times. Requwmg_that slow processes,
we discuss in detail its temperature dependenteound T whllg not dominant in numb_er, S.tl|| contrlbu_te to a significant
=1.0, a shoulder develops in the large time tail of the dis{Taction of the mean relaxation timisay again 90%leads to
tribution, corresponding to the appearance of the bubbles i€ definition ofT,,

the trajectories of Fig. 2. This marks the increasing relevance

of slow processes and the growth of the dynamic correlation J
length beyond the microscopic high-temperature value. This

) dr’ w(7')7'=0.9 (7). (5

7+(To)

041201-4



REAL SPACE ORIGIN OF TEMPERATURE CROSSOVER .. PHYSICAL REVIEW E 68, 041201 (2003

' Liquid 1
1 . 1
Slow Dynamics 0.8
Hi h—"[:“ Physics |
:g: - 0.6
Low-T Physics . =
i . . 0.4
Tg T To T
0.2

FIG. 4. Temperature regimes emerging from the discussion o
Sec. I.To marks the onset of slow dynamics, the appearance of thi
isolated defectg¢bubbles, activated procesgeand the growth of a
dynamic correlation length. AT, traces of the higfi- physics
(clusters become negligible in the distributions of relaxation times.
The crossover regiofi,<T<T, has therefore a mixed character. FIG. 5. Persistence functions in the 1D FA model for the same

set of temperatures as in Fig. 3. Symbols are numerical data and full

In Fig. 4, we summarize the physical picture that emergesines are fits to the stretched exponential form expected theoreti-
from the considerations of this section. From the distribu-cally for low temperatures(t) = exp{—[t/7(T)]?}, with B=1/2.
tions of Fig. 3, we recognize that the dynamics becomes
slow when the temperature is decreased below the onset terhhe behavior ofP(t) as a function of time for various tem-
peraturel, . This distinguishes the trivial liquid and the slow peratures is shown in Fig. 5. At very low temperatures, the
glassy regimes. From the trajectories of Fig. 2, we were alspersistence function is known exactly due to the diffusion
able to distinguish between fast, nonactivated processgyoperties of isolated defects, and one gets
(clusterg, and slow, activated processésolated defects,
bubbles. The former, typical of the liquid higA- physics, P(t)=ex;{—(L
become negligible below ., while the latter, typical of the (T)
low-T physics, appear at the onset temperaflige As a
consequence, the crossover regidR<T<T, contains where7(T) is the relaxation time discussed in the following
traces of both high- and lowT physics, as observed in the section. For the 1D FA mode)3=1/2, but the stretching
time distributions of Fig. 3. exponent might be temperature dependent in more elaborated
(fragile) models[6,54], as is indeed observed in experiments
[1,2].

We see from Fig. 5 that fof =0.2 and 0.3P(t) is well

The physical picture we have presented for the onset ofpproximated by Eq(7) on the whole time window. For
slowing down, based on the increasing relevance of a dyhigher temperature§,>T.=0.3, the mixed character of the
namically heterogeneous evolution of the system, leads toorrelators is evident from the fact that K@) only describes
quantitative predictions which are in good agreement withthe long time behavior of the correlator, as expected. In this
previous numerical and experimental studies, as we discugemperature regime, short times are best described by a
in this section. simple exponential. In the high-temperature regimeg; T,
=1.0, relaxation is just exponential for all times. We con-
clude that the appearance of isolated defecig,as reflected
in the long-time behavior of dynamical correlators. In the

The basic dynamical quantities recorded in experimentgrossover region] . <T<T,, more and more of the decor-
and simulations of supercooled liquids are spatially averagegklation is due to isolated defects wh&mdecreases. Below
two-time functions. Simulations usually focus on the timeT, the entire decorrelation is due to these slow processes.
domain and typically consider density-density correlation A confirmation of the progressive domination of slow
functions, while experimental results are often expressed igver fast processes described above can be found in the nu-
the frequency domain, measuring for instance dielectric susmerical results of Refl26]. The similarity of Fig. 4 of Ref.
ceptibilities. We will only consider systems in equilibrium so [26] and our Fig. 5 is in fact quite striking. In particular, Ref.
that the information content of both kinds of measurement$26] calculated density-density correlations from both real
is equivalent. configurations and their corresponding IS in a binary

From the distributions of times, Fig. 3, it is easy to derive Lennard-Jones mixture. The latter, where thermal energies
dynamical correlators for the 1D FA model considered herewere removed in the quenching procedure, are the ones

B
: )

IIl. QUANTITATIVE CONSEQUENCES

A. Dynamical correlators

The spatially averaged persistence function reads which have to be compared with Fig. 5, since fast vibrations
B are also removed in our coarse-grained approach.
P(t):f dr' (7). (6) An i_mportant conclusion is that the long-time decay of
t dynamical correlators, sometimes referred to as the
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[ . diffusion with a temperature dependent diffusion constant,
10°F . . D(T)~c~exp(=1/T). The system relaxes when defects
8 © F o O simulation . . . .
10 v 10°F hioh T have diffused over a distance given by the mean separation
= T8 between defects; %, so that
0°F o & ok == low T
L~ L i E 0 oo —_— TC=0.3 3
3 o -1.-2
tt/ g ¢ 10 E N Ted T)=D 7 Cc™“~ex T/ (9
e 10 10
2_ This mechanism relies on the notion of dynamic facilitation
10 which implies that local fluctuations of the mobility deter-
N mine the dynamics, and is essentially beyond the reach of
10°F e © any mean-field type of approximati¢B3]. We see from Fig.
Y SRS — 6 that Eq.(9) accounts for the behavior at low-temperatures,
0 1 2 T3 4 5 T<T,. Figure 6 also presents a fit to the data with an MCT
power-law form for the relaxation timg9],

FIG. 6. Temperature dependence of the relaxation time in the
1D FA model, 7(T). Open circles correspond to numerical data. meT(T)~=(T—T,) 7, (10
Three fits are presented. The dashed line is the simple mean-field
_Hartree-like approximati_onr,MF~exp(17I'). The dot_ted-_dashed line  gimilar to the one obtained in Ref52] for the two-spin
is the low-T exact behaviorre~exp(3T). The full line is a power- ¢ qijitated, two-dimensional version of the FA model.
law MCT-like fit, rycr~(T—Tc) "7 with y=2.3 andTc=0.3. The 50y Fig 6 we draw the following conclusions. The be-
inset shows that the appgrgnt power-law pehawor is acceptable iN& vior of the relaxation time changes from the higte
range of three decades in times. The main figure shows thaﬂ'low-IOW_T behavior close to the onset temperatiige The com-
and highT fits account for the whole temperature range. L. . . . .
bination of simple mean field at highwith the exact form at
I&)w T allows to describe the temperature dependence of the
relaxation time over the whole temperature range. However,
iven thatr(T) smoothly interpolates between these two dif-
ferent functional forms, the MCT power-law form, E4.0),
appears to work reasonably well in a time window of about
three decadesgsee inset in Fig. 6 This range of apparent
power-law behavior is in fact larger than the corresponding
one in the canonical binary Lennard-Jones mixture of Ref.
o [13], where extensive tests of MCT have been performed.
B. Relaxation time Remarkably, we also find that th€. extracted from the
The next natural quantity to consider, the relaxation timepower-law fit to the relaxation time coincides well with the
7(T), is readily obtained from the dynamical correlators dis-temperature where fast processes cease to contribute in a
cussed in the preceding subsection. From the discussion sfgnificant manner to the distribution of relaxation times,
Sec. I, we expect a crossover from higihto low-T at the  Fig. 3. This explains our choice of notation for the lower
onset temperaturg, ; see Eq(5). Our results for the 1D FA crossover temperatufE, .
model are presented in Fig. 6, wher€T) is defined as the Following the standard MCT reading of the data
time where the persistence function has decayed to the valié0,11,13, we would erroneously conclude that activated
1/e. processes only appear closeno=0.3, since these processes
The simplest mean-field approximation to the dynamicsare often tautologically defined by the breakdown of the
of the FA model consists in a Hartree-like decoupling of power-law behavior of the relaxation tinigl]. Figures 3, 5,
spatial correlations{n;n;)—n;(n;), in the dynamical equa- and 6 prove instead that activated dynamics starts to be rel-
tion for n;. This amounts to replacing the actual neighbor-evant afT,, much abovel ., dominating thex relaxation of
hood of sitei by an average neighborhood, and spins ardghe correlators, and hence the relaxation time of the system.
always facilitated with an average rate equattd@his gives  The results of this section considerably weaken the possibil-

a mean-field estimate of the relaxation tifgd], ity of the existence of a temperature regime in supercooled
liquids where the relaxation time is correctly described by a

1 power-law behavior. It follows that the standard determina-
Tur(T)~C""~ex T (8) tion of the location of the MCT “singularity™T. in experi-
ments and simulations is physically unjustifigé,63. In
Figure 6 shows that this simple approximation accounts fofact, the issue of the location df, has been recently ad-
the dependence of the relaxation time at high-temperaturedressed in Ref.64], where it was found that for a variety of
T=T,. systems, the temperatufie obtained from the actual MCT
The exact result for the relaxation time of the 1D FA equations systematically coincides with the onset tempera-
model is obtained by realizing that isolated defects undergture T, discussed above.

a relaxation, is due to the presence of isolated defects an
therefore of heterogeneous dynamics, even inTthel . re-
gime. This means that activated dynamics, in the language
MCT, or hopping events in topographic terms, are respon
sible for thea relaxation, even at temperatures well above
T.. This conclusion is unavoidable in view of the numerical
data of Refs[26,44,49.
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T T Clearly, at low temperaturé~c?~exp(—2/T). This behav-

0.4 ior is physically natural. Contributions td(T) come from
clusters of defects, which are the only objects that can relax
during the descent to an IS. Since the probability for a cluster

03 of k defects,p(k), goes asp(k)~c¥, the main nontrivial
contribution tod(T) at low T comes from the smallest clus-
ters,k=2. These relax only one defect in the descent, so that

0.2 d~p(2)~c?. Moreover, our defect interpretation is consis-

) tent with real space observations in simulations of s{liZ4,

0.1~ ! where it was found that during the descent to the IS the

7 —0.1 major contribution to the distance comes from annihilation

LU log, , ©(T) of localized topological defects of the amorphous structure.

; N The similarity of Fig. 7 to Fig. 1 is striking. The emerging

ool AL v Lo Lo e e g physical picture, is however, completely different from the

0 0.5 1 EI“S 2 25 3 one of the MCT/landscape scenario. For example, while it
may appear from the behavior of(t) aboveT. that this
FIG. 7. Onset of the slowing down in the 1D FA model. We quantity extrapolates to zero whén—T_ (see Fig. 7, the
show three quantities as a function of temperafliré) Logarithm  exact temperature dependenceddT) is purely Arrhenius.

of the relaxation time, logr, see Fig. 6.ii) Energy of IS,eg, This means thal; has no particular importandd . would

which displays a qualitative change aroufig=1.0. (i) Concen-  not look special in a plot ofi(T) versus 1T]. Even if one

trationd of cells moved in the descent from an equilibrium configu- acceptsT .. as delimiting two regimes with high and low con-
ration to its IS, which displays a qualitative change arolRd  centrations of clusters of excitations, this apparent crossover

0.3

=0.3. This figure should be compared with Fig. 1. is completely irrelevant as far as the long-time dynamics is
concerned. These observations suggest that the crossover at
C. Crossover temperatures T. from “landscape influenced” to “landscape dominated”

Let us now consider the quantities shown in Fig. 1 aof Ref.[23] is not physically significant for the relaxation.
evidence in favor of the MCT/landscape picture in Lennard-

Jones mixtures, fr_om the perspective of dynamically facili- |\, \NTERPRETATION OF “LANDSCAPE” PROPERTIES

tated models. In Fig. 7 we show for the 1D FA model a plot

analogous to Fig. 1. In recent years, the potential energy landscape of super-
The first quantity presented in Fig. 7 is the logarithm of cooled liquids has become an object of stymy se[3]. In

the relaxation time, log(T), as a function of temperature, Ref.[6], we have developed the idea that the main motiva-

which we discussed in detail in the preceding subsection. tion behind these works was the observation of the separa-
The second quantity shown in Fig. 7 is the average energtjon between fast vibrations and slow hopping processes if

of inherent structuresg;s. For the 1D FA model it can be sufficiently small systems are considered. This apparently

computed analytically by solving the zero-temperature dy-harmless statement on the system size, we argued irf&ef.

namics of the moddl65], results in fact from the central feature of the dynamics of
supercooled liquids: “sufficiently small” really means “if
es(T)=c e, (11)  the system size is of the order of the dynamical correlation

length €(T)” [6,25]. However, in a purely topographic de-
scription of the physics based on the statistical properties of
minima, the relevance of the dynamical correlation length is
not obvious[66]. In that sense, a topographic description of
the glass transition misses a central aspect of the physics.

seen in Fig. 7. This change in behavior at the onset tempera- V€ shall show below that using the very simple spatial

ture T, is due to the appearance of isolated defects, an&pproach described in previous sections, we can trivially de-

therefore of a heterogeneous dynamics, and not to any Spgye the statistical properties of the landscape reported in

cial change of the potential energy surface. This is a Ver);ecent years. This successful confrontation to such an

different interpretation of the physics from that of REZ3]. amount of a}pparently n'ont.riviql and detailed 'numerical re-
The third quantity shown in Fig. 7 is analogous to thesults is again a strong indication of the validity of our ap-

distance between a configuration and its nearesté® Fig. proach.

1). In the lattice models we are considering the natural quan-

tity to compute is the concentration of sites which change  A. Real space description of “minima” and “saddles”

during the descent towards the inherent structwahel).

Since only excited sites can change during this procedureEh

we get

where the concentration of defeatsjs defined in Eq(3). At
high-temperatures;s changes very slowly. Wheft is re-
duced belowT, the concentration of defects starts to de-
crease markedly, ang\s follows the same trend, as can be

Referencd 6] described in detail the connection between

e nanoscopic ordering in the trajectories of dynamically
facilitated models and the dynamics between IS, “metaba-
sins,” or “traps” observed in numerical simulations or ex-

d(T)=c—eg=c(1—e °). (12 periments of supercooled liquids. This same approach can be
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FIG. 8. Top: zoom on the loW-trajectory of Fig. 2. The vertical FIG. 9. Saddle index versus energy difference between saddle

arrow indicates the closing of a bubble. Bottom left: expanded viewand minima computed analytically for the 1D FA model for

of this event, showing two excitation lines meeting and coalescinge[0,,0) andps=1/2. The obtained linear behavior is a natural con-
A cluster of three spins is needed for this process to occur. Bottonsequence ofi) dynamic facilitation,(ii) localized defects, angii)
right: corresponding “reaction path.” Before the event there are twodynamic heterogeneity.

isolated defectgenergy =2), a cluster of three defect®nergy

=3) during the event, and one isolated defect afterergy=1). B. Absence of “geometric transition”

. ; The above identification between the relevant dynamical
extended to account for the properties of “saddles,” i.e., con-_, . . B
i . " objects, isolated defects and clusters of defects, and “land-
figurations related to transitions between IS.

. . cape properties” allows one to compute quantities such as
Figure 8 zooms on the lowest-temperature trajectory o he mean saddle inden (T), and the corresponding mean
Fig. 2. The top panel of Fig. 8 shows diffusion of isolated S P g

defects. It also shows coalescence and branching events, i.gn?rrr?y of stafu_onary p(()jlntse,s(T). . d ically i
closing and opening of bubbles. These two kinds of pro-_. Iet.quant:‘tlesns an Iesd\/l\(e@dggtg]atﬁ nurperlcaatﬁ/ Itn
cesses correspond to “hopping” events between dynamicz{f)'mrl]J fa 1ons o Zupercooe hé?du' o ngs oun | a
“traps” [6]. Let us consider in detail one of these events, for oth functions decrease w ecreases, and extrapolations

example, the coalescence process enlarged in the bottom I%’Fre performed that indicateat(Tc) =0. Also, plotting the

panel of Fig. 8. Isolated defects diffuse by first facilitating epender_lce o'hs. on €~ &is parametnzed_ by the tempera-
one of their neighbors, for instance, Egge,% simple linear relation was obtainag,«(es—es)
10—11—01. (13 In the case of the 1D FA model, it is very simple to devise
a procedure to go from an equilibrium configuration to the
For two defects to coalesce the minimum number of excita“nearest” stationary point. Isolated defects and clusters of
tions that have to be present when they merge is three, defects withk=3 are locally such points, so we only have to
deal withk=2 clusters. From these we can either reach a
101-111-011-010. (14 “minimum” k=1 or a saddle wittk=3. We, respectively,

i i assign the probabilitiepg and (1—pg) to these two possi-
In this sequence, the total number of defects is 2 at the bgsjjities. We then have

ginning, 3 at the transition, and 1 at the end. This process is
schematically described in the bottom right panel of Fig. 8. *

In topographic terms, an isolated defect corresponds to a ng(T)= > p(k)ng(k) (15
local minimum of the energy, since such a configuration can k=1
only evolve by an energy increase, as in Et@). On the a
other hand, a cluster of three excitations corresponds locally
to a saddle point, since it is the transition configuration be- o
tween two minima, as in Eq14) and Fig. 8. Larger clusters eT)=2>, p(k)eyk), (16)
thus correspond to higher order saddles, since the larger the k=1
cluster the larger the number of possible moves into minima.

The caseé=2 is particular: it is not a minimum since it can Wherep(k) = (1—c)?c* is the probability to have a cluster of
relax one defect to decrease its energy, but it is not a saddrize k. From the discussion above we know timg{1)=0,
either since it does not correspond to a hopping event lik€s(1)=1, ng(2)=(1—ps), es(2)=pst3(1—ps), ns(k
that of Fig. 8. Clusters wittk=2 are just ordinary points =3)=es(k=3)=k. Putting all together we obtain

(i.e., not stationary poinisof the landscape. The previous
discussion generalizes in a natural way to the whole class of
dynamic facilitated systems.

nd

2
ny(T)=3¢? (1—ps)(1—0)2+c(1_§c) (17)

041201-8



REAL SPACE ORIGIN OF TEMPERATURE CROSSOVER. . PHYSICAL REVIEW E 68, 041201 (2003

and nation was, however, available. This feature is, in fact, al-
most a tautology in the context of facilitated models: the
es(T)=c+(1-2py)c(1-c)? (18)  more defects are present, the more available directions to
move, the higher the energy above that of the IS. The fact
At low T both quantities scale as,~c® andes~c. Three  that relation(19) holds in different model liquids is another
important conclusions can be drawn. confirmation that dynamical facilitation is a key generic fea-

(i) It is obvious from Eq.(17) that ny(T)>0 for T>0.  tyre of the dynamics of supercooled liquids.
This means that there is no “geometric transition” to a re-

gime with vanishing saddle index.

(if) The saddle index has a temperature dependence which C. Thermodynamics and “anharmonicities”
follows closely that of the distancé(T) discussed in the )
preceding subsection. This is expected because they both re- Another common procedurg of the Iandscape apprqach is
ceive their principal contribution, at low, from clusters {0 decompose configurations into vibrational and configura-
with k=2. In other words, the main objects for the low- tional components. Stillinger and Webg2] suggested to
temperature dynamics, the isolated defects, do not contribufeerform this decomposition at the level of the partition func-
to these quantities. Therefore, as for the distai(@® in Fig.  tion,
7, the rapid decrease ofy(T) when the temperature de- )
creases can easily be confused with a vanishing of the saddle ZM~3 Q(E,S)exr< _ EistF(TE;g) 0
index close toT. Es T

(iii) The linear relation betweeng, and e;— e, becomes
exact at low-temperatures, see E@%l), (17), and (18).
Again, the difference betweees and ;g5 comes from the where the sum is over energies of g, their number is
clusters of defects which are relaxed during the descent tidicated byQ(E;s), andF(T,E,s) is the “basin free en-
the inherent structure. In Fig. 9, we show the behavionof ergy” which takes into account fluctuations within an IS due
versuses—es for the entire rangel [0,»). Note that in o vibrations and possible “anharmonicitiest.e., all the
Ref. [33] a linear behavior betweems andes was also re-  regy,
ported. This is true at relatively high temperature, given that |t js instructive to consider the calculation of the partition
aboveT, the energy of inherent structure is almost constantynction in the case of the 1D FA model using the Stillinger
while ns andes change with temperature in the same way. anqg \Weber decomposition. The thermodynamics of the FA

¥his simple thermodynamics, however, can be obtained with
transition where the saddle index vanishes follows from the P y j '

observation that the low-temperature behaviongfs given any dynamics obeying detailed balance with respect to
by the smallest cluster of defects necessary to make a trar'?l-am"toman(l) , the actual FA dynamics defined by HQ)

sition, in the sense described in the preceding section. Sin eing Just one pOSS|b|I|ty. In this sense, the St||||ng.er a_nd
these objects are spatially localized, their energy cost i eber prescription for thermodynamics is an approximation

O(1), andthey exist with non zero probability at finite tem- or the way a thermo_dynamic qua_ntity would be calcula_ted
using a particular choice of dynamics to sample the configu-

peratureT>0. This argument is close in spirit to Stillinger’s ration space. Inherent structures. basin free eneraies. etc
argument for the inexistence of an entropy crisis at the Kauzﬁave noptherhod hamic meanin ’ thev onlv have agd n’ami—”
mann temperature involving point defe¢€&]. Moreover, as y 9. they only y

discussed in the Introduction, careful numerical simulationsc"’lI meaning associated with a particular choice o_f'dynam|cs.
For the 1D FA model we can evaluate the Stillinger and

both confirm thatny(T<T.)>0 [36,37, and report an " :
Arrhenius behaviomg(T) [38], in agreement with our re- Weber partition function exactly. We have

sults.
The relation between saddle index and energy, N
24(T) (N—Eg)! p( 1[E
Ns>(es—es), (19 N Eis=0 Eis! (N=2E;g)! TS
which was first observed numericall34,33,33, is also a TE.J(TE ) 21
general result for dynamically facilitated systems. This rela- and T:E19)1 (21)

tion contains two different pieces of information. First, it

shows that the intensive saddle index is a numbeD ().

This is again a trivial consequence of the existence of th&he first factor counts the number of configurations of en-
dynamical correlation lengtli(T), so that a large sample ergy E ;s with only isolated defects in a system Nf sites.
can, in fact, be thought of an assembly of independent sulBue to the coarse-grained nature of facilitated models the
systems of linear sizé(T) [6]. Second, and more interest- only contribution to the basin free energy comes from anhar-
ing, is a connection between energy and saddle index, premonicities.

sented as a “general feature of the potential energy landscape Performing the sum in Eq21) without the anharmonic

of supercooled liquids{35], for which no theoretical expla- contribution gives
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0.6—T—— — T — T an IS all defects are isolated. The contribution of clusters of
- = defects is obtained from the probability that an isolated de-
fect in the IS was a cluster in the original configuration,
which is given by Eq(25).

Interestingly, a numerical procedure to evaluate the anhar-
monic contributions can be proposed. First, the harmonic
expression23) is evaluated. Then, the approximate expres-
sion

-f/T

FanI{T;EIS)MEIS(T)fham{T) (26)

can be used as an educated guess for the anharmonic contri-
butions. This gives in turn a first order free enengyT).
The improvement on the harmonic evaluation can be judged

FIG. 10. Comparison of the various expressions for the fredn Fig. 10, where we see thai(T) coincides with the exact
energy(divided for convenience by T) in the 1D FAmodelf., is  [f€€ energy up tol ~T,. This evaluation can then be im-
the exact free energ{24); fn.mis the purely harmonic evaluation Proved iteratively usingFanfT;Eis) ~E;s(T)f4(T) to get
(23) which is a good approximation beloW,=0.3, andf, is the ~ f»(T), and so on. It is easy to show that, in our particular
result obtained with expressid26) for anharmonicities which is  case, lIM_.f,(T)="Tfe(T).
good up toT,=1.0. Although these results could lead to an improvement on

present evaluations of anharmonic contributions in studies of
ot
2M 2T

the thermodynamics of supercooled liquids, they also show
, (22)  that topographic concepts are very far from the physical ob-
where Uy (x) is the Nth Chebyshev polynomial of second
kind. In the thermodynamic limit the above expression sim-

jects they pretend to describe.

plifies to give the free energy in the “harmonic” approxima-
tion, We end this section with a remark on the Adam-Gibbs
relation, which is an attempt to connect dynamical properties
to thermodynamic ones. The Adam-Gibbs formula relates the
relaxation time of a glass former, to the configurational
entropyS, [which would correspond t68.=(InQ(E,g)) in the

=TIN2—T In(1+1+4 e U ). (23) IS formalism: 7,cexgd1/(TS.)]. Apparently, this relation

has been seen to hold both in numerical simulations and in

In Fig. 10, we compare approximatid@3) to the exact experiments of various systeni8]. A careful look at the

N
ZhamMT) = exp( — E) Un

D. Failure of the Adams-Gibbs relation

T
fharmd T) = lim — Nln Z\(T)

N—oo

expression for the free energy, published data reveals, however, that the correlation between
_ Car relaxation time and entropy does not quantitatively satisfy
fed T)==TIn(1+e 7). (24 the Adams-Gibbs relation. This important observation is of-

ten not clearly statef3].

Our analysis shows indeed that thermodynamic properties
not fully determine dynamical behaviors. Clearly, almost

:Ey definition, 7, increases an8, decreases as temperature is

As observed numerically in supercooled liquifl], both
thermodynamic evaluations, Eq®3) and (24), apparently d
coincide belowT . when anharmonicities become negligible. 0
From the previous sections we know that anharmonicities a
just a consequence of the existence of clusters of defects.
low-temperature the difference between B@8) and(24) is
therefore proportional t@?, reflecting the fact thatti) an-
harmonicities do not disappear beldy, which again is no
particular temperature in this contexij) anharmonicities

wered, but that is where the connection ends. It is easy to
check that the Adam-Gibbs formula fails completely when
applied to dynamic facilitated systems. We find instead that
time scales are broadly distributed, the distribution of times
being the result of an integral over a distribution of length
are due to clusters of defectss 2 being the leading term at scales,p(_e), imposed by therr_nodynamm equmbr!um, Eq.
low temperatures. (2). Crucially, howevetrz dynamics a_I;o enters the integral in
In the particular case of the FA model we can formulatethe form qf the condltlona_l propablllty of tlme_ and length,
an exact expression for the anharmonic free ené&igy. It p(t|€).’ Wh'c.h can be_ described, in atopogﬂraph!c 'af]guage as
. : containing information on the relevant “barriers,” which
is easy to check that the choice 2 . . . I S
havea priori no obvious link with the statistics of minima.
Fad T;Eis) =Eis(T) fedT) (25)  As a consequence, thermodynamics alone cannot be used to
predict the dynamical behavior. Again, we find in the litera-
in Eq. (21) yields the exact expression for the free energy inture an excellent numerical confirmation of this statement. In
the thermodynamic limit. This exact expression for the an-Refs.[38,60, using a purely topographic description of a
harmonic part of the free energy is simple to understand. Irsupercooled liquid, it was shown that the diffusion constant

041201-10



REAL SPACE ORIGIN OF TEMPERATURE CROSSOVER. . PHYSICAL REVIEW E 68, 041201 (2003

could be computed by a combination of thermodynaarid  that the inexistence of the singularily, is anyway not a
dynamical quantities, well in line with the above discussion.physically important issue for the relaxation.
Below T, isolated defects are the only remaining objects
V. CONCLUSIONS and the dynamics is dominated by the nanoscopic demixing

of slow and fast regions so that trajectories look like a dense

n this_ paper, we have df‘-“’e'ope‘?' a spatial description 0Fnixture of slow bubbles, which in turn gives a natural theo-
the _phyS|cs of the, progressive slowing down of supercooleqyic, interpretation of the canonical features of glass tran-
liquids. The only ingredients in our method have been thesition phenomen#s—7].
notions of localized mobility excitations and facilitated dy- 5 . (esults together with some other recent studies

namics[5—8]. Our results were illustrated explicitly for the [38,44,45,48,53,60,62— 64 p&uggest that several essential

simplest case of the 1D FA model, but are generic for thige v res of the dynamics of supercooled liquids need to be
theoretical approach, and are in very good agreement W'tnacognized and we now list some of them.

experimental and numerical observations in supercooled (1) The dynamics is heterogeneous and activated well

liquids. aboveT,.

The physical picture which emerges from our work is, (2) The dynamical slowing down of supercooled liquids is
however, markedly different from that of the MCT/landscape y 9 up ~a 19
due to the growth, below,, of a dynamic correlation length

scenario discussed in the Introduction. ) S

At high temperaturesT>T,, the dynamics is fast and €(T),' or more precisely, of a whole distribution of length
liquidlike, corresponding to the relaxation of large clusters of2nd time scales. _ _
defects. Dynamic facilitation plays no major role, and a (3 The long-time dynamics, and therefore the relaxation
simple mean-field Hartree-like decoupling of the equationdime 7, of the liquid is dominated by heterogeneous “acti-
of motion yields predictions in good agreement with numeri-vated” dynamics belowf, .
cal results. (4) The MCT definition of activated processes as devia-

When T<T,, the dynamics becomes heterogeneous, irfions from the ideal theory is incorrect. It is unlikely that the
the sense that local relaxation times are spatially correlatepower-law behavior predicted by MCT correctly describes
in a nontrivial way. This can be seen in the trajectories ofthe temperature dependenceqf. The practical definition
Fig. 2 as the appearance of slow bublje$]. The long-time  of the temperatur@ . cannot be used.
dynamics of the system results from the wide joint distribu-  (5) No topological change of the potential energy land-
tion of length scales and time scales, and the relaxation becape takes place close Tp. Quantities such as the saddle
comes stretched. This dynamic heterogeneity, which can bigdex and anharmonicities do not vanish closeTt{oand
thought of as the activated dynamics invoked, but never denave a smooth temperature behavior. At best, they undergo a
scribed, by MCT, determines the relaxation and its tem-  crossover from large to small which remains to be quantified.
perature dependence forT,. Also, dynamic heterogene- () Even if one accept3, as a crossover temperature, as
ity implies that decoupling of transport coefficients actuallyin Eq. (4), quantities related to this crossover are unimportant
starts atT,, as confirmed by the simulations. From a theo-for the long-time dynamics.
retical point of view, local fluctuations of mobility crucially ~ (7) Knowledge of thermodynamic properties is not
influence the dynamical behavior. Any mean-field-like ap-enough to predict dynamical behavior, which explains the
proach, no matter how involved, is most probably doomed tquantitative failure of relations like the Adams-Gibbs for-
fail. mula.

At T, not all trace of hight physics(clusters of defecis The approach we developed in this paper, which is an
disappears. The dynamics has a mixed character in the rang&tension of previous effor{&—8§], is generic. It can be ap-
T.<T<T,, as seen, for example, in the behavior of dynami-plied both to systems like Lennard-Jones liquids or to hard
cal correlators like in Fig. 5. The temperatufg is just a  sphere systems. It gives a perspective on the physics of glass
crossover. It is the temperature below which isolated defectformers which is clearly distinct to, and in many respects
not only dominate the long-time dynami¢as for T.<T  more natural than, that of MCT or topographic approaches.
<T,) but are also the most numerous dynamical objects, see There are many important and interesting open questions
Eqg.(4). Clusters of defects, whose dynamics is homogeneouwhich need to be addressed from this perspective. This in-
and nonactivated, are responsible for the temperature depeciude, among others, understanding properly the origin of
dence of several quantities, such as distance between comobility excitations, and the breakdown of Stokes-Einstein-
figurations and IS, saddle index(T), and anharmonic con- Debye relations and associated decouplings between trans-
tributions to the free energy. In numerical simulatiohghas  port coefficients.
been interpreted as a key temperature, in accordance with A general conclusion that can be drawn from this work
MCT for which it represents a dynamical singularity. We and our previous ones is that, in many respects, glass transi-
have shown, however, that all of these quantities have #&on phenomenon is more standard than often assumed, in the
smooth temperature dependence, as has been recently aense that it is determined by the interplay between growing
served numericallf36—38. This means thaf, does not dynamic length scales and time scales. This is obviously
correspond to a transition or singular point, but is at most aeminiscent of critical phenomeif&], meaning that it should
crossover. Crucially, the objects which display a crossovebe possible to adapt renormalization group techniques to
close toT,. are also irrelevant for the long-time dynamics, sostudy the dynamics of the glass transition.
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