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Real space origin of temperature crossovers in supercooled liquids
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We show that the various crossovers between dynamical regimes observed in experiments and simulations of
supercooled liquids can be explained in simple terms from the existence and statistical properties of dynamical
heterogeneities. We confirm that dynamic heterogeneity is responsible for the slowing down of glass formers
at temperatures well above the dynamic singularityTc predicted by mode-coupling theory. Our results imply
that activated processes govern the long-time dynamics even in the temperature regime where they are ne-
glected by mode-coupling theory. We show that alternative interpretations based on topographic properties of
the potential energy landscape are inefficient ways of describing simple physical features which are naturally
accounted for within our approach. We show in particular that the reported links between mode coupling and
landscape singularities do not exist.
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I. INTRODUCTION

The aim of this paper is to critically reconsider the phy
cal origin of the onset of dynamical arrest and the associa
crossovers between distinct dynamical regimes displayed
liquids supercooled through their melting temperature
wards the glass transition@1–4#. We do this by extending the
real space theoretical framework based on dynamic faci
tion of Refs. @5–8# to the moderately supercooled regim
corresponding to the region where mode coupling the
~MCT! @9# supposedly applies, as reviewed in Refs.@10,11#.
Our approach takes directly into account the spatial asp
of the dynamics, in particular those related to dynamic h
erogeneity@12#, in contrast with many other theories@3,4,9#.
Our analysis shows that the onset of slowing down can
understood in a simple physical way in terms of the dyna
cal properties of effective excitations, or defects, as a p
gressive crossover from a regime of fast dynamics dens
defect clusters, to one of slow heterogeneous dynam
dominated by isolated localized defects. We demonstrate
this real space picture explains the observed crossover
peratures, challenges the idea that these crossovers a
lated to changes in the topography of the energy surface o
MCT singularities, and is able to account for the appar
correlations observed between ‘‘landscape’’ and dynam
properties.

The paper is organized as follows. In the rest of the int
duction we review the MCT and energy landscape points
view, discuss their problems and limitations, and describe
alternative real space perspective we will pursue. In Sec
we develop the physical picture of the onset of slowing do
and dynamical crossovers which emerges from our theo
cal approach. In Sec. III we discuss its quantitative con
quences and compare them to published numerical result
Sec. IV we show how our approach also enables to derive
observed properties of the potential energy landscape o
percooled liquids. Finally, in Sec. V we discuss our resu
and state our conclusions.

A. MCT Õlandscape scenario

It is often assumed that the initial slowing down of th
dynamics of supercooled liquids can be rationalized by M
1063-651X/2003/68~4!/041201~13!/$20.00 68 0412
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@1–4,10,11#. Numerical simulations are now able to inves
gate the first five decades in time of this slowing down@11#,
so this is also the regime which has been studied in grea
microscopic detail. The degree of success of MCT is sti
matter of debate. This is due to the fact that the central M
prediction, a complete dynamical arrest at a temperatureTc
where the a-relaxation time diverges as a power law
ta(T);(T2Tc)

2g, is actually never observed, but a powe
law fit to the data apparently works on a restricted time w
dow @10,11#. The appearance of new mechanisms for rel
ation, often termed ‘‘activated processes,’’ but seldo
described in any detail, is then invoked to explain the d
crepancy between observations and MCT predictions.
fact, activated processes are actually quantitatively defin
within MCT, by deviations between data and predictio
@11,13,14#. It is believed that activated processes become
evant close to the dynamical singularityTc , their main effect
being to prevent the predicted transition.

From Tc downwards it is assumed that the physics
dominated by activated processes, which determine also
canonical features of glass transition phenomena@15#: non-
exponential relaxation, strong and fragile liquid behavio
decoupling between transport coefficients, etc. It is som
times said that the relevant physics for the glass transi
sets in atTc , and is therefore out of reach of numeric
simulations@16#. Crossovers into the activated dynamics r
gime are also reported to occur at temperatureTx @17# or TB
@18#, depending on which aspect of the physics is conside
It is believed that all these temperatures are close enoug
be taken as equivalent,Tc'Tx'TB @19#.

The above scenario is apparently corroborated by
study of the statistical properties of the potential energy la
scape of model liquids@3,20–22#. From the properties of the
landscape two temperatures seem to emerge,To andTc @23#.
The onset of slowing down of the dynamics takes place
To , and coincides with the temperature below which t
average energy of inherent structures~IS!, i.e., local minima
of the potential energy@21#, eIS(T), starts to decrease mark
edly, see Fig. 1. This has been interpreted as the sign tha
landscape starts to ‘‘influence’’ the dynamical behavior@23#.
At Tc , it is further argued, a second change in the landsc
©2003 The American Physical Society01-1
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properties takes place, which is indicated by several ob
vations@23–29#. For example, the mean-square displacem
from an equilibrated configuration to its corresponding inh
ent structure,N21( i(r i2r i

(IS))2, is proportional toT below
Tc , as expected from pure vibrations in quadratic wells, b
the temperature dependence changes aboveTc , revealing
‘‘anharmonicities’’ in the landscape@23,24#, see Fig. 1.

Another indication of a topological change in the ener
landscape was discussed in Ref.@30#, in analogy with what
happens in mean-field models@31,32#: the vanishing asT
approachesTc of the mean intensive number of negativ
directions~intensive index! of stationary points of the poten
tial energy,ns(T). Numerical simulations@33–38# found that
ns(T) decreases with decreasingT, and fits were performed
to show thatns(Tc)50 @33–35#. The physical interpretation
of this result is the apparent existence atTc of a ‘‘geometric
transition’’ between a ‘‘saddle dominated regime’’ aboveTc
and a ‘‘minima dominated regime’’ belowTc @39#. Tc would
then really coincide with the appearance of activated p
cesses, described in a topographic language as ‘‘hopp
between minima of the landscape. Analogous findings
been previously reported from instantaneous normal m
analysis of equilibrium configurations@40#, also supporting a
qualitative change in the landscape topology close toTc
@41,42#.

Figure 1 summarizes this MCT/landscape scenario w
published numerical data@13,23,43# obtained for the stan-
dard supercooled liquid model of Ref.@13#.

B. Problems and contradictions

At first sight Fig. 1 appears as convincing evidence
favor of the MCT/landscape interpretation of the dynami

FIG. 1. Onset of slowing down in the binary Lennard-Jon
mixture of Ref.@13#. Three quantities are reported as a function
temperatureT. ~i! The logarithm of the relaxation time, log10ta ~in
arbitrary units extending over four decades in time!; a MCT power-
law divergence, withTc50.435, was used to fit this data in Re
@13#. ~ii ! The energy of inherent structures,eIS , taken from Ref.
@43#, which decreases markedly when the temperature decre
below T051.0. ~iii ! The anharmonic part of Cartesian distance b
tween configurations and their corresponding IS, (Dr )2

[N21( i(r i2r i
(IS))22aT, which displays a qualitative chang

aroundTc , taken from Ref.@23#.
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On closer inspection, however, the above scenario is
robust. Several qualitative and quantitative observations
not fit into the picture presented above.

(i) Activated dynamics above Tc . The main idea behind
the landscape approach@20# is that vibrations and structura
relaxations take place on very different time scales, so
the system is ‘‘trapped’’ and vibrates in one minimum befo
‘‘hopping’’ to another minimum. This is indeed observed u
ing the mapping from trajectories to IS@21# in simulations of
sufficiently small systems@44,45#. We have also discusse
theoretically this issue in a recent work@6#. Given that nu-
merical studies were performed much aboveTc , a crucial
conclusion of Refs.@6,44,45# is that ‘‘activated dynamics’’ is
indeed present in this temperature regime.

(ii) Heterogeneous dynamics above Tc . It is now well
documented that the dynamics of supercooled liquids, e
above the mode-coupling temperatureTc , is heterogeneous
in the sense that the local relaxation time has nontrivial s
tial correlations@46#. This phenomenon is not very differen
from what happens experimentally close to the glass tra
tion Tg @12#. Besides, the decoupling between transport
efficients, which is also interpreted in terms of dynamic
heterogeneity@12,47#, is observed in numerical simulation
aboveTc @13#, although the effect is quantitatively less pr
nounced than in experiments nearTg @48#.

(iii) Presence of saddles below Tc . Despite claims based
on numerical results thatTc marks a real change in the to
pology of the landscape@33–35#, there are strong indication
that this is at best only a crossover@36,37#, and at worst a
biased interpretation of numerical data@38#. For instance,
careful numerical studies have shown that the saddle in
ns(T) remains positive even belowTc @36#. Moreover, Ref.
@38# argues convincingly that the data forns(T) can be de-
scribed by an Arrhenius law,ns(T);exp(2E/T), with E an
energy scale, which means thatTc does not mark any par
ticular change in the saddle index.

C. Alternative: real space physics and coarse-grained models

The problems described above can be overcome thro
an alternative perspective on glass transition phenom
which puts the real space aspects of the dynamics at its c
This is the approach developed in Refs.@5–8#. Interestingly,
several of its central concepts, such as the relevance to
dynamics of localized excitations@49,50# and the importance
of effective kinetic constraints@51,52#, have been present in
the literature for many years. Moreover, one of the origin
key observations of dynamic heterogeneity in glass form
was made by Harrowell and co-workers@53# in the models of
Ref. @52#. See Ref.@54# for an exhaustive review.

Our approach relies on only two basic observations.
~i! At low temperature mobility within a supercooled liq

uid is sparse and very few particles are mobile. This is som
what equivalent to the statement that particles are ‘‘cag
for long period of times, as reflected by a plateau in t
mean-square displacement of individual particles.

~ii ! When a microscopic region of space is mobile it i
fluences the dynamics of neighboring regions, enabling th
to become mobile, and thus allowing mobility to propaga
in the system. This is the concept of dynamic facilitati

s
f

es
-

1-2



u

ive
rs
d
e

is

o
o-
i-

y

e
il

-
la

e
i-

n,

bo

t
ex

ed

ti
or

an

s
er
id
c

d

rse-
ok
dy-
o-

es,
ra-
pa-
lls

ese
e is
ob-

led

on-

he
ries

sent.
w
bot-

or
-
ly

REAL SPACE ORIGIN OF TEMPERATURE CROSSOVERS . . . PHYSICAL REVIEW E 68, 041201 ~2003!
@50,52#. The observation that very mobile particles in a s
percooled liquid move along correlated ‘‘strings’’@46# is a
confirmation of this fundamental idea.

From these two concepts it is possible to build effect
microscopic models for glass formers by means of a coa
graining procedure. This procedure can be schematically
scribed as follows@7#. Spatially, the particles are coars
grained over a length scaledx of the order of the static
correlation length given by the pair correlation function. Th
removes any static correlations between coarse-grained
gions of linear sizedx. Cells are then identified according t
their mobility by performing a coarse-graining on a micr
scopic time scaledt. In its simplest version cells are ident
fied by a scalar ‘‘mobility field,’’n(r ,t)50,1, the values 0/1
corresponding to an immobile/mobile cell at positionr and
time t. The next step is to replace continuous space b
lattice, n(r ,t)→ni(t). Mobile or excited cells carry a free
energy cost, so when mobility is low it is reasonable to d
scribe their static properties with a noninteracting Ham
tonian @52#,

H5(
i 51

N

ni , ~1!

for a lattice ofN sites. The link between mobility and poten
tial energy@5# has also been observed in numerical simu
tions @46#.

The coarse-graining procedure described above will g
erate local dynamical rules for the mobility field. The prom
nent feature of this dynamics will be dynamic facilitatio
which in its simplest version states that a cell at sitei is
allowed to move only if it has an excited nearest neigh
@52#,

ni50
→
Ci c

←
Ci ~12c!

ni51, ~2!

where Ci512)^ j ,i &(12nj ), and ^ j ,i & indicates neares
neighbor, andc represents the average concentration of
cited cells easily deduced from Eq.~1!,

c~T![^ni&5~11e1/T!21. ~3!

Explicit examples where dynamic facilitation is generat
under coarse graining can be found in Ref.@55#. Clearly,
different models are defined simply by changing the kine
rules, e.g., the number or directionality of mobile neighb
required to move@54#. Also, a more complex mobility field
may be required to account quantitatively for all glass tr
sition features@7#.

Crucially, we will show that the physical mechanism
which explain the onset of slowing down and crossov
between different dynamical regimes in supercooled liqu
are generic to this class of models. This means that we
use the simplest of them, the Fredrickson-Andersen~FA!
model defined by Eqs.~1! and ~2! in one spatial dimension
~hereafter 1D FA model! to make detailed predictions an
calculations.
04120
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II. PHYSICAL PICTURE OF DYNAMIC CROSSOVERS

In order to understand the physics captured by the coa
grained facilitated models defined above, it is useful to lo
at trajectories, that is, space-time representations of the
namics@5#. We show in Fig. 2 three representative traject
ries for the 1D FA model, where mobile cells~defects! are
black, and immobile ones are white. From the trajectori
the principal observation is the appearance at low tempe
tures of nontrivial spatiotemporal correlations, seen as s
tially and temporally extended domains of immobile ce
delimited by isolated defects@5#. In 1D they look like
‘‘bubbles’’ @6#, and trajectories are dense assemblies of th
slow bubbles. This nanoscopic ordering in trajectory spac
the cause of the phenomenon of dynamic heterogeneity
served experimentally and in simulations@5#. Dynamic het-
erogeneity is the central aspect of the physics of supercoo
liquids: it is naturally captured by our approach.

The statistical mechanics of trajectories, rather than c

FIG. 2. Representative trajectories in the 1D FA model. T
vertical axis is space, the horizontal one time. The three trajecto
are for L5150 andt52000. Excited cells~or defects! are black,
unexcited ones white. The top frame is forT52.5, in the high-
temperature regime where almost no isolated defects are pre
The middle frame is forT51.0, the temperature regime where slo
bubbles start to appear, seen here as large white domains. The
tom frame is forT50.5, where almost all defects are isolated. F
T50.5, the mean relaxation time is;120, the mean dynamic cor
relation length;9, but it is clear that times and lengths are broad
distributed.
1-3



pl

t i
he
d
s

of

ca
la

o
ra
le
a
in

ro

a
l s
th

, c
i

om
e
ta
r
a

ec

te
ed

si
Th

e
ib
or

ti

is
s
nc
tio
h

ture

re-

of
ime
ude,

s of
of
ne

ion
ver

e
ty

m-

es

es,
nt

of

For
p-
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figurations, determines the dynamical behavior. For exam
due to the noninteracting Hamiltonian~1!, static correlations
are trivial. However, when trajectories are considered, i
clear that cells become dynamically correlated. In ot
words, these models naturally predict the existence of a
namical correlation,(T) which grows when the dynamic
slows down. This statement can be quantified@5,8,56,57# by
studying multipoint functions, for example,C(u i 2 j u,t)
5^Pi(t)Pj (t)&2^Pi(t)&^Pj (t)&, wherePi(t) is a dynamical
correlator at sitei ~below we will consider the persistence
site i ). The spatial decay of a function likeC(u i 2 j u,t) de-
fines unambiguously the dynamical correlation length,(T),
as already discussed theoretically@5,8,56# and measured in
numerical simulations@46,56–59#. Furthermore, the joint
distributions of time and length scales give rise to the
nonical features of glass formers, such as stretched re
ation, decoupling between transport coefficients, and~kinetic
and thermodynamic! strong and fragile behaviors@5–7#.

Let us take a closer look at the temperature evolution
the trajectories in Fig. 2. Starting from the very low tempe
tures where trajectories consist of a mixture of slow bubb
the dynamics can be understood in terms of the opening
closing of bubbles, that is, the branching of an excitation l
or the coalescence of two. As shown in Ref.@6#, these events
are the ‘‘hopping between minima’’ described in Ref.@20#.
Therefore, we have a clear understanding of ‘‘activated p
cesses’’ and of their statistical properties@6#.

As temperature is increased, more and more defects
present. This has several consequences. First, the typica
tial and temporal extension of bubbles reduces, that is,
system becomes faster and less heterogeneous. Second
ters of defects become more common. These objects are
portant because their dynamics is completely different fr
that of isolated defects. In a cluster, defects do not hav
diffuse and create or annihilate other defects but can ins
taneously relax in a much faster process. At high tempe
ture, the dynamics is fast because almost no bubbles
present, and the dynamics is governed by clusters of def
Interestingly, at some intermediate temperature~middle
frame in Fig. 2! a coexistence between clusters and isola
defects is observed, so that the dynamics has a ‘‘mix
character.

Clusters of defects disappear much faster with decrea
temperature than the overall concentration of defects.
probability to have a cluster ofk defects is indeedp(k)
}ck, so that at lowT we havep(1)@p(2)@•••.

The coexistence of fast and slow processes with differ
temperature behavior has a direct influence on the distr
tion of local relaxation times, which we present in Fig. 3 f
various temperatures. At high temperature,T@1.0, where
fast processes are dominant, the distribution is exponen
with a mean which depends weakly on temperature~below
we discuss in detail its temperature dependence!. Around T
51.0, a shoulder develops in the large time tail of the d
tribution, corresponding to the appearance of the bubble
the trajectories of Fig. 2. This marks the increasing releva
of slow processes and the growth of the dynamic correla
length beyond the microscopic high-temperature value. T
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temperature corresponds therefore to the onset tempera
To51.0.

Decreasing further the temperature, we clearly see a
gime of mixed dynamics. AtT50.6, for instance, there are
two peaks in the distribution, reflecting the coexistence
clusters and isolated defects. At this temperature, the t
scale has already increased by several orders of magnit
and the dynamic correlation length is about,(T50.6)
'c21(T50.6)'6.

Finally, further decrease in temperature makes cluster
defects very rare and we are left only with the contribution
isolated defects. This low-temperature distribution is the o
discussed in Refs.@5,6#, which in turn implies the stretched
exponential decay of dynamical correlators. The contribut
of clusters becomes negligible beyond a second crosso
temperature, hereTc50.3. While this crossover temperatur
is not linked in any way to the mode-coupling singulari
Tc , this choice of notation will become clear shortly.

From these distributions, it is possible to propose an e
pirical but quantitative determination ofTo andTc . At each
temperatureT, the distribution is composed of fast process
t,t!(T), and slow processest.t!(T), wheret!(T) can
be defined, e.g., as in Ref.@60#. Requiring that slow pro-
cesses are a significant fraction~say 90%! of the distribution
leads to the definition ofTc ,

E
t!(Tc)

`

dt8p~t8!50.9, ~4!

where in an abuse of notation we also callp(t) the distri-
bution of persistence times. Requiring that slow process
while not dominant in number, still contribute to a significa
fraction of the mean relaxation time~say again 90%! leads to
the definition ofTo ,

E
t!(To)

`

dt8p~t8!t850.9 ^t&. ~5!

FIG. 3. Distribution of the logarithm of the persistence time
individual cells,p(lnt) for various temperatures.To51.0 marks the
appearance of a shoulder in the high-temperature distribution.
Tc,T50.6,To , two ‘‘processes’’ coexist. Fast processes disa
pear close toTc50.3.
1-4
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In Fig. 4, we summarize the physical picture that emer
from the considerations of this section. From the distrib
tions of Fig. 3, we recognize that the dynamics becom
slow when the temperature is decreased below the onset
peratureTo . This distinguishes the trivial liquid and the slo
glassy regimes. From the trajectories of Fig. 2, we were a
able to distinguish between fast, nonactivated proces
~clusters!, and slow, activated processes~isolated defects,
bubbles!. The former, typical of the liquid high-T physics,
become negligible belowTc , while the latter, typical of the
low-T physics, appear at the onset temperatureTo . As a
consequence, the crossover regionTc,T,To contains
traces of both high-T and low-T physics, as observed in th
time distributions of Fig. 3.

III. QUANTITATIVE CONSEQUENCES

The physical picture we have presented for the onse
slowing down, based on the increasing relevance of a
namically heterogeneous evolution of the system, lead
quantitative predictions which are in good agreement w
previous numerical and experimental studies, as we dis
in this section.

A. Dynamical correlators

The basic dynamical quantities recorded in experime
and simulations of supercooled liquids are spatially avera
two-time functions. Simulations usually focus on the tim
domain and typically consider density-density correlat
functions, while experimental results are often expresse
the frequency domain, measuring for instance dielectric s
ceptibilities. We will only consider systems in equilibrium s
that the information content of both kinds of measureme
is equivalent.

From the distributions of times, Fig. 3, it is easy to deri
dynamical correlators for the 1D FA model considered he
The spatially averaged persistence function reads

P~ t !5E
t

`

dt8p~t8!. ~6!

FIG. 4. Temperature regimes emerging from the discussion
Sec. II.T0 marks the onset of slow dynamics, the appearance of
isolated defects~bubbles, activated processes!, and the growth of a
dynamic correlation length. AtTc , traces of the high-T physics
~clusters! become negligible in the distributions of relaxation time
The crossover regionTc,T,To has therefore a mixed character
04120
s
-
s
m-

o
es

of
y-
to
h
ss

ts
d

in
s-

ts

.

The behavior ofP(t) as a function of time for various tem
peratures is shown in Fig. 5. At very low temperatures, t
persistence function is known exactly due to the diffusi
properties of isolated defects, and one gets

P~ t !5expF2S t

t~T! D
bG , ~7!

wheret(T) is the relaxation time discussed in the followin
section. For the 1D FA model,b51/2, but the stretching
exponent might be temperature dependent in more elabor
~fragile! models@6,54#, as is indeed observed in experimen
@1,2#.

We see from Fig. 5 that forT50.2 and 0.3P(t) is well
approximated by Eq.~7! on the whole time window. For
higher temperatures,T.Tc50.3, the mixed character of the
correlators is evident from the fact that Eq.~7! only describes
the long time behavior of the correlator, as expected. In t
temperature regime, short times are best described b
simple exponential. In the high-temperature regime,T.To
51.0, relaxation is just exponential for all times. We co
clude that the appearance of isolated defects atTo is reflected
in the long-time behavior of dynamical correlators. In th
crossover region,Tc,T,To , more and more of the decor
relation is due to isolated defects whenT decreases. Below
Tc the entire decorrelation is due to these slow processe

A confirmation of the progressive domination of slo
over fast processes described above can be found in the
merical results of Ref.@26#. The similarity of Fig. 4 of Ref.
@26# and our Fig. 5 is in fact quite striking. In particular, Re
@26# calculated density-density correlations from both re
configurations and their corresponding IS in a bina
Lennard-Jones mixture. The latter, where thermal energ
were removed in the quenching procedure, are the o
which have to be compared with Fig. 5, since fast vibratio
are also removed in our coarse-grained approach.

An important conclusion is that the long-time decay
dynamical correlators, sometimes referred to as

of
e

.

FIG. 5. Persistence functions in the 1D FA model for the sa
set of temperatures as in Fig. 3. Symbols are numerical data and
lines are fits to the stretched exponential form expected theo
cally for low temperatures,P(t)5exp$2@t/t(T)#b%, with b51/2.
1-5
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a relaxation, is due to the presence of isolated defects
therefore of heterogeneous dynamics, even in theT.Tc re-
gime. This means that activated dynamics, in the languag
MCT, or hopping events in topographic terms, are resp
sible for thea relaxation, even at temperatures well abo
Tc . This conclusion is unavoidable in view of the numeric
data of Refs.@26,44,45#.

B. Relaxation time

The next natural quantity to consider, the relaxation tim
t(T), is readily obtained from the dynamical correlators d
cussed in the preceding subsection. From the discussio
Sec. II, we expect a crossover from high-T to low-T at the
onset temperatureTo ; see Eq.~5!. Our results for the 1D FA
model are presented in Fig. 6, wheret(T) is defined as the
time where the persistence function has decayed to the v
1/e.

The simplest mean-field approximation to the dynam
of the FA model consists in a Hartree-like decoupling
spatial correlations,̂ninj&→ni^nj&, in the dynamical equa-
tion for ni . This amounts to replacing the actual neighbo
hood of sitei by an average neighborhood, and spins
always facilitated with an average rate equal toc. This gives
a mean-field estimate of the relaxation time@61#,

tMF~T!'c21;expS 1

TD . ~8!

Figure 6 shows that this simple approximation accounts
the dependence of the relaxation time at high-temperatu
T>To .

The exact result for the relaxation time of the 1D F
model is obtained by realizing that isolated defects unde

FIG. 6. Temperature dependence of the relaxation time in
1D FA model, t(T). Open circles correspond to numerical da
Three fits are presented. The dashed line is the simple mean-
Hartree-like approximation,tMF;exp(1/T). The dotted-dashed line
is the low-T exact behavior,tex;exp(3/T). The full line is a power-
law MCT-like fit, tMCT;(T2Tc)

2g with g52.3 andTc50.3. The
inset shows that the apparent power-law behavior is acceptable
range of three decades in times. The main figure shows that loT
and high-T fits account for the whole temperature range.
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diffusion with a temperature dependent diffusion consta
D(T)'c;exp(21/T). The system relaxes when defec
have diffused over a distance given by the mean separa
between defects,c21, so that

tex~T!'D21c22;expS 3

TD . ~9!

This mechanism relies on the notion of dynamic facilitati
which implies that local fluctuations of the mobility dete
mine the dynamics, and is essentially beyond the reach
any mean-field type of approximation@53#. We see from Fig.
6 that Eq.~9! accounts for the behavior at low-temperature
T<To . Figure 6 also presents a fit to the data with an MC
power-law form for the relaxation time@9#,

tMCT~T!'~T2Tc!
2g, ~10!

similar to the one obtained in Ref.@52# for the two-spin
facilitated, two-dimensional version of the FA model.

From Fig. 6, we draw the following conclusions. The b
havior of the relaxation time changes from the high-T to
low-T behavior close to the onset temperatureTo . The com-
bination of simple mean field at highT with the exact form at
low T allows to describe the temperature dependence of
relaxation time over the whole temperature range. Howe
given thatt(T) smoothly interpolates between these two d
ferent functional forms, the MCT power-law form, Eq.~10!,
appears to work reasonably well in a time window of abo
three decades~see inset in Fig. 6!. This range of apparen
power-law behavior is in fact larger than the correspond
one in the canonical binary Lennard-Jones mixture of R
@13#, where extensive tests of MCT have been perform
Remarkably, we also find that theTc extracted from the
power-law fit to the relaxation time coincides well with th
temperature where fast processes cease to contribute
significant manner to the distribution of relaxation time
Fig. 3. This explains our choice of notation for the low
crossover temperatureTc .

Following the standard MCT reading of the da
@10,11,13#, we would erroneously conclude that activat
processes only appear close toTc50.3, since these processe
are often tautologically defined by the breakdown of t
power-law behavior of the relaxation time@11#. Figures 3, 5,
and 6 prove instead that activated dynamics starts to be
evant atTo , much aboveTc , dominating thea relaxation of
the correlators, and hence the relaxation time of the syst
The results of this section considerably weaken the poss
ity of the existence of a temperature regime in supercoo
liquids where the relaxation time is correctly described b
power-law behavior. It follows that the standard determin
tion of the location of the MCT ‘‘singularity’’Tc in experi-
ments and simulations is physically unjustified@62,63#. In
fact, the issue of the location ofTc has been recently ad
dressed in Ref.@64#, where it was found that for a variety o
systems, the temperatureTc obtained from the actual MCT
equations systematically coincides with the onset temp
ture To discussed above.
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C. Crossover temperatures

Let us now consider the quantities shown in Fig. 1
evidence in favor of the MCT/landscape picture in Lenna
Jones mixtures, from the perspective of dynamically fac
tated models. In Fig. 7 we show for the 1D FA model a p
analogous to Fig. 1.

The first quantity presented in Fig. 7 is the logarithm
the relaxation time, log10t(T), as a function of temperature
which we discussed in detail in the preceding subsection

The second quantity shown in Fig. 7 is the average ene
of inherent structures,eIS . For the 1D FA model it can be
computed analytically by solving the zero-temperature
namics of the model@65#,

eIS~T!5c e2c, ~11!

where the concentration of defects,c, is defined in Eq.~3!. At
high-temperatureeIS changes very slowly. WhenT is re-
duced belowTo the concentration of defects starts to d
crease markedly, andeIS follows the same trend, as can b
seen in Fig. 7. This change in behavior at the onset temp
ture To is due to the appearance of isolated defects,
therefore of a heterogeneous dynamics, and not to any
cial change of the potential energy surface. This is a v
different interpretation of the physics from that of Ref.@23#.

The third quantity shown in Fig. 7 is analogous to t
distance between a configuration and its nearest IS~see Fig.
1!. In the lattice models we are considering the natural qu
tity to compute is the concentration of sites which chan
during the descent towards the inherent structure,d(T).
Since only excited sites can change during this proced
we get

d~T!5c2eIS5c~12e2c!. ~12!

FIG. 7. Onset of the slowing down in the 1D FA model. W
show three quantities as a function of temperatureT. ~i! Logarithm
of the relaxation time, log10t, see Fig. 6.~ii ! Energy of IS,eIS ,
which displays a qualitative change aroundTo51.0. ~iii ! Concen-
trationd of cells moved in the descent from an equilibrium config
ration to its IS, which displays a qualitative change aroundTc

50.3. This figure should be compared with Fig. 1.
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Clearly, at low temperatured'c2;exp(22/T). This behav-
ior is physically natural. Contributions tod(T) come from
clusters of defects, which are the only objects that can re
during the descent to an IS. Since the probability for a clus
of k defects,p(k), goes asp(k)'ck, the main nontrivial
contribution tod(T) at low T comes from the smallest clus
ters,k52. These relax only one defect in the descent, so
d'p(2)'c2. Moreover, our defect interpretation is consi
tent with real space observations in simulations of silica@27#,
where it was found that during the descent to the IS
major contribution to the distance comes from annihilati
of localized topological defects of the amorphous structu

The similarity of Fig. 7 to Fig. 1 is striking. The emergin
physical picture, is however, completely different from t
one of the MCT/landscape scenario. For example, while
may appear from the behavior ofd(t) aboveTc that this
quantity extrapolates to zero whenT→Tc ~see Fig. 7!, the
exact temperature dependence ofd(T) is purely Arrhenius.
This means thatTc has no particular importance@Tc would
not look special in a plot ofd(T) versus 1/T]. Even if one
acceptsTc as delimiting two regimes with high and low con
centrations of clusters of excitations, this apparent crosso
is completely irrelevant as far as the long-time dynamics
concerned. These observations suggest that the crossov
Tc from ‘‘landscape influenced’’ to ‘‘landscape dominated
of Ref. @23# is not physically significant for thea relaxation.

IV. INTERPRETATION OF ‘‘LANDSCAPE’’ PROPERTIES

In recent years, the potential energy landscape of su
cooled liquids has become an object of studyper se@3#. In
Ref. @6#, we have developed the idea that the main moti
tion behind these works was the observation of the sep
tion between fast vibrations and slow hopping processe
sufficiently small systems are considered. This appare
harmless statement on the system size, we argued in Ref@6#,
results in fact from the central feature of the dynamics
supercooled liquids: ‘‘sufficiently small’’ really means ‘‘i
the system size is of the order of the dynamical correlat
length ,(T)’’ @6,25#. However, in a purely topographic de
scription of the physics based on the statistical propertie
minima, the relevance of the dynamical correlation length
not obvious@66#. In that sense, a topographic description
the glass transition misses a central aspect of the physic

We shall show below that using the very simple spa
approach described in previous sections, we can trivially
rive the statistical properties of the landscape reported
recent years. This successful confrontation to such
amount of apparently nontrivial and detailed numerical
sults is again a strong indication of the validity of our a
proach.

A. Real space description of ‘‘minima’’ and ‘‘saddles’’

Reference@6# described in detail the connection betwe
the nanoscopic ordering in the trajectories of dynamica
facilitated models and the dynamics between IS, ‘‘meta
sins,’’ or ‘‘traps’’ observed in numerical simulations or ex
periments of supercooled liquids. This same approach ca
1-7
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extended to account for the properties of ‘‘saddles,’’ i.e., c
figurations related to transitions between IS.

Figure 8 zooms on the lowest-temperature trajectory
Fig. 2. The top panel of Fig. 8 shows diffusion of isolat
defects. It also shows coalescence and branching events
closing and opening of bubbles. These two kinds of p
cesses correspond to ‘‘hopping’’ events between dynam
‘‘traps’’ @6#. Let us consider in detail one of these events,
example, the coalescence process enlarged in the bottom
panel of Fig. 8. Isolated defects diffuse by first facilitatin
one of their neighbors, for instance,

10→11→01. ~13!

For two defects to coalesce the minimum number of exc
tions that have to be present when they merge is three,

101→111→011→010. ~14!

In this sequence, the total number of defects is 2 at the
ginning, 3 at the transition, and 1 at the end. This proces
schematically described in the bottom right panel of Fig.

In topographic terms, an isolated defect corresponds
local minimum of the energy, since such a configuration c
only evolve by an energy increase, as in Eq.~13!. On the
other hand, a cluster of three excitations corresponds loc
to a saddle point, since it is the transition configuration
tween two minima, as in Eq.~14! and Fig. 8. Larger cluster
thus correspond to higher order saddles, since the large
cluster the larger the number of possible moves into minim
The casek52 is particular: it is not a minimum since it ca
relax one defect to decrease its energy, but it is not a sa
either since it does not correspond to a hopping event
that of Fig. 8. Clusters withk52 are just ordinary points
~i.e., not stationary points! of the landscape. The previou
discussion generalizes in a natural way to the whole clas
dynamic facilitated systems.

FIG. 8. Top: zoom on the low-T trajectory of Fig. 2. The vertica
arrow indicates the closing of a bubble. Bottom left: expanded v
of this event, showing two excitation lines meeting and coalesc
A cluster of three spins is needed for this process to occur. Bot
right: corresponding ‘‘reaction path.’’ Before the event there are t
isolated defects~energy 52), a cluster of three defects~energy
53) during the event, and one isolated defect after~energy51).
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B. Absence of ‘‘geometric transition’’

The above identification between the relevant dynam
objects, isolated defects and clusters of defects, and ‘‘la
scape properties’’ allows one to compute quantities such
the mean saddle index,ns(T), and the corresponding mea
energy of stationary points,es(T).

The quantitiesns and es were estimated numerically in
simulations of supercooled liquids@33,34#. It was found that
both functions decrease whenT decreases, and extrapolation
were performed that indicatedns(Tc)50. Also, plotting the
dependence ofns on es2eIS parametrized by the tempera
ture, a simple linear relation was obtained,ns}(es2eIS)
@33–35#.

In the case of the 1D FA model, it is very simple to devi
a procedure to go from an equilibrium configuration to t
‘‘nearest’’ stationary point. Isolated defects and clusters
defects withk>3 are locally such points, so we only have
deal with k52 clusters. From these we can either reach
‘‘minimum’’ k51 or a saddle withk53. We, respectively,
assign the probabilitiesps and (12ps) to these two possi-
bilities. We then have

ns~T!5 (
k51

`

p~k!ns~k! ~15!

and

es~T!5 (
k51

`

p~k!es~k!, ~16!

wherep(k)5(12c)2ck is the probability to have a cluster o
size k. From the discussion above we know thatns(1)50,
es(1)51, ns(2)5(12ps), es(2)5ps13(12ps), ns(k
>3)5es(k>3)5k. Putting all together we obtain

ns~T!53c2F ~12ps!~12c!21cS 12
2

3
cD G ~17!

g.
m
o

FIG. 9. Saddle index versus energy difference between sa
and minima computed analytically for the 1D FA model forT
P@0,̀ ) andps51/2. The obtained linear behavior is a natural co
sequence of~i! dynamic facilitation,~ii ! localized defects, and~iii !
dynamic heterogeneity.
1-8
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and

es~T!5c1~122ps!c
2~12c!2. ~18!

At low T both quantities scale asns;c2 and es;c. Three
important conclusions can be drawn.

~i! It is obvious from Eq.~17! that ns(T).0 for T.0.
This means that there is no ‘‘geometric transition’’ to a r
gime with vanishing saddle index.

~ii ! The saddle index has a temperature dependence w
follows closely that of the distanced(T) discussed in the
preceding subsection. This is expected because they bot
ceive their principal contribution, at lowT, from clusters
with k52. In other words, the main objects for the low
temperature dynamics, the isolated defects, do not contri
to these quantities. Therefore, as for the distanced(T) in Fig.
7, the rapid decrease ofns(T) when the temperature de
creases can easily be confused with a vanishing of the sa
index close toTc .

~iii ! The linear relation betweenns andes2eIS becomes
exact at low-temperatures, see Eqs.~11!, ~17!, and ~18!.
Again, the difference betweenes and eIS comes from the
clusters of defects which are relaxed during the descen
the inherent structure. In Fig. 9, we show the behavior ofns
versuses2eIS for the entire rangeTP@0,̀ ). Note that in
Ref. @33# a linear behavior betweenns and es was also re-
ported. This is true at relatively high temperature, given t
aboveTo the energy of inherent structure is almost const
while ns andes change with temperature in the same way

These results are valid beyond the FA model which
have used to illustrate them. The inexistence of the geome
transition where the saddle index vanishes follows from
observation that the low-temperature behavior ofns is given
by the smallest cluster of defects necessary to make a
sition, in the sense described in the preceding section. S
these objects are spatially localized, their energy cos
O(1), andthey exist with non zero probability at finite tem
peratureT.0. This argument is close in spirit to Stillinger
argument for the inexistence of an entropy crisis at the Ka
mann temperature involving point defects@67#. Moreover, as
discussed in the Introduction, careful numerical simulatio
both confirm thatns(T,Tc).0 @36,37#, and report an
Arrhenius behaviorns(T) @38#, in agreement with our re
sults.

The relation between saddle index and energy,

ns}~es2eIS!, ~19!

which was first observed numerically@34,33,35#, is also a
general result for dynamically facilitated systems. This re
tion contains two different pieces of information. First,
shows that the intensive saddle index is a number ofO(1).
This is again a trivial consequence of the existence of
dynamical correlation length,(T), so that a large sampl
can, in fact, be thought of an assembly of independent s
systems of linear size,(T) @6#. Second, and more interes
ing, is a connection between energy and saddle index,
sented as a ‘‘general feature of the potential energy lands
of supercooled liquids’’@35#, for which no theoretical expla
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nation was, however, available. This feature is, in fact,
most a tautology in the context of facilitated models: t
more defects are present, the more available direction
move, the higher the energy above that of the IS. The
that relation~19! holds in different model liquids is anothe
confirmation that dynamical facilitation is a key generic fe
ture of the dynamics of supercooled liquids.

C. Thermodynamics and ‘‘anharmonicities’’

Another common procedure of the landscape approac
to decompose configurations into vibrational and configu
tional components. Stillinger and Weber@22# suggested to
perform this decomposition at the level of the partition fun
tion,

Z~T!'(
EIS

V~EIS!expS 2
EIS1F~T;EIS!

T D , ~20!

where the sum is over energies of IS,EIS , their number is
indicated byV(EIS), and F(T,EIS) is the ‘‘basin free en-
ergy’’ which takes into account fluctuations within an IS d
to vibrations and possible ‘‘anharmonicities’’~i.e., all the
rest!.

It is instructive to consider the calculation of the partitio
function in the case of the 1D FA model using the Stilling
and Weber decomposition. The thermodynamics of the
model is that of a noninteracting gas of binary excitatio
This simple thermodynamics, however, can be obtained w
any dynamics obeying detailed balance with respect
Hamiltonian~1!, the actual FA dynamics defined by Eq.~2!
being just one possibility. In this sense, the Stillinger a
Weber prescription for thermodynamics is an approximat
for the way a thermodynamic quantity would be calculat
using a particular choice of dynamics to sample the confi
ration space. Inherent structures, basin free energies,
have no thermodynamic meaning, they only have a dyna
cal meaning associated with a particular choice of dynam

For the 1D FA model we can evaluate the Stillinger a
Weber partition function exactly. We have

ZN~T!5 (
EIS50

N/2
~N2EIS!!

EIS! ~N22EIS!!
expS 2

1

T
@EIS

1Fanh~T;EIS!# D . ~21!

The first factor counts the number of configurations of e
ergy EIS with only isolated defects in a system ofN sites.
Due to the coarse-grained nature of facilitated models
only contribution to the basin free energy comes from anh
monicities.

Performing the sum in Eq.~21! without the anharmonic
contribution gives
1-9
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ZN
harm~T!5expS 2

N

2TDUNF2
i

2
expS 1

2TD G , ~22!

where UN(x) is the Nth Chebyshev polynomial of secon
kind. In the thermodynamic limit the above expression si
plifies to give the free energy in the ‘‘harmonic’’ approxim
tion,

f harm~T!5 lim
N→`

2
T

N
ln ZN~T!

5T ln22T ln~11A114 e21/T!. ~23!

In Fig. 10, we compare approximation~23! to the exact
expression for the free energy,

f ex~T!52T ln~11e21/T!. ~24!

As observed numerically in supercooled liquids@3#, both
thermodynamic evaluations, Eqs.~23! and ~24!, apparently
coincide belowTc when anharmonicities become negligibl
From the previous sections we know that anharmonicities
just a consequence of the existence of clusters of defect
low-temperature the difference between Eqs.~23! and~24! is
therefore proportional toc2, reflecting the fact that:~i! an-
harmonicities do not disappear belowTc , which again is no
particular temperature in this context;~ii ! anharmonicities
are due to clusters of defects,k52 being the leading term a
low temperatures.

In the particular case of the FA model we can formula
an exact expression for the anharmonic free energyFanh. It
is easy to check that the choice

Fanh~T;EIS!5EIS~T! f ex~T! ~25!

in Eq. ~21! yields the exact expression for the free energy
the thermodynamic limit. This exact expression for the a
harmonic part of the free energy is simple to understand

FIG. 10. Comparison of the various expressions for the f
energy~divided for convenience by2T) in the 1D FA model:f ex is
the exact free energy~24!; f harm is the purely harmonic evaluatio
~23! which is a good approximation belowTc50.3, andf 1 is the
result obtained with expression~26! for anharmonicities which is
good up toTo51.0.
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an IS all defects are isolated. The contribution of clusters
defects is obtained from the probability that an isolated
fect in the IS was a cluster in the original configuratio
which is given by Eq.~25!.

Interestingly, a numerical procedure to evaluate the an
monic contributions can be proposed. First, the harmo
expression~23! is evaluated. Then, the approximate expre
sion

Fanh~T;EIS!;EIS~T! f harm~T! ~26!

can be used as an educated guess for the anharmonic c
butions. This gives in turn a first order free energyf 1(T).
The improvement on the harmonic evaluation can be jud
in Fig. 10, where we see thatf 1(T) coincides with the exac
free energy up toT;To . This evaluation can then be im
proved iteratively usingFanh(T;EIS);EIS(T) f 1(T) to get
f 2(T), and so on. It is easy to show that, in our particu
case, limn→` f n(T)5 f ex(T).

Although these results could lead to an improvement
present evaluations of anharmonic contributions in studie
the thermodynamics of supercooled liquids, they also sh
that topographic concepts are very far from the physical
jects they pretend to describe.

D. Failure of the Adams-Gibbs relation

We end this section with a remark on the Adam-Gib
relation, which is an attempt to connect dynamical proper
to thermodynamic ones. The Adam-Gibbs formula relates
relaxation time of a glass formerta to the configurational
entropySc @which would correspond toSc5^ lnV(EIS)& in the
IS formalism#: ta}exp@1/(TSc)#. Apparently, this relation
has been seen to hold both in numerical simulations an
experiments of various systems@3#. A careful look at the
published data reveals, however, that the correlation betw
relaxation time and entropy does not quantitatively sati
the Adams-Gibbs relation. This important observation is
ten not clearly stated@3#.

Our analysis shows indeed that thermodynamic proper
do not fully determine dynamical behaviors. Clearly, almo
by definition,ta increases andSc decreases as temperature
lowered, but that is where the connection ends. It is eas
check that the Adam-Gibbs formula fails completely wh
applied to dynamic facilitated systems. We find instead t
time scales are broadly distributed, the distribution of tim
being the result of an integral over a distribution of leng
scales,r(,), imposed by thermodynamic equilibrium, Eq
~1!. Crucially, however, dynamics also enters the integra
the form of the conditional probability of time and lengt
r(tu,), which can be described, in a topographic language
containing information on the relevant ‘‘barriers,’’ whic
havea priori no obvious link with the statistics of minima
As a consequence, thermodynamics alone cannot be us
predict the dynamical behavior. Again, we find in the liter
ture an excellent numerical confirmation of this statement
Refs. @38,60#, using a purely topographic description of
supercooled liquid, it was shown that the diffusion const

e

1-10



n

le
th
y-
e
hi
wi
le

is
pe

o
a
n
ri

, i
te
o

u
b

d

-
lly
o

p
t

an
i

c

s
o
p
c
-

w
e

e
y

t
ve
so

cts
ing

nse
o-
an-

ies
ial

be

ell

is

th

ion
ti-

ia-
e
es

d-
le

go a
ed.
as
ant

ot
the
r-

an
-
ard
lass

cts
es.
ions

in-
of

in-
ans-

rk
nsi-
the

ing
sly

to
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could be computed by a combination of thermodynamicand
dynamical quantities, well in line with the above discussio

V. CONCLUSIONS

In this paper, we have developed a spatial description
the physics of the progressive slowing down of supercoo
liquids. The only ingredients in our method have been
notions of localized mobility excitations and facilitated d
namics@5–8#. Our results were illustrated explicitly for th
simplest case of the 1D FA model, but are generic for t
theoretical approach, and are in very good agreement
experimental and numerical observations in supercoo
liquids.

The physical picture which emerges from our work
however, markedly different from that of the MCT/landsca
scenario discussed in the Introduction.

At high temperatures,T.To , the dynamics is fast and
liquidlike, corresponding to the relaxation of large clusters
defects. Dynamic facilitation plays no major role, and
simple mean-field Hartree-like decoupling of the equatio
of motion yields predictions in good agreement with nume
cal results.

When T,To , the dynamics becomes heterogeneous
the sense that local relaxation times are spatially correla
in a nontrivial way. This can be seen in the trajectories
Fig. 2 as the appearance of slow bubbles@5,6#. The long-time
dynamics of the system results from the wide joint distrib
tion of length scales and time scales, and the relaxation
comes stretched. This dynamic heterogeneity, which can
thought of as the activated dynamics invoked, but never
scribed, by MCT, determines thea relaxation and its tem-
perature dependence forT,To . Also, dynamic heterogene
ity implies that decoupling of transport coefficients actua
starts atTo , as confirmed by the simulations. From a the
retical point of view, local fluctuations of mobility crucially
influence the dynamical behavior. Any mean-field-like a
proach, no matter how involved, is most probably doomed
fail.

At To not all trace of high-T physics~clusters of defects!
disappears. The dynamics has a mixed character in the r
Tc,T,To , as seen, for example, in the behavior of dynam
cal correlators like in Fig. 5. The temperatureTc is just a
crossover. It is the temperature below which isolated defe
not only dominate the long-time dynamics~as for Tc,T
,To) but are also the most numerous dynamical objects,
Eq. ~4!. Clusters of defects, whose dynamics is homogene
and nonactivated, are responsible for the temperature de
dence of several quantities, such as distance between
figurations and IS, saddle indexns(T), and anharmonic con
tributions to the free energy. In numerical simulations,Tc has
been interpreted as a key temperature, in accordance
MCT for which it represents a dynamical singularity. W
have shown, however, that all of these quantities hav
smooth temperature dependence, as has been recentl
served numerically@36–38#. This means thatTc does not
correspond to a transition or singular point, but is at mos
crossover. Crucially, the objects which display a crosso
close toTc are also irrelevant for the long-time dynamics,
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that the inexistence of the singularityTc is anyway not a
physically important issue for thea relaxation.

Below Tc , isolated defects are the only remaining obje
and the dynamics is dominated by the nanoscopic demix
of slow and fast regions so that trajectories look like a de
mixture of slow bubbles, which in turn gives a natural the
retical interpretation of the canonical features of glass tr
sition phenomena@5–7#.

Our results, together with some other recent stud
@38,44,45,48,53,60,62–64,68#, suggest that several essent
features of the dynamics of supercooled liquids need to
recognized and we now list some of them.

~1! The dynamics is heterogeneous and activated w
aboveTc .

~2! The dynamical slowing down of supercooled liquids
due to the growth, belowTo , of a dynamic correlation length
,(T), or more precisely, of a whole distribution of leng
and time scales.

~3! The long-time dynamics, and therefore the relaxat
time ta of the liquid is dominated by heterogeneous ‘‘ac
vated’’ dynamics belowTo .

~4! The MCT definition of activated processes as dev
tions from the ideal theory is incorrect. It is unlikely that th
power-law behavior predicted by MCT correctly describ
the temperature dependence ofta . The practical definition
of the temperatureTc cannot be used.

~5! No topological change of the potential energy lan
scape takes place close toTc . Quantities such as the sadd
index and anharmonicities do not vanish close toTc and
have a smooth temperature behavior. At best, they under
crossover from large to small which remains to be quantifi

~6! Even if one acceptsTc as a crossover temperature,
in Eq. ~4!, quantities related to this crossover are unimport
for the long-time dynamics.

~7! Knowledge of thermodynamic properties is n
enough to predict dynamical behavior, which explains
quantitative failure of relations like the Adams-Gibbs fo
mula.

The approach we developed in this paper, which is
extension of previous efforts@5–8#, is generic. It can be ap
plied both to systems like Lennard-Jones liquids or to h
sphere systems. It gives a perspective on the physics of g
formers which is clearly distinct to, and in many respe
more natural than, that of MCT or topographic approach

There are many important and interesting open quest
which need to be addressed from this perspective. This
clude, among others, understanding properly the origin
mobility excitations, and the breakdown of Stokes-Einste
Debye relations and associated decouplings between tr
port coefficients.

A general conclusion that can be drawn from this wo
and our previous ones is that, in many respects, glass tra
tion phenomenon is more standard than often assumed, in
sense that it is determined by the interplay between grow
dynamic length scales and time scales. This is obviou
reminiscent of critical phenomena@8#, meaning that it should
be possible to adapt renormalization group techniques
study the dynamics of the glass transition.
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