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Local density fluctuations, hyperuniformity, and order metrics
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Questions concerning the properties and quantification of density fluctuations in point patterns continue to
provide many theoretical challenges. The purpose of this paper is to characterize certain fundamental aspects
of local density fluctuations associated with general point patterns in any space dimensiond. Our specific
objectives are to study the variance in the number of points contained within a regularly shaped windowV of
arbitrary size, and to further illuminate our understanding ofhyperuniformsystems, i.e., point patterns that do
not possess infinite-wavelength fluctuations. For large windows, hyperuniform systems are characterized by a
local variance that grows only as the surface area~rather than the volume! of the window. We derive two
formulations for the number variance:~i! an ensemble-average formulation, which is valid for statistically
homogeneous systems, and~ii ! a volume-average formulation, applicable to a single realization of a general
point pattern in the large-system limit. The ensemble-average formulation~which includes both real-space and
Fourier representations! enables us to show that a homogeneous point pattern in a hyperuniform state is at a
‘‘critical point’’ of a type with appropriate scaling laws and critical exponents, but one in which thedirect
correlation function~rather than the pair correlation function! is long ranged. We also prove that the non-
negativity of the local number variance does not add a new realizability condition on the pair correlation. The
volume-average formulation is superior for certain computational purposes, including optimization studies in
which it is desired to find the particular point pattern with an extremal or targeted value of the variance. We
prove that the simple periodic linear array yields the global minimum value of the average variance among all
infinite one-dimensional hyperuniform patterns. We also evaluate the variance for common infinite periodic
lattices as well as certain nonperiodic point patterns in one, two, and three dimensions for spherical windows,
enabling us to rank-order the spatial patterns. Our results suggest that the local variance may serve as a useful
order metric for general point patterns. Contrary to the conjecture that the lattices associated with the densest
packing of congruent spheres have the smallest variance regardless of the space dimension, we show that for
d53, the body-centered cubic lattice has a smaller variance than the face-centered cubic lattice. Finally, for
certain hyperuniform disordered point patterns, we evaluate the direct correlation function, structure factor, and
associated critical exponents exactly.

DOI: 10.1103/PhysRevE.68.041113 PACS number~s!: 05.20.2y, 61.20.Gy, 61.50.Ah
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I. INTRODUCTION

The characterization of density fluctuations in man
particle systems is a problem of great fundamental interes
physical and biological sciences. In the context of liquids
is well known that long-wavelength density fluctuations co
tain crucial thermodynamic and structural information ab
the system@1#. The measurement of galaxy density fluctu
tions is one of the most powerful ways to quantify and stu
the large-scale structure of the Universe@2,3#. Knowledge of
density fluctuations in vibrated granular media has been u
to probe the structure and collective motions of the gra
@4#. Recently, the distribution of density fluctuations has be
employed to reveal the fractal nature of structures wit
living cells @5#.

Clearly, density fluctuations that occur on some arbitr
local length scale@4,6–10# provide considerably more infor
mation about the system than only long-wavelength fluct
tions. Our main interest in this paper is to characterize c
tain fundamental aspects oflocal density fluctuations
associated with general point patterns in any space dim
siond. The point patterns may be thought as arising from
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coordinates of the particles in a many-particle system, s
as the molecules of a liquid, glass, quasicrystal or crys
stars of a galaxy, grains of a granular packing, particles o
colloidal dispersion, or trees in a forest.

Consider an arbitrary point pattern ind-dimensional Eu-
clidean spaceRd. Let V represent a regular domain~win-
dow! in Rd and x0 denote a configurational coordinate th
specifies the centroid of the windowV. The window will
always have a fixed orientation. There is a variety of int
esting questions that one could ask concerning the numbe
points contained withinV. For example, how many point
NV are contained inV at some fixed coordinatex0? This
question is a deterministic one if the point pattern is regu
and may be a statistical one if the point pattern is irregu
~see Fig. 1!. How does the number of points contained with
some initially chosenV at fixed coordinatex0 vary as the
size of V is uniformly increased? How do the number
points within a fixedV fluctuate asx0 is varied?

For a Poisson point pattern, the statistics of the numbe
points contained within a regular domain are known exac
For example, the number variance is given by

^NV
2 &2^NV&25^NV&, ~1!
©2003 The American Physical Society13-1
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FIG. 1. Schematics indicating
a regular domain or windowV
and its centroidx0 for two differ-
ent point patterns. Left panel: A
periodic point pattern. Right
panel: An irregular point pattern
We will show that the statistics of
the points contained withinV for
these two types of patterns ar
fundamentally different from one
another.
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where angular brackets denote an ensemble average. Le
V be a d-dimensional sphere of radiusR and noting that
^NV& is proportional toRd leads to the result that the numb
variance grows as the sphere volume, i.e.,

^NV
2 &2^NV&2}Rd. ~2!

This result is not limited to Poisson point patterns. Indeed
large class of correlated irregular point patterns obeys
variance formula~2!, as we will discuss in Sec. II.

Can the variance grow more slowly than the volume
the domain or window? One can show that for any stati
cally homogeneous and isotropic point pattern, the varia
cannot grow more slowly than the surface area of the
main, whether it is spherical or some other strictly conv
shape@11,12#. Thus, it is natural to ask the following que
tion: For what class of point pattern does the variance g
as the surface area? For a spherical domain, we wan
identify the point patterns that obey the variance relation
largeR,

^NV
2 &2^NV&2;Rd21. ~3!

We will refer to such point patterns as ‘‘hyperuniform’’ sy
tems because, as we will see, such systems do not po
infinite-wavelength fluctuations.~This is to be contrasted
with ‘‘hyposurficial’’ systems, whose ‘‘surface’’ fluctuation
vanish identically.! Additionally, it is of great interest to
identify the particular point pattern that minimizes the a
plitude ~coefficient! of the fluctuations that obey Eq.~3! or
achieves a targeted value of this coefficient.

Clearly, points arranged on a regular~periodic! lattice are
hyperuniform. More generally, it is desired to know how t
number of lattice pointsN(R) contained within a spherica
window of radiusR varies as a function ofR when the sphere
is centered atx0. For simplicity, let us consider this questio
in two dimensions for points arranged on the square lat
and let the center of the circular window of radiusR be
positioned at a point (a1 ,a2) in the unit square. The answe
to this query amounts to finding all of the integer solutions

~n12a1!21~n22a2!2<R2, ~4!

a problem of interest in number theory@13,14#. This problem
is directly related to the determination of the number of e
ergy levels less than some fixed energy in integrable qu
tum systems@9#. It is clear thatN(R) asymptotically ap-
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proaches the window areapR2 for largeR and unit density.
The apparent ‘‘random’’ nature ofN(R) is beautifully
illustrated in Fig. 2, which shows how the functio
N(R)2pR2 grows withR.

It is considerably more challenging to identify nonpe
odic point patterns, such as disordered and quasiperi
ones, that are hyperuniform. The mathematical conditi
that statistically homogeneous hyperuniform systems m
obey ~derived in Sec. II! are a necessary starting point
identifying such hyperuniform point patterns. These con
tions, which include the counterintuitive property of a lon
ranged ‘‘direct’’ correlation function, are determined from
general formula for the number variance of such syste
which is obtained in Sec. II. The fact that the direct corre
tion function of a hyperuniform pattern is long ranged
reminiscent of the behavior of the pair correlation function
a thermal system near its critical point. Indeed, we show t
a statistically homogeneous point pattern in a hyperunifo
state is at a ‘‘critical point’’ of a type with appropriate scalin
laws and critical exponents. By deriving a Fourier repres
tation of the local variance, it is also shown that the no
negativity of the variance does not add a new realizabi
condition on the pair correlation function beyond the know
ones.

To date, only a few statistically homogeneous and isot
pic patterns have been rigorously shown to be hyperunifo
One of the aims of this paper is to identify other such hyp
runiform examples, and to describe a procedure to find th
systematically. This requires a formulation for the local va

FIG. 2. The functionN(R)2pR2 vs R for the unit-spacing
square lattice, using a circular window of radiusR centered on a
lattice point.
3-2
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ance that can be applied to a single realization of any patt
which is accomplished in Sec. III. In Sec. IV we prove th
the simple periodic linear array yields the global minimu
value of the average variance among all infinite on
dimensional hyperuniform patterns. Interestingly, we a
show that the variance for large spherical windows enab
us to rank-order common regular lattice and certain dis
dered point patterns in one, two, and three dimensions~see
Secs. IV and V!. Our results suggest that the local varian
may provide a useful order metric for general point patte
~see Sec. VI!. Contrary to the conjecture that the Brava
lattice associated with the densest packing of congru
spheres has the smallest variance regardless of the spa
mension, we show that ford53, the body-centered cubi
lattice has a smaller variance than the face-centered c
lattice. In Sec. V, we evaluate the direct correlation functi
structure factor, and associated critical exponents exactly
certain hyperuniform disordered point patterns. Three app
dixes provide analytical formulas for key geometrical qua
tities required for the theory, an evaluation of the varian
for hard rods in equilibrium for large windows, and a discu
sion of a certain property of hyposurficial point patterns.

II. LOCAL VARIANCE FORMULA FOR REALIZATIONS
OF STATISTICALLY HOMOGENEOUS SYSTEMS

A general expression for the local number variance
realizations of statistically homogeneous point patterns id
dimensions is derived. This is necessarily an ensem
average formulation. We obtain both a real-space and a F
rier representation of the variance. From these results,
obtain formulas for asymptotically large windows. We sho
that a hyperuniform point pattern is at a type of critical po
with appropriate scaling laws and critical exponents, but o
in which the direct correlation function is long ranged.

A. Preliminaries

ConsiderN points with configurationrN[r1 ,r2 , . . . ,rN
in a volumeV. The local number density at positionx is
given by

n~x!5(
i 51

N

d~x2r i !, ~5!

whered(x) is the Dirac delta function. The point pattern
statistically characterized by thespecificprobability density
function PN(rN), wherePN(rN)drN gives the probability of
finding point 1 in volume elementdr1 aboutr1, point 2 in
volume elementdr2 aboutr2 , . . . , point N in volume ele-
ment drN about rN . Thus,PN(rN) normalizes to unity and
drN[dr1 ,dr2 , . . . ,drN represents theNd-dimensional vol-
ume element. The ensemble average of any functionf (rN)
that depends on the configuration of points is given by

^ f ~rN!&5E
V
E

V
•••E

V
f ~rN!PN~rN!drN. ~6!
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Because complete statistical information is usually n
available, it is convenient to introduce the reducedgeneric
density functionrn(rn) (n,N), defined as

rn~rn!5
N!

~N2n!! EV
•••E

V
PN~rN!drN2n, ~7!

wheredrN2n[drn11drn12•••drN . In words,rn(rn)drn is
proportional to the probability of findingany n particles
(n<N) with configuration rn in volume elementdrn. In
light of its probabilistic nature, it is clear thatrn(rn) is a
non-negative quantity, i.e.,rn(rn)>0, ;rn.

For statistically homogeneous media,rn(rn) is transla-
tionally invariant and hence depends only on the relat
displacements, say with respect tor1:

rn~rn!5rn~r12,r13, . . . ,r1n!, ~8!

wherer i j 5r j2r i . In particular, the one-particle functionr1
is just equal to the constantnumber densityof particlesr,
i.e.,

r1~r1!5r[ lim
N,V→`

N

V
. ~9!

The limit indicated in Eq.~9! is referred to as thethermody-
namic limit. Since our interest in this section is in statistica
homogeneous point patterns, we now take the thermo
namic limit. It is convenient to define the so-calledn-particle
correlation function,

gn~rn!5
rn~rn!

rn
. ~10!

In systems without long-range order and in which the p
ticles are mutually far from one another~i.e., r i j 5ur i j u→`,
1< i , j <N), rn(rn)→rn and we have from Eq.~10! that
gn(rn)→1. Thus, the deviation ofgn from unity provides a
measure of the degree of spatial correlation between the
ticles, with unity corresponding to no spatial correlation.

The important two-particle quantity

g2~r12!5
r2~r12!

r2
~11!

is usually referred to as thepair correlation function. The
total correlation function h(r12) is defined as

h~r12!5g2~r12!21, ~12!

and thus is a function that is zero when there are no spa
correlations in the system. When the system is both stat
cally homogeneous and isotropic, the pair correlation fu
tion depends on the radial distancer 12 only, i.e.,

g2~r12!5g2~r 12!, ~13!

and is referred to as the radial distribution function. Fro
Eq. ~11!, we see thatrs1(r )g2(r )dr is proportional to the
conditional probability of finding a particle center in a
3-3
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spherical shell of volumes1(r )dr, given that there is anothe
at the origin. Here s1(r ) is the surface area of
d-dimensional sphere of radiusr, which is given by

s1~r !5
2pd/2r d21

G~d/2!
, ~14!

whereG(x) is the gamma function. Hence, for a finite sy
tem, integrating (N21)g2(r )/V over the volume yieldsN
21, i.e., all the particles except the one at the origin.

Observe that the structure factorS(k) is related to the
Fourier transform ofh(r ), denoted byh̃(k), via the expres-
sion

S~k!511rh̃~k!. ~15!

The Fourier transform of some absolutely integrable funct
f (r ) in d dimensions is given by

f̃ ~k!5E f ~r !e2 ik•rdr , ~16!

and the associated inverse operation is defined by

f ~r !5
1

~2p!dE f̃ ~k!eik•rdk, ~17!

wherek is the wave vector. It is well known that the stru
ture factor is proportional to the scattered intensity of rad
tion from a system of points and thus is obtainable from
scattering experiment. An important property of the struct
factor is that it must be non-negative for allk, i.e.,

S~k!>0 ;k. ~18!

B. General variance formulas

Let R symbolize the parameters that characterize the
ometry of the windowV. For example, in the case of a
q.
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ellipsoidal window,R would represent the semiaxes of th
ellipsoid. Let us introduce the window indicator function

w~x2x0 ;R!5H 1, xPV

0, x¹V,
~19!

for a window with a configurational coordinatex0. The num-
ber of pointsNV within the window atx0, which we hence-
forth denote byN(x0 ;R), is given by

N~x0 ;R!5E
V
n~x!w~x2x0 ;R!dx

5(
i 51

N E
V
d~x2r i !w~x2x0 ;R!dx

5(
i 51

N

w~r i2x0 ;R!. ~20!

Therefore, the average number of points contained within
window in a realization of the ensemble is

^N~R!&5E
V
(
i 51

N

w~r i2x0 ;R!PN~rN!drN

5E
V
r1~r1!w~r12x0 ;R!dr1

5rE
Rd

w~r ;R!dr

5rv1~R!, ~21!

where v1(R) is the volume of a window with geometri
parametersR. Note that translational invariance of the poi
pattern, invoked in the third line of relation~21!, renders the
averagê N(R)& independent of the window coordinatex0.

Similarly, ensemble averaging the square of Eq.~20! and
using relation~21! gives the local number variance as
^N2~R!&2^N~R!&25E
V
r1~r1!w~r12x0 ;R!dr11E

V
E

V
@r2~r1 ,r2!2r1~r1!r1~r2!#w~r12x0 ;R!w~r22x0 ;R!dr1dr2

5^N~R!&F11rE
Rd

h~r !a~r ;R!dr G , ~22!
ce-

al
whereh(r ) is the total correlation function defined by E
~12!,

a~r ;R!5
v2

int~r ;R!

v1~R!
, ~23!

and
v2
int~r ;R!5E

Rd
w~r12x0 ;R!w~r22x0 ;R!dx0 ~24!

is the intersection volume of two windows~with the same
orientations! whose centroids are separated by the displa
ment vectorr5r12r2 @15#. Appendix A provides explicit
analytical formulas for the intersection volume for spheric
windows in arbitrary dimensiond. As before, statistical ho-
3-4
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mogeneity, invoked in the second line of Eq.~22!, renders
the variance independent ofx0.

Remarks.
~1! Formula~22! was previously derived by Landau an

Lifschitz @16#, although they did not explicitly indicate th
scaled intersection volume functiona(r ;R). Martin and Yal-
cin @17# derived the analogous formula for charge fluctu
tions in classical Coulombic systems.

~2! The local variance formula~22! is closely related to
one associated with the local volume fraction fluctuations
two-phase random heterogeneous materials@15,18#. Both
formulas involve the scaled intersection volume functi
a(r ;R). The essential difference is that the variance for lo
volume fraction fluctuations involves a different correlati
function from h(r ), namely, the probability of finding two
points, separated by a displacementr , both in the same
phase.

~3! The existence of the integral in Eq.~22! requires that
the producth(r )a(r ;R) be integrable. For finite size win
dows, this will be the case for boundedh(r ) becausea(r ;R)
is zero beyond a finite distance. For infinitely large window
a(r ;R)51, and integrability requires thath(r ) decays faster
thanur u2d1e for somee.0. For systems in thermal equilib
rium, this will be the case for pure phases away from criti
points. The structure factor S(k) @defined by Eq.~15!# at k
50 diverges as a thermal critical point is approached, imp
ing thath(r ) becomes long ranged, i.e., decays slower th
ur u2d @19#.

An outstanding question in statistical physics is: What
the existence conditions for a valid~i.e., physically realiz-
able! total correlation functionh(r ) @20# of a point process a
fixed densityr? The generalization of the Wiener-Khinchtin
theorem for multidimensional spatial stochastic proces
@21# states a necessary and sufficient condition for the e
tence of an autocovariance function of a general stocha
cally continuous homogeneous process is that it has a s
tral ~Fourier-Stieltjes! representation with a non-negativ
bounded measure. If the autocovariance is absolutely i
grable, this implies that its Fourier transform must be no
negative. The total correlation functionh(r ) is the nontrivial
part of the autocovariance function for a point process, i.e
excludes thed function at the origin. The fact thath(r )
comes from a statistically homogeneous point process, h
ever, would further restrict the existence conditions onh(r )
beyond the Wiener-Khinchtine condition, which amounts
the non-negativity of the structure factor. Obviously, besid
the condition thatS(k)>0, we have the pointwise conditio
h(r )>21 for all r . The determination of other realizabilit
conditions onh(r ) is a open question@20#.

Thus, it is interesting to inquire whether the no
negativity of the local number variance, given by formu
~22!, is a new condition onh(r ) beyond the non-negativity
of the structure factorS(k). As we now prove, the answer i
no. By Parseval’s theorem for Fourier transforms@22#, we
can rewrite the general variance formula~22! for an arbi-
trarily shaped~regular! window as

^N2~R!&2^N~R!&2

5^N~R!&F11
r

~2p!dE h̃~k!ã~k;R!dkG , ~25!
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where

ã~k;R!5
w̃2~k;R!

v1~R!
>0 ~26!

is the Fourier transform of the scaled intersection volu
function ~23! and w̃(k;R) is the Fourier transform of the
window indicator function~19!. Again, by Parseval’s theo
rem

1

~2p!dE ã~k;R!dk5
1

v1~R!
E w2~r !dr51. ~27!

Finally, utilizing definition ~15! of the structure factor, we
arrive at the Fourier representation of the number varian

^N2~R!&2^N~R!&25^N~R!&F 1

~2p!dE S~k!ã~k;R!dkG .

~28!

Interestingly, we see that the variance formula can be rew
ten in terms of the structure factor and the non-negative fu
tion ã(k;R), the Fourier transform of the scaled intersecti
volume functiona(r ;R): a purely geometric quantity. Sinc
the latter is independent of the correlation functionh(r ), we
conclude that the non-negativity of the number variance d
not introduce a new realizability condition onh(r ).

Remarks.
~1! Given the Fourier representation formula~28!, it is

simple to prove that the local number variance is stric
positive for anyv1(R).0. Both the functionsã(k;R) and
S(k) are non-negative. Therefore, because the non-nega
integrand of formula~28! cannot be zero for allk, it imme-
diately follows that the local variance is strictly positive fo
any statistically homogeneous point pattern whene
v1(R).0, i.e.,

^N2~R!&2^N~R!&2.0. ~29!

~2! Let the window grow infinitely large in a self-simila
~i.e., shape- and orientation-preserving! fashion. In this limit,
which we will denote simply byv1(R)→`, the function
ã(k;R) appearing in Eq.~28! tends to (2p)dd(k), where
d(k) is a d-dimensional Dirac delta function, and therefo
dividing variance~28! by ^N(R)& yields

lim
v1(R)→`

^N2~R!&2^N~R!&2

^N~R!&
5S~k50!511rE

Rd
h~r !dr .

~30!

Observe also that the form of the scaled variance~30! for
infinitely large windows ~or infinite-wavelength limit! is
identical to that for equilibrium ‘‘open’’ systems, i.e., gran
canonical ensemble, in the infinite-system limit. It is we
known that the variance in the latter instance is related
thermodynamic compressibilities or susceptibilities@1#. The
important distinction is that result~30! is derived by consid-
ering window fluctuations in an infinite ‘‘closed’’ possibl
3-5
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nonequilibriumsystem. When the point pattern comes from
statistically homogeneous equilibrium ensemble, one can
terpret the fluctuations as arising from differences in
point patterns in the ensemble members for a fixed wind
position or, equivalently, from moving the asymptotica
large window from point to point in asingle system. The
latter scenario can be viewed as corresponding to den
fluctuations associated with an open system.

C. Asymptotic variance formulas

Here we apply the previous results for statistically hom
geneous point patterns to obtain asymptotic results for la
windows. The conditions under which these expressi
yield variances that only grow as the surface area ofV are
determined. These conditions can be expressed in term
spatial moments of the total correlation functionh(r ). For
simplicity, we first consider the case of spherical window
but we show that the results apply as well to nonspher
windows.

Many of our subsequent results will be given for
d-dimensional spherical window of radiusR centered at po-
sition x0. The window indicator function becomes

w~ ux2x0u;R!5Q~R2ux2x0u!, ~31!

whereQ(x) is the Heaviside step function,

Q~x!5H 0, x,0

1, x>0.
~32!

Therefore, the functionv1(R), defined in relation~21!, be-
comes the volume of a spherical window of radiusR given
by

v1~R!5
pd/2

G~11d/2!
Rd. ~33!

It is convenient to introduce a dimensionless densityf de-
fined by

f5rv1~D/2!5r
pd/2

2dG~11d/2!
Dd, ~34!

whereD is a characteristic microscopic length scale of t
system, e.g., the mean nearest-neighbor distance betwee
points.

Substitution of expansion~A14! for the scaled intersec
tion volume a(r ;R) into Eq. ~22!, and assuming that th
resulting integrals separately converge, yields the varia
formula for largeR as

^N2~R!&2^N~R!&252dfFAS R

D D d

1BS R

D D d21

1,S R

D D d21G ,
~35!

whereA andB are the asymptotic constants given by

A511rE
Rd

h~r !dr511
f

v1~D/2!
E

Rd
h~r !dr , ~36!
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fdG~d/2!

2Dv1~D/2!GS d11

2 DGS 1

2D ERd
h~r !rdr , ~37!

and,(x) signifies terms of lower order thanx @23#. In what
follows, the asymptotic constantsA andB will generically be
referred to as ‘‘volume’’ and ‘‘surface-area’’ coefficients fo
point patterns inany dimension.

Remarks.
~1! Observe that the volume coefficientA is equal to the

non-negative structure factor in the limit that the wave nu
ber approaches zero, i.e.,

A5 lim
uku→0

S~k!511rE
Rd

h~r !dr>0, ~38!

whereS(k) is defined by Eq.~15! for any dimension. Con-
sistent with our earlier observations about relation~30!, we
see thatA is the dominant term for very large windows an
indeed is the only contribution for infinitely large window
It is well known that point patterns generated from equil
rium molecular systems with a wide class of interaction p
tentials ~e.g., hard-sphere, square-well, and Lennard-Jo
interactions! yield positive values ofA in gaseous, liquid,
and many solid states. Indeed,A will be positive for any
equilibrium system possessing a positive compressibi
This class of systems includes correlated equilibrium part
systems, an example of which is discussed in Appendix
The coefficientA will also be positive for a wide class o
nonequilibrium point patterns. One nonequilibrium examp
is the so-called random sequential addition process@15#. To
summarize, there is an enormously large class of point
terns in whichA is nonzero.

~2! Because the local variance is a strictly positive qua
tity for R.0 @cf. Eq. ~29!#, we have from Eq.~35! that for
very large windows

AS R

D D d

1BS R

D D d21

.0. ~39!

The crucial point to observe is that if the volume coefficie
A identically vanishes, then the second term within t
brackets of Eq.~35! dominates, and we have the condition

B.0, ~40!

where we have used the fact that the variance cannot g
more slowly thanRd21, i.e., the surface area of the windo
@11#. We will refer to a system in which

A5 lim
uku→0

S~k!50 ~41!

as a ‘‘hyperuniform’’ system. Such point patterns do not po
sess infinite-wavelength fluctuations. In a recent cosmolo
cal study@3#, the term ‘‘superhomogeneous’’ has been us
to describe such systems. Note that for a one-dimensio
hyperuniform system, the variance is exactly~not asymptoti-
cally! given by
3-6
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LOCAL DENSITY FLUCTUATIONS, . . . PHYSICALREVIEW E 68, 041113 ~2003!
^N2~R!&2^N~R!&252fB, ~42!

whereB is given by Eq.~37! with d51, implying that the
fluctuations are bounded, i.e., do not grow withR @24#.

~3! By contrast, we will refer to a point pattern in whic
the surface-area coefficient vanishes (B50) as a ‘‘hyposurfi-
cial’’ system. A homogeneous Poisson point pattern is
simple example of such a system. Inequality~39! in conjunc-
tion with the fact that the variance cannot grow more slow
than the surface area of a spherical~or strictly convex! win-
dow for statistically homogeneous and isotropic point p
terns@11#, enables us to conclude that such a system can
simultaneously be hyperuniform and hyposurficial, i.e.,
volume coefficientA @cf. Eq. ~36!# and surface-area coeffi
cientB @cf. Eq.~37!# cannot both be zero. In Appendix C, w
examine the question of how small the volume coefficienA
can be made if the point pattern is hyposurficial.

~4! Observe also that the asymptotic variance form
~35! and the analysis leading to condition~40! are valid for
any statistically homogeneous point pattern. Now if we f
ther assume that the point pattern is statistically isotro
then the volume coefficient~36! and surface-area coefficien
~37! can be expressed in terms of certain moments oh,
namely,

A511d2df^xd21&, ~43!

B52
d22d21G~d/2!

GS d11

2 DGS 1

2D f^xd&, ~44!

where

^xn&5E
0

`

xnh~x!dx ~45!

is thenth moment of the total correlation functionh(x) and
x5r /D is a dimensionless distance. Following the previo
analysis, we see that ifA50, then the condition for the
variance to grow as the surface area implies that thedth
moment ofh must be strictly negative, i.e.,

^xd&,0. ~46!

D. Direct correlation function and new critical exponents

The direct correlation functionc(r ) of a hyperuniform
system behaves in an unconventional manner. In real sp
this function is defined by the Ornstein-Zernike equation

h~r !5c~r !1rE
Rd

h~r2r 8!c~r !dr 8. ~47!

This relation has primarily been used to study liquids
equilibrium @1#, but it is a perfectly well-defined quantity fo
general~nonequilibrium! systems, which are of central inte
est in this paper. The second term is a convolution integ
and therefore Fourier transforming Eq.~47! leads to
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c̃~k!5
h̃~k!

11rh̃~k!
, ~48!

wherec̃(k) is the Fourier transform ofc(r ). Using relation
~28! and definition~48!, we can reexpress the number va
ance for a window of arbitrary shape in terms of the Four
transform of the direct correlation function as follows:

^N2~R!&2^N~R!&25^N~R!&F 1

~2p!dE ã~k;R!

12r c̃~k!
dkG .

~49!

We know that for a hyperuniform system,h̃(0)521/r by
definition, i.e., the volume integral ofh(r ) exists and, in
particular,h(r ) is a short-ranged function that decays to ze
faster thanur u2d. Interestingly, this means that the denom
nator on the right-hand side of Eq.~48! vanishes atk50 and
thereforec̃(k50) diverges to2`. This implies that the real-
space direct correlation functionc(r ) is long ranged, i.e.,
decays slower thanur u2d, and hence the volume integral o
c(r ) does not exist. This is an unconventional behavior
cause, in most equilibrium instances,c(r ) is a short-ranged
function, even in the vicinity of thermodynamic critica
points whereh(r ) is long ranged. One can see thatc(r ) for
a hyperuniform system behaves similarly to the total cor
lation functionh(r ) for an equilibrium system near its criti
cal point@19#, i.e., each of these functions in these respect
instances become long ranged. If this analogy holds, t
one expects the direct correlation function for hyperunifo
systems to have the following asymptotic behavior for lar
r[ur u and sufficiently larged:

c~r !;2
1

r d221h
~r→`!, ~50!

where (22d),h<2 is a new ‘‘critical’’ exponent associ-
ated withc(r ) for hyperuniform systems that depends on t
space dimension@25#. For noninteger values ofh, the
asymptotic relation~50! implies that the Fourier transform
h̃(k) is a nonanalytic function ofk[uku. We will show in
Sec. V that there is a class of hyperuniform systems t
obey Eq.~50! but with integer values ofh, implying that
h̃(k) is an analytic function ofk. Inversion of Eq.~50! yields

c̃~k!;2
1

k22h
~k→0!, ~51!

which, when combined with Eq.~48!, yields the asymptotic
form of the structure factor

S~k!;k22h ~k→0!. ~52!

The specific asymptotic form ofS(k) for smallk contributes
to determining the ‘‘universality’’ class of the hyperuniform
system.

Let us now consider a point pattern with a reduced den
f that is nearly hyperuniform and that can be made hyp
3-7
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uniform by increasing and/or decreasing the density. We
note by fc the reduced density at the hyperuniform sta
The reduced densitiesf andfc play the same role as tem
peratureT and critical temperatureTc , respectively, in the
analogous thermal problem in the vicinity of a critical poin
Thus, we can define critical exponents associated with
manner in which certain quantities diverge as the criti
~hyperuniform! point is approached. For example, f
ufc2fu!1, the inverse of the structure factor atk50,
S21(0) and thecorrelation lengthj obey the power laws

S21~0!;S 12
f

fc
D 2g

, f→fc
2 , ~53!

j;S 12
f

fc
D 2n

, f→fc
2 , ~54!

whereg and n are non-negative critical exponents that a
related by the formula

g5~22h!n. ~55!

As will be discussed in Sec. V,j characterizes the decay o
the direct correlation function in the vicinity off5fc .
Analogous critical exponents can be defined for densi
near but abovefc , as summarized in Table I. In Sec. V B
we determine the critical exponents exactly for certain m
els of disordered point patterns ind dimensions.

III. VARIANCE FORMULA
FOR A SINGLE-POINT PATTERN

In this section, we derive a new formula for the numb
variance of a single realization of a point pattern consist
of a large number of pointsN in a large system of volumeV.
This is necessarily a volume-average formulation. Fluct
tions for a fixed window size arise because we let the w
dow uniformly sample the space. As we will show, depen
ing on the nature of the point pattern, this formula w
generally lead to a result that is different from formula~22!,

TABLE I. Definitions of the critical exponents in the vicinity o
or at the hyperuniform state. HereS21(0) is the inverse of the
structure factor atk50, j is the correlation length, andc(r ) is the
direct correlation function.

Exponent Asymptotic behavior

g
S21~0!;S12

f

fc
D2g

~f→fc
2!

g8
S21~0!;S f

fc
21D2g8

~f→fc
1!

n
j;S12

f

fc
D2n

~f→fc
2!

n8
j;S f

fc
21D2n8

~f→fc
1!

h c(r );r 22d2h (f5fc)
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which was derived for a statistically homogeneous syste
We also show that the formula derived here is preferable
finding point patterns with an extremal or targeted value
the number variance.

For notational simplicity, we consider ad-dimensional
spherical window of radiusR, keeping in mind that the re
sults of this section apply as well~with obvious notational
changes! to regular domains of arbitrary shape. We assu
that the characteristic size of the system is much larger t
the window radius so that boundary effects can be negle
and that the large numbersN@1 andV@1 are comparable
such thatr[N/V is a finite number density. Let us reca
relation ~20! for the number of pointsN(x0 ;R) contained
within a window at positionx0 in a system of volumeV in
which there areN points. We let the window uniformly
sample the space and define the average number of p
within the window to be

N~R![
1

VEV
(
i 51

N

w~ ur i2x0u;R!dx05rE
V
Q~R2r !dr

5rv1~R!52dfS R

D D d

, ~56!

wherev1(r ) andf are given by Eqs.~33! and ~34!, respec-
tively.

Similarly, squaring relation~20! and averaging yields

N2~R!5
1

VEV
(
i 51

N

w~ ur i2x0u;R!dx0

1
1

VEV
(
iÞ j

N

w~ ur i2x0u;R!w~ ur j2x0u;R!dx0

5rv1~R!1
rv1~R!

N (
iÞ j

N

a~r i j ;R!, ~57!

wherea(r ;R) is the scaled intersection volume, given e
plicitly by Eq. ~A5!, and r i j 5ur i2r j u. Therefore, the local
variances2(R) is given by

s2~R![N2~R!2N~R!2

5N~R!F12rv1~R!1
1

N (
iÞ j

N

a~r i j ;R!G
52dfS R

D D dF122dfS R

D D d

1
1

N (
iÞ j

N

a~r i j ;R!G .

~58!

The last term within the brackets is the sum of scaled in
section volumes between all point pairs, per point.

Remarks:
~1! It is important to observe that the series in Eq.~58!

terminates forr i j .2R even for infinitely large systems.
~2! Note that the variance formula~58! is different from

the ensemble-average formula~22!, which involves an addi-
tional weighted average over pairs of points; thus, the
3-8
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pearance of the total correlation functionh(r ). Therefore,
the variance function~58!, unlike the variance function~22!,
will generally contain small-scale fluctuations with respect
R, of wavelength on the order of the mean separation
tween the points that are superposed on the large-scale v
tions with respect toR ~see examples in Sec. IV!. Expres-
sions~58! and ~22! are identically the same for statistical
homogeneous~infinite! systems, in which case the amp
tudes of the small-scale fluctuations vanish.

~3! Because the variance formula is valid for a sing
realization, one can use it, in principle, to find the particu
point pattern that minimizes the variance at a fixed value
R. In other words, it is desired to minimizes2(R) for a
particular value ofR among allr i j <2R, i.e.,

min
;r i j <2R

s2~R!, ~59!

wheres2(R) is given by Eq.~58!. The scaled intersection
volume a(r i j ;R) appearing in Eq.~58! is a non-negative
function of r i j ~see Fig. 9! and can be viewed as arepulsive
pair potential between a pointi and a pointj. Finding the
global minimum ofs2(R) is equivalent to determining th
ground state for the ‘‘potential energy’’ function represent
by the pairwise sum in Eq.~58!. Such global optimization
problems can be attacked using simulated annealing t
niques, for example. More generally, one could devise
optimization scheme in which atargetedvalue of the vari-
ance~rather than an extremal value! is sought@26#.

~4! Because the pairwise sum in Eq.~58! is positive, we
immediately obtain from Eq.~58! the following lower bound
on the variance:

s2~R!>2dfS R

D D dF122dfS R

D D dG . ~60!

This bound is exact forR<r min/2, wherer min is the mini-
mum pairwise distance, and therefore provides an accu
estimate of the variance for smallR. For sufficiently largeR,
however, the bound becomes negative and therefore prov
a poor estimate of the variance.

~5! For largeR in the special case of hyperuniform sy
tems, the large-scale variations inR will grow as Rd21, and
so we have from Eq.~58! that

s2~R!5L~R!S R

D D d21

1OS R

D D d22

, ~61!

where

L~R!52dfS R

D D F122dfS R

D D d

1
1

N (
iÞ j

N

a~r i j ;R!G
~62!

is the asymptotic ‘‘surface-area’’ function that contains t
small-scale variations inR.

~6! It is useful to average the small-scale functionL(R)
over R to yield the constant
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L~L !5
1

LE0

L

L~R!dR, ~63!

whereL(R) is given by Eq.~62!. In the case of a statistically
homogeneous system, the constant surface-area coeffici

L[ lim
L→`

~L !5 lim
L→`

1

LE0

L

L~R!dR ~64!

is trivially related to the surface-area coefficientB, defined
by Eq. ~37! in the asymptotic ensemble-average formula,
the expression

L52dfB5
2 2d21f2dG~d/2!

Dv1~D/2!GS d11

2 DGS 1

2D ERd
h~r !rdr .

~65!

~7! Because the formula for the coefficientL is defined for
a single realization, we can employ it to obtain the particu
point pattern that minimizes it. Thus, the optimization pro
lem is the following:

min
;r i j <2L

L, ~66!

whereL is given by Eq.~63!.
~8! For large systems in which any point ‘‘sees’’ an env

ronment typical of all points, relation~58! for the variance
can be simplified. This requirement is met by all infini
periodic lattices for anyR as well as statistically homoge
neous point patterns for sufficiently largeR. In such in-
stances, the second term within the brackets of Eq.~58! can
be written as sum of scaled intersection volumes overN
21 points and some reference point. Thus, we can rew
the variance as

s2~R!52dfS R

D D dF122dfS R

D D d

1 (
k51

N21

a~r k ;R!G ,

~67!

wherer k is the distance from the reference point to thekth
point. The asymptotic expression~61! for s2(R) and relation
~63! for L(R) still apply but withL(R) given by the simpler
formula

L~R!52dfS R

D D F122dfS R

D D d

1 (
k51

N21

a~r k ;R!G . ~68!

We emphasize that the simplified formulas~67! and ~68!
cannotbe used for the aforementioned optimization calcu
tions. The latter requires the full pairwise sum appearing
the general relation~58!.

~9! In order to make the surface-area functionL(R) or
surface-area coefficientL independent of the characterist
length scale or, equivalently, density of the hyperunifo
point pattern, one can divide each of these quantities
f (d21)/d, i.e.,
3-9
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L~R!

f (d21)/d
or

L

f (d21)/d
. ~69!

This scaling arises by recognizing that normalization of
asymptotic relation~61! by expression~56! for ^N̄(R)& taken
to the power (d21)/d renders the resulting normalized r
lation independent ofR/D. Such a scaling will be used t
compare calculations ofL(R) and L for different ordered
and disordered point patterns to one another in the su
quent sections. Note that since one-dimensional hyper
form patterns have bounded fluctuations, this scaling is ir
evant ford51.

IV. CALCULATIONS FOR INFINITE
PERIODIC LATTICES

It is useful and instructive to compute the variance, us
the formulas derived in the preceding section, for comm
infinite periodic lattices, which are hyperuniform systems.
our knowledge, explicit calculations have only been obtain
for the square lattice@13# and triangular lattice@14# in two
dimensions. Here we will obtain explicit results for oth
two-dimensional lattices as well as one- and thr
dimensional lattices. We take the window to be
d-dimensional sphere of radiusR.

For infinite periodic lattices, Fourier analysis leads to
alternative representation of the variance. Let the sites of
lattice be specified by the primitive lattice vectorP defined
by the expression

P5n1a11n2a21•••1nd21ad211ndad , ~70!

whereai are the basis vectors of the unit cell array andni
spans all the integers fori 51,2, . . . ,d. Denote byU the unit
cell andvC its volume. It is clear that the number of poin
N(x0 ;R) within the window atx0 @cf. Eq. ~20!# in this in-
stance becomes

N~x0 ;R!5(
P

Q~R2uP2x0u!, ~71!

where the sum is over allP.
The numberN(x0 ;R) is a periodic function in the win-

dow positionx0 and therefore it can be expanded in a Four
series as

N~x0 ;R!5rv1~R!1(
qÞ0

a~q!eiq•x0, ~72!

where q is the reciprocal lattice vector such thatq•P
52pm ~wherem561,62,63, . . . ) and the sum isover all
q exceptq50. Following Kendall and Rankin@14#, the co-
efficientsa(q), for qÞ0, are given by
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a~q!5
1

vC
E

U
N~x0 ;R!e2 iq•x0dx0

5
1

vC
(
P
E

U
Q~R2uP2x0u!e2 iq•x0dx0

5
1

vC
E

Rd
Q~R2uTu!eiq•TdT5

1

vC
S 2p

qRD d/2

RdJd/2~qR!,

~73!

whereJn(x) is the Bessel function of ordern. Note that the
integral in the third line is nothing more than the Fouri
transform of the window indicator function, which is give
by Eq. ~A3!. The analysis above assumes that there is
point per unit cell, i.e., we have considered Bravais lattic
One can easily generalize it to the case of an arbitrary n
ber of pointsnC per unit cell. Formula~73! would then in-
volve nC21 additional terms of similar form to the origina
one.

By Parseval’s theorem for Fourier series, the number v
ances2(R) is given explicitly by

s2~R![
1

vC
E

U
@N~x0 ;R!2rv1~R!#2dx0

5(
qÞ0

a2~q!

5
Rd

vC
2 (

qÞ0
S 2p

q D d

@Jd/2~qR!#2. ~74!

One can easily obtain an asymptotic expression for the v
ance for largeR by replacing the Bessel function in Eq.~74!
by the first term of its asymptotic expansion, and thus
have

s2~R!5L~R!S R

D D d21

1OS R

D D d22

, ~75!

whereD is a characteristic microscopic length scale, say,
lattice spacing, and

L~R!5
2d11pd21D2d

vC
2 (

qÞ0

cos2@qR2~d11!p/4#

~qD!d11

~76!

describes small-scale variations inR. As before, it is conve-
nient to compute the average ofL(R) over R to give the
surface-area coefficient:

L5 lim
L→`

1

LE0

L

L~R!dR5
2dpd21D2d

vC
2 (

qÞ0

1

~qD!d11
.

~77!

It is useful here to apply the specialized volume-avera
formula ~67! to the case of infinite periodic lattices. Reco
nizing that the configuration of an infinite periodic point pa
3-10
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tern may be characterized by the distancesr k and coordina-
tion numbersZk for the successive shells of neighborsk
51,2,3, . . . ) from a lattice point, we find from Eq.~67! that
the variance can also be represented as

s2~R!52dfS R

D D dF122dfS R

D D d

1 (
k51

`

Zka~r k ;R!G .

~78!

The asymptotic expression~61! for s2(R) and relation~63!
for the surface-area coefficientL(R) still apply but with
L(R) given by

L~R!52dfS R

D D F122dfS R

D D d

1 (
k51

`

Zka~r k ;R!G .

~79!

Formula~78! was obtained by Kendall and Rankin@14# us-
ing a more complicated derivation. Moreover, their deriv
tion only applies to periodic point patterns. Our more gene
formula ~67! is also valid for statistically homogeneous poi
patterns. We also note that our most general volume-ave
representation~58! of the variance, from which formula~67!
is derived, is applicable to arbitrary point patterns and
derivation is quite straightforward.

One can also evaluate the asymptotic coefficientL using
the ensemble-average formula~65!. Strictly speaking, this
formula is not applicable to periodic point patterns beca
such systems are not statistically homogeneous~neither are
they statistically isotropic!. To see the potential problem tha
arises by naively applying Eq.~65!, let the origin be a lattice
point in the system and consider determining the radial
tribution function g2(r ) by counting the number of lattice
points at a radial distancer k from the origin. For a lattice in
d dimensions, we have that

g2~r !5 (
k51

`
Zkd~r 2r k!

rs1~r k!
, ~80!

wheres1(r ) is the surface area of a sphere of radiusr given
by Eq. ~14! and Zk is the coordination number of thekth
shell. It is seen that substitution of the corresponding to
correlation functionh(r )[g2(r )21 into Eq.~65! results in
a nonconvergent sum. However, using a convergence ‘‘tri
@27#, one can properly assure a convergent expression
reinterpreting the surface-area coefficient~65! for a periodic
lattice in the following manner:

L5 lim
b→01

22d21f2dG~d/2!

Dv1~D/2!GS d11

2 DGS 1

2D ERd
e2br 2

h~r !rdr

5 lim
b→01

2d21fd

DGS 1

2D F fpd/2

v1~D/2!b (d11)/2

2
G~d/2!

GS d11

2 D (
k51

`

Zkr ke
2br k

2G . ~81!
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A. One-dimensional examples

Here we obtain exact expressions for the number of po
and number variance for general one-dimensional perio
point patterns using the aforementioned Fourier analysis.
ing this result, we prove that the simple periodic linear arr
corresponds to the global minimum inL. Subsequently, we
employ the volume-average and ensemble-average form
tions of Secs. II and III to obtain some of the same results
order to compare the three different methods. Recall t
hyperuniform systems in one dimension have bounded fl
tuations.

Let us first consider the simplest periodic point pattern
which each point is equi-distant from its near neighbors~see
Fig. 3! and let this nearest-neighbor distance be unity (vC
5D51). Applying relations~72! and ~73! and recognizing
that q52pma1 /D (m561,62, . . . ) for nonzeroq yields
the number of points contained within a one-dimensio
window of radiusR centered at positionx0:

N~R;x0!52R1
2

p (
m51

`
sin~2pmR!cos~2pmx0!

m
.

~82!

According to relation~74!, the associated variance is give
by

s2~R!5
2

p2 (
m51

`
sin2~2pmR!

m2
. ~83!

The variances2(R) is a periodic function with period 1/2
and is equal to the quadratic function 2R(122R) for 0<R
<1/2 ~see Fig. 4!. Finally, the surface-area coefficientL,
defined by Eq.~77!, which in one dimension amounts to th
positional average of the variance for any value ofR, is
exactly given by the constant

L5
1

p2 (
m51

`
1

m2
5

1

6
. ~84!

It is known that this simple linear array yields the min
mum value ofL among all one-dimensional regular lattice
This is intuitively clear from the volume-average varian
relation ~58! for d51; the linear repulsive effective ‘‘pair
potential’’ contained therein is evidently responsible for su
a minimum. However, heretofore it was not known wheth
this pattern corresponded to a global minimum, i.e.,
smallest value ofL among all infinite one-dimensional hy
peruniform patterns. We now prove that the single-scale

FIG. 3. Portions of two one-dimensional periodic point patter
wherevC5D51. The top and bottom arrays are the single-sc
and two-scale examples, respectively.
3-11



-

-

l

S. TORQUATO AND F. H. STILLINGER PHYSICAL REVIEW E68, 041113 ~2003!
FIG. 4. Left panel: The qua-
dratic periodic variance function
s2(R) for the single-scale peri-
odic one-dimensional point pat
tern given by Eq.~83!. The hori-
zontal line is the averageL
51/6. Right panel: The
piecewise-quadratic periodic vari
ance functions2(R) for the two-
scale periodic one-dimensiona
point pattern given by Eq.~87! for
the casez51/4. The horizontal
line is the averageL57/24.
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c-
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tice indeed produces the global minimum. To prove this
sertion, we utilize the identity

f ~x!5
1

p2 (
m51

`
112cos~2pmx!

m2
5

1

2
22x~12x! ~85!

and note thatf (x) is a convex quadratic non-negative fun
tion for all realx. Now consider a case in which there areM
b

04111
-points per unit cell in which the length of the unit cell is st
unity. Thus, excluding the point at each lattice site, there
M21 points inside the unit cell with position
z1 ,z2 , . . . ,zM21 such that eachz i lies in the interval (0,1).
Without loss of generality, we arrange theM21 points such
that z i,z i 11 ( i 51,2, . . . ,M22), but their positions are
otherwise arbitrary. Following a similar analysis as the on
above, we find that the number of points within a windo
centered atx0 is exactly given by
with
N~R;x0!52MR12 (
m51

` sin~2pmR!H (
j 50

M21

cos@2pm~x02z j !#J
m

, ~86!

wherez0[0. The variance is therefore given by

s2~R!5
2

p2 (
m51

` sin2~2pmR!H M1 (
j 51

M21

cos~2pmz j !1 (
j ,k

M21

cos@2pm~zk2z j !#J
m2

. ~87!

We see that the variances2(R) for an arbitrary one-dimensional point pattern within the unit cell is a periodic function
period 1/2.~As we will see, the variance in higher dimensions is not a periodic function inR for periodic point patterns.! The
average of the variance is exactly equal to the surface-area coefficient~77!:

L5
1

p2 (
m51

` M1 (
j 51

M21

cos~2pmz j !1 (
j ,k

M21

cos@2pm~zk2z j !#

m2
52

M ~M23!

12
1 (

j 51

M21

f ~z j !1 (
j ,k

M21

f ~zk2z j !, ~88!
en

e

ns-
res
at
of
where f (x) is given by Eq.~85!. BecauseL is given by a
sum of convex quadratic non-negative functions, the glo
minimum is found from the zeros of the derivative]L/]zn :

]L

]zn
505122zn1 (

j 51

n21

~122zn12z j !

2 (
j 5n11

M21

~112zn22z j !

~n51,2, . . . ,M21!. ~89!
al
It is easy to verify that the global minimum is achieved wh
the M21 are uniformly distributed in the interval~0,1!, i.e.,
zn5n/M (n51,2, . . . ,M21), yielding L51/6. Since this
result is valid for arbitraryM, the simple single-scale lattic
produces the global minimum value ofL among all infinite
one-dimensional hyperuniform point patterns.

Note that the single-scale lattice corresponds to the de
est packing of one-dimensional congruent hard sphe
~rods! on the real line. This might lead one to conjecture th
the Bravais lattice associated with the densest packing
congruent spheres in any space dimensiond provides the
3-12
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LOCAL DENSITY FLUCTUATIONS, . . . PHYSICALREVIEW E 68, 041113 ~2003!
minimal value ofL among all periodic lattices for spherica
windows. As we will see, this turns out to be the case
d52, but not ford53.

The variance as computed from Eq.~87! for the caseM
52, which we call the ‘‘two-scale’’ lattice~see Fig. 3!, is
included in Fig. 4 for z[z151/4. In this instance,L
57/24. Clearly, the variance for the two-scale case bou
from above the variance for the single-scale case. Tabl
compares the surface-area coefficient for the single-scale
two-scale one-dimensional lattices. The other o
dimensional results summarized in Table II will be discuss
in the ensuing sections. The potential use of the local v
ance as an order metric for hyperuniform point patterns
any dimension is discussed in Sec. VI.

Consider obtaining the volume-average representatio
the variance for the two aforementioned one-dimensional
riodic patterns from Eq.~78!. Using relations~A5! and~A9!
for the scaled intersection volumea(r ;R), we find for any
one-dimensional periodic point pattern in whichD51 that

s2~R!52fRF122fR1 (
k51

MR

ZkS 12
r k

2RDQ~2R2r k!G ,

~90!

where MR corresponds to the largest value ofk for which
r k,2R. Because in one dimensionL(R)5s2(R), where
L(R) is the function defined by Eq.~79!, it follows that the
averageL is given by

L52E
0

1/2

L~R!dR5fLF S 12
4fL

3 D1 (
k51

ML

ZkS 12
r k

2L D 2G ,

~91!

where ML corresponds to the largest value ofk for which
r k,2L. Using the fact thatf51, r k5k, andZk52 for all k
for the single-scale lattice, one can easily reproduce
graph fors2(R) depicted in Fig. 4 using relation~90! and
verify thatL51/6 employing relation~91!. Similarly, for the
two-scale case, we have thatf52, r k5k/4, andZk51 for
odd k, and r k5k/2 and Zk52 for evenk. Hence, relation
~90! leads to the same graph of the variance shown in Fig
and relation~91! yields L57/24 for z50.25, as before.

We can also compute the surface-area coefficient u
the ensemble-average relation~81!. In one dimension, this
relation yields

TABLE II. The surface-area coefficientL for some ordered and
disordered one-dimensional point patterns. The result for the t
scale lattice is forz[z150.25.

Pattern f L

Single-scale lattice 1 1/6'0.166667
Step1delta-functiong2 0.75 3/1650.1875
Step-functiong2 0.5 1/450.25
Two-scale lattice 2 7/24'0.291667
Lattice gas 1 1/3'0.333333
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L5 lim
b→01

Ff2

b
2f(

k51

`

Zkr ke
2br k

2G , ~92!

where we have takenD51. The sum in~92! can be evalu-
ated exactly using the Euler-Maclaurin summation form
@28#. If f (k) is a function defined on the integers, and co
tinuous and differentiable in between, the Euler-Maclau
summation formula provides an asymptotic expansion of
sum (k50

n f (k) as n→`. Applying this asymptotic formula
to Eq. ~92! in the cases of the single-scale and two-sc
lattices yields thatL51/6 andL57/24, respectively, which
agree with the results obtained using the previous two m
ods. Although the Fourier-analysis and volume-average p
cedures are more direct methods to determineL for one-
dimensional lattices, we will see that representation~81!

provides an efficient means of computingL for lattices in
higher dimensions.

B. Two-dimensional examples

Here we evaluate variance characteristics for the follo
ing four common two-dimensional lattices: square, triang
lar, honeycomb, and Kagome´ lattices. From the lattice serie
~74!, ~76!, and ~77! with d52, we have general two
dimensional series relations for the variances2(R),
asymptotic surface-area functionL(R), and surface-area co
efficientL, respectively. For a specific lattice, the evaluati
of any of these series requires the reciprocal lattice vectoq
and vC . For example, for the square lattice,q52p(m1a1
1m2a2)/D (mi50,61,62, . . . ) for nonzero q and vC
5D2. The sums are straightforward to evaluate, even if th
converge slowly. Provided thatR is not very large, however
the corresponding volume-average relations~78! and~79! are
superior for computational purposes because the series
volved are finite rather than infinite. For example, t
asymptotic surface-area functionL(R) for the square lattice
is plotted in Fig. 5 using Eq.~79! with Eq. ~A10! for 1<R
<4. The function is seen to be aperiodic, but fluctua
around an average value in a bounded fashion. It is wo
noting that the behavior ofL(R) for larger values ofR is
qualitatively the same. Interestingly, the average value
L(R) over this small interval nearR50 ~as well as other
intervals of the same length! is quite close to the infinite-
interval average valueL @29#.

The average value of the surface-area functionL(R) over
all R, equal to the surface-area coefficientL @cf. Eq. ~77!#, is
given ~to six significant figures! by L50.457 649. Series
~77! for the square lattice was first evaluated by Kend
@13#. Because it is a slowly converging series, he exploi
certain results of number theory to reexpress the sum
terms of a more rapidly convergent series.

We found that numerical evaluation of the ensemb
average relation~81! is a simple and effective means of com
puting accurately the surface-area coefficientL for any com-
mon lattice. In two dimensions, this relation yields

L5 lim
b→01

F 16f2

p1/2b3/2
2

8f

p (
k51

`

Zkr ke
2br k

2G . ~93!

o-
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The sum in Eq.~93! is easily computed as a function of th
convergence parameterb for any simple lattice. For suffi-
ciently smallb, this sum is linear inb and extrapolation to
b→01 yields results that are accurate to at least six sign
cant figures. We have also computed the surface-area co
cient for triangular, honeycomb, and Kagome´ lattices. The
result for the triangular lattice was first reported by Kend
and Rankin@14#. In Table III, we compare all of these resul
for the common two-dimensional lattices to one another
tabulating the normalized scale-independent surface-area
efficient, i.e.,L/f1/2 @cf. Eq. ~69!#. Rankin@30# proved that
the triangular lattice has the smallest normalized surface-
coefficient for circular windows among all infinite period
two-dimensional lattices, which is borne out in Table I
However, there is no proof that the triangular lattice mi
mizesL/f1/2 among all infinite two-dimensional hyperun
form point patterns for circular windows. Included in Tab
III are results for disordered point patterns that will be d
cussed in the ensuing sections.

Although the normalized surface-area coefficient is sm
est for the triangular lattice, Table III reveals that the cor
sponding coefficients for the other lattices are not appre
bly larger. This suggests that the fluctuating surface-a
functionL(R) for nontriangular lattices may be smaller tha
the corresponding function for the triangular lattice for c
tain values ofR. This is indeed the case as illustrated in F

FIG. 5. The asymptotic surface-area functionL(R) for the
square lattice for 1<R<4, whereD is the lattice spacing. The
horizontal line is the asymptotic average valueL50.457 649.
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6, where the difference between the normalized sca
independent surface-area functionL(R) for the triangular
and square lattices is plotted for the range 100D<R
<110D using relation~79!. This difference oscillates rapidly
about zero over this range ofR, but the same qualitative
trends occur for all values ofR and for any pair of periodic
lattices considered here. Given our previous interpretation
the global minimum of the variance as corresponding to
ground state of a many-particle system with a potential
ergy function given bya(r ;R) ~Sec. III!, we see that the
optimal lattice structure is sensitive to small changes in
value of R ~which determines the range of the potentia!.
This calls into question previous studies@31# that claim to
have found stable ground-state lattices for two-dimensio
systems of particles with purely repulsive interaction pote
tials of the same qualitative form as shown fora(r ;R) in
Fig. 9 with d52.

C. Three-dimensional examples

Here we specialize to common infinite three-dimensio
periodic lattices: simple cubic~sc! lattice, face-centered cu
bic ~fcc! lattice, hexagonal-close-packed~hcp! lattice, body-
centered cubic~bcc!, and the diamond lattice. Explicit result
for the number variance for such lattices have heretofore
been reported. From Eqs.~74!, ~76!, and~77! with d53, we
have general three-dimensional relations for the varia
s2(R), asymptotic surface-area functionL(R), and surface-
area coefficientL, respectively. These expressions are ea
evaluated for the specific lattice givenvC and the reciprocal
lattice vectorsq. As we noted earlier, the volume-averag
relations~78! and ~79! for d53 are superior for computa
tional purposes provided thatR is not very large. Qualita-
tively, the three-dimensional trends for the surface-area fu
tion L(R) are similar to the two-dimensional ones describ
above~see, for example, Figs. 5 and 6! and so we will not
present explicitly such three-dimensional results here.

The ensemble-average relation~81!, which for d53 and
D51 yields

L5 lim
b→01

F72f2

b2
26f(

k51
Zkr ke

2br k
2G ~94!

and provides an efficient means of computing the surfa
area coefficientL for three-dimensional infinite periodic lat
int
TABLE III. The surface-area coefficientL for some ordered and disordered two-dimensional po
patterns. For ordered lattices,f represents the close-packed covering fraction.

Pattern f L/f1/2

Triangular lattice p/A12'0.9069 0.508347
Square lattice p/4'0.7854 0.516401
Honeycomb lattice p/(3A3)'0.6046 0.567026
Kagomélattice 3p/(8A3)'0.6802 0.586990
Step1delta-functiong2 0.5 25/2/(3p)'0.600211
Step-functiong2 0.25 8/(3p)'0.848826
One-component plasma 2/Ap'1.12838
3-14



n
a
e

ce
e

e

f

is

di
en
an
n
e
n

ing

for

in
les
the

gu-

ty
y

(

ple

so-
e

e-
of
s
ss.

s a

ch
ints

in
ts of

is
n-

le

LOCAL DENSITY FLUCTUATIONS, . . . PHYSICALREVIEW E 68, 041113 ~2003!
tices by extrapolating the results for sufficiently smallb to
b→01. This has been carried out for all of the aforeme
tioned common three-dimensional lattices and the results
summarized in Table IV, where we tabulate the normaliz
scale-independent surface-area coefficient, i.e.,L/f2/3 @cf.
Eq. ~69!#.

Contrary to the expectationL/fd/(d21) should, among all
lattices, be a global minimum for the closest-packed latti
for spherical windows, we find that the minimum in thre
dimensions is achieved for the bcc lattice, albeit very clos
numerical value to the fcc value~the next smallest value!
@32#. This suggests that the closest-packed Bravais lattice
d>3 does not minimizeL/fd/(d21) @33#. Included in Table
IV are results for disordered point patterns that will be d
cussed in the ensuing sections.

V. NONPERIODIC HYPERUNIFORM SYSTEMS

In this section, we briefly describe the known nonperio
hyperuniform point patterns in one, two, and three dim
sions and identify some others. For certain one-, two,
three- dimensional disordered hyperuniform point patter
we exactly determine the corresponding surface-area co
cients, structure factors, direct correlation functions, a

FIG. 6. The difference between the normalized sca
independent surface-area functionL(R) for the triangular and
square lattices as a function ofR, whereD is the lattice spacing.
Herel tri5L(R) tri /f tri

1/2 andlsq5L(R)sq/fsq
1/2.
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their associated critical exponents. A discussion concern
the potential use of surface-area coefficientL as an order
metric for general hyperuniform point patterns is reserved
Sec. VI.

A. Examples

Statistically homogeneous hyperuniform point patterns
one dimension are not difficult to construct. Two examp
are discussed here: one is a ‘‘lattice-gas’’ type model and
other is a construction due to Goldsteinet al. @34#. The first
example is constructed by tessellating the real line into re
lar intervals of lengthD. Then a single point is placed in
each interval~independently of the others! at any real posi-
tion with uniform random distribution. The number densi
r51/D, and the pair correlation function is simply given b

g2~r !5H r /D, r<D

1, r .D.
~95!

One can easily verify that the system is hyperuniformA
50) and that the surface-area coefficient~65! is given by

L5 1
3 , ~96!

exactly twice the surface-area coefficient for the sim
single-scale periodic point pattern@cf. Eq. ~84!#. This one-
dimensional lattice-gas model is a special case of the
called d-dimensional shuffled lattice that we will describ
below.

A less trivial example of a statistically homogeneous on
dimensional hyperuniform system is the construction
Goldstein et al. @34#, which obtains from a homogeneou
Poisson point process a new hyperuniform point proce
This construction is defined as follows: First, one define
statistically homogeneous processX(x) on the real line such
that X(x)<1. This process is specified by dynamics su
that X(x) decreases at the rate of unity, except at the po
of the Poisson process, whereX(x) jumps up by one unit
unless this jump violates the upper bound condition,
which case no jump occurs. Second, one takes the poin
the new point process to be those points in whichX(x) ac-
tually jumps. This new point process is hyperuniform. It
not known how to extend this construction to higher dime
sions (d>2).

-

oint
TABLE IV. The surface-area coefficientL for some ordered and disordered three-dimensional p
patterns. For ordered lattices,f represents the close-packed covering fraction.

Pattern f L/f2/3

bcc lattice 3p/(8A3)'0.6802 1.24476
fcc lattice p/A18'0.7405 1.24552
hcp lattice p/A18'0.7405 1.24569
sc lattice p/6'0.5236 1.28920
Diamond lattice 3p/(16A3)'0.3801 1.41892
Damped-oscillatingg2 0.46 1.44837
Step1delta-functiong2 0.3125 51/339/210/3'1.52686
Step-functiong2 0.125 2.25
3-15
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S. TORQUATO AND F. H. STILLINGER PHYSICAL REVIEW E68, 041113 ~2003!
The construction of statistically homogeneous and iso
pic point patterns that are hyperuniform in two or high
dimensions is a challenging task. An example of a stati
cally homogeneousd-dimensional system that is hyperun
form is the so-calledshuffled lattice@35#, but it is not statis-
tically isotropic. This is a lattice whose sites a
independently randomly displaced by a distancex in all di-
rections according to some distribution with a finite seco
moment.

Gabrielli et al. @35# have observed that the a point patte
derived from the ‘‘pinwheel’’ tiling of the plane@36# has a
number variance that grows as the surface area~perimeter! of
the window, and is statistically homogeneous and isotro
The prototile of the pinwheel tiling is a right triangle wit
sides of length 1, 2, andA5. The tiling is generated by per
forming certain ‘‘decomposition’’ and ‘‘inflation’’ operations
on the prototile. In the first step, the prototile is subdivid
into five copies of itself and then these new triangles
expanded to the size of the original triangle. These dec
position and inflation operations are repeatedad infinitum
until the triangles completely cover the plane~see Fig. 7!. It
is obvious from the aforementioned discussion that the p
pattern that results by randomly placing a point in each
ementary triangle is hyperuniform. Importantly, because
tiles appear ininfinitely many orientations, one can show th
the resulting pattern is not only statistically homogeneo
but also statistically isotropic. The full rotational invarian
of the pattern is experimentally manifested by a diffracti
pattern consisting of uniform rings rather than isolated Bra
peaks.

The one-component plasma is a statistical mechan
model that is known to have a number variance that gro
only as the surface area of the window@17,37#. The one-
component plasma is a system of point particles of charge
embedded in a uniform background that imparts ove
charge neutrality. Ind52, the n-particle correlation func-
tions for this model are exactly solvable in the thermod
namic limit when the coupling constantG[e2/(kT)52 @38#,
and, in particular, the total correlation function is then giv
by

h~r !52e2prr 2
. ~97!

Substitution of Eq.~97! into Eq. ~81! gives the surface are
coefficient@37# as

L5
2

Ap
f1/2, ~98!

where f5rpD2/4. This evaluation ofL is included in
Table III. Observe that the structure factor of th
d-dimensional one-component plasma at smallk behaves as

S~k!;k2 ~k→0! ~99!

and, therefore, the corresponding asymptotic behavior of
Fourier transform of the direct correlation function is giv
by
04111
-
r
i-

d

c.

e
-

nt
l-
e

s

g

al
s

ll

-

e

c~k!;2
1

k2
~k→0!. ~100!

Another interesting model that is known to be hyperu
form @3,35# is the Harrison-Zeldovich@39# power spectrum
for the primordial density fluctuations in the Universe. He
the structure factor for smallk behaves as

S~k!;k. ~101!

Recently, Gabrielliet al. @35# have discussed the constru
tion of point patterns in three dimensions that are consis
with the Harrison-Zeldovich spectrum.

The present authors have recently introduced and stu
so-calledg2-invariant processes@20,40,41#. A g2-invariant
process is one in which a chosen non-negative form for
pair correlation functiong2 remains invariant over a nonva
nishing density range while keeping all other relevant m
roscopic variables fixed. The upper limiting ‘‘terminal’’ den
sity is the point above which the non-negativity condition
the structure factor@cf. Eq. ~18!# would be violated. Thus, a
the terminal or critical density, the system is hyperuniform
realizable. In the following section, we will calculate th
surface-area coefficient exactly for several of the
g2-invariant processes. We will also exactly determine
corresponding structure factors, direct correlation functio
and their associated critical exponents.

Interestingly, random packings of spheres near the m
mally random jammed~MRJ! state@42,43# appear to be hy-
peruniform. Figure 8 depicts that the structure factor for su
a computer-generated 40 000-particle packing is vanishin
small for small wave numbers. The packing is stric
jammed@44#, which means that the particle system rema
mechanically rigid under attempted global deformations~in-
cluding shear! that do not increase volume and, furthermo
the packing is saturated. Asaturatedpacking of hard sphere
is one in which there is no space available to add ano
sphere. In the case of saturated packings of identical h
spheres of unit diameter, no point in space has dista

FIG. 7. Portion of a pinwheel tiling.
3-16
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LOCAL DENSITY FLUCTUATIONS, . . . PHYSICALREVIEW E 68, 041113 ~2003!
greater than unity from the center of some sphere. An in
esting postulate would be that all strictly jammed satura
infinite packings of identical spheres are hyperuniform. E
amples of strictly jammed saturated periodic packings in t
and three dimensions include the closest-packed triang
and face-centered cubic lattices, respectively. In light of t
discussion, one can view a disordered packing near the M
state as a type of ‘‘glass’’ for the hard-sphere system.
important open fundamental question is whether there
molecular glasses~with ‘‘soft’’ intermolecular potentials!
that become hyperuniform in the limit at which the tempe
ture vanishes. Indeed, our preliminary results indicate
this possibility is attainable.

B. Exact results for g2-invariant processes

Here we evaluate the surface-area coefficient exactly
three different disorderedg2-invariant processes studied b
us earlier@20,40,41#. We also exactly determine the corr
sponding structure factors, direct correlation functions, a
their associated critical exponents.

1. Step function g2

Let us first consider theg2-invariant process in which a
spherically symmetric pair correlation or radial distributio
function is defined by the unit step function@40#:

g2~r !5Q~r 2D !5H 0, r<D

1, r .D.
~102!

The conditiong2(r )50 for r<D prevents any pair of points
from getting closer than a distanceD to one another. Note
that in the special case of a system of identical hard sph
in equilibrium in the limitr→0, g2 is exactly given by Eq.
~102!. The corresponding total correlation function is giv
by

FIG. 8. The structure factor for a random packing of thre
dimensional identical hard spheres of diameterD near the MRJ
state @42,43# as computed from a single realization consisting
40 000 particles in a cubical box with periodic boundary conditio
using the protocol described in Ref.@43#. The packing~covering!
fraction of spheresf is 0.632.
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h~r !52Q~D2r !5H 21, r<D

0, r .D,
~103!

which when substituted into Eqs.~43! and ~44! yields the
volume and surface-area coefficients as

A5S~k50!5122df, B5
L

2df
5

2d22d2G~d/2!

G@~d13!/2#G~1/2!
f.

~104!

The reduced densityf defined by Eq.~34! ~equivalent to the
covering fraction of the hard cores of diameterD) lies in the
range 0<f<fc , where

fc5
1

2d
~105!

is the terminal or critical density, i.e., the density at whi
the system is hyperuniform, whereA50 and

B5L5
d2G~d/2!

4G@~d13!/2#G~1/2!
. ~106!

The values of the scale-independent surface-area coeffic
L/f (d21)/d for d51,2, and 3 are given in Tables II, III, an
IV, respectively. It is worth noting that a recent study@45#
provides convincing numerical evidence that the st
function g2 is realizable by systems of impenetrab
d-dimensional spheres~with d51 andd52) for densities up
to the terminal density. Thus, it appears that satisfying
non-negativity conditions ong2(r ) andS(k) in this instance
is sufficient to ensure realizability.

The Fourier transform of the total correlation functio
~103! yields the analytic function

h̃~k!52S 2p

kDD d/2

DdJd/2~kD!. ~107!

Thus, use of Eq.~15! gives the structure factor forf in the
range 0<f<fc to be

S~k!512G~11d/2!S 2

kDD d/2S f

fc
D Jd/2~kD!. ~108!

Similarly, the Ornstein-Zernike relation~48! yields an exact
expression for the Fourier transform of the direct correlat
function:

c̃~k!5

2S 2p

kDD d/2

DdJd/2~kD!

12G~11d/2!S 2

kDD d/2S f

fc
D Jd/2~kD!

. ~109!

Thus, the small-k expansions ofS(k) and c̃(k), which
determine their behavior in the vicinity of, and at, the critic
point, are, respectively, given by

-

f
s
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S~k!5S 12
f

fc
D1

1

2~d12!

f

fc
~kD!21O„~kD!4

…

~110!

and

c̃~k!5
2v1~D !

S 12
f

fc
D1

1

2~d12!

f

fc
~kD!21O„~kD!4

…

,

~111!

where v1(D) is the volume of ad-dimensional sphere o
radiusD @cf. Eq. ~33!#. At the critical pointf5fc , we see
thatS(k);k2 andc̃(k);2k22, and therefore comparison t
Eqs.~52! and~51! yields the exponenth50. Relation~110!
leads to the power law

S21~0!5S 12
f

fc
D 21

, f→fc
2 , ~112!

which upon comparison to Eq.~53! immediately yields the
critical exponentg51. The correlation lengthj is defined
via Eq. ~111!, which we rewrite as

k2c̃~k!1j22c̃~k!52G, kD!1, ~113!

where

j5
D

@2~d12!fc#
1/2S 12

f

fc
D 21/2

, f→fc
2 , ~114!

G5
2~d12!v1~D !

D2

fc

f
, ~115!

andv1(D) is the volume of a sphere of radiusD defined by
Eq. ~33!. Comparison of Eq.~114! to the power law~54!
yields the exponentn51/2. Note that the exponent value
g51, j51/2, and h50 are consistent with interrelatio
~55!. Inversion of Eq.~113! yields the partial differential
equation

¹2c~r !2j22c~r !5Gd~r !, r @D, ~116!

where the spherically symmetric Laplacian operator¹2 in
any dimensiond is given by

¹25
1

r d21

]

]r F r d21
]

]r G . ~117!

We see that the direct correlation function in real space
large r is determined by Green’s function of the lineariz
Poisson-Boltzmann equation.

Let us first determine the solutions of Eq.~116! at the
critical point f5fc wherej diverges to infinity. Thus, the
asymptotic behavior ofc(r ) for r @D is given by the
infinite-space Green’s function for thed-dimensional
Laplace equation@42#, and so we obtain
04111
r

c~r !55
26S r

D D , d51

4 lnS r

D D , d52

2
2~d12!

d~d22! S r

D D d22

, d>3.

~118!

Observe that it is only ford>3 thatc(r ) follows the power-
law form ~51! with an exponenth50. The fact thath takes
an integer value is due to the fact thath̃(k) is an analytic
function. Note also that the real-space direct correlat
function of the one-component plasma has precisely
same asymptotic form as Eq.~118!, albeit with different am-
plitudes~prefactors!.

As j→` for fixed r, the solutions of Eq.~116! are

c~r !55
26

fc

f S j

D Dexp~2r /j!, d51

4
fc

f
lnS r

D Dexp~2r /j!, d52

2
2~d12!fc

d~d22!f S r

D D d22

exp~2r /j!, d>3.

~119!

On the other hand, it is worth noting that asr→` for fixed
j, the asymptotic behavior changes according to the rela

c~r !52
~d12!A2pfc

G~11d/2!f S D

j D (d23)/2S D

r D (d21)/2

3exp~2r /j!, d>1. ~120!

2. Step¿delta function g2

Here we consider theg2-invariant process defined by
radial distribution function that consists of the aforeme
tioned unit step function plus ad function contribution that
acts atr 5D:

g2~r !5Q~r 2D !1
Z

rs1~D !
d~r 2D !, ~121!

whereZ is a non-negative constant ands1(D) is the surface
area of a sphere of radiusD defined by Eq.~14!. Function
~121! was one of several examples studied by Torquato
Stillinger @20# to understand the relationship between sho
range order and maximal density in sphere packings. In
investigation,Z was interpreted as the average contact co
dination number. Here we consider their case IV~given in
the appendix of Ref.@20#! in which the condition

Z5
2dd

d12
f ~122!

is obeyed in order to constrain the location of the minimu
of the structure factor to be atk50. Here the reduced den
sity f lies in the range 0<f<fc , and
3-18
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fc5
d12

2d11
~123!

is the terminal or critical density. Note that the functio
specified by relation~121! is a special limit of the radia
distribution function corresponding to the dilute and narr
limit of the square-well potential studied by Sakai, Stilling
and Torquato@41#.

Substitution of Eq.~121! into Eqs.~43! and~44! yields the
volume and surface-area coefficients as

A5S~k50!512
2d11

d12
f,

B5
L

2df
5

2d22d2G~d/2!

~d12!G~~d13!/2!G~1/2!
f. ~124!

At the critical density,A50 and

L52dfcB5
d2~d12!G~d/2!

16G@~d13!/2#G~1/2!
. ~125!

The values of the scale-independent surface-area coeffi
L/f (d21)/d for d51,2 and 3 are given in Tables II, III, an
IV, respectively.

The combination of relations~15!, ~48!, and ~121! gives
the structure factor and Fourier transform of the direct c
relation function, respectively, forf in the range 0<f
<fc :

S~k!511
2d/2G~21d/2!

~kD!(d/2)21 S f

fc
D FJ(d/2)21~kD!

d12
2

Jd/2~kD!

kD G ,
~126!

c̃~k!5

~2p!d/2Dd

~kD!(d/2)21 FJ(d/2)21~kD!

d12
2

Jd/2~kD!

kD G
11

2d/2G~21d/2!

~kD!(d/2)21 S f

fc
D FJ(d/2)21~kD!

d12
2

Jd/2~kD!

kD G .

~127!

Therefore, the Taylor expansions ofS(k) and c̃(k) aboutk
50 are, respectively, given by

S~k!5S 12
f

fc
D1

1

8~d12!~d14!

f

fc
~kD!41O„~kD!6

…

~128!

and

c̃~k!5
22v1~D !

S 12
f

fc
D1

1

8~d12!~d14!

f

fc
~kD!41O@~kD!6#

.

~129!

Relation~128! leads to the power law
04111
,

nt

r-

S21~0!5S 12
f

fc
D 21

, f→fc
2 , ~130!

which upon comparison to Eq.~53! again yields the critical
exponentg51. The correlation lengthj is defined via Eq.
~129!, which we rewrite as

k4c̃~k!1j24c̃~k!52G, kD!1, ~131!

where

j5
D

@8~d12!~d14!fc#
1/4S 12

f

fc
D 21/4

, f→fc
2 ,

~132!

G5
16~d12!~d14!v1~D !

D4

fc

f
. ~133!

Comparison of Eq.~132! to the power law~54! yields the
exponentn51/4. We see that the exponent valuesg51, j
51/4, andh522 are consistent with inter-relation~55!.
Inversion of Eq.~131! yields the partial differential equation

¹4c~r !1j24c~r !52Gd~r !, r @D, ~134!

where ¹4[¹2¹2 is the spherically symmetric biharmoni
operator, and¹2 is given by Eq.~117!.

The solutions of Eq.~134! at the critical pointf5fc (j
→`) are given by the infinite-space Green’s function for t
d-dimensional biharmonic equation. It is only ford>5 that
the solutions admit a power law of form~54! with an expo-
nenth522, namely,

c~r !52
8~d12!~d14!

d~d22!~d24! S D

r D d24

, d>5. ~135!

3. Damped-oscillating g2

In three dimensions, Torquato and Stillinger@20# also
considered ag2-invariant process that appends a damp
oscillating contribution to the aforementioned step1delta-
function g2. Specifically, they examined the radial distrib
tion function

g2~r !5Q~r 2D !1
Z

r4pD2
d~r 2D !1

a1

r
e2a2r

3sin~a3r 1a4!Q~r 2D !. ~136!

Here we consider their case II, where at the terminal den
fc50.46, Z52.3964, a151.15, a250.510, a355.90, and
a451.66. At this critical point, the volume coefficientA
50 and the surface-area coefficient~65! is given by

L536fc
226fcZ1144a1fc

2I , ~137!

where
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I 5E
1

`

xe2a2xsin~a3x1a4!dx5
~2a3

32a3
526a2

2a322a2
2a3

324a2
3a324a2a3

32a2
4a3!

~a2
21a3

2!3
e2a2cos~a31a4!

1
~2a3

416a2a3
22a2

522a2
422a2

32a2a3
422a2

3a3
2!

~a2
21a3

2!3
e2a2sin~a31a4!.
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Substitution of the aforementioned parameters in Eq.~137!
yields L50.863 082. This evaluation ofL is included in
Table IV. With this choice ofg2, the first nonzero term of the
small-k expansion of the structure factorS(k) at the critical
point is of orderk4, and therefore the exponenth522, as
in the previous case. However, herec(r) does not admit the
power-law form~50! for large r becauseh,21.

VI. DISCUSSION AND CONCLUSIONS

The principal theme presented in this paper is that num
fluctuations calculated for variable window geometries of
a powerful tool to characterize and to classify point-parti
media. This theme encompasses both spatially perio
~crystalline! particle patterns and those that are globally d
ordered ~amorphous!. By considering the large-window
asymptotic limit, special attention attaches to volume and
surface fluctuations in space dimensiond>1. A special class
of ‘‘hyperuniform’’ point patterns has been recognized f
which the volume fluctuations vanish identically; equiv
lently these are systems for which the structure factorS(k)
vanishes atk50. Another special class of ‘‘hyposurficial
point patterns has also been recognized for which the sur
fluctuations vanish identically. The first of these special
tributes requires that the (d21)-st spatial moment of the
total correlation function be constrained in magnitude;
second requires a similar constraint on thedth spatial mo-
ment of the total correlation function. The preceding te
demonstrates that no point pattern can simultaneously
both hyperuniform and hyposurficial.

All infinitely extended perfectly periodic structures a
hyperuniform. We have stressed that geometrically less re
lar cases of hyperuniformity also exist, including those t
are spatially uniform and isotropic. The suitably normaliz
surface fluctuation quantity, which measures the exten
which hyperuniform systems fail to attain hyposurficial s
tus, becomes a natural non-negative order metric that
have evaluated numerically for a basic sampling of str
tures. We proved that the simple periodic linear array yie
the global minimum value for hyperuniform patterns ind
51, and showed that the triangular lattice produces
smallest values for the cases tested ind52. But in spite of
the fact that these minimizing structures correspond to o
mal packings of rods and disks, respectively, the fa
centered-cubic lattice for optimal sphere packing does
minimize the surface-fluctuation order metric ford53. In-
stead, the body-centered cubic lattice enjoys this distinc
@46#. For each choice of space dimension, other lattices
irregular hyperuniform patterns yield higher values for th
04111
er
r
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-
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t-

e

t
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u-
t

to
-
e
-
s

e
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n
d

order metric. An order metric for hyperuniform system
based on the local variance may find potential use in cate
rizing ‘‘jammed’’ and ‘‘saturated’’ sphere packings@42–
44,47# whose long-wavelength density fluctuations vanish

It is clearly desirable to extend the set of point patterns
which the surface fluctuation order metric has been num
cally evaluated. This would help to strengthen the impress
created thus far that regardless of space dimensiond, point
patterns arranged by increasing values of the order metric
indeed essentially arranged by increasing structural disor
It will be important in the future to include a selection o
two- and three-dimensional quasicrystalline point patte
@48# in the comparisons; the presumption at the present s
of understanding is that they would present order met
with values that lie between the low magnitudes of perio
lattices, and the substantially larger magnitudes of spati
uniform, isotropic, irregular point patterns. It would als
benefit insight to include cases of spatially uniform, but a
isotropic, point patterns; for example, those associated w
‘‘hexatic’’ order in two dimensions@49#.

An important class of hyperuniform systems arises fro
the so-called ‘‘g2-invariant processes’’@20,40,41,46#. These
processes require that the pair correlation functiong2(r ) re-
main unchanged as density increases from zero. For th
g2-invariant processes that correspond to thermal equ
rium, this criterion is implemented by virtue of compensati
continuous changes in the particle pair potential functi
For any given choice of the invariantg2, such a process is in
fact achievable, but only for densities up to a terminal de
sity limit. At this upper limit, the system of points attain
hyperuniformity, i.e.,S(k)50. Furthermore, examination o
the Ornstein-Zernike relation reveals that the direct corre
tion functionc(r ) develops a long-range tail as the termin
density is approached from below. By implication, for th
special case of a thermal equilibrium process, the pair po
tial at the terminal density develops a long-range repuls
Coulombic form. The conclusion is that hyperuniformity
that terminal density is logically associated with the loc
electroneutrality condition that all equilibrium systems
electrostatically charged particles must obey@50#.

The Ornstein-Zernike relation, though originally co
ceived to apply to systems in thermal equilibrium, can ne
ertheless be formally applied to any system for which
pair correlation functiong2(r ) is available. Hyperuniform
systems that are irregular and isotropic possess short-r
pair correlation only, but as in the examples just cited
corresponding direct correlation functions are long rang
In an important sense, hyperuniform systems exhibit a k
of ‘‘inverted critical phenomenon.’’ For conventional liquid
3-20
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vapor critical points,h(r )[g2(r )21 is long ranged and im
plies diverging density fluctuations and isothermal compre
ibilities, while the direct correlation functionc(r ) remains
short ranged. Hyperuniform systems have short range
h(r ), vanishing volume fluctuations and isothermal co
pressibility, and a long-rangedc(r ).

As a final matter, we mention that an attractive directi
for future study of hyperuniformity and related concepts
volves consideration of collective density variables. The
are defined by a nonlinear transformation of point-parti
positionsr j (1< j <N) as follows:

r~k!5(
j 51

N

exp~ ik•r j !. ~138!

If the particles interact through a spherically symmetric p
potential whose Fourier transform exists and is denoted
V(k), then the overall potential energy for theN particles in
volumeV can be expressed in the following manner:

F5
1

2V (
k

V~k!@r~k!r~2k!2N#. ~139!

It has been demonstrated@51# that at least in one dimension
application of a suitableV(k), followed byF minimization,
can totally suppress density fluctuations fork’s near the ori-
gin. This automatically produces a hyperuniform system c
figuration. Analogous studies need to be pursued for tw
and three-dimensional systems.
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APPENDIX A: INTERSECTION VOLUME OF TWO
IDENTICAL d-DIMENSIONAL SPHERES

In this appendix, we obtain an explicit expression for t
scaled intersection volume of two identicald-dimensional
spheres of radiusR whose centers are separated by a dista
r. This functiona(r ;R) is defined by Eq.~23!.

We begin by noting that thed-dimensional Fourier trans
form ~16! of any integrable functionf (r ) that depends only
on the modulusr 5ur u of the vectorr is given by@22#

f̃ ~k!5~2p!d/2E
0

`

r d21f ~r !
J(d/2)21~kr !

~kr !(d/2)21
dr, ~A1!

and the inverse transform~17! of f (k) is given by
04111
s-
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e
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e

f ~r !5
1

~2p!d/2E0

`

kd21f ~k!
J(d/2)21~kr !

~kr !(d/2)21
dk. ~A2!

Herek is the modulus of the wave vectork andJn(x) is the
Bessel function of ordern.

The Fourier transform of the window indicator functio
~31! is given by

w̃~k;R!5
~2p!d/2

k(d/2)21E0

R

r d/2J(d/2)21~kr !dr

5S 2p

kRD d/2

RdJd/2~kR!. ~A3!

Therefore, the Fourier transform ofa(r ;R), defined by Eq.
~26!, is given by

ã~k;R!52dpd/2G~11d/2!
@Jd/2~kR!#2

kd
. ~A4!

Using the inverse transform~A2! yields the scaled intersec
tion volume function to be

a~r ;R!5
2dG~11d/2!

r (d22)/2 E
0

` @Jd/2~kR!#2J(d/2)21~kr !dk

kd/2

5I 12x2S d11

2
,
1

2DQ~2R2r !, ~A5!

where

I x~a,b!5
Bx~a,b!

B~a,b!
~A6!

is thenormalizedincomplete beta function@28#,

Bx~a,b!5E
0

x

ta21~12t !b21dt, ~A7!

is the incomplete beta function, and

B~a,b!5E
0

1

ta21~12t !b21dt5
G~a!G~b!

G~a1b!
~A8!

is the beta function.
For the first five space dimensions, relation~A5!, for r

<2R, yields

a~r ;R!512
r

2R
, d51 ~A9!

a~r ;R!5
2

p Fcos21S r

2RD2
r

2R S 12
r 2

4R2D 1/2G , d52

~A10!

a~r ;R!512
3

4

r

R
1

1

16S r

RD 3

, d53 ~A11!
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a~r ;R!5
2

p Fcos21S r

2RD2H 5r

6R
2

1

12S r

RD 3J
3S 12

r 2

4R2D 1/2G , d54 ~A12!

a~r ;R!512
15

16

r

R
1

5

32S r

RD 3

2
3

256S r

RD 5

, d55.

~A13!

Figure 9 shows graphs of the scaled intersection volu
a(r ;R) as a function ofr for the first five space dimensions
For any dimension,a(r ;R) is a monotonically decreasin
function of r. At a fixed value ofr in the open interval
(0,2R), a(r ;R) is a monotonically decreasing function o
the dimensiond.

Expanding the general expression~A5! through first order
in r for r<2R yields

a~r ;R!512

GS d

2
11D

GS d11

2 DGS 1

2D
r

R
1oS r

RD , ~A14!

whereo(x) indicates terms of higher order thanx. This re-
lation will be of use to us in developing an asymptotic e
pression for the number variance for large windows.

APPENDIX B: FLUCTUATIONS IN EQUILIBRIUM
HARD-PARTICLE SYSTEMS

Hard particles in equilibrium represent an example o
correlated system that is generally not hyperuniform. T
one-dimensional case of identical hard rods of lengthD in
equilibrium is a particularly instructive case because the
dial distribution functiong2(r ) ~in the thermodynamic limit!
is known exactly for all densities@52#:

FIG. 9. The scaled intersection volumea(r ;R) for spherical
windows of radiusR as a function ofr for the first five space
dimensions. The uppermost curve is ford51 and the lowermost
curve is ford55.
04111
e

-
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-

fg2~x!5 (
k51

`

Q~x2k!
fk~x2k!k21

~12f!k~k21!!
expF2

f~x2k!

12f G ,
~B1!

wherex5r /D is a dimensionless distance andf5rD is the
covering fraction of the rods, which lies in the closed interv
@0,1#. Below the close-packed space-filling value off51,
the radial distribution function is a short-ranged function
the sense that one can always find a large enough valuer
beyond whichg2(r ) remains appreciably close to unity. Th
is, for f,1, the correlation length is always finite. Howeve
the pointf51 is singular in the sense that the system e
hibits perfect long-range order and thus is hyperuniform.
deed, atf51, the nearest-neighbor distance for each rod
exactly equal toD: a situation that is identically the same a
the single-scale one-dimensional periodic point pattern s
ied in Sec. IV.

Using relation~B1! in conjunction with relations~36! and
~37! enables us to compute the ‘‘volume’’ and ‘‘surface-are
contributions to the variance as a function of reduced den
f for identical hard rods in equilibrium. The results are su
marized in Fig. 10. We see that as the density increases
volume fluctuations decrease monotonically and only van
at the space-filling densityf51: the hyperuniform state. O
course,B vanishes atf50 and increases in value asf in-
creases until it achieves a maximum value atf'0.5. At the
hyperuniform state (f51), B5L/251/12, which corre-
sponds to the perfectly ordered close-packed state. For s
ciently small densities, the surface-area coefficient of eq
librium hard-sphere systems in higher dimensions
expected to have the same qualitative behavior as the
dimensional case. Specifically, the same trends should o
in higher dimensions for densities in the range 0<f<f f ,
wheref f corresponds to the freezing density, i.e., the po
above which the system undergoes a disorder to order p
transition. For densities between freezing and melting poi
the behavior of the surface-area coefficient is expected to
qualitatively different from that for hard rods in equilibrium
which is devoid of a phase transition. However, we can
finitively assert that the highest achievable density along
stable crystal branch is a hyperuniform state. In particu
for hard disks (d52) and hard spheres (d53) in equilib-
rium, the hyperuniform states correspond to the close-pac
triangular lattice and the fcc lattice, respectively.

APPENDIX C: HOW SMALL CAN THE VOLUME
COEFFICIENT BE FOR HYPOSURFICIAL SYSTEMS?

We know that a statistically homogeneous and isotro
point pattern cannot simultaneously be hyperuniform and
posurficial, i.e., the volume coefficientA @cf. Eq. ~43!# and
surface-area coefficientB @cf. Eq. ~44!# both cannot be zero
for a strictly convex window~Sec. II C!. The purpose of this
appendix is to investigate how smallA can be made for an
infinite hyposurficial point pattern (B50). To that end we
consider a hypothetical spherically symmetric pair corre
tion functiong2(r ) and a spherical window. We do not plac
any additional restrictions ong2(r ) besides the necessar
3-22
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realizability conditions thatg2(r )>0 for all r and S(k)>0
for all k. The hypothetical correlation function is characte
ized by three parameterse, C, andD as follows:

g2~r !5gS~r !1gL~r !, ~C1!

where gS(r ) denotes the short-ranged part defined by
step function

gS~r !5H 0, 0<r<D

1, r .D,
~C2!

andgL(r ) denotes the long-ranged part defined by

gL~r !5H 0, 0<r<D

CeS D

r D d111e

, r .D.
~C3!

HereD is a length parameter,C is a dimensionless constan
and e is a positive (e.0) but small parameter. The nece
sary conditiong2(r )>0 requires that the constantC satisfy
the trivial inequality

C>2e21. ~C4!

The form ofg2 ensures that we can make the surface-a
coefficient B vanish identically, as required. According
relation~44!, the surface-area coefficientB is proportional to
the dth moment of the total correlation functionh(r )
5g2(r )21. The dth moment integral for the hypothetica
pair correlation function~C1! is given by

E
0

`

h~r !r ddr52
Dd11

d11
1CDd11. ~C5!

To make this integral vanish, we take

FIG. 10. The volume coefficientA(f)5(12f)2 and surface-
area coefficientB(f) @defined in relation~35!# as a function of the
reduced densityf for a one-dimensional system of identical ha
rods in equilibrium. At the hyperuniform densityf51, B5L/2
51/12, which corresponds to the perfectly ordered close-pac
state.
04111
-

e

a

C5
1

d11
.0, ~C6!

which of course satisfies inequality~C4!. For such a hypo-
surficial correlation function~C1! that also satisfies the non
negativity conditionS(k)>0, we now show that the volume
coefficientA is only nonzero byO(e2).

Consider volume coefficientA @cf. ~38!# with this value of
C:

A5 lim
uku→0

S~k!511rE
Rd

h~r !dr5122df1S 2ddf

d11 D e

11e
,

~C7!

wheref5rv1(D/2) is a dimensionless density. If one inco
rectly setsA to be zero, one finds that the correspondi
density is given by

f* 5
1

2dS 12
de

~d11!~11e! D
. ~C8!

At such a value off, however,S(k) will be negative for
somek.0 near the origin for sufficiently small but nonzer
e, which shows in this specific instance that the point patt
corresponding to such a hypotheticalg2 cannot simulta-
neously be hyperuniform and hyposurficial, as expect
However, one can makeS(k50) positive and very smal
@while satisfyingS(k)>0 for all k] at a valuef slightly
smaller than Eq.~C8! in the limit e→01.

The other necessary conditionS(k)>0 will be obeyed for
all k provided that the number density is no larger than so
‘‘terminal density’’ rc ~or fc) @20,40,41#. The structure fac-
tor is given by

S~k!511r@HS~k!1HL~k!#, ~C9!

where HS(k) and HL(k) are the Fourier transforms o
gS(r )21 and gL(r ), respectively. The terminal density i
given by

rc52
1

min
k

@HS~k!1HL~k!#
. ~C10!

For simplicity, we will specialize to the cased53, keep-
ing in mind that our general conclusions apply to arbitra
dimension. Based on the aforementioned arguments, it is
ficient to consider the behavior ofS(k) for small k:

S~k!5118fF211
~kD!2

10
2O„~kD!4

…G16f
e

11e

2
3fApe

211e~11e!

GS 1

2
2

e

2D
GS 21

e

2D ukDu11e1
fe

12e
~kD!2

1O„~kD!4
…. ~C11!

d
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The nonanalytic termukDu11e @which arises due to inclusion
of relation~C3! for gL] has the effect of displacing the min
mum of S(k) away from the origin whengL50 to a sym-
metric pair of locations determined by

ukminDu5
15p

16
e ~C12!

ase→01. Moreover, in this leading order
e

ett

v.

or
pe

c-

ac

-
a

04111
S~0!2S~kmin!5
45p2f

64
e2. ~C13!

Note that this would lead to anO(e2) correction to expres-
sion ~C8! for f* . In summary, by adopting the correlatio
function ~C1! with C51/(d11), we can make the surface
area coefficientB50 and at the terminal densityfc , the
structure factorS(0)5A is only nonzero byO(e2).
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