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Local density fluctuations, hyperuniformity, and order metrics
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Questions concerning the properties and quantification of density fluctuations in point patterns continue to
provide many theoretical challenges. The purpose of this paper is to characterize certain fundamental aspects
of local density fluctuations associated with general point patterns in any space dimen$am specific
objectives are to study the variance in the number of points contained within a regularly shaped Qirafow
arbitrary size, and to further illuminate our understandingpygeruniformsystems, i.e., point patterns that do
not possess infinite-wavelength fluctuations. For large windows, hyperuniform systems are characterized by a
local variance that grows only as the surface arather than the volumeof the window. We derive two
formulations for the number variancé) an ensemble-average formulation, which is valid for statistically
homogeneous systems, afid a volume-average formulation, applicable to a single realization of a general
point pattern in the large-system limit. The ensemble-average formulatioich includes both real-space and
Fourier representationgnables us to show that a homogeneous point pattern in a hyperuniform state is at a
“critical point” of a type with appropriate scaling laws and critical exponents, but one in whiclditieet
correlation function(rather than the pair correlation functjois long ranged. We also prove that the non-
negativity of the local number variance does not add a new realizability condition on the pair correlation. The
volume-average formulation is superior for certain computational purposes, including optimization studies in
which it is desired to find the particular point pattern with an extremal or targeted value of the variance. We
prove that the simple periodic linear array yields the global minimum value of the average variance among all
infinite one-dimensional hyperuniform patterns. We also evaluate the variance for common infinite periodic
lattices as well as certain nonperiodic point patterns in one, two, and three dimensions for spherical windows,
enabling us to rank-order the spatial patterns. Our results suggest that the local variance may serve as a useful
order metric for general point patterns. Contrary to the conjecture that the lattices associated with the densest
packing of congruent spheres have the smallest variance regardless of the space dimension, we show that for
d=3, the body-centered cubic lattice has a smaller variance than the face-centered cubic lattice. Finally, for
certain hyperuniform disordered point patterns, we evaluate the direct correlation function, structure factor, and
associated critical exponents exactly.
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I. INTRODUCTION coordinates of the particles in a many-particle system, such
as the molecules of a liquid, glass, quasicrystal or crystal,
The characterization of density fluctuations in many-stars of a galaxy, grains of a granular packing, particles of a
particle systems is a problem of great fundamental interest if0lloidal dispersion, or trees in a forest. _
physical and biological sciences. In the context of liquids, it COnsider an arbitrary point pattern éidimensional Eu-
is well known that long-wavelength density fluctuations con-gl(')(\jl\‘;""i?] ;?dagfg)'( Ldeér%téegrg;’ﬁgt l?r;t?g#;?rcgg:gagjtlg_that
tain crucial thermodynamic and structural information aboutspecifies the cer?troid of the wingow The window will
the systen{1]. The measurement of galaxy density fluctua- :

i 4 fh : ful ¢ i d stud always have a fixed orientation. There is a variety of inter-
ions is one of the most powerful ways to quantify and studyggying questions that one could ask concerning the number of
the large-scale structure of the Univef&e3]. Knowledge of

: : o X points contained withir{). For example, how many points
density fluctuations in vibrated granular media has been usqu are contained i) at some fixed coordinate,? This

to probe the structure and collective motions of the graingyestion is a deterministic one if the point pattern is regular

[4]. Recently, the distribution of density fluctuations has beemyng may be a statistical one if the point pattern is irregular

employed to reveal the fractal nature of structures withinisee Fig. 1 How does the number of points contained within

living cells [5]. some initially choser) at fixed coordinatex, vary as the
Clearly, density fluctuations that occur on some arbitrarysize of Q) is uniformly increased? How do the number of

local length scal¢4,6—10 provide considerably more infor- points within a fixed() fluctuate asc, is varied?

mation about the system than only long-wavelength fluctua- For a Poisson point pattern, the statistics of the number of

tions. Our main interest in this paper is to characterize cerpoints contained within a regular domain are known exactly.

tain fundamental aspects olocal density fluctuations For example, the number variance is given by

associated with general point patterns in any space dimen- ) )

siond. The point patterns may be thought as arising from the (N§) —(Ng)*=(Ng), 1)
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Q FIG. 1. Schematics indicating

a regular domain or windowf)
and its centroidk, for two differ-
ent point patterns. Left panel: A
periodic point pattern. Right
panel: An irregular point pattern.
We will show that the statistics of
the points contained withif) for
these two types of patterns are
fundamentally different from one
another.

X

where angular brackets denote an ensemble average. Lettipgoaches the window areaR? for large R and unit density.
Q) be ad-dimensional i,phere of radiB and noting that  The apparent “random” nature oN(R) is beautifully
(Ng) is proportional taR® leads to the result that the number jjjustrated in Fig. 2, which shows how the function

variance grows as the sphere volume, i.e., N(R)— TR? grows withR.
5 S It is considerably more challenging to identify nonperi-
(Ng) —(Ng)“=RE (2)  odic point patterns, such as disordered and quasiperiodic

) ) o ) ) ones, that are hyperuniform. The mathematical conditions
This result is not limited to Poisson point patterns. Indeed, Ahat Statistica”y homogeneous hyperuniform systems must
large class of correlated irregular point patterns obeys thebey (derived in Sec. )l are a necessary starting point in
variance formulg2), as we will discuss in Sec. II. identifying such hyperuniform point patterns. These condi-

Can the variance grow more slowly than the volume oftions, which include the counterintuitive property of a long-
the domain or window? One can show that for any statistitanged “direct” correlation function, are determined from a
cally homogeneous and isotropic point pattern, the variancgeneral formula for the number variance of such systems,
cannot grow more slowly than the surface area of the dowhich is obtained in Sec. Il. The fact that the direct correla-
main, whether it is spherical or some other strictly convextion function of a hyperuniform pattern is long ranged is
shape[11,17. Thus, it is natural to ask the following ques- reminiscent of the beha_vior (_)f the pz_iir correlation function of
tion: For what class of point pattern does the variance grovi thermal system near its critical point. Indeed, we show that
as the surface area? For a spherical domain, we want @ Statistically homogeneous point pattern in a hyperuniform

identify the point patterns that obey the variance relation foiState is at a “critical point” of a type with appropriate scaling
large R, laws and critical exponents. By deriving a Fourier represen-

tation of the local variance, it is also shown that the non-
(N2)—(Ng)2~RI1, (3)  Negativity of the variance does not add a new realizability
condition on the pair correlation function beyond the known
We will refer to such point patterns as “hyperuniform” sys- ONe€s.
tems because, as we will see, such systems do not possessl0 date, only a few statistically homogeneous and isotro-
infinite-wavelength fluctuations(This is to be contrasted pic patterns have been rigorously shown to be hyperuniform.
with “hyposurficial” systems, whose “surface” fluctuations One of the aims of this paper is to identify other such hype-
vanish identically. Additionally, it is of great interest to runiform examples, and to describe a procedure to find them
identify the particular point pattern that minimizes the am-Systematically. This requires a formulation for the local vari-
plitude (coefficien} of the fluctuations that obey E¢3) or 100
achieves a targeted value of this coefficient.
Clearly, points arranged on a regul@eriodig lattice are
hyperuniform. More generally, it is desired to know how the 50
number of lattice point?N(R) contained within a spherical
window of radiusR varies as a function d® when the sphere tr
is centered ax,. For simplicity, let us consider this question i 0
in two dimensions for points arranged on the square lattice T,
and let the center of the circular window of radiBsbe
positioned at a pointd; ,a,) in the unit square. The answer -50
to this query amounts to finding all of the integer solutions of

2 22
— + — = -1 L 1 L L L
(ny—ay)“+(ny—ay)°<R", (4) 0o = pros 150
a problem of interest in number thedid/3,14. This problem R
is directly related to the determination of the number of en- F|G. 2. The functionN(R)— 7R? vs R for the unit-spacing
ergy levels less than some fixed energy in integrable quarsquare lattice, using a circular window of radiBscentered on a
tum systemg9]. It is clear thatN(R) asymptotically ap- lattice point.
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ance that can be applied to a single realization of any pattern, Because complete statistical information is usually not
which is accomplished in Sec. Ill. In Sec. IV we prove thatavailable, it is convenient to introduce the reducgmheric
the simple periodic linear array yields the global minimumdensity functionp,(r") (n<N), defined as

value of the average variance among all infinite one-

dimensional hyperuniform patterns. Interestingly, we also n_ N J' JP NygrN-” 7
show that the variance for large spherical windows enables Pa(r)= (N-nmt)y )y N(rEdrE, @

us to rank-order common regular lattice and certain disor-

dered point patterns in one, two, and three dimensisee ~ wheredrN~"=dr,,dr,,,---dry. In words, p,(r")dr" is
Secs. IV and V. Our results suggest that the local varianceproportional to the probability of findingny n particles
may provide a useful order metric for general point pattern§n<N) with configurationr” in volume elementdr". In
(see Sec. VI Contrary to the conjecture that the Bravais light of its probabilistic nature, it is clear that,(r") is a
lattice associated with the densest packing of congruemon-negative quantity, i.ep,(r")=0, Vr".

spheres has the smallest variance regardless of the space di-For statistically homogeneous media,(r") is transla-
mension, we show that fodl=3, the body-centered cubic tionally invariant and hence depends only on the relative
lattice has a smaller variance than the face-centered cubiisplacements, say with respectrtp

lattice. In Sec. V, we evaluate the direct correlation function,

structure factor, and associated critical exponents exactly for P(r")=pn(riz,r1z, - - - f10), (8)
certain hyperuniform disordered point patterns. Three appen- . . .
dixes provide analytical formulas for key geometrical quan-Whererij =rj=ri. In particular, the one-particle functigsn,
tities required for the theory, an evaluation of the variance
for hard rods in equilibrium for large windows, and a discus-"€-
sion of a certain property of hyposurficial point patterns.

s just equal to the constamumber densityof particlesp,

N
pi(ry)=p= Iim =. 9)
N,V*)OOV
Il. LOCAL VARIANCE FORMULA FOR REALIZATIONS
OF STATISTICALLY HOMOGENEOUS SYSTEMS The limit indicated in Eq(9) is referred to as théhermody-
] ) namic limit Since our interest in this section is in statistically
A general expression for the local number variance forhomogeneous point patterns, we now take the thermody-
realizations of statistically homogeneous point patternd in pamic limit. It is convenient to define the so-callegarticle
dimensions is derived. This is necessarily an ensemblesorrelation function

average formulation. We obtain both a real-space and a Fou-

rier representation of the variance. From these results, we pn(r")
obtain formulas for asymptotically large windows. We show gn(r")= —_—. (10
that a hyperuniform point pattern is at a type of critical point p

with appropriate scaling laws and critical exponents, but on

in which the direct correlation function is long ranged. Tn systems without long-range order and in which the par-

ticles are mutually far from one anothére., rj;=|r;;|—,
1<i<j<N), p,(r")—p" and we have from Eq(10) that

A. Preliminaries gn(r")—1. Thus, the deviation af,, from unity provides a
measure of the degree of spatial correlation between the par-

. . . i N
. ConsiderN points with conflguratlorr. =l1l2, - IN - igles, with unity corresponding to no spatial correlation.
in a volumeV. The local number density at positionis The important two-particle quantity
given by
N p2(r12)
rio)= 11
n0=3 sx-r), ) Galria) =" 3 (0

is usually referred to as theair correlation function The
where 5(x) is the Dirac delta function. The point pattern is total correlation function ifr;,) is defined as
statistically characterized by trepecificprobability density h B 1
function Py(rY), wherePy(rN)drN gives the probability of (r2)=02(r) =1,
finding point 1 in volume elemerdr, aboutry, point 2 in 54 thys is a function that is zero when there are no spatial

volume elementr, aboutr,, . L point N in volume ele-  qrejations in the system. When the system is both statisti-
mentdry aboutry. Thus,Py(r™) normalizes to unity and ¢4y homogeneous and isotropic, the pair correlation func-

(12

drN=dr,,dr,, ... dry represents th&ld-dimensional vol- 4 depends on the radial distancg only, i.e.,
ume element. The ensemble average of any fundtiof)
that depends on the configuration of points is given by 92(r12)=0(r12), (13

and is referred to as the radial distribution function. From

<f(rN)>:f f J' fF(rNYPy(rN)drN, (6) Eq. (;_1), we see tha}psl(r)_gz(.r)dr is prqportional to.the
vJv % conditional probability of finding a particle center in a
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spherical shell of volume, (r)dr, given that there is another ellipsoidal window,R would represent the semiaxes of the
at the origin. Heres,(r) is the surface area of a ellipsoid. Let us introduce the window indicator function
d-dimensional sphere of radius which is given by

Sy(r)= T2 (14

1, xeQ

0, x«Q, (19

for a window with a configurational coordinatg. The num-
whereI'(x) is the gamma function. Hence, for a finite sys- ber of pointsN within the window atx,, which we hence-
tem, integrating l—1)g,(r)/V over the volume yieldN  forth denote byN(xy;R), is given by
—1, i.e., all the patrticles except the one at the origin.

Observe that the structure fact8£k) is related to the N(XO;R):J N(X)W(X—Xo;R)dX
Fourier transform oh(r), denoted byh(k), via the expres- v
sion N
~ = S(X—=rj)W(X—Xq;R)dx
S(k)=1+ph(k). (15) 21 fv (x=rwix=%o:R)
The Fourier transform of some absolutely integrable function N
f(r) in d dimensions is given by :izl w(ri—=Xo;R). (20
Fk)= f f(rye krdr, (16) Therefor.e, the average number of points g:ontained within the
window in a realization of the ensemble is

and the associated inverse operation is defined by N
<N(R)>:f E W(r;—Xo;R)Py(rN)dr™
1 Vi=1

(2m)"

f(r)= f?(k)e”“dk, 17
:fvpl(rl)w(rl_XO;R)drl

wherek is the wave vector. It is well known that the struc-

ture factor is proportional to the scattered intensity of radia- _

tion from a system of points and thus is obtainable from a :medw(r’R)dr

scattering experiment. An important property of the structure

factor is that it must be non-negative for &ll i.e., =pv1(R), (21)
S(k)=0 VK. (189  Wherevy(R) is the volume of a window with geometric

parameterfk. Note that translational invariance of the point
pattern, invoked in the third line of relatiq1), renders the
average(N(R)) independent of the window coordinatg.

Let R symbolize the parameters that characterize the ge- Similarly, ensemble averaging the square of &f) and
ometry of the window(). For example, in the case of an using relation(21) gives the local number variance as

B. General variance formulas

<N2(R)>—<N(R)>2=f pl(rl)W(rl—xo:R)drﬁf f [p2(r1,r2) = pa(r)pa(r2) IW(ry—Xo; R)W(r,—Xo;R)drdr,
Vv VvJV

=(N(R))

1+pf dh(r)a(r;R)dr}, (22)
R

whereh(r) is the total correlation function defined by Eq. int
(12), v (r§R):fde(rl_xo;R)W(rz_X0§R)dX0 (24)
int/ ..
a(r:R)= 02 (IiR) (23) is the intersection volume of two windowsvith the same
' v1(R) orientation$ whose centroids are separated by the displace-

ment vectorr=r,—r, [15]. Appendix A provides explicit
analytical formulas for the intersection volume for spherical
and windows in arbitrary dimensiod. As before, statistical ho-
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mogeneity, invoked in the second line of H&2), renders  where
the variance independent g§. ~

Remarks - w?(k;R)

(1) Formula(22) was previously derived by Landau and a(k;R)= WZO (26)
Lifschitz [16], although they did not explicitly indicate the !
s_cale1d7|néer.secé|oE volumle fU”Ct'fW(r?Ff)-fMa”;]” a”df\l(a|' is the Fourier transform of the scaled intersection volume
cin [17] derived the analogous formula for charge uCtua_function (23) and w(k;R) is the Fourier transform of the

tions in classical Coulombic systems. . A . X ,
(2) The local variance formyula22) is closely related to window indicator function(19). Again, by Parseval’s theo-

one associated with the local volume fraction fluctuations irf €™M
two-phase random heterogeneous materjals,18. Both 1 1
formulas involve the scaled intersection volume function ~ . _ 2 _
a(r;R). The essential difference is that the variance for local (27T)dJ a(kiRydk= ul(R)f wirdr=1. (27
volume fraction fluctuations involves a different correlation
function fromh(r), namely, the probability of finding two Finally, utilizing definition (15) of the structure factor, we
DﬁintS, separated by a displacementboth in the same arrive at the Fourier representation of the number variance:
phase.

(3) The existence of the integral in ER2) requires that 3
the producth(r)a(r;R) be integrable. For finite size win-  (N?(R))—(N(R))>=(N(R)) df S(k)a(k;R)dk].
dows, this will be the case for boundhbér) becausex(r;R) (27)
is zero beyond a finite distance. For infinitely large windows, (28)

r;R)=1, and integrability requires tha(r) decays faster . . .
f;](an r)| —d+e for somge>0 yForqsystems i(n )therme)lll equilib- Interestingly, we see that the variance formula can be rewrit-

rium, this will be the case for pure phases away from criticalt€n ig terms of the structure factor and the non-negative func-
points. The structure factor B [defined by Eq(15)] atk  tion a(k;R), the Fourier transform of the scaled intersection
=0 diverges as a thermal critical point is approached, imply-volume functiona(r;R): a purely geometric quantity. Since
ing thath(r) becomes long ranged, i.e., decays slower tharthe latter is independent of the correlation functigm), we

[r|~919]. conclude that the non-negativity of the number variance does
An outstanding question in statistical physics is: What arenot introduce a new realizability condition drr).
the existence conditions for a valide., physically realiz- Remarks

able total correlation functiom(r) [20] of a point process at (1) Given the Fourier representation formul28), it is

fixed densityp? The generalization of the Wiener-Khinchtine simple to prove that the local number variance is strictly

theorem for multidimensional spatial stochastic processes qitive for anyv;(R)>0. Both the functionsx(k;R) and

[21] states a necessary and sufficient condition for the exi S(k) are non-negative. Therefore, because the non-negative
tence of an autocovariance function of a general stochasti-

cally continuous homogeneous process is that it has a speI __tegrand of formuld28) cannot pe Zero for_alk, It imme-
tral” (Fourier-Stielties representation with a non-negative iately fo!loyvs that the local variance is strictly positive for
bounded measure. If the autocovariance is absolutely inté2nY_ statistically homogeneous point pattern  whenever
grable, this implies that its Fourier transform must be nonv1(R)>0, i.e.,
negative. The total correlation functidr{r) is the nontrivial
part of the autocovariance function for a point process, i.e., it
excludes thes function at the origin. The fact that(r) 2) Let the wind infinitely | . if-simil
comes from a statistically homogeneous point process, how: (2) Let the win ow grow Infinit€ly farge in a sefi-similar
ever, would further restrict the existence conditionshgn) (|.e_., shape- _and orlentat_lon-preser\allffg;sh|on. In this "”.""'
beyond the Wiener-Khinchtine condition, which amounts to!VNich we will denote simply byv,(R)—, the function
the non-negativity of the structure factor. Obviously, besides(k;R) appearing in Eq(28) tends to (2r)?5(k), where
the condition thaS(k)=0, we have the pointwise condition 9(K) is a d-dimensional Dirac delta function, and therefore
h(r)=—1 for all r. The determination of other realizability dividing variance(28) by (N(R)) yields
conditions onh(r) is a open questiof20].
Thus, it is interesting to inquire whether the non- (N*(R))~(N(R))? —S(k=0)=1+ f h

- X ; p (r)dr.
negativity of the local number variance, given by formula vy(R)—o (N(R)) xd
(22), is a new condition om(r) beyond the non-negativity (30)
of the structure factoB(k). As we now prove, the answer is
no. By Parseval’s theorem for Fourier transforf@g], we  Observe also that the form of the scaled variat@® for

(N*(R))—(N(R))*>0. (29)

can rewrite the general variance formu2) for an arbi- infinitely large windows (or infinite-wavelength limix is
trarily shapedregula)y window as identical to that for equilibrium “open” systems, i.e., grand
) ) canonical ensemble, in the infinite-system limit. It is well
(N“(R))=(N(R)) known that the variance in the latter instance is related to

thermodynamic compressibilities or susceptibilitié$ The
=(N(R))| 1+ P JF\(k)E(k;R)dk , (25)  important distinction is that resulB0) is derived by consid-
(2m)d ering window fluctuations in an infinite “closed” possibly
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nonequilibriumsystem. When the point pattern comes from a
statistically homogeneous equilibrium ensemble, one can in-
terpret the fluctuations as arising from differences in the
point patterns in the ensemble members for a fixed window
position or, equivalently, from moving the asymptotically

#dT(d/2)

B=— g 1 th(r)rdr, (37)
R
2Dv1(D/2)F(T)F(§>

large window from point to point in &ingle system. The

latter scenario can be viewed as corresponding to densi

fluctuations associated with an open system.

C. Asymptotic variance formulas

and{(x) signifies terms of lower order than[23]. In what

llows, the asymptotic constanésandB will generically be
eferred to as “volume” and “surface-area” coefficients for
point patterns irany dimension.

Remarks

(1) Observe that the volume coefficieAtis equal to the

Here we apply the previous results for statistically homo-non-negative structure factor in the limit that the wave num-
geneous point patterns to obtain asymptotic results for largber approaches zero, i.e.,
windows. The conditions under which these expressions

yield variances that only grow as the surface are&cdre

determined. These conditions can be expressed in terms of

spatial moments of the total correlation functibr). For

A= lim S(k)=1+pJ' dh(r)drao, (38
R

|k|~>0

simplicity, we first consider the case of spherical windows,wheres(k) is defined by Eq(15) for any dimension. Con-
but we show that the results apply as well to nonsphericajstent with our earlier observations about relatigf), we

windows.

see thatA is the dominant term for very large windows and

Many of our subsequent results will be given for ajngeed is the only contribution for infinitely large windows.

d-dimensional spherical window of radil&centered at po-
sition Xg. The window indicator function becomes

W(|X—Xo|;R) =0 (R—|x—Xol|), (3D
where®(x) is the Heaviside step function,
0, x<0
=
O0=11, x=o0. 32

Therefore, the functiom(R), defined in relation21), be-
comes the volume of a spherical window of radRigjiven
by
71_d/2
— d
vilR=rrap R

(33
It is convenient to introduce a dimensionless dengitge-
fined by

71_d/2

¢p=pvy(D/2)=p ——— D,

290 (1+d/2) 39

whereD is a characteristic microscopic length scale of the
system, e.g., the mean nearest-neighbor distance between the

points.

Substitution of expansiofA14) for the scaled intersec-

It is well known that point patterns generated from equilib-
rium molecular systems with a wide class of interaction po-
tentials (e.g., hard-sphere, square-well, and Lennard-Jones
interactions yield positive values ofA in gaseous, liquid,
and many solid states. Indeed, will be positive for any
equilibrium system possessing a positive compressibility.
This class of systems includes correlated equilibrium particle
systems, an example of which is discussed in Appendix B.
The coefficientA will also be positive for a wide class of
nonequilibrium point patterns. One nonequilibrium example
is the so-called random sequential addition pro¢és$ To
summarize, there is an enormously large class of point pat-
terns in whichA is nonzero.

(2) Because the local variance is a strictly positive quan-
tity for R>0 [cf. Eq. (29)], we have from Eq(35) that for
very large windows

R d-1
—) >0.

A(B D

The crucial point to observe is that if the volume coefficient
A identically vanishes, then the second term within the
brackets of Eq(35) dominates, and we have the condition

d
+B

(39

B>0, (40)

where we have used the fact that the variance cannot grow

tion volume a(r;R) into Eq. (22), and assuming that the mqre siowly tharRY 2, i.e., the surface area of the window
resulting integrals separately converge, yields the variancFll]' We will refer to a system in which

formula for largeR as

d
+B

d-1
+4€

R

o)+l ]

(39

R
<N2<R>>—<N<R)>2:2d4A(5

whereA andB are the asymptotic constants given by

¢
A=1+pfmdh(r)dr=1+ mfmdh(r)dr, (36

A= lim S(k)=0
‘k‘ﬁo

(41)

as a “hyperuniform” system. Such point patterns do not pos-
sess infinite-wavelength fluctuations. In a recent cosmologi-
cal study[3], the term “superhomogeneous” has been used
to describe such systems. Note that for a one-dimensional
hyperuniform system, the variance is exagtipt asymptoti-
cally) given by
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(N?(R))—(N(R))*=2¢B, (42)
whereB is given by Eq.(37) with d=1, implying that the
fluctuations are bounded, i.e., do not grow WRH24].

(3) By contrast, we will refer to a point pattern in which
the surface-area coefficient vanish&-+0) as a “hyposurfi-
cial” system. A homogeneous Poisson point pattern is
simple example of such a system. Inequal89) in conjunc-

tion with the fact that the variance cannot grow more slowly

than the surface area of a spheri@al strictly convex win-

dow for statistically homogeneous and isotropic point pat-
terns[11], enables us to conclude that such a system cannot

simultaneously be hyperuniform and hyposurficial, i.e., th
volume coefficientA [cf. Eq. (36)] and surface-area coeffi-
cientB [cf. Eq.(37)] cannot both be zero. In Appendix C, we
examine the question of how small the volume coefficknt
can be made if the point pattern is hyposurficial.

(4) Observe also that the asymptotic variance formul
(35 and the analysis leading to conditié#0) are valid for

PHYSICALREVIEW E 68, 041113 (2003

S(k) = h(k)

=—, (48
1+ ph(k)
WhereE(k) is the Fourier transform of(r). Using relation
(28) and definition(48), we can reexpress the number vari-
nce for a window of arbitrary shape in terms of the Fourier
transform of the direct correlation function as follows:

e

We know that for a hyperuniform systeim(0)= — 1/p by
definition, i.e., the volume integral di(r) exists and, in
particular,h(r) is a short-ranged function that decays to zero
faster thanlr| 9. Interestingly, this means that the denomi-

anator on the right-hand side of E@L8) vanishes ak=0 and
thereforec(k=0) diverges to— . This implies that the real-

1
(2m)¢

a(k;R)

2 _ 2_
(N2(R))—(N(R))2=(N(R)) 1— p3(k)

(49

any statistically homogeneous point pattern. Now if we fur-space direct correlation functioe(r) is long ranged, i.e.,
ther assume that the point pattern is statistically isotropicgecays slower thafr| 9, and hence the volume integral of

then the volume coefficieriB6) and surface-area coefficient
(37) can be expressed in terms of certain momentdh,of
namely,

A=1+d29¢p(x971), (43
d?2°'r(de)
LS TR 44
F(T F(z
where
(x”)=f0xx“h(x)dx (45)

is thenth moment of the total correlation functidr(x) and
x=r/D is a dimensionless distance. Following the previou
analysis, we see that iA=0, then the condition for the
variance to grow as the surface area implies that dtie
moment ofh must be strictly negative, i.e.,

(x9)<o0. (46)

D. Direct correlation function and new critical exponents

The direct correlation functionc(r) of a hyperuniform
system behaves in an unconventional manner. In real spa
this function is defined by the Ornstein-Zernike equation

h(r)=c(r)+medh(r—r’)c(r)dr’. (47)

c(r) does not exist. This is an unconventional behavior be-
cause, in most equilibrium instancegy) is a short-ranged
function, even in the vicinity of thermodynamic critical
points whereh(r) is long ranged. One can see tltdt) for

a hyperuniform system behaves similarly to the total corre-
lation functionh(r) for an equilibrium system near its criti-
cal point[19], i.e., each of these functions in these respective
instances become long ranged. If this analogy holds, then
one expects the direct correlation function for hyperuniform
systems to have the following asymptotic behavior for large
r=|r| and sufficiently larges:

c(r)~-— (r—),

(50)

rd—2+77

where (2-d)<7n=<2 is a new “critical” exponent associ-
ated withc(r) for hyperuniform systems that depends on the
Sspace dimensiorf25]. For noninteger values ofp, the
asymptotic relation50) implies that the Fourier transform

h(k) is a nonanalytic function ok=|k|. We will show in
Sec. V that there is a class of hyperuniform systems that
obey Eq.(50) but with integer values ofp, implying that
h(k) is an analytic function ok. Inversion of Eq(50) yields

c(k)~— (k—0), (51)

G

ce,

which, when combined with Eq48), yields the asymptotic

form of the structure factor
S(k)~k2~7

(k—0). (52)

This relation has primarily been used to study liquids inThe specific asymptotic form @&(k) for smallk contributes

equilibrium[1], but it is a perfectly well-defined quantity for
general(nonequilibrium systems, which are of central inter-

est in this paper. The second term is a convolution integral

and therefore Fourier transforming Ed.7) leads to

to determining the “universality” class of the hyperuniform
system.

Let us now consider a point pattern with a reduced density
¢ that is nearly hyperuniform and that can be made hyper-
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TABLE I. Definitions of the critical exponents in the vicinity of which was derived for a statistically homogeneous system.
or at the hyperuniform state. He@’l(_o) is the inverse of the We also show that the formula derived here is preferable for
structure factor ak=0, ¢ is the correlation length, anc(r) isthe  finding point patterns with an extremal or targeted value of

direct correlation function. the number variance.
- : For notational simplicity, we consider ddimensional
Exponent Asymptotic behavior spherical window of radiu®, keeping in mind that the re-
y b\ sults of this section apply as wellvith obvious notational
§1(0)~(1— —) (p—¢) changesto regular domains of arbitrary shape. We assume
e that the characteristic size of the system is much larger than
Y ) P - . the window radius so that boundary effects can be neglected
S (0)~($*1) (p—c) and that the large numbeNs>1 andV>1 are comparable
” ‘ _, such thatp=N/V is a finite nhumber density. Let us recall
§~(1_ f) (p—d7) relation (20) for the number of pointN(xy;R) contained
e within a window at positiorx, in a system of volumé/ in

4 ’

v é -v which there areN points. We let the window uniformly
§~(—*1) (p— ) sample the space and define the average number of points

be e within the window to be
7 o(~r>""7 (¢=4)

N
— 1
N(R E_J E wW(|ri—Xo|;R)dxo= J'®(R—r)dr
uniform by increasing and/or decreasing the density. We de- Viviza Iri=xl =P v

note by ¢. the reduced density at the hyperuniform state. R\

The reduced densitie¢ and ¢ play the same role as tem- =pvl(R)=2d¢(—) , (56)
peratureT and critical temperatur@,, respectively, in the D

analogous thermal problem in the vicinity of a critical point. .
Thus, we can define critical exponents associated with thg/herevl(r) and ¢ are given by Eqs(33) and(34), respec-
manner in which certain quantities diverge as the critical'Ve!- | _ _ o
(hyperuniform point is approached. For example, for Similarly, squaring relatiori20) and averaging yields

|p.— p|<1, the inverse of the structure factor k=0, 10N
S (0) and thecorrelation length¢ obey the power laws NZ(R)z—f > w(|r;—xo|;R)dxg
51-7 Vivica '
SH0)~ 1—(?) v P e (53 170
c +V ng W(|ri—Xol; R)w(|r; —xo|;R)dxq
A _
5”(1__) v b= (54) pv1(R) N
o =pv1(R)+ N ; a(rij;R), (57)
where y and v are non-negative critical exponents that are
related by the formula where a(r;R) is the scaled intersection volume, given ex-
plicitly by Eq. (A5), andr;j=|r;—r;|. Therefore, the local
y=(2-n)v. (55  variancec?(R) is given by

As will be discussed in Sec. \§ characterizes the decay of o2(R)=N2(R)— N(R)?
the direct correlation function in the vicinity o= ¢..

Analogous critical exponents can be defined for densities E— 1N
near but abovep., as summarized in Table I. In Sec. VB, =N(R) 1_P01(R)+ﬁ ;J a(rij;R)
we determine the critical exponents exactly for certain mod-
els of disordered point patterns thdimensions. R\ d R\¢ 1 N
=29¢| — 1—2d¢(— += > a(r;R)|.
D D N iF J
Ill. VARIANCE FORMULA
FOR A SINGLE-POINT PATTERN (58)

In this section, we derive a new formula for the numberThe last term within the brackets is the sum of scaled inter-
variance of a single realization of a point pattern consistingsection volumes between all point pairs, per point.
of a large number of pointd in a large system of volum¥. Remarks:
This is necessarily a volume-average formulation. Fluctua- (1) It is important to observe that the series in E§8)
tions for a fixed window size arise because we let the winterminates forr;;>2R even for infinitely large systems.
dow uniformly sample the space. As we will show, depend- (2) Note that the variance formui®8) is different from
ing on the nature of the point pattern, this formula will the ensemble-average formuy2), which involves an addi-
generally lead to a result that is different from form(22), tional weighted average over pairs of points; thus, the ap-
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pearance of the total correlation functidrir). Therefore, — 1L
the variance functioi58), unlike the variance functio(22), A(L)= Lo A(R)AR, (63
will generally contain small-scale fluctuations with respect to

R, of wavelength on the order of the mean separation beynhereA (R) is given by Eq(62). In the case of a statistically

tween the points that are superposed on the large-scale varigamogeneous system, the constant surface-area coefficient
tions with respect tR (see examples in Sec. |VExpres-

sions(58) and (22) are identically the same for statistically o 1 (L
homogeneousinfinite) systems, in which case the ampli- A=lim(L)=lim Ef A(R)dR (64)
tudes of the small-scale fluctuations vanish. Lo Loee

(3) Because the variance formula is valid for a single. . . .
realization, one can use it, in principle, to find the particular's trivially related to the surface-area coefficiet defined

point pattern that minimizes the variance at a fixed value oY EG-(37) in the asymptotic ensemble-average formula, by
R. In other words, it is desired to minimize?(R) for a € expression

particular value oR among allr;;<2R, i.e., ~ 29-1424T(d/2)

+1)F( 1) fmdh(r)rdr.

d
Dvl(D/2)F<—

A=29¢B=
min ¢%(R), (59
Vrj<2R
(65

where o?(R) is given by Eq.(58). The scaled intersection B
volume a(rj; ;R) appearing in Eq(58) is a non-negative (7) Because the formula for the coefficiehts defined for
function ofr; (see Fig. 9and can be viewed asrapulsive  a single realization, we can employ it to obtain the particular
pair potential between a pointand a pointj. Finding the point pattern that minimizes it. Thus, the optimization prob-
global minimum ofa?(R) is equivalent to determining the lem is the following:
ground state for the “potential energy” function represented _
by the pairwise sum in Eq58). Such global optimization min A, (66)
problems can be attacked using simulated annealing tech- vrij=aL
nigques, for example. More generally, one could devise an

optimization scheme in which &argetedvalue of the vari- whereA is given by Eq.(§3). . I » :
ance(rather than an extremal valuis sought[26]. (8) For large systems in which any point “sees” an envi-

(4) Because the pairwise sum in EG8) is positive, we ronment typical of all points, relatiof68) for the variance

immediately obtain from Eq58) the following lower bound can be simplified. This requirement is met by all infinite
on the variance: periodic lattices for amyR as well as statistically homoge-

neous point patterns for sufficiently large In such in-
d stances, the second term within the brackets of(E§). can
) } (60) be written as sum of scaled intersection volumes oMer
—1 points and some reference point. Thus, we can rewrite
the variance as

R\ R
0'2(R)>2d¢<5) {1—2%(5

This bound is exact foR<r /2, wherer ;, is the mini-

mum pairwise distance, and therefore provides an accurate R\d R\d N71

estimate of the variance for sm&ll For sufficiently largeR, d(R)= qub(—) {1—2‘%(—) + > a(ry; R)},

however, the bound becomes negative and therefore provides D D k=1

a poor estimate of the variance. (67)
(5) For largeR in the special case of hyperuniform sys-

tems, the large-scale variations Rwill grow asR%"*, and

so we have from Eq58) that

wherer is the distance from the reference point to ik
point. The asymptotic expressiodl) for a?(R) and relation
(63) for A(R) still apply but withA (R) given by the simpler

R\ d-1 R\ d-2 formula
2 — _ _
7A(R) A(R)(D +0 D) , (62) R Rid N-1
AR)=2%| =||1-29p| =| + D a(r;R)|. (68
D D k=1
where
R R4 1 N We emphasize that the simplified formul&7) and (68)
—odgl 2l 1—2dgpl =] £+ cannotbe used for the aforementioned optimization calcula-
AR)=2 ¢( D) 1=2 (’5( D N ;, a(fijiR) tions. The latter requires the full pairwise sum appearing in

(62  the general relatiof58).
(9) In order to make the surface-area functiariR) or
is the asymptotic “surface-area” function that contains thesurface-area coefficient independent of the characteristic

small-scale variations iR. length scale or, equivalently, density of the hyperuniform
(6) It is useful to average the small-scale functi®(R) point pattern, one can divide each of these quantities by
over R to yield the constant Pld= D e
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A(R) X :iJ . —ig-Xg
e or e 69  aa) e UN(XO,R)E dXo

1 _
— —10-X

This scaling arises by recognizing that normalization of the T e EP: fu®(R_|P_ Xo| )&~ "40dxq
asymptotic relatiori61) by expressiort56) for (N(R)) taken a4
to the power ¢(—1)/d renders the resulting normalized re- _if O(R—|T|)ele TdT = _(_77) RYJ,,(qR)
lation independent oR/D. Such a scaling will be used to Cve ) “vclgR a2 9R),
compare calculations ok (R) and A for different ordered (73
and disordered point patterns to one another in the subse-
quent sections. Note that since one-dimensional hyperunivhereJ,(x) is the Bessel function of order. Note that the
form patterns have bounded fluctuations, this scaling is irrelintegral in the third line is nothing more than the Fourier
evant ford=1. transform of the window indicator function, which is given
by Eq. (A3). The analysis above assumes that there is one
point per unit cell, i.e., we have considered Bravais lattices.
IV. CALCULATIONS FOR INFINITE One can easily generalize it to the case of an arbitrary num-

PERIODIC LATTICES ber of pointsne per unit cell. Formula73) would then in-

It is useful and instructive to compute the variance, using/olve nc—1 additional terms of similar form to the original
the formulas derived in the preceding section, for commorPne.
infinite periodic lattices, which are hyperuniform systems. To By Parseval's theorem for Fourier series, the number vari-
our knowledge, explicit calculations have only been obtained@ncea?(R) is given explicitly by
for the square lattic§13] and triangular latticé 14] in two 1
dimensions. Here we will obtain explicit results for other 2/ D) — . 2
two-dimensional lattices as well pas one- and three- o (R)= vcju[N(XO'R) pua(R)J"dxo
dimensional lattices. We take the window to be a

d-dimensional sphere of radil® _ E a2(q)
For infinite periodic lattices, Fourier analysis leads to an q#%0
alternative representation of the variance. Let the sites of the § g
lattice be specified by the primitive lattice vect®rdefined R 2w 5
P=nya,+Nyay+ - - - +Ny_184_ 1+ Ngdyg, (70) One can easily obtain an asymptotic expression for the vari-

ance for largeR by replacing the Bessel function in EF.4)

by the first term of its asymptotic expansion, and thus we
whereg; are the basis vectors of the unit cell array and have

spans all the integers for=1,2, . . . d. Denote byU the unit

cell andu its volume. It is clear that the number of points 9

N(xo;R) within the window atx, [cf. Eq. (20)] in this in- o*(R=AR| 5
stance becomes

d-1

d-2
+o(5) , (75)

whereD is a characteristic microscopic length scale, say, the
lattice spacing, and
N(xo;R) =2 O(R=|P—xg)), (7D
0 5 0 AR 20+1,d-1p2d _ co@[qR—(d+ 1) /4]
ve 470 (qD)d+l
where the sum is over ah. (76)
The numbem(xy;R) is a periodic function in the win-

dow positionx, and therefore it can be expanded in a Fourierdescribes small-scale variationsRaAs before, it is conve-
series as nient to compute the average 4f(R) over R to give the

surface-area coefficient:

N(xo;R)=pv1(R)+ 2, a(qg)e'd™o, (72) _ 1L 24797 1p2d 1
oiRI=poi(RI* 2 2 A= lim —f A(R)dR= " —.
L—o L 0 UC a#0 (qD)
: . . (77)

where q is the reciprocal lattice vector such thatP
=2mm (wherem=*+1,+2,+3,...) and the sum igver all It is useful here to apply the specialized volume-average
g exceptg=0. Following Kendall and Rankipl4], the co- formula (67) to the case of infinite periodic lattices. Recog-
efficientsa(q), for g#0, are given by nizing that the configuration of an infinite periodic point pat-
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tern may be characterized by the distanggand coordina-
tion numbersZ, for the successive shells of neighbots (
=1,2,3...) from a lattice point, we find from Ed67) that
the variance can also be represented as

d d

a?(R)=2% g —

R
1—2d¢>(D

+ > zka<rk:R>}
k=1
(78)

The asymptotic expressidigl) for o?(R) and relation(63)
for the surface-area coefficiedt(R) still apply but with
A(R) given by

d R d R ‘ S
A(R)=2% D 1-2%¢ D +k§:1 Zya(riR) .
(79

Formula(78) was obtained by Kendall and RankKih4] us-
ing a more complicated derivation. Moreover, their deriva-

tion only applies to periodic point patterns. Our more genera

formula(67) is also valid for statistically homogeneous point

PHYSICALREVIEW E 68, 041113(2003

-1

. PH,
k-
FIG. 3. Portions of two one-dimensional periodic point patterns,

wherevc=D=1. The top and bottom arrays are the single-scale
and two-scale examples, respectively.

. -

A. One-dimensional examples

Here we obtain exact expressions for the number of points
and number variance for general one-dimensional periodic
point patterns using the aforementioned Fourier analysis. Us-
ing this result, we prove that the simple periodic linear array
corresponds to the global minimum in. Subsequently, we
employ the volume-average and ensemble-average formula-
tions of Secs. Il and Il to obtain some of the same results in
order to compare the three different methods. Recall that
pyperuniform systems in one dimension have bounded fluc-
tuations.

patterns. We also note that our most general volume-average Let us first consider the simplest periodic point pattern in

representatioifs8) of the variance, from which formulg7)

which each point is equi-distant from its near neighbsese

is derived, is applicable to arbitrary point patterns and itsFig. 3 and let this nearest-neighbor distance be unity (

derivation is quite straightforward. B
One can also evaluate the asymptotic coefficienising
the ensemble-average formul@5). Strictly speaking, this

=D=1). Applying relations(72) and (73) and recognizing
thatg=27ma; /D (m==*=1,=2,...) fornonzeroq yields
the number of points contained within a one-dimensional

formula is not applicable to periodic point patterns becausavindow of radiusR centered at positiox,:

such systems are not statistically homogenemesther are
they statistically isotropic To see the potential problem that
arises by naively applying E@65), let the origin be a lattice
point in the system and consider determining the radial dis
tribution functiong,(r) by counting the number of lattice
points at a radial distanag, from the origin. For a lattice in

d dimensions, we have that

< Zd(r=ry)
92(r)= pS1(ri)

wheres,(r) is the surface area of a sphere of radiygven
by Eq. (14) and Z, is the coordination number of thieth
shell. It is seen that substitution of the corresponding tota
correlation functiorh(r)=g,(r) —1 into Eq.(65) results in

(80)

k=1

a nonconvergent sum. However, using a convergence “trick™s

2
N(R;Xp)=2R

“ sin(2mmR)cog 27mxg)
> = -

m=1

(82
According to relation(74), the associated variance is given
by

sirf(2mmR)
m? '

o*(R)

2 i (83
B 772 m=1
fhe variances®(R) is a periodic function with period 1/2
and is equal to the quadratic functioR@L—2R) for O<R
1/2 (see Fig. 4. Finally, the surface-area coefficiet,

[27], one can properly assure a convergent expression byefined by Eq(77), which in one dimension amounts to the

reinterpreting the surface-area coefficiédh) for a periodic
lattice in the following manner:

—29712dI(d/2)

d+1 -
2
¢’7le2

Ul(Dlz)lB(d+ 1)/2

A= lim
p—0" Dvl(D/Z)F(

1

2

)fmde'grzh(r)rdr

2dfl¢d

:ﬁ“j* DI L
2

2
> Zyre Fric].
k=1

T'(di2)
d+1

2

(81)

positional average of the variance for any value Ryfis
exactly given by the constant

1

- (84)

1 &1

A 71_2 mZzl m2
It is known that this simple linear array yields the mini-

mum value ofA among all one-dimensional regular lattices.

This is intuitively clear from the volume-average variance

relation (58) for d=1; the linear repulsive effective “pair

potential” contained therein is evidently responsible for such

a minimum. However, heretofore it was not known whether

this pattern corresponded to a global minimum, i.e., the

smallest value of\ among all infinite one-dimensional hy-
peruniform patterns. We now prove that the single-scale lat-
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0.4 ' ‘ ‘ 0.8 ‘ ' ' FIG. 4. Left panel: The qua-
Single—Scale Linear Lattice 07 L Two-Scale Linear Lattice i dratic periodic variance function

03 | | 06 o?(R) for the single-scale peri-
) ) odic one-dimensional point pat-

05 1 tern given by Eq(83). The hori-

&£ oo | A /\ /\ /\ 1 Eogal A /\ /\ A | zontal line is the averageA
o o =1/6. Right panel: The
03 1 ] piecewise-quadratic periodic vari-

0.1 - . 02 1 ance functiono?(R) for the two-
01 scale periodic one-dimensional

point pattern given by Eq87) for

00 05 1 15 2 00 05 1 15 2 the case{=1/4. The horizontal

R R line is the averagd =7/24.

tice indeed produces the global minimum. To prove this aspoints per unit cell in which the length of the unit cell is still

sertion, we utilize the identity unity. Thus, excluding the point at each lattice site, there are
M—1 points inside the wunit cell with positions
1 & 1+2cog27mx) 1 1,5, ... {m—1 Such that eaclj; lies in the interval (0,1).
f(x)=— 2 ——— ——=5-2x(1-x) (89 Without loss of generality, we arrange the—1 points such
= m? 2 that {i<{¢11 (i=1,2,... M—2), but their positions are

otherwise arbitrary Following a similar analysis as the one
and note thaf(x) is a convex quadratic non-negative func- above, we find that the number of points within a window
tion for all realx. Now consider a case in which there &le  centered akg is exactly given by

M-1
0 sin(27-rmR){ Zo Cos{27rm(xo—§j)]}
N(Rixo)=2MR+2 3, &= — , (86)

where,=0. The variance is therefore given by

M—-1 M-1
sin2(27-rmR)[ M+ 21 cog2mm¢;)+ zk co§ 27m( & — g,-)]]
i= i<
. (87
2

02<R>—3 E
2 &

m

We see that the varianeg’(R) for an arbitrary one-dimensional point pattern within the unit cell is a periodic function with
period 1/2.(As we will see, the variance in higher dimensions is not a periodic functiéhfor periodic point patternsThe
average of the variance is exactly equal to the surface-area coeffiéiént

M—-1 M-1
T “"*,21 cog2mm¢;) + gk cog 27m( ¢~ 5,)] M(M_3) Mo M-1
A== 2 2 -t 2 X g, (689
7T m= m j=1 i<k

where f(x) is given by Eq.(85). BecauseA is given by a Itis easy to verify that the global minimum is achieved when
sum of convex quadratic non-negative functions, the globathe M — 1 are uniformly distributed in the intervéd,l), i.e.,
minimum is found from the zeros of the derivativa/d,: {h=nIM (n=1,2,... M—1), yielding A=1/6. Since this
result is valid for arbitraryM, the simple single-scale lattice
produces the global minimum value &f among all infinite
one-dimensional hyperuniform point patterns.

Note that the single-scale lattice corresponds to the dens-
est packing of one-dimensional congruent hard spheres
(rods on the real line. This might lead one to conjecture that
the Bravais lattice associated with the densest packing of
(n=1,2,... M—1). (89 congruent spheres in any space dimengioprovides the

n—1

A
(9—£n=0=1—2§n+j21 (1—-2¢,+2¢))

M-1

-2 (122
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TABLE II. The surface-area coefficierk for some ordered and 2 *
disordered one-dimensional point patterns. The result for the two- A= lim | = — ¢E zkrkefﬁfﬁ , (92
scale lattice is for=¢,=0.25. g0 B k=1
Pattern P A where we have takeB=1. The sum in(92) can be evalu-
ated exactly using the Euler-Maclaurin summation formula
Single-scale lattice 1 1#60.166667 [28]. If f(k) is a function defined on the integers, and con-
Steptdelta-functiong, 0.75 3/16=0.1875 tinuous and differentiable in between, the Euler-Maclaurin
Step-functiong, 0.5 1/4=0.25 summation formula provides an asymptotic expansion of the
Two-scale lattice 2 7/240.291667 sum=p_,f(k) asn—oe. Applying this asymptotic formula
Lattice gas 1 1/3:0.333333 to Eqg. (92) in the cases of the single-scale and two-scale

lattices yields that\ = 1/6 andA = 7/24, respectively, which

o _ o _ ~ agree with the results obtained using the previous two meth-
mllnlmal value ofA gmong aII perlodlc lattices for spherlcal ods. A|th0ugh the Fourier-ana|ysis and Vo|ume-average pro-
windows. As we will see, this turns out to be the case forcedures are more direct methods to deternﬁéor one-
d=2, but not ford=3. dimensional lattices, we will see that representati8t)

The variance as comE)uted fronl E(@._?) for the caseM provides an efficient means of computirg for lattices in
_=2, whlc_h we call the “two-scale Iattlce(_set_a Fig. 3 is higher dimensions.
included in Fig. 4 for{=¢{,=1/4. In this instanceA
=7/24. Clearly, the variance for the two-scale case bounds B. Two-dimensional examples
from above the variance for the single-scale case. Table I . -
compares the surface-area coefficient for the single-scale and He€ré We evaluate variance characteristics for the follow-

two-scale one-dimensional lattices. The other oneln9 four common two-dimensional lattices: square, triangu-

dimensional results summarized in Table Il will be discussed@: honeycomb, and Kagontattices. From the lattice series
in the ensuing sections. The potential use of the local varit’4: (76), and (77) with d=2, we have general two-
ance as an order metric for hyperuniform point patterns irffimensional series relations for the varianee’(R),
any dimension is discussed in Sec. V. asyr_nptoﬂc surface_-area functm&(R)_ , and _surface-area co-
Consider obtaining the volume-average representation gfficientA, respectlyely. For a specific [atuce, the'evaluatlon
the variance for the two aforementioned one-dimensional pef any of these series requires the reciprocal lattice vegtor
riodic patterns from Eq(78). Using relationgA5) and(A9)  @ndvc. For example, for the square latticg=27(m,a
for the scaled intersection volume(r;R), we find for any +m§a2)/D (m=0,£1,+2,...) for nonzeroq and vc
one-dimensional periodic point pattern in whibh=1 that =D*“. The sums are straightforward to evaluate, even if they
converge slowly. Provided th& is not very large, however,
Mg r the corresponding volume-average relatiéf® and(79) are
1-2¢4R+ 2 Zk(l_ k)(ZR—rk)}, superior for computational purposes because the series in-
k=1 2R volved are finite rather than infinite. For example, the
(90 asymptotic surface-area function(R) for the square lattice
is plotted in Fig. 5 using Eq(79) with Eq. (A10) for 1<R
where Mg corresponds to the largest value lofor which <4, The function is seen to be aperiodic, but fluctuates
r«<2R. Because in one dimensioh(R)=0¢?(R), where  around an average value in a bounded fashion. It is worth
A(R) is the function defined by Eq79), it follows that the  noting that the behavior oA (R) for larger values oR is
averageA is given by qualitatively the same. Interestingly, the average value of
A(R) over this small interval neaR=0 (as well as other
ML e\ intervals of the same lengths quite close to the infinite-
+> Zk( 1- Z) : interval average valud [29].
k=1 .
The average value of the surface-area functidir) over
(91) all R, equal to the surface-area coefficién{cf. Eq.(77)], is
given (to six significant figuresby A =0.457 649. Series
(77) for the square lattice was first evaluated by Kendall
13]. Because it is a slowly converging series, he exploited
ertain results of number theory to reexpress the sum in
terms of a more rapidly convergent series.
We found that numerical evaluation of the ensemble-

o?(R)=2¢R

_ (e { 4L
A=2 o A(R)dR:¢L (1_T

where M corresponds to the largest value lofor which
re<2L. Using the fact thatp=1, r =k, andZ,=2 for all k
for the single-scale lattice, one can easily reproduce th
graph foro?(R) depicted in Fig. 4 using relatiof®0) and
verify that A = 1/6 employing relatior{91). Similarly, for the

two-scale case, we have thét=2, r=k/4, andZ =1 for 5 araqe relatio81) is a simple and effective means of com-

odd k, andr,=k/2 andZ,=2 for evenk. Hence, relation ., yino"accurately the surface-area coefficiarfor any com-
(90) leads to the same graph of the variance shown in Fig. 4p g y y

i) mon lattice. In two dimensions, this relation yields
and relation(91) yields A =7/24 for {=0.25, as before. y

We can also compute the surface-area coefficient using B 1642 8¢ & 5
the ensemble-average relati¢dl). In one dimension, this A= lim T T E Z e Akl (93
relation yields pootL TP T k=1
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1 6, where the difference between the normalized scale-
independent surface-area functi?(R) for the triangular
08 | ] and square lattices is plotted for the range D8R
<110D using relation(79). This difference oscillates rapidly
about zero over this range @&, but the same qualitative
06 - X L
& A A/\ /\ /\ /\ trends occur for all values d® and for any pair of periodic
= lattices considered here. Given our previous interpretation of
04 w 1 the global minimum of the variance as corresponding to the
ground state of a many-particle system with a potential en-
02 | i ergy function given bya(r;R) (Sec. lll), we see that the
optimal lattice structure is sensitive to small changes in the
‘ ‘ ‘ ‘ ‘ value of R (which determines the range of the potential
01 15 2 o5 3 35 4 This calls into question previous studig®l] that claim to

R}D have found stable ground-state lattices for two-dimensional
systems of particles with purely repulsive interaction poten-
FIG. 5. The asymptotic surface-area functior(R) for the tials of the same qualitative form as shown fe(r;R) in
square lattice for £R<4, whereD is the lattice spacing. The Fig. 9 withd=2.
horizontal line is the asymptotic average valie-0.457 649.
C. Three-dimensional examples
The sum in Eq(93) is easily computed as a function of the

convergence parametgr for any simple lattice. For suffi- periodic lattices: simple cubi¢sc lattice, face-centered cu-

ciently smallg, this sum is linear in3 and extrapolation to bi ; ;
: S bic (fee) lattice, hexagonal-close-packéacp) lattice, body-
B— 07 yields results that are accurate to at least six signifi- (fec) 9 P P y

p h | dth ; f?entered cubi¢bco), and the diamond lattice. Explicit results
cant figures. We have also computed the surface-area Coefl, \he numper variance for such lattices have heretofore not

cient for triang_ular, honey(_:omb, an_d Kagoratices. The been reported. From Eq&4), (76), and(77) with d=3, we
result for the triangular lattice was first reported by Kendally5,6 general three-dimensional relations for the variance
and Rankif{14]. In Table lll, we compare all of these results o2(R), asymptotic surface-area functio(R), and surface-

for the.common two—@mensmngl lattices to one another byarea coefficient\, respectively. These expressions are easily
tabulating the normalized scale-independent surface-area CQValuated for the specific lattice giver and the reciprocal

efficiept, e, A/ ¢.1/2 [cf. Eq. (69)]. Rankin[BO] proved that lattice vectorsq. As we noted earlier, the volume-average
the triangular lattice has the smallest normalized surface-are@lations(m) and (79) for d=3 are superior for computa-
coefficient for circular windows among all infinite periodic tional purposes provided th& is not very large. Qualita-
two-dimensional lattices, which is borne out in Table 1ll. tively, the three-dimensional trends for the surface-area func-

nge\%:/r, tltlzere IS no ﬁ)rpt]zf .tthai thed.tnanglljlar Ilar:tlce M fion A(R) are similar to the two-dimensional ones described
mizes A/ ¢~ among all infinite two-dimensional hyperuni- above(see, for example, Figs. 5 and &nd so we will not

Tﬂrm point ﬁat;ernj_ for dcwcm:jlar \_Nlpdon/s. Inc;:]ucied_lllanag_le present explicitly such three-dimensional results here.
are resuts for disordered point patterns that will be dis=" 1,5 angemble-average relatiésil), which ford=3 and

Here we specialize to common infinite three-dimensional

cussed in the ensuing sections. D=1 vields
Although the normalized surface-area coefficient is small- y
est for the triangular lattice, Table Ill reveals that the corre- 7242
. e . . —_ 2
sponding coefficients for the other lattices are not apprecia- A= lim 5 —64)2 Zre Pk (94)
bly larger. This suggests that the fluctuating surface-area B—0" k=1

function A (R) for nontriangular lattices may be smaller than
the corresponding function for the triangular lattice for cer-and provides an efficient means of computing the surface-
tain values ofR. This is indeed the case as illustrated in Fig.area coefficient\ for three-dimensional infinite periodic lat-

TABLE IIl. The surface-area coefficienh for some ordered and disordered two-dimensional point
patterns. For ordered lattice®, represents the close-packed covering fraction.

Pattern ) Al p*?
Triangular lattice /\[12~0.9069 0.508347
Square lattice w/4~0.7854 0.516401
Honeycomb lattice 7/(3y/3)~0.6046 0.567026
Kagomelattice 37/(8/3)~0.6802 0.586990
Steptdelta-functiong, 0.5 2/2/(37)~0.600211
Step-functiong, 0.25 8/(3m)~0.848826
One-component plasma 2/\Jm~1.12838
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1 — —— : their associated critical exponents. A discussion concerning
the potential use of surface-area coefficidntas an order
metric for general hyperuniform point patterns is reserved for
Sec. VI.

A. Examples

Statistically homogeneous hyperuniform point patterns in
one dimension are not difficult to construct. Two examples
are discussed here: one is a “lattice-gas” type model and the
other is a construction due to Goldstaihal.[34]. The first
example is constructed by tessellating the real line into regu-
lar intervals of lengthD. Then a single point is placed in
oo 102 104 106 108 110 each intervalindependently of the otherst any real posi-

R/D tion with uniform random distribution. The number density

p=1/D, and the pair correlation function is simply given by
FIG. 6. The difference between the normalized scale-

independent surface-area functioh(R) for the triangular and r’ID, r<D
square lattices as a function Bf whereD is the lattice spacing. 0,(r)= 1 r>D

Here A yi=A(R)yi/ ¢’ andXgg=A(R)sq/ ot -

(99

One can easily verify that the system is hyperuniforf (

tices by extrapolating the results for sufficiently smalto =0) and that the surface-area coefficié) is given by
B—07". This has been carried out for all of the aforemen-
tioned common three-dimensional lattices and the results are A=1, (96)

summarized in Table 1V, where we tabulate the normalized
scale-independent surface-area coefficient, Nd$?° [cf. exactly twice the surface-area coefficient for the simple
Eq. (69)]. single-scale periodic point pattefof. Eq. (84)]. This one-

Contrary to the expectatioh/ $¥(®~1) should, among all dimensional lattice-gas model is a special case of the so-
lattices, be a global minimum for the closest-packed latticesalled d-dimensional shuffled lattice that we will describe
for spherical windows, we find that the minimum in three below.
dimensions is achieved for the bcc lattice, albeit very close in A less trivial example of a statistically homogeneous one-
numerical value to the fcc valughe next smallest valje dimensional hyperuniform system is the construction of
[32]. This suggests that the closest-packed Bravais lattice fdBoldstein et al. [34], which obtains from a homogeneous
d=3 does not minimize\/¢%(@~1 [33]. Included in Table Poisson point process a new hyperuniform point process.
IV are results for disordered point patterns that will be dis-This construction is defined as follows: First, one defines a
cussed in the ensuing sections. statistically homogeneous proceséx) on the real line such
that X(x)=<1. This process is specified by dynamics such
that X(x) decreases at the rate of unity, except at the points
of the Poisson process, whekgx) jumps up by one unit

In this section, we briefly describe the known nonperiodicunless this jump violates the upper bound condition, in
hyperuniform point patterns in one, two, and three dimenwhich case no jump occurs. Second, one takes the points of
sions and identify some others. For certain one-, two, antghe new point process to be those points in whiglx) ac-
three- dimensional disordered hyperuniform point patternstually jumps. This new point process is hyperuniform. It is
we exactly determine the corresponding surface-area coeffirot known how to extend this construction to higher dimen-
cients, structure factors, direct correlation functions, andions @=2).

V. NONPERIODIC HYPERUNIFORM SYSTEMS

TABLE IV. The surface-area coefficient for some ordered and disordered three-dimensional point
patterns. For ordered lattice$, represents the close-packed covering fraction.

Pattern ) A/ ¢2/3
bce lattice 37/(8+/3)~0.6802 1.24476
fcc lattice /\18~0.7405 1.24552
hcp lattice l\18~0.7405 1.24569
sc lattice 7w/6~0.5236 1.28920
Diamond lattice 37/(164/3)~0.3801 1.41892
Damped-oscillatingy, 0.46 1.44837
Steptdelta-functiong, 0.3125 §/3%x 9/2'%3~ 1.52686
Step-functiong, 0.125 2.25
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The construction of statistically homogeneous and isotro-
pic point patterns that are hyperuniform in two or higher
dimensions is a challenging task. An example of a statisti-
cally homogeneousl-dimensional system that is hyperuni-
form is the so-calleghuffled latticg 35], but it is not statis-
tically isotropic. This is a lattice whose sites are
independently randomly displaced by a distarda all di-
rections according to some distribution with a finite second
moment.

Gabirielli et al. [35] have observed that the a point pattern
derived from the “pinwheel” tiling of the plang36] has a
number variance that grows as the surface greametey of
the window, and is statistically homogeneous and isotropic.
The prototile of the pinwheel tiling is a right triangle with
sides of length 1, 2, ang5. The tiling is generated by per-
forming certain “decomposition” and “inflation” operations
on the prototile. In the first step, the prototile is subdivided
into five copies of itself and then these new triangles are
expanded to the size of the original triangle. These decom- FIG. 7. Portion of a pinwheel tiling.
position and inflation operations are repeatat! infinitum
until the triangles completely cover the plafsee Fig. 7. It 1
is obvious from the aforementioned discussion that the point c(k)~— - (k—0). (100
pattern that results by randomly placing a point in each el- k
ementary triangle is hyperuniform. Importantly, because the
tiles appear innfinitely many orientations, one can show that
the resulting pattern is not only statistically homogeneou%
but also statistically isotropic. The full rotational invariance
of the pattern is experimentally manifested by a diffraction
pattern consisting of uniform rings rather than isolated Bragg S(k)~k. (101)
peaks.

The one-component plasma is a statistical mechanicakecently, Gabrielliet al. [35] have discussed the construc-
model that is known to have a number variance that growsion of point patterns in three dimensions that are consistent
only as the surface area of the wind¢w7,37. The one-  \uith the Harrison-Zeldovich spectrum.
component plasma is a system of point particles of charge  The present authors have recently introduced and studied
embedded in a uniform backgrou[’nd that imp.arts OVera”so-calledgz-invariant processef20,40,41. A g,-invariant
charge neutrality. Ind=2, the n-particle correlation func- process is one in which a chosen non-negative form for the
tions for this model are exactly solvable in the thermody-pajr correlation functiory, remains invariant over a nonva-
namic limit when the coupling constafit=e?/(kT)=2[38],  nishing density range while keeping all other relevant mac-
and, in particular, the total correlation function is then give”roscopic variables fixed. The upper limiting “terminal” den-
by sity is the point above which the non-negativity condition on

, the structure factacf. Eq. (18)] would be violated. Thus, at
h(r)y=—e 7", (97 the terminal or critical density, the system is hyperuniform if
realizable. In the following section, we will calculate the
Substitution of Eq(97) into Eq. (81) gives the surface area surface-area coefficient exactly for several of these

Another interesting model that is known to be hyperuni-
orm [3,35] is the Harrison-Zeldovici39] power spectrum
or the primordial density fluctuations in the Universe. Here
the structure factor for smak behaves as

coefficient[37] as g,-invariant processes. We will also exactly determine the
corresponding structure factors, direct correlation functions,
) and their associated critical exponents.
A=—¢? (98) Interestingly, random packings of spheres near the maxi-
V mally random jammedMRJ) state[42,43 appear to be hy-

_ peruniform. Figure 8 depicts that the structure factor for such
where ¢=pmD?/4. This evaluation ofA is included in  a computer-generated 40 000-particle packing is vanishingly
Table 1ll. Observe that the structure factor of thesmall for small wave numbers. The packing is strictly
d-dimensional one-component plasma at srkdlehaves as  jammed[44], which means that the particle system remains

mechanically rigid under attempted global deformatiGns
S(k)~k* (k—0) (990 cluding shearthat do not increase volume and, furthermore,
the packing is saturated. gaturatedpacking of hard spheres
and, therefore, the corresponding asymptotic behavior of ths one in which there is no space available to add another
Fourier transform of the direct correlation function is given sphere. In the case of saturated packings of identical hard
by spheres of unit diameter, no point in space has distance
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8 ‘ ' ‘ ' -1, r<D
40,000-particle random h(r)=—0(D—-r)= (103
. . 0, r>pD,
jammed packing
1 $=0.632 | which when substituted into Eq$43) and (44) yields the
volume and surface-area coefficients as
2, _
? A=S(k=0)=1-2¢ B= A 27T (di2)
=Sk=0)=1-2%, B= 204 T[(d+3)/2]T(1/2) ¢
o | (104
The reduced density defined by Eq(34) (equivalent to the
0 : : : ‘ : covering fraction of the hard cores of diameky lies in the
0 4 8 12 16 20 24

range G< ¢< ¢, where

kD
FIG. 8. The structure factor for a random packing of three- 1
dimensional identical hard spheres of diamdikemear the MRJ b= (105

state[42,43 as computed from a single realization consisting of

40 000 particles in a cubical box with periodic boundary conditions, . . L . .
using the protocol described in R@#3]. The packing(covering is the terminal or critical density, i.e., the density at which

fraction of spheres is 0.632. the system is hyperuniform, whefe=0 and
2
greater than unity from the center of some sphere. An inter- —A= d°I'(d/2)
: ; - B=A . (106
esting postulate would be that all strictly jammed saturated AT[(d+3)/2]T'(1/2)

infinite packings of identical spheres are hyperuniform. Ex-

amples of strictly jammed saturated periodic packings in twol he values of the scale-independent surface-area coefficient
and three dimensions include the closest-packed triangula¥/ " "' for d=1,2, and 3 are given in Tables I, Ill, and
and face-centered cubic lattices, respectively. In light of thidV, respectively. It is worth noting that a recent studip]
discussion, one can view a disordered packing near the MRrovides convincing numerical evidence that the step-
state as a type of “glass” for the hard-sphere system. Arfunction g, is realizable by systems of impenetrable
important open fundamental question is whether there aré-dimensional spheresvith d=1 andd=2) for densities up
molecular glassegwith “soft” intermolecular potentials  to the terminal density. Thus, it appears that satisfying the
that become hyperuniform in the limit at which the tempera-hon-negativity conditions og,(r) andS(k) in this instance

ture vanishes. Indeed, our preliminary results indicate thais sufficient to ensure realizability.
this possibility is attainable. The Fourier transform of the total correlation function
(103 yields the analytic function

B. Exact results for g,-invariant processes

T d/2
@) D%yio(kD). (107

Here we evaluate the surface-area coefficient exactly for h(k)=—

three different disordered,-invariant processes studied by

us earlier[20,40,4]. We also exactly determine the corre- Thus, use of Eq(15) gives the structure factor fap in the
sponding structure factors, direct correlation functions, ang¢ange 0< ¢< ¢, to be

their associated critical exponents.

i) Juz(kD). (108

be
Let us first consider theg,-invariant process in which a
spherically symmetric pair correlation or radial distribution Similarly, the Ornstein-Zernike relatio@8) yields an exact

di2
1. Step function g S(k) = 1_F(1+d/2)(ﬁ)

function is defined by the unit step functi¢#40]: expression for the Fourier transform of the direct correlation
function:
O(r-b =P 102 277\ 92
rN=0(r—-D)= T
92( ) ( ) 1, r>D. ( ) —(6) Dde/Z(kD)
C(k) = a2 (109)
The conditiong,(r) =0 for r<D prevents any pair of points 1-T(1+ d/2)<—) (_)Jdlz(kD)
from getting closer than a distan& to one another. Note kD bc
that in the special case of a system of identical hard spheres _
in equilibrium in the limitp—0, g, is exactly given by Eq. Thus, the smalk expansions ofS(k) and c(k), which
(102. The corresponding total correlation function is given determine their behavior in the vicinity of, and at, the critical

by point, are, respectively, given by
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¢ 1 ¢
S(k)=<1—E)+ma(kD)2+O((kD)4)
(110
and
c= 1 _”l;D) ,
(1— E) + 2d+2) E(kD)2+ O((kD)%)
(112

wherev (D) is the volume of ad-dimensional sphere of
radiusD [cf. Eq. (33)]. At the critical point¢p= ¢., we see
thatS(k) ~ k? andc(k) ~ — k2, and therefore comparison to
Egs.(52) and(51) yields the exponeng=0. Relation(110
leads to the power law

¢ ) o .

1_ - L - ’
¢c d) ¢C

which upon comparison to E¢53) immediately yields the
critical exponenty=1. The correlation lengtl§ is defined
via Eq. (112), which we rewrite as

s Y0)= ( (112

kZc(k)+ & Ze(k)= -G,

(1_

o 2(d+2)04(D) g
a D2 ¢’

kD<1, (113

where

D

DL T P
[2(d+2) ]2

—-1/2
E) ’ ¢4>¢cl (114)

(115

andv (D) is the volume of a sphere of radilisdefined by
Eq. (33). Comparison of Eq(114) to the power law(54)
yields the exponenv=1/2. Note that the exponent values
y=1, £€=1/2, and »=0 are consistent with interrelation
(55). Inversion of Eq.(113 yields the partial differential
equation

Vec(r)—& %c(r)=Gé(r), r>D, (116
where the spherically symmetric Laplacian operaidrin
any dimensiord is given by

1

rdfl ar

d

d

d-1
r
or

V2 . (117

PHYSICAL REVIEW B68, 041113 (2003

( r
—6(5), d:].
c(r)=4 4In(%, d=2 (118
2(d+2) r)dz 3
| “dd-2\p] 7

Observe that it is only fod=3 thatc(r) follows the power-
law form (51) with an exponenty=0. The fact that; takes

an integer value is due to the fact tHatk) is an analytic
function. Note also that the real-space direct correlation
function of the one-component plasma has precisely the
same asymptotic form as E(L18), albeit with different am-
plitudes(prefactors.

As ¢£— o for fixed r, the solutions of Eq(116) are

,
e

& (é exp(—r/é), d=1

c(r)=1 4%In %)exq—rlg), d=2
2(d+2) e[ r |92

| ~Seslo] ewne. @

(119

On the other hand, it is worth noting that &s> for fixed
¢, the asymptotic behavior changes according to the relation

(d+2)\/§¢c D (d—3)/2 D (d—1)/2
(=" Tard2é (E) (T)
xXexp(—r/¢), d=1. (120

2. Steptdelta function g,

Here we consider thg,-invariant process defined by a
radial distribution function that consists of the aforemen-
tioned unit step function plus & function contribution that
acts atr=D:

92(r)=0(r—D)+

s(r—D), (121)

psi(D)

whereZ is a non-negative constant arg{D) is the surface
area of a sphere of radiu3 defined by Eq.14). Function
(121) was one of several examples studied by Torquato and
Stillinger [20] to understand the relationship between short-
range order and maximal density in sphere packings. In this
investigation,Z was interpreted as the average contact coor-
dination number. Here we consider their case(fiven in

We see that the direct correlation function in real space fothe appendix of Ref.20]) in which the condition

larger is determined by Green’s function of the linearized

Poisson-Boltzmann equation.

Let us first determine the solutions of E.16) at the
critical point ¢= ¢. where ¢ diverges to infinity. Thus, the
asymptotic behavior ofc(r) for r>D is given by the
infinite-space Green’s function for thed-dimensional
Laplace equatiof42], and so we obtain

24d

“mar2?

(122

is obeyed in order to constrain the location of the minimum
of the structure factor to be &=0. Here the reduced den-
sity ¢ lies in the range & ¢=< ¢., and
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-1
3_1(0)=(1—£) v =

d+2

<™ 2d+ 1 (130)

(123

is the terminal or critical density. Note that the function Which upon comparison to E¢53) again yields the critical
specified by relation(121) is a special limit of the radial €xponenty=1. The correlation lengtl is defined via Eq.
distribution function corresponding to the dilute and narrow(129, which we rewrite as

limit of the square-well potential studied by Sakai, Stillinger,

and Torquatd41]. kfc(k)+ & %c(k)=—G, kD=1, (131
Substitution of Eq(121) into Egs.(43) and(44) yields the
volume and surface-area coefficients as where
d+1 —1/4
D ¢
A=S(k=0)=1- ®, = ( ——) ; — g
d+2 ¢ [8(d+2)(d+4)p ]~ e o= e
_ (132
A 2972d°T (d/2) 124
S 2dg (d+2)T((d+3)/2)T(1/2) ¢ (129 16(d+2)(d+4)v1(D) ¢,
G= o4 s (133
At the critical densityA=0 and
42(d+2)C(df2 Comparison of Eq(132) to the power law(54) yields the
A=29¢ B= (d+2)I'(d/2) _ (125 exponenty=1/4. We see that the exponent valugs 1, ¢
°71el'[(d+3)/2]I'(1/2) =1/4, and »=—2 are consistent with inter-relatiof55).

Inversion of Eq.(131) yields the partial differential equation

The values of the scale-independent surface-area coefficient

A9~V for d=1,2 and 3 are given in Tables II, Ill, and

IV, respectively.

The combination of relationél5), (48), and (121) gives

Véc(r)+& %c(r)=—Gé(r), r>D, (134

where V4=V?2V?2 s the spherically symmetric biharmonic

the structure factor and Fourier transform of the direct corpperator, andv? is given by Eq.(117).

relation function, respectively, fowp in the range 6 ¢

Sy

S(k)=1+

2971 (2+d/2) (£> Jaiz-1(KD)  Jgp(kD)
(kD)(@2-1 | ¢ d+2 kb |’
(126

(2m)%¥2pH J(arz)-1(kD)  Jgp(kD)
(kD)(@2)—1 d+2 kD
2971 (2+d/2) ( ¢ ) [J(dIZ)—l(kD) B Jd/z(kD)}

(kD)@2-1 | ¢ d+2 kD
(127

c(k)=

Therefore, the Taylor expansions 8fk) andc(k) aboutk
=0 are, respectively, given by

¢ ¢
S(k):(l— E) T 8dr2)[d%a) a(kD)“+O((kD)6)
(128
and
(1— f) +; i(kD)4+ O[(kD)®]
o) 8(d+2)(d+4) ¢,
(129

Relation(128) leads to the power law

The solutions of Eq(134) at the critical point¢p= ¢ (&
—) are given by the infinite-space Green’s function for the
d-dimensional biharmonic equation. It is only fde5 that
the solutions admit a power law of forf®4) with an expo-
nent »=—2, namely,

8(d+2)(d+4)
()=~ qd=2)d=a)

D d-4
T) , d=5. (13H

3. Damped-oscillating g

In three dimensions, Torquato and Stillingg20] also
considered &ag,-invariant process that appends a damped-
oscillating contribution to the aforementioned stetelta-
function g,. Specifically, they examined the radial distribu-
tion function

Z a;
gx(r)=0(r—D)+ S(r—D)+—e '
p4 r

wD?

Xsin(azr+a,)0(r—D). (136
Here we consider their case Il, where at the terminal density
¢.=0.46, 2=2.3964,a,=1.15, a,=0.510, a3=5.90, and
a,=1.66. At this critical point, the volume coefficie

=0 and the surface-area coefficidfb) is given by

A=36¢2—6¢.Z+144a, ¢, (137

where
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3_ .5 2 2,3 3 3_ 4
S (2a3—a3—6asaz— 2asaz;—4ajaz—4aa;—ayas)
=] xe %*sin(agx+a,)dx=

e %2cogaz+a,)
1 (a3+a3)°

4 2 5 4 3 4 352
(2a3+ 6aa5—a,—2a,— 2a;,— aa;— 2ayas)

2, .2
(a5+a3)®

e 22sin(az+ay).

Substitution of the aforementioned parameters in @87 order metric. An order metric for hyperuniform systems
yields A=0.863082. This evaluation ok is included in  based on the local variance may find potential use in catego-
Table IV. With this choice 0§, the first nonzero term of the rizing “jammed” and “saturated” sphere packings42—
smallk expansion of the structure facts(k) at the critical 44,47 whose long-wavelength density fluctuations vanish.

point is of prderk“, and therefore the exponent=—2, as It is clearly desirable to extend the set of point patterns for
in the previous case. However, herg) does not admit the which the surface fluctuation order metric has been numeri-
power-law form(50) for larger becausep<—1. cally evaluated. This would help to strengthen the impression

created thus far that regardless of space dimendjgoint
patterns arranged by increasing values of the order metric are
VI. DISCUSSION AND CONCLUSIONS indeed essentially arranged by increasing structural disorder.

The principal theme presented in this paper is that numbéelt Will be important in the future to include a selection of
fluctuations calculated for variable window geometries offerWO- and three-dimensional quasicrystalline point patterns
a powerful tool to characterize and to classify point-particlel48] in the comparisons; the presumption at the present state
media. This theme encompasses both spatially periodief understanding is that they would present order metrics
(crystalling particle patterns and those that are globally dis-With values that lie between the low magnitudes of periodic
ordered (amorphous By considering the large-window lattices, and the substantially larger magnitudes of spatially
asymptotic limit, special attention attaches to volume and tauniform, isotropic, irregular point patterns. It would also
surface fluctuations in space dimensibr 1. A special class benefit insight to include cases of spatially uniform, but an-
of “hyperuniform” point patterns has been recognized for isotropic, point patterns; for example, those associated with
which the volume fluctuations vanish identically; equiva- “hexatic” order in two dimension$49].
lently these are systems for which the structure fa&(d) An important class of hyperuniform systems arises from
vanishes ak=0. Another special class of “hyposurficial” the so-called Y,-invariant processes20,40,41,4& These
point patterns has also been recognized for which the surfageocesses require that the pair correlation functigfr) re-
fluctuations vanish identically. The first of these special atmain unchanged as density increases from zero. For those
tributes requires that thed{-1)-st spatial moment of the g,-invariant processes that correspond to thermal equilib-
total correlation function be constrained in magnitude; therium, this criterion is implemented by virtue of compensating
second requires a similar constraint on thté spatial mo-  continuous changes in the particle pair potential function.
ment of the total correlation function. The preceding textFor any given choice of the invariag, such a process is in
demonstrates that no point pattern can simultaneously biact achievable, but only for densities up to a terminal den-
both hyperuniform and hyposurficial. sity limit. At this upper limit, the system of points attains

All infinitely extended perfectly periodic structures are hyperuniformity, i.e..S(k)=0. Furthermore, examination of
hyperuniform. We have stressed that geometrically less reguhe Ornstein-Zernike relation reveals that the direct correla-
lar cases of hyperuniformity also exist, including those thation functionc(r) develops a long-range tail as the terminal
are spatially uniform and isotropic. The suitably normalizeddensity is approached from below. By implication, for the
surface fluctuation quantity, which measures the extent tgpecial case of a thermal equilibrium process, the pair poten-
which hyperuniform systems fail to attain hyposurficial sta-tial at the terminal density develops a long-range repulsive
tus, becomes a natural non-negative order metric that w€oulombic form. The conclusion is that hyperuniformity at
have evaluated numerically for a basic sampling of structhat terminal density is logically associated with the local
tures. We proved that the simple periodic linear array yieldslectroneutrality condition that all equilibrium systems of
the global minimum value for hyperuniform patternsdn electrostatically charged particles must olhg9].
=1, and showed that the triangular lattice produces the The Ornstein-Zernike relation, though originally con-
smallest values for the cases testediin2. But in spite of ceived to apply to systems in thermal equilibrium, can nev-
the fact that these minimizing structures correspond to optiertheless be formally applied to any system for which the
mal packings of rods and disks, respectively, the facepair correlation functiong,(r) is available. Hyperuniform
centered-cubic lattice for optimal sphere packing does nosystems that are irregular and isotropic possess short-range
minimize the surface-fluctuation order metric fo=3. In-  pair correlation only, but as in the examples just cited the
stead, the body-centered cubic lattice enjoys this distinctiomorresponding direct correlation functions are long ranged.
[46]. For each choice of space dimension, other lattices anth an important sense, hyperuniform systems exhibit a kind
irregular hyperuniform patterns yield higher values for thisof “inverted critical phenomenon.” For conventional liquid-
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vapor critical pointsh(r)=g,(r)—1 is long ranged and im- 1 o Jearm—1(KF)
plies diverging density fluctuations and isothermal compress- f(r)= d/2f k9~1f (k) %dk. (A2)
ibilities, while the direct correlation function(r) remains (2m)™Jo (kr)

short ranged. Hyperuniform systems have short range for i i
h(r), vanishing volume fluctuations and isothermal com-1€rekis the modulus of the wave vectirandJ,(x) is the

P Bessel function of order.
pressibility, and a long-rangex(r). . . - .
As a final matter, we mention that an attractive direction _ | e Fourier transform of the window indicator function

for future study of hyperuniformity and related concepts in-(31) iS given by

volves consideration of collective density variables. These (2m) 92 (R
are defined by a nonlinear transformation of point-particle w(k:R)= f 1923 g1 (Kr)dr
positionsr; (1<j<N) as follows: K(d2)=1 J 4
N _(Z_W)dlszJ (kR) (A3)
p(k)= 2, exp(ik-r;). (138 kR ar2lKR)-
=1

Therefore, the Fourier transform of(r;R), defined by Eq.
If the particles interact through a spherically symmetric pair(26), is given by
potential whose Fourier transform exists and is denoted by
V(k), then the overall potential energy for theparticles in

[Ja(kR)T?
volumeV can be expressed in the following manner: :

a(k;R)=297921(1+d/2) v

(A4)

1 Using the inverse transforifA2) yields the scaled intersec-
P=3v Ek: VKLp(k)p(—k)=N]. (139 tion volume function to be
It has been demonstratg8l] that at least in one dimension, ,;.g)— 29T (1+d/2) = [Jgr( KR 12y 1(kr)dk
application of a suitabl®/(k), followed by ® minimization, ’ rd=272  Jo K472
can totally suppress density fluctuations k& near the ori-
gin. This automatically produces a hyperuniform system con- 0 d+11 O(2R—1) (AB)
figuration. Analogous studies need to be pursued for two- 1% T p '
and three-dimensional systems.
where
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Fatp) A9

1
B(a,b)zf t21(1-1)P " ldt=
APPENDIX A: INTERSECTION VOLUME OF TWO 0

IDENTICAL d-DIMENSIONAL SPHERES . .
is the beta function.

In this appendix, we obtain an explicit expression for the For the first five space dimensions, relatioht), for r
scaled intersection volume of two identicdidimensional <2R, yields
spheres of radiuR whose centers are separated by a distance

r. This functiona(r;R) is defined by Eq(23). e r B
We begin by noting that thd-dimensional Fourier trans- a(rR)=1- 2R’ d=1 (A9)
form (16) of any integrable functiori(r) that depends only
on the modulus =|r| of the vectorr is given by[22] 2 r r 2\ 12
2 ] [ D I L -
; o a(r,R)—w cos (ZR) 5R 1 AR , d=2
~ * - dr2)—1(KT
f(k)=(27-r)d’2f0 rd 1f(r)((kr))(ﬁdr, (A1) (A10)

3 1(r)\3
and the inverse transforiid7) of f(k) is given by a(rR)=1- +_(_) , d=3 (AL1)
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1

' ‘ ‘ ' * k k-1
Spherical window of radius R dYo(X)= D, O(Xx— k)% ex;{ - M}
0s | ] k=1 (1— p)*(k—1)! 1-¢
' (B1)
T 06 | d=1 i wherex=r/D is a dimensionless distance agd- pD is the
% covering fraction of the rods, which lies in the closed interval
0.4 | 1 [0,1]. Below the close-packed space-filling value pf 1,
the radial distribution function is a short-ranged function in
02 | d= | the sense that one can always find a large enough value of
beyond whichg,(r) remains appreciably close to unity. That
is, for <1, the correlation length is always finite. However,
00 04 08 12 16 5 the point¢=1 is singular in the sense that the system ex-

r/(2R) hibits perfect long-range order and thus is hyperuniform. In-
deed, atp=1, the nearest-neighbor distance for each rod is
FIG. 9. The scaled intersection volumg(r;R) for spherical  exactly equal tdD: a situation that is identically the same as
windows of radiusR as a function ofr for the first five space the Sing|e-sca|e one-dimensional periodic point pattern stud-
dimensions. The uppermost curve is fb=1 and the lowermost jed in Sec. IV.
curve is ford=5. Using relation(B1) in conjunction with relation$36) and
(37) enables us to compute the “volume” and “surface-area”
r 5r 1 /r)\3 contributions to the variance as a function of reduced density
(ﬁ) —( (ﬁ) ] ¢ for identical hard rods in equilibrium. The results are sum-
marized in Fig. 10. We see that as the density increases, the
( r2 )1/21 volume fluctuations decrease monotonically and only vanish
X )

cos !

6R 12

2
a(r;R)z;

1-— d=4 (A12) at the space-filling density=1: the hyperuniform state. Of
4R? course,B vanishes atp=0 and increases in value @sin-
creases until it achieves a maximum valuepat 0.5. At the
15r 5(r\® 3 (r\® hyperuniform state ¢=1), B=A/2=1/12, which corre-
a(rR)=1- ﬂ;§+3_2( ) _ﬁ< ) , d=5 sponds to the perfectly ordered close-packed state. For suffi-
(A13)  ciently small densities, the surface-area coefficient of equi-
librium hard-sphere systems in higher dimensions is
Figure 9 shows graphs of the scaled intersection volumé&xpected to have the same qualitative behavior as the one-
a(r;R) as a function of for the first five space dimensions. dimensional case. Specifically, the same trends should occur
For any dimensiona(r;R) is a monotonically decreasing in higher dimensions for densities in the range @< ¢,
function of r. At a fixed value ofr in the open interval Whereg; corresponds to the freezing density, i.e., the point
(0,2R), «(r;R) is a monotonically decreasing function of above which the system undergoes a disorder to order phase

R

the dimensiord. transition. For densities between freezing and melting points,
Expanding the general expressi@b) through first order ~ the behavior of the surface-area coefficient is expected to be
in r for r<2R yields qualitatively different from that for hard rods in equilibrium,

which is devoid of a phase transition. However, we can de-

d finitively assert that the highest achievable density along the
r §+1 stable crystal branch is a hyperuniform state. In particular,
a(riR)=1—-————— _ _ 49 I . (A14) for hard disks §=2) and hard spheresi&3) in equilib-
d+1 r 1\ R R rium, the hyperuniform states correspond to the close-packed
2 2 triangular lattice and the fcc lattice, respectively.

whereo(x) indicates terms of higher order thanThis re-
lation will be of use to us in developing an asymptotic ex-
pression for the number variance for large windows.

APPENDIX C: HOW SMALL CAN THE VOLUME
COEFFICIENT BE FOR HYPOSURFICIAL SYSTEMS?

We know that a statistically homogeneous and isotropic
APPENDIX B: FLUCTUATIONS IN EQUILIBRIUM point pattern cannot simultaneously be hyperuniform and hy-
HARD-PARTICLE SYSTEMS posurficial, i.e., the volume coefficiert [cf. Eq. (43)] and
surface-area coefficied [cf. Eq. (44)] both cannot be zero
Hard particles in equilibrium represent an example of afor a strictly convex windowSec. 11 Q. The purpose of this
correlated system that is generally not hyperuniform. Theappendix is to investigate how smallcan be made for an
one-dimensional case of identical hard rods of lengtin infinite hyposurficial point patternB=0). To that end we
equilibrium is a particularly instructive case because the raeonsider a hypothetical spherically symmetric pair correla-
dial distribution functiorg,(r) (in the thermodynamic limjt  tion functiong,(r) and a spherical window. We do not place
is known exactly for all densitielb2]: any additional restrictions og,(r) besides the necessary
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1

Equilibrium Hard Rods

0.8 |
0.6 | A(9)
04 |

2t
° B(9)

0 N ——

0 02 04 06 08 1

0

FIG. 10. The volume coefficiemA(¢)=(1— ¢)? and surface-
area coefficienB(¢) [defined in relation(35)] as a function of the
reduced densityp for a one-dimensional system of identical hard
rods in equilibrium. At the hyperuniform densip=1, B=A/2

=1/12, which corresponds to the perfectly ordered close-packed

State.

realizability conditions thag,(r)=0 for all r and S(k)=0

PHYSICALREVIEW E 68, 041113(2003

C= >0

ar1 2 (€8
which of course satisfies inequalif€4). For such a hypo-
surficial correlation functiofC1) that also satisfies the non-
negativity conditionS(k)=0, we now show that the volume
coefficientA is only nonzero byO(€?).

Consider volume coefficien [cf. (38)] with this value of
C:

29%d¢
d+1

€
1t+e’
(C7

where¢=pv(D/2) is a dimensionless density. If one incor-
rectly setsA to be zero, one finds that the corresponding
density is given by

A= lim S(k)=1+p

f h(rydr=1-2%+
Ikl—0 !

by = (C8)

de

adfq—-— -
21 (d+1)(1+e)

At such a value ofp, however,S(k) will be negative for

for all k. The hypothetical correlation function is character-somek>0 near the origin for sufficiently small but nonzero

ized by three parametees C, andD as follows:

92(r)=gg(r)+g.(r), (Cy

€, which shows in this specific instance that the point pattern
corresponding to such a hypothetiogy cannot simulta-
neously be hyperuniform and hyposurficial, as expected.
However, one can mak&(k=0) positive and very small

where gg(r) denotes the short-ranged part defined by thf{while satisfying S(k)=0 for all k] at a value¢ slightly

step function

01
11

O=r<D

r>D, €2

gs(r):[

andg, (r) denotes the long-ranged part defined by

0, O=r=<D

D

r

=1 . D (3

)d+l+5

HereD is a length parameteg is a dimensionless constant,
and e is a positive €>0) but small parameter. The neces-
sary conditiong,(r)=0 requires that the consta@tsatisfy
the trivial inequality

(C4

smaller than Eq(C8) in the limit e—0".

The other necessary conditi®gk) =0 will be obeyed for
all k provided that the number density is no larger than some
“terminal density” p. (or ¢) [20,40,4]. The structure fac-
tor is given by

S(k)=1+p[Hs(k)+H_(K)], (C9

where Hg(k) and H (k) are the Fourier transforms of
0s(r)—1 andg,(r), respectively. The terminal density is
given by
B 1
P T min[Hg(k)+ H (k)]
k

(C10

For simplicity, we will specialize to the cask=3, keep-
ing in mind that our general conclusions apply to arbitrary
dimension. Based on the aforementioned arguments, it is suf-

The form ofg, ensures that we can make the surface-areficient to consider the behavior &Kk) for smallk:

coefficient B vanish identically, as required. According to
relation(44), the surface-area coefficieBtis proportional to
the dth moment of the total correlation functioh(r)
=g,(r)—1. Thedth moment integral for the hypothetical
pair correlation functiofC1) is given by

Dd+l

+CDY*1,

fwh(r)rddrz— (C5)
0

d+1

To make this integral vanish, we take

(kD)?
10

F16
2 2

3¢\me (

21t q(1+e) -

S(k)=1+8¢| —1+

—O((kD)"

€
+6¢l+e

de
1 (kP

|[kD|1* e+
24+
2

+0((kD)%). (C11)
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The nonanalytic ternfkD|* € [which arises due to inclusion
of relation(C3) for g, ] has the effect of displacing the mini-
mum of S(k) away from the origin wherg, =0 to a sym-
metric pair of locations determined by

157

|kminD|:ﬁE (C12

ase—07". Moreover, in this leading order

PHYSICAL REVIEW E68, 041113 (2003

4572
5 4¢ €. (C13

S(O) - S(kmin) =

Note that this would lead to a®(e?) correction to expres-
sion (C8) for ¢, . In summary, by adopting the correlation
function (C1) with C=1/(d+ 1), we can make the surface-
area coefficienB=0 and at the terminal densit$., the
structure factoiS(0)=A is only nonzero byO(e?).
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