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Drift by dichotomous Markov noise
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[. INTRODUCTION these values equal to, andk_ , respectively. Several physi-
cal applications, including persistent random walks, nuclear
Brownian motion is one of the paradigms of statisticalmagnetic resonance, chromatography, Taylor dispersion, and
mechanics. Following the seminal works of Einstein, Langekinetic theory, have been discussed when the speedmd
vin, and Smoluchowsky, a detailed mathematical analysi$_ are constants, and exact time-dependent results can be
can be made on the basis of Langevin or Fokker-Planclobtained in this cas¢3]. Somewhat surprisingly, the full
equations. While Brownian motion and its “time derivative,” time-dependent solution for linedr_ (x) and f_(x) is not
Gaussian white noise, are stochastic processes of fundamesailable, see Ref4] for a detailed discussion. In the case of
tal importance, the dichotomous Markov procésse, e.g., nonlinear dynamics, steady state properties can be calculated
Ref.[1]) has its own virtues and interest. First—and this isand have notably been studied in detail in the context of
our central contention here—systems driven by dichotomougoise-induced transitiorf§] and noise-induced phase transi-
noise can often be described in full analytic detail. Secondtions [6]. Specific dynamic properties have also been ob-
dichotomous noise reduces to white shot noise and Gaussi&ained. A significant effort has gone into the calculation of
white noise in the appropriate limifg]. Third, it can either  first passage time momenfg] and of transition rates, cf.
mimic the effects of finite correlation time of the noise, or it Kramers’ rate for thermal escajp@] and resonant activation
may directly provide a good representation of an actual9]. Furthermore, wherf , (x) andf_(x) are periodic, an-
physical situationsuch as, for example, thermal transitions other important dynamic propertinamely, the asymptotic
between two configurations or stateBinally, it has the ad- drift velocity), can be extracted from steady state results by
vantage that it can easily be implemented as an externa¥orking with periodic boundary conditions. This technique
noise with finite support. is of particular interest in the context of Josephson junctions
Most of the results for dynamics driven by dichotomousand Brownian motor§10-13. However, contrary to the
Markov noise are limited to systems with a single scalarclaims made in some of these papers, the problem of the first
variablex(t). The rate of change of this variable switches atpassage time moments, and the related issue of finding the
random between the£" dynamics, x(t)=f . (x), and the asymptotic drift veIOC|ty[_l4], was not sqlved in the most
. . general case. Indeed, with a few exceptiphs—-19, all the
d_' dynam_}c;]g,xét): fi(x) (th%d(g Staf?gsof%f thﬁ tirrl}por_al results that have been obtained exclude the cases where one
Sggﬁ:;i‘ diﬁgrezgglmelalsjgggn'e escribed by the following or both of the “+” dynamics haveunstablefixed points, and
: thus do not consider the possibility of crossing unstable fixed
points in the long time dynamics. The technical subtleties
were first highlighted and discussed in detail in a recent pa-
f+00+1-(%) N f+ 00— f-(x) &) (1)  Per[19]. In view of the broad applicability and importance of
2 2 ' dichotomous Markov noise, a comprehensive review of the
results for the asymptotic drift velocity in periodic systems
driven by such a noise is called for and is the subject of this
where&(t) is a realization of the dichotomous Markov pro- paper. As an illustration we also apply these results to the
cess taking the values 1, with transition rates between calculation of the drift for the rocking ratchet.

X(t)=
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Il. SOLVING THE MASTER EQUATION By subtracting the equations in E@®) (multiplied, respec-

The calculation of the asymptotic drift velocity in periodic tively, by k. and_k,)z one obta|_ns, n the asymptotic stgady
. . : ; state, the following first-order differential equation fofx):
systems is most easily carried out by starting from the master

equation, equivalent to Eql), for the probability densities

P.(x,t) and P_(x,t) to be atx at timet, if £&=+1 and d
—1, respectively, &{k+k,[f+(x)—f,(x)]P(x)+[k+f+(x)
Poxt)  d Tk F-00Ip0O}+ (ks +k)2p()=0.  (6)
. 5[f+(X)P+(th)]_k+P+(th)
+k_P_(x,1), Equations(4) and (6) have to be solved by imposing the
conditions ofcontinuity for P(x) and p(x) (or, at least, the
P ¢ p condition that they have no more thartegrable singulari-
Y 7 P (x ) ]—k_P_(x.0) ties on [O.L], periodicity P(x)=P(x+L) and p(x)=p(x
at Jx +L) V x, andnormalizationfor P(x), [5P(x)dx=1.

All these elements allow the determination of the unique
steady state solutioR(x), the stationary probability flud,
and hence the corresponding dynamic quantity of interest to

We assume thdt, (x) andf_(x) are continuous functions of us, namely, the asymptotic drift veloci¢x). As was pointed

+Kk, P, (Xt). 2

their argument, and that they are both periodic, i.e., out in detail in Ref[19], the situation is entirely different,
both physically and mathematically, when one or both of the
f.(x)=f,(x+L) and f_ (x)=f (x+L)V¥x. (3 =  dynamics haveunstablefixed points, depending on

whether the system can cro&s no? theseunstablefixed
points in the long-time limit. In fact, while this issue was
In order to extract the long-time average drift speed, it isalso mentioned in Refd15] and[16], a full and detailed
sufficient to study the steady state properties of @y.for  discussion was first given for a specific example with multi-
xe[0,L] with periodic boundary conditions. To show this, plicative dichotomous noise in Reff19]. In the following,
we introduce the steady state quantiti®x)=P_,(x) Wwe focus on the presentation and discussion of the final re-
+P_(x) (which represent the probability density for being sults for the asymptotic probability density and drift velocity,
at x regardless of the value @) [27] andp(x)=k,P.(x)  relegating the technical details to the Appendix.
—k_P_(x). From the summation of the two equations in
Eqg. (2), one immediately concludes that for the asymptotic Il. MAIN RESULTS

(steady state the probability flux) associated withP(x), ) ) )
Since we assume that the functiongx) are continuous,

and in view of the periodicity, fixed points in the separate
dynamicsx="f,(x) and x=f_(x) will always appear in
pairs. In the following, we will present the final results for
the three simplest cases that can occur, namely, no fixed
points, cf. Sec. Il A, one of the dynamics has two fixed

is a constant. The asymptotic drift velocity is then simplypoints and the other none, Sec. Ill B, and both dynamics
given by have two fixed points, Sec. Ill C.

Kif_(x)+k_f (x) fr(x)—f_(x)
= POt T P,
(4)

A. No fixed points

) L
0= fo [+ OOPL (0 +T-(0P-00Jdx=LJ. (5 The stationary probability density(x) reads

GO 0= F-(x)]

P(X)= 3
exp( f dz[k+/f+(z)+k_/f_(z)]) —1}
0

L, (x)f_(x)

X+L
><f dz
X

and the mean asymptotic velocity is given by

ki+k_ ( fo(2)+f_(2)

f+(z)—f,(z)+ 2[f+(z)—f(z)]) }exr{—Ldvv[k+/f+(w)+k_lf_(w)] , (7)
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: L \ ! -
()=t exp(j dz[k+/f+<z>+k/f(z>])—1} imPoo= lim po= 2 (e FRIROIZL
0 X\Xq X/ (x,+L) Lot (xp[ky /] fL(xp)] = 1]
K, +k_ (11)

« JLd f+(X)—f_(X)JX+Ld
X ——
0 fL00f_(x) Jx f (2)-f_(2) . . ,

or divergent but integrable whek, /|f’.(x;)|<1 [namely,

f.(2)+f_(z2) \’ X k. /|f’.(x1)]<1 corresponds to a power-law divergence,
A (29— (2] exr{ - J; dwk /1. (w) while k,, /|’ (x;)|=1 corresponds to a “marginal” logarith-
miclike integrable divergendeThis result is consistent with

-t the physical intuition that probability density builds up near a

+k- /f(W)])] ' ® stable fixed point, especially when the switching rate is low.

The normalization conditiorfﬁiJ’LP(x)dx:l, together
Here (--)' stands for the derivative with respect to the with Eg. (5), leads to the following expression for the mean
argument(in the present cas®. Note that the above expres- velocity:

sions for bothP(x) and(x) display the required symmetry

between the % and * —” dynamics. The above expression (=L fxl“- y fo(x)—f_(x) fxdzsgr{ f.(2)f_(2)

reduces to the one given earlier in the literature for the par- Xy fLOO)f_(X) | Jx, f . (2)—f_(2)

ticular case of additive dichotomous noipg, (x) —f_(x)

=const, cf. Ref[11]]. y ki +k- ( f (2)+f (2) ) '
f.(2)—f_(2) \2[f (2)-f_(2)]

B. One of the dynamics has two fixed points if0,L)

" -1
Xexy{—J’dW[kJr/h(WH—k/f(W)])] . (12

We suppose that the+” dynamics has two fixed points
X1<X, in [O,L), x; being stable[f_ (x;)=0,f’ (x;)<0],

while X, is unstable[ f (xz) =0.f} (xz)>0]. The “="dy-  This expression reduces to the one mentioned in [Ré}.for

namics has no fixed points. _ ~ the particular case of a symmetric additive dichotomous
As explained in detail in part 2 of the Appendix and in pgjse.

Ref.[19], there existexactly onesolution P(x) of the Egs.
(4) and (6), which is physically and mathematically accept-

able, and forxe[x,,x;+L] it is given by the following C. Each of the alternating dynamics has two fixed points

in[0O,L)

expression:
. Consider as above;<Xx, as the stable, respectively un-
) FL0—=F_(x)] [x f.(2f _(2) stable, fixed points of the +” dynamics, and suppose now
P(X)=—|————— | dzsgn-———F= “_n : : :
L fL00f_(X) | Jx, fo(2)—f_(2) that the dynamics also has two fixed pointsg<X.
Depending on the relative positions of these four points, as
ki +k_ fi(z)+f_(2) |’ well as on their naturdstable or unstab)e two different
X f.(2—f_(2) \2[f.(2)—f_(2)] types of situations might occur.

(i) In all the situations in whick; has as direct neighbor
[ another stable fixed point, it is physically clear that the
Xexr( JZ dwik /f*(W)Jrk/f(W)])' ©) asymptotic dynamics settles into a random alternating mo-
tion between these points, so that they delimit the interval in
which the steady-state probability density is nonZéro Ob-

viously, in this caséx)=0, i.e., there is no net flux of the
particles, whileP(x) is given by

As discussed in part 2 of the AppendiR(x) is finite and
continuous throughout the intervaty(,x; +L), with, in par-
ticular, at the unstable fixed poinb,

SO FYC R ey
j | (%) (ke kO (x)+ 1 S NP TNEY
lim P(x)= lim P(X):Tf Tk I 00 1] )
X/ %o X\Xp —(X2)LK4+ 7T (X2 (10 XeXL(—J dfk, /It (z)+k_/f_(2)]|, (13
Xo

Note that positivity ofP(x) implies thatf _(x) and(x) must  for x andx, lying between the two stable fixed points, while
have the same sign. Hence the direction of the asymptotithe constanC is determined through the normalization con-
drift is the same as that of the—" dynamics, which is dition for P(x).

physically obvious. (i) The cases that correspond to an alternation of the
At the stable fixed poink,, P(x) is either continuous stable and unstable fixed points are of more interest to us, as
whenk, /|f, (x)|>1, i.e., they lead to a nontrivial behavior ¢#(x) and to a nonzero
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flow of the particles. Without loss of generality we suppose thak (s) <xz (u)<x4 (s)<X, (u)<L, with the following

results:
fd I_{h(Z)f(Z)
fi(2)—f_(2)
xexr{—J dw(k+/f+(w)+k/f(w))) for x e (Xq,X4)

P(x)={ . (14
Q200 -F-(%) fxd f (2)f_(2) K, +k_ ( f (2)+f_(2) )
o N -T2

fL(x)f_(x) fi(2)—f_(2) \2[f (2)-f_(2)]
xex;{—jxdvv[k+/f+(w)+k_/f_(w)]) for xe (X4,X1+1L).

<X> fr)—f_(x)

F00f(0

K, +k_ +< f.(2)+f_(2) H
f (29-f (20 \2[f (2)—f_(2)]

P(x) is continuous throughoutx{,x,) and (x,,x;+L) and,  Which completes the discussion.

in particular, at the unstable fixed pointg and x5 it takes, All these results are suitable for a rapid generalization to
respectively, the valued0) and cases when both dynamics have several pairs of fixed points.
In particular, note that when there are several pairadj-
(X) (ky+KkO)/f(xg)+1 cent stable fixed pointshe system is no longer ergodic. De-
lim P(x)= lim P(x)=—— L ; : pending on the initial conditions, the asymptotic motion of
X% XX Fr () k- /12 (%) 1] (15 the particles is limited to one or another basin of attraction.

These attractors are represented, on the real axis, by the in-

The periodicity ofP(x) is connected with the behavior at tervals between such pairs of adjacent stable fixed points. We
the stable fixed poink, that was already discussed in the Shall not go into further details here.
preceding section, see Ed.1).
Concerning the behavior ¢¥(x) at the other stable fixed
point x,, it is either divergent (but integrabl¢ for IV. ROCKING RATCHET
k_/|f"(x4)|=<1, oritis continuous,
The general formulas that were derived above still involve
_ (x) (ky+KO)/f(xq)| -1 triple integrals. One interesting case for which explicit re-
lim P(x)= lim P(x)==— k1|t (xa)| -1 sults can be obtained is that of piecewise constant functions
XX X% Fe Ol (Xa) ](16) f, andf_. To illustrate the results for this case, we will
focus on one of the paradigms for Brownian motors, namely,
whenk_/|f" (x4)|>1. the rocking ratchef20]. In this problem an overdamped par-
ticle is gliding in a deterministic sawtooth-like potential
U(x) subject to an additional dichotomous forcing that

Imposing the normalization condition fd?(x), one ob-
tains the corresponding asymptotic drift velocity:

v +(X) f.(9)f_(2) 05—
<X>‘LHX T 000 ’[ -1
k, +k_ ( f (2)+f_(2) ) 0.4F ]
fi(2—f (20 \2[f. (2)-f_(2)]
. A0.3- .
><e><p<—f dvv[k+/f+(w)+k_/f_(w)]) z
’ 0.2 .
xrl () = fo(X)] [ fi(2)f_(2)
*fx4 R NGy dezsgr[n(z)—f(z) 0 ]
K, +k_ +( fo(2)+f_(2) )’}
fi(2—-f (20 \2[f. (2)-f_(2)] % 05 1 G 2
X
“ -1
Xexp(-f dwik, /f(w)+k_ /f—(W)]>} , (17 FIG. 1. The potential(x) used for numerical calculations on
z the rocking ratchetf(=1.0, f,=0.5, L=1.0, andL;=0.25).
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switches between the valugs and—A_ . The equation of forcing is zero, i.e.A, /k,=A_/k_, and, in order to fix

motion is of the form ideas, we suppose tha&_=A,>0 (the equality corre-
sponds to a symmetric dichotomous ngid&e now proceed

- Ar—A- A +A_ to a presentation of the results as they follow from the more

x=f(x)+ 2 + 2 &(v), (18) general discussion exposed earlier. Explicit closed analytical

expressions for the stationary probability density and the
with f(x)=—U’'(x), and thusf_.(x)=f(x)*xA.. Without = mean asymptotic velocity can be obtained in the case of a
loss of generality, we assume that the mean value of theontinuous, piecewise linear force profile:

fl for XE[O,Ll_I)
f fl—(f1+f2)(X—L1+|)/| for XE[Ll_l,Ll)
0=\ _¢, for xe[Ly,Li+L,—1) (19

—f2+(fl+f2)(X—Ll—L2+|)/| fOI’ XE[L1+ L2_|,L1+ Lz),

with f(x+L)=f(x), whereL=L;+L,; also, f; and f, are supposed to be two positive constants, with, d.gf;.

However, the corresponding final formulas are rather lengthy and will not be presented here. Instead, we reproduce the results
that are obtained by taking thierell-defined limit | —0 in the final expressions for the asymptotic probability density and the
mean velocity. Note that the limit—0 corresponds, formally, to a periodic “block-wave” profile:

fl for XE[O,Ll)

f)= —f, for xe[Ly,Li+Ly).

(20

Although analytical calculations are done in full generality, all our numerical results were obtained for the potential repre-
sented in Fig. 1, i.e., we considered the case of a negative bias. In this case, the mean asymptotic velocity is determined both
by a ratchetlike effectif presenj and by the bias of the potential. Of course, one can also con@deunsually done when
studying ratchet effegthe case of an untilted potential, which corresponds to the conditiop= f,L,.

A. Strong forcing: No fixed points
WhenA_>f, andA, >f,, running solutions appear for both tilisA, and —A_, and there is no fixed point in any of

the separate dynamicst” and “ —.” Applying the results obtained in Sec. Ill A, one finds the following expression for the
probability density in the two subintervals of one periad

X —(f1+ )AL A_(e?2—1 1

Q (futf2)A A ) exp— ¢q|x—Lq|/L)+— forxe[OL,)

Lo fofa(Ac+f) (A= (e?2 P1-1) f1

P(x)= 21

<X> (f1+ )AL A_(ef1—1) " 1 f ,
L XA~ PalX— - rx _
L flfz(A+_fz)(A_+fz)(e¢1—¢2_ 1)e H — ¢al 1)/L5] [ orxe[Lq,L)

We used here the dimensionless quantities

(ke kOl (ke kOl
A AT AT A AL ) (22

Because of the first-order discontinuity ffx) atx=L4,L, P(x) is also discontinuous at these points.
The mean asymptotic velocity reads

-1
. (23

(Ll Lz) A+A(f1+f2)2

CO=L1F, 7%, T L

e¢27¢1_ 1

1-e %1-e%2+ e‘/’2¢1)

and it is determined by the interplay between the characteristics of the noise and those of the piotgraititular, its bias,
if any). Some limit cases of interest include the following.

(i) Whenk. — (but A finite) one finds, of coursgx)=0—the noiseles¢deterministi¢ result.
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(ii) The quenched noise limik. —0 [i.e., a fractionA_ /(A +A_) of the particles, chosen at random, are subjected to a
constant external forcing . , while the remaining ones are subjected to an external foreiAg ] results in the following

mean velocity:

(x)=L

(iii) One obtainswvhite shot noisg2] by taking the limit
A_—», k_—o, such thatA_/k_=A,/k,=\A#0 (A,
andk being finitg. The mean velocity is then

fafa(Lifa—Lof) —ALA_(Lafy—Lofp) —LEsfr(AL —AL)

(24)
(Lifo—Lof)?—L(AL —A_)(Lifo—Lof) — LA A
|
L L, L, Dfl+f22
i LR A
1-e %1-elotede 4|t
2 X e¢2_¢l—1 (27)

L, L, fit+1s
___+ R
(fl fz) “‘*( ff;
1—e %1—et2+ebo—¢1] 1

et2 %11 ’

X

(25

where ¢;=fLi/[N(AL+T1)] and ¢@,=TL,/[N(A,
—f5)]. In the case of a symmetric potential,&f, and
L,=L,), one recovers the result [21].

Moreover, for very large values &, (and finite\) one
recovers the noiseless limit, name{x)~ (f; L;—f, L,)/L
(that is strictly due to the bias of the potential

(iv) Finally, the white noise limitA, =A_=A—x and
k, =k_=k—o, with A%/2k=D finite. Then

fily fol o

and ¢>2 = T , (26)

and the mean velocity23) takes the well-known forntsee,
e.g., Ref[22)]):

() 2A_ (A +fy)(efi-1)
P)= = A 1A
x)
Lf,

A_eh
A1,

_A_e¢2
A_+1,

*
LT,

~(L1—x) L

exd — ¢o(x—L,)/L,y]+1

In the case of an unbiased potential one has rbw ¢,
= ¢, implying a zero mean velocitias required by the sec-
ond law of thermodynamigsnd a probability density profile
that assumes the Boltzmann form

B fif,
(f,+f,)D(1—e"9)

[ exp( — ¢|x—L4|/Ly)
X

exd — ¢(x—Lq)/L,]

P(x)
for xe[OL;)

for xe[L4,L).
(28)

B. Intermediate forcing: Two fixed points

For intermediate forcing, there are two situations that
might occur.

(1) When A_>f; but A, <f,, the “+” dynamics has
two fixed points, namelyx=L (stable, which corresponds
to an asymmetriaS peak in the probability densityand x
=L (unstable, which corresponds to a finite discontinuity in
the probability density One obtains from the results in Sec.
I B:

(X) 2A_(A, —f,)(e?2-1)
L Kifu(AL+AD)

04 (x—Ly)

exd — ¢q|x—Lq|/L,]— 1} for xe[OL;)

(29
for xe[Lq,L).

Here 6. (x) are the half Diracs functions[28]. A simple intuitive explanation for their appearance is related to the fact that
in the limit of the block-wave forcd (x), Eq. (20), a particle can reach the stable fixed poirtL, (coming either from its

left or from its righy in afinite time and, once there, it will stay at this position for the reminder of th€ tiynamics. Thus,

in time average, this will give rise to a finite weight at this precise point. The corresponding mean velocity is then
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N L, L\ A_(A.+f;)(e?1—1) 1 1 }
<X>__L[<E_E)+ fy k+(A++A7)+(k++k,)fl
ALA-fb-1)] 1 Lo
' f2 k+(A++A)_(k++k)f2H : (30

The direction of the mean velocity is, as expected, the same as that of-thdyhamics, i.e.,<5<><0 in this case.

One interesting limit in this case is that of white shot noide:—«, k_—o, so thatA_/k_=A, /k, =N\ finite. Our
results are equivalent to those presented in Rid] for the probability density(although written under a closed, compact
form). One obtains the following expressions for the asymptotic velocity

A+ eh-1) MA—fpef-1)|

(31
A, f2 A, f2

(x)=—L

fo f1

(Lz Ly

Figure 2 shows the variation of the average asymptotic velocity as a functién ¢hccording to Eqs(25) and (31)] for
various fixed values of the transition rdte . Note the peak and the discontinuity in the slope of the velocith atf5,
connected with the appearance of the fixed points wherdecreases belovi.

(2) WhenA, >f, butA_<f,, there are no fixed points in thet” dynamics, but two fixed points in the =" dynamics,
namely,x=L, (stablg and x=L (unstablg; together with the discontinuous characterf¢k) at these points, they lead,
respectively, to an asymmetri£ peak of P(x) atx=L; and to a first-order discontinuity d¥(x) atx=L:

() 2A (A_—fy)(e?1—1) (X) 2A(A_+1,)(e?2—1)
PO=T T fa+ay O Y T AL ray OrX TR
<X> _A+e¢l
M _ — for xe[O,L
KAV exd — ¢q|x—Lq|/L ] +1 e[O0L,)
AT (32)
(x)[ A e?
AN — — — for xe[Lq,L).
LT, A+_fzex;{ do(x—Lp)/L,]—1 [Li,L)
|
This leads to a mean velocity that reads . L, Lo\ (A—fy)2e?1—1)
=T ) z
1 T2 2kf1
- Ly Lz) A (A_—f)(e?1-1) -1
X)=Li|———|+ A+f,)%(e?2—1
0 ((fl P fi +( 2 (2 ) . (34)
2kf5
1 1
KA TA) (k. tkf,
. A, (A_+f,)(ef2—1) C. Weak forcing
f2 Finally, whenA_<f, and A, <f,, there are no freely
1 1 -1 running solution in either of the dynamics. The points
X{k(AJrJrA) +(k++k)f2H (33 =L4,L are fixed points for both 4" and “ —” dynamics.

One concludes that the mean asymptotic velocity is zero, and
all the particles are concentrated at the stable fixed point
S - . . =L,, i.e.,, P(X)=8(x—Ly). In this case additional thermal
Note that in this caséx)>0, as dictated by the sign of the noise is needed to generate rectified motion. This problem

“+” dynamics. One can thus clearly realize the role of the . . :
ratchet effect if, e.g., one considers a potential with negativg as been solved for adiabatically slow forcifig, 11

bias (like the one in Fig. I indeed, in this case the mean
velocity is directed against the bias. The above expression
simplifies for the case of a symmetric dichotomic nofse The Langevin equatiofl8) is simulated numerically us-
=A_=A andk, =k_=k, and reads ing 100 000 particles and the probability distribution is aver-

D. Comparison with numerical simulations
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FIG. 2. For the white shot noise limiEgs.(25) and(31)]: The k

mean asymptotic velocity as a function&f for various values of

the transition ratd_.. . The sawtooth potential is the one represented

in Fig. 1.

FIG. 4. Mean asymptotic velocity as a function of the transition
rate k for the strong forcing casésee Figs. 1 and 3 for parameter
values. The solid line shows the theoretical res@8) and the open
circles the results of numerical simulations.
aged over ten snapshots. The biased potential shown in Fig. 1
is used for all numerical calculations. Figures 3 and 4 show, V. PERSPECTIVES

respectively, the probability distributioR(x) and the aver- The results obtained above reinforce the impression that

age velocity(x) for the strong forcing case, and Figs. 5 gichotomous noise can be put on a par with Gaussian white
and 6 for the intermediate forcing case. Agreement betweeRgjise as far as obtaining analytic results is concerned. Along
theory and simulations is very good. Discontinuities?ifx)  this line of thought, we expect that one can obtain exact
atx=L, andx=L are clearly seen in both cases. Figure 5results for the first passage time moments when unstable
also illustrates the existence of & peak atx=L;. Note fixed points are crossed. Also one can extend the calculations
the phenomenon oturrent reversalwhen one decreases for the asymptotic diffusion coefficient in periodic systems
the amplitude of the perturbatioffor a fixed k), i.e.,  subject to additive Gaussian white no{23,24 to the case
when one passes from strong forcifp fixed points, cf. of dichotomous forcing via its relationship to the first two
Fig. 4 to intermediate forcingfixed points appearing, cf. moments of the first passage tirfied]. Furthermore, the re-

Fig. 6). sults presented here can be directly applied to various other
problems, including Stokes’ driff13] and hypersensitive
transport 25].
2 T T T T
1.8_ / ] T T T T T
1.6 l . 10 E
=z 1 [ E
o E T

02 04 06 038 1

X 0.01""02 04 L0608 1
FIG. 3. Probability distributionP(x) for the strong forcing
case[A,=A_=2.0 andk, =k_=5.0; see Fig. 1 for the param- FIG. 5. Probability distributiorP(x) for the intermediate forc-

eters of U(x)]. The solid line shows the theoretical res(®1) ing casgA, =A_=0.75,k, =k_=0.5; see Fig. 1 for the param-
and the shaded histogram presents the results of numerical simulaters ofU(x)]. The solid line shows the theoretical res(2) and
tions. the shaded histogram presents the results of numerical simulations.
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L L A B and by substitution in Eq6) one can obtain a closed first-
order differential equation foP(x):
[ COF- )P () +H{[F () F-()] =[F+(x)f-(X)]
0.10 X[ )= -1+ ks Fo () + koL () THP(X)
Y
3 =31 (K +k )+ 00—f (%]
$
fo(x)+f_(x) ’}
0.05 . A2
2070~ 1] (A2)
Recall that ¢ - -)" denotes derivation with respect xo
The crux of the problem resides in finding tleerrect
. . . ) : | solution to Eq.(A2) [26]. A blind application of the standard
0'00() 05 1 15 2 25 3 method of variation of parameters leads to the familiar solu-
tion
FIG. 6. Particle velocity as a function of the transition rafer : .
) ; - : XY [ F (X)) —f_(x) _
the intermediate forcing caseee. Figs. 1 and 3 for parameter val- P(X)= ~——|—————|[CG(X,Xg) + K(X,Xg;X)],
ues. The solid line is the theoretical res®0) and the open circles L] fi0of-(x)
result from numerical simulations. (A3)
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APPENDIX u f (2)f_(2) ky+k_
K(u,v;w)zf dzsgr{
From the point of view of the mathematical steps in- v f+(2-1-2)[|T+(2-T-(2)
volved in solving Egs(4) and (6), there are several cases o2+ (2) |/
that have to be considered separately: (+—‘) G(W,2).
Case |.When the coefficient op(x) in Eq. (4), namely 2[f (2)—-f_(2)]

f —f_ h ifo,L Ive thi
[eqL(ei(t?on fo(r)[;)(i,). as no zeros ifi0.L), one can solve this The point is now to get theorrectintegration constar, or

Case IIl. When the coefficient oP(x) in Eq. (4), i.e. ratherconstantssince one cannot apply the above solution at
[k.f_(x)+k_f,(x)], has no zeros ifi0.L), one can solve the poi_nts .Where .the differential e_quation_ fB(x) i; singu—
Eq. (4) for P(x). Note that cases | and Il do not necessarilylarv which is precisely at the location of fixed points, i.e., at

exclude one another. the zeros off . .

Case llIl.When both the coefficients gf(x) and of P(x) _ . .
in Eq. (4) have zerosbut not the same zerpi [0.L). 1. No fixed points:f(x)f_(x)#0 in [0,L)

Case IVWhenf (x) andf_(x) have(at leasta common | this case there is no fixed point in any of the alternating
zero in[0,L). In this case one can directly notice that there iSdynamics “+” and “ —.” The usual procedure to determine

no net flow of partiCleS, i.,eJ=0, given the existence of the Cin Eq (A3) can now be followed, i.e., we require period_
common fixed point that cannot be crossed in any of the twacjty of P(x), i.e., P(x)=P(x+L), recalling that both
dynamics: This case_will hence not be studied any fu_rther.. f,(x) andf_(x) are periodic. This results in E(7) given in

A detailed analysis reveals that the results obtained ifhe main text. The mean velocity at the steady state, cf. Eq.
cases | and Il are completely equivalent and apply also wheg) in the main text, follows from the normalization B{x).
[fo(x)—f_(x)] and/or [k f_(x)+k_f (x)] havedifferent
zgros in[OL], ".e" in case |Il. _We therefore focus exclu- 2. One of the alternating dynamics has two fixed points
sively on the main results pertaining to case I. in [0,L)

In case | one can solve E¢) with respect tap(x), i.e., S ) ) )
The situation is entirely different, both physically and

Ik ko) =k fo () +K_fL(X)]P(X) mathematically, when the system can cresstablefixed
P(x)= fo(x)—f_(x) ' points within the intervalO,L) in the long-time limit. Con-
(A1) sider the simple case described in Sec. lll B in the main text.
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Clearly, the steady-state results leading to Egs.and (6)  dure leads to an apparent nonintegrable divergence, which is
still apply, but the solution of Eq6) is more delicate than clearly unphysical, and mathematically improper in view of
the “blind” integration that led to expressio®3) for P(x).  the requirement of normalization &f(x).

Indeed, in the vicinity of the fixed points; andx,, if we As explained in detail in Ref.19], the fallacy lies in the
simply try to apply formula(A3), we are led to the depen- assumption that a single integration constansee Eq(A3),
dence is valid throughout the regiofD,L]. One solves the problem
by choosing different integration constants in each of the
P(X)~|x—X, 2|717k+/[f3_(><1,2)]_ (A4) separate intervalg0,x4), (X;1,X5), and (,,L] between the

fixed points. There isexactly onechoice of this constant
. ) _ valid for both (x1,x5) and (x,,L) such that the divergence at
Eor the case of the’ stable fixed pmﬁ’t(x) is therefore con- ., is removed, namelyC=—K(x,,Xo:Xo); and another
tinuous wherk, /[f’ (x;)|>1, and divergent but integrable choice valid in the interval0x,) that ensures the required
for k, /|f'.(x1)|<1, a result that causes no conceptual dif-continuity and periodicity ofP(x). The acceptable expres-
ficulties. However, at the unstable fixed poist this proce-  sion for the probability density is therefore found to be

) [FL00—f (%)
% W[K(L,XZ;L)G(X,O)+K(x,O;xO)] for xe[0x,)
PO)=4 (A5)
) [f L (x)—f_(x) _
T oo K(X,X5;X) for xe(xg,L).

These expressions can be further simplified if one takes asvely. Therefore,P(x) presents a power-law integrable di-
the basic period ndtO,L ], but[x4,x;+L]. Then the simple- vergence,P(x)~|x—x1|‘1+k+’“'+(xl)| in the neighborhood
looking, “compact” expression P(x.)=<x)/L|[.f+(x) of x;, and P(X)~|X_X1_L|fl+k+/|fﬁr(x1)\ in the neigh-
_f?(x)]/f+(x)f,(x)|K(x,xz;x)_ [Eq. (9) in the main text  p 004 ofx +L.
holds throughout this new basic period. With this choice of (c) Finally, for k, /|f' (x;)| =1, K(x,X,:;0) behaves like

trlfﬂ_PbaS:jc _linlter\(/jal, Lhe norm.alglzzat:non H condition Injx—x,| in the vicinity of x; (respectively, like lix—x;—L|
[y, P(x)dx=1 leads to the expressidd2) for the mean iy the vicinity of x,+ L), while |f. (x)|G(0x) has a finite

velocity. limit at these points. Thu®(x) has a “marginal,” logarith-
P(x) as given abovéEg. (A5) or Eqg. (9)] meets all the miclike divergence at these points.
requirements enumerated in Sec. Il. In particular, let us
check its behavior at the fixed pointg andx,. In order to
do this, it is useful to write Eq(9) as 3. Each of the two alternating dynamics has two fixed
points in [O,L)
P(x)= 0 f(x)- f_(x)‘ K(x:x2;0) (A6) Suppose that each of the two dynamics;™and “ —,”
L fo(x) |]fL(0][G(0x)" has two fixed pointgone stable and one unstapli@ the

interval [OL), i.e., the situation described in Sec. Il B.

For x=x, (the unstable fixed point K(x,x2;0)/  Again, if one blindly applies the resula3) for P(x), then in
{If.(x)|G(0x)} presents an indeterminacy of the type the vicinity of the fixed points
“0/0;” applying Hospital's rule one simply finds th&(x) is
continuous ak=x,, and its value is given by Eq10). P(X—Xg0)~|Xx—x; 4 17K+ /[fi(xl,z)],

For x=x, (the stable fixed point there are three situa- ' '
tions that might occur, depending on the value of
Ky /|f(xq)]: _ vy |—1=k_ I (x30]

(@ For ki/|f'.(x;)|>1, both K(x,x,;0) and PX=Xa0) =X~ Xad A, (A7)
| (x)|G(0x) present a divergence for\ ,x;, XX, +L;
therefore, P(x) presents an indeterminacy of the type

> One again encounters the nonphysical, nonintegrable diver-
“ofo0.” Applying Hospital's rule one finds tha®(x) has the ga ) prys! ned W

LA i : gence at thainstablefixed points. The correct procedure is
same finite limit as<™\x;, x/x;+L, as indicated in Q. z44in to use the solutioph3), but with different integration
(12). , o constantsC in each of the open intervals between the fixed
(b) For k. /[f}(xy)[<1, K(x,x2;0) is finite and non-  qints The latter constants are determined by the require-
zero at x=x; and x;+L, while [f.(x)[G(0X)—~0  ments(i) to remove the strong divergences at the unstable
as |x—x, |1k 110Dl and [x—x, — L|1 %+ /1720l respec-  fixed points, by imposing the condition that the coefficient of
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the divergent term becomes zero at these poiiitsto en-
sure continuity and periodicity d?(x); and(iii ) through the
normalization condition, to determine the flowvand the

mean asymptotic velocityx).
Case a: &Xx; (5 <xz (U) <x4 (5) <X, (u) <L. The
above “program” leads to the expressigh4) in the main

fo(x)—f_(x)
fL(x)f_(x)

50
L

POXO=1{
)
L

fL(x)—f_(x)
fL0f-(x)

with the good behavior&ontinuity) at the unstable fixed po
the stable fixed points; andxs, as well as the required peri

by
fxg
X1

fr)—-f-(%)

X 0t

<'x>=L[

K(x,xz,x)+J

PHYSICAL REVIEW E68, 041111 (2003

text for the probability densityin the appropriately chosen
basic period[x;,x;+L]), and to the corresponding mean
asymptotic velocity, Eq(17).

Case b: B=x4 () <X, (U) <Xz () <X4 (U) <L. One gets
the following expression for the probability density, again in
the basic intervalx,,x;+L]:

K(X,X5,X) for Xxe(Xq,X3)
(A8)
K(x,X4,X) for xe(xz,x;+L),

ints andx, and either continuity otintegrable divergences at
odicity f&(x). The mean asymptotic velocity is therefore given

xprL | fL(X)—f_(X)

00T (0 (A9

-1
K(x,x4,x)’ .
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