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Drift by dichotomous Markov noise
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We derive explicit results for the asymptotic probability density and drift velocity in systems driven by
dichotomous Markov noise, including the situation in which the asymptotic dynamics crossesunstablefixed
points. The results are illustrated on the problem of the rocking ratchet.
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I. INTRODUCTION

Brownian motion is one of the paradigms of statistic
mechanics. Following the seminal works of Einstein, Lan
vin, and Smoluchowsky, a detailed mathematical analy
can be made on the basis of Langevin or Fokker-Pla
equations. While Brownian motion and its ‘‘time derivative
Gaussian white noise, are stochastic processes of funda
tal importance, the dichotomous Markov process~see, e.g.,
Ref. @1#! has its own virtues and interest. First—and this
our central contention here—systems driven by dichotom
noise can often be described in full analytic detail. Seco
dichotomous noise reduces to white shot noise and Gaus
white noise in the appropriate limits@2#. Third, it can either
mimic the effects of finite correlation time of the noise, or
may directly provide a good representation of an act
physical situation~such as, for example, thermal transitio
between two configurations or states!. Finally, it has the ad-
vantage that it can easily be implemented as an exte
noise with finite support.

Most of the results for dynamics driven by dichotomo
Markov noise are limited to systems with a single sca
variablex(t). The rate of change of this variable switches
random between the ‘‘1’’ dynamics, ẋ(t)5 f 1(x), and the
‘‘ 2 ’’ dynamics,ẋ(t)5 f 2(x) ~the dot stands for the tempora
derivative!. This dynamics can be described by the followi
stochastic differential equation:

ẋ~ t !5
f 1~x!1 f 2~x!

2
1

f 1~x!2 f 2~x!

2
j~ t !, ~1!

wherej(t) is a realization of the dichotomous Markov pr
cess taking the values61, with transition rates betwee
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these values equal tok1 andk2 , respectively. Several physi
cal applications, including persistent random walks, nucl
magnetic resonance, chromatography, Taylor dispersion,
kinetic theory, have been discussed when the speedsf 1 and
f 2 are constants, and exact time-dependent results ca
obtained in this case@3#. Somewhat surprisingly, the ful
time-dependent solution for linearf 1(x) and f 2(x) is not
available, see Ref.@4# for a detailed discussion. In the case
nonlinear dynamics, steady state properties can be calcu
and have notably been studied in detail in the context
noise-induced transitions@5# and noise-induced phase trans
tions @6#. Specific dynamic properties have also been o
tained. A significant effort has gone into the calculation
first passage time moments@7# and of transition rates, cf
Kramers’ rate for thermal escape@8# and resonant activation
@9#. Furthermore, whenf 1(x) and f 2(x) are periodic, an-
other important dynamic property~namely, the asymptotic
drift velocity!, can be extracted from steady state results
working with periodic boundary conditions. This techniqu
is of particular interest in the context of Josephson junctio
and Brownian motors@10–13#. However, contrary to the
claims made in some of these papers, the problem of the
passage time moments, and the related issue of finding
asymptotic drift velocity@14#, was not solved in the mos
general case. Indeed, with a few exceptions@15–18#, all the
results that have been obtained exclude the cases where
or both of the ‘‘6 ’’ dynamics haveunstablefixed points, and
thus do not consider the possibility of crossing unstable fix
points in the long time dynamics. The technical subtlet
were first highlighted and discussed in detail in a recent
per@19#. In view of the broad applicability and importance o
dichotomous Markov noise, a comprehensive review of
results for the asymptotic drift velocity in periodic system
driven by such a noise is called for and is the subject of t
paper. As an illustration we also apply these results to
calculation of the drift for the rocking ratchet.
©2003 The American Physical Society11-1
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II. SOLVING THE MASTER EQUATION

The calculation of the asymptotic drift velocity in period
systems is most easily carried out by starting from the ma
equation, equivalent to Eq.~1!, for the probability densities
P1(x,t) and P2(x,t) to be atx at time t, if j511 and
21, respectively,

]P1~x,t !

]t
52

]

]x
@ f 1~x!P1~x,t !#2k1P1~x,t !

1k2P2~x,t !,

]P2~x,t !

]t
52

]

]x
@ f 2~x!P2~x,t !#2k2P2~x,t !

1k1P1~x,t !. ~2!

We assume thatf 1(x) and f 2(x) are continuous functions o
their argument, and that they are both periodic, i.e.,

f 1~x!5 f 1~x1L ! and f 2~x!5 f 2~x1L ! ;x. ~3!

In order to extract the long-time average drift speed, it
sufficient to study the steady state properties of Eq.~2! for
xP@0,L# with periodic boundary conditions. To show thi
we introduce the steady state quantitiesP(x)5P1(x)
1P2(x) ~which represent the probability density for bein
at x regardless of the value ofj) @27# and p(x)5k1P1(x)
2k2P2(x). From the summation of the two equations
Eq. ~2!, one immediately concludes that for the asympto
~steady! state the probability fluxJ associated withP(x),

J5
k1 f 2~x!1k2 f 1~x!

k11k2
P~x!1

f 1~x!2 f 2~x!

k11k2
p~x!,

~4!

is a constant. The asymptotic drift velocity is then simp
given by

^ẋ&5E
0

L

@ f 1~x!P1~x!1 f 2~x!P2~x!#dx5LJ. ~5!
04111
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By subtracting the equations in Eq.~2! ~multiplied, respec-
tively, by k1 andk2), one obtains, in the asymptotic stead
state, the following first-order differential equation forp(x):

d

dx
$k1k2@ f 1~x!2 f 2~x!#P~x!1@k1 f 1~x!

1k2 f 2~x!#p~x!%1~k11k2!2p~x!50. ~6!

Equations~4! and ~6! have to be solved by imposing th
conditions ofcontinuity for P(x) and p(x) ~or, at least, the
condition that they have no more thanintegrable singulari-
ties! on @0,L#, periodicity P(x)5P(x1L) and p(x)5p(x
1L) ; x, andnormalizationfor P(x), *0

LP(x)dx51.
All these elements allow the determination of the uniq

steady state solutionP(x), the stationary probability fluxJ,
and hence the corresponding dynamic quantity of interes
us, namely, the asymptotic drift velocity^ẋ&. As was pointed
out in detail in Ref.@19#, the situation is entirely different
both physically and mathematically, when one or both of
‘‘ 6 ’’ dynamics haveunstablefixed points, depending on
whether the system can cross~or not! theseunstablefixed
points in the long-time limit. In fact, while this issue wa
also mentioned in Refs.@15# and @16#, a full and detailed
discussion was first given for a specific example with mu
plicative dichotomous noise in Ref.@19#. In the following,
we focus on the presentation and discussion of the final
sults for the asymptotic probability density and drift velocit
relegating the technical details to the Appendix.

III. MAIN RESULTS

Since we assume that the functionsf 6(x) are continuous,
and in view of the periodicity, fixed points in the separa
dynamics ẋ5 f 1(x) and ẋ5 f 2(x) will always appear in
pairs. In the following, we will present the final results fo
the three simplest cases that can occur, namely, no fi
points, cf. Sec. III A, one of the dynamics has two fixe
points and the other none, Sec. III B, and both dynam
have two fixed points, Sec. III C.

A. No fixed points

The stationary probability densityP(x) reads
P~x!5
^ẋ&@ f 1~x!2 f 2~x!#

L f 1~x! f 2~x!FexpS E
0

L

dz@k1 / f 1~z!1k2 / f 2~z!# D 21G
3E

x

x1L

dzF k11k2

f 1~z!2 f 2~z!
1S f 1~z!1 f 2~z!

2@ f 1~z!2 f 2~z!# D 8GexpS 2E
z

x

dw@k1 / f 1~w!1k2 / f 2~w!# D , ~7!

and the mean asymptotic velocity is given by
1-2



e
-

y
n
a

in

t-

o

e,
-

r a
w.

n

us

-

as

r

o-
l in

le
n-

the
, as

DRIFT BY DICHOTOMOUS MARKOV NOISE PHYSICAL REVIEW E68, 041111 ~2003!
^ẋ&5LFexpS E
0

L

dz@k1 / f 1~z!1k2 / f 2~z!# D 21G
3H E

0

L

dx
f 1~x!2 f 2~x!

f 1~x! f 2~x!
E

x

x1L

dzF k11k2

f 1~z!2 f 2~z!

1S f 1~z!1 f 2~z!

2@ f 1~z!2 f 2~z!# D 8GexpS 2E
z

x

dw@k1 / f 1~w!

1k2 / f 2~w!# D J 21

. ~8!

Here (•••)8 stands for the derivative with respect to th
argument~in the present casez!. Note that the above expres
sions for bothP(x) and ^ẋ& display the required symmetr
between the ‘‘1 ’’ and ‘‘ 2 ’’ dynamics. The above expressio
reduces to the one given earlier in the literature for the p
ticular case of additive dichotomous noise@ f 1(x)2 f 2(x)
5const, cf. Ref.@11##.

B. One of the dynamics has two fixed points in†0,L …

We suppose that the ‘‘1’’ dynamics has two fixed points
x1,x2 in @0,L), x1 being stable @ f 1(x1)50,f 18 (x1),0#,
while x2 is unstable@ f 1(x2)50,f 18 (x2).0#. The ‘‘2 ’’ dy-
namics has no fixed points.

As explained in detail in part 2 of the Appendix and
Ref. @19#, there existsexactly onesolutionP(x) of the Eqs.
~4! and ~6!, which is physically and mathematically accep
able, and forxP@x1 ,x11L# it is given by the following
expression:

P~x!5
^ẋ&
L U f 1~x!2 f 2~x!

f 1~x! f 2~x!
U E

x2

x

dzsgnF f 1~z! f 2~z!

f 1~z!2 f 2~z!G
3F k11k2

f 1~z!2 f 2~z!
1S f 1~z!1 f 2~z!

2@ f 1~z!2 f 2~z!# D 8G
3expS 2E

z

x

dw@k1 / f 1~w!1k2 / f 2~w!# D . ~9!

As discussed in part 2 of the Appendix,P(x) is finite and
continuous throughout the interval (x1 ,x11L), with, in par-
ticular, at the unstable fixed pointx2,

lim
x↗x2

P~x!5 lim
x↘x2

P~x!5
^ẋ&
L

~k11k2!/ f 18 ~x2!11

f 2~x2!@k1 / f 18 ~x2!11#
.

~10!

Note that positivity ofP(x) implies thatf 2(x) and^ẋ& must
have the same sign. Hence the direction of the asympt
drift is the same as that of the ‘‘2 ’’ dynamics, which is
physically obvious.

At the stable fixed pointx1 , P(x) is either continuous
whenk1 /u f 18 (x1)u.1, i.e.,
04111
r-

tic

lim
x↘x1

P~x!5 lim
x↗~x11L !

P~x!5
^ẋ&
L

~k11k2!/u f 18 ~x1!u21

f 2~x1!@k1 /u f 18 ~x1!u21#
,

~11!

or divergent but integrable whenk1 /u f 18 (x1)u<1 @namely,
k1 /u f 18 (x1)u,1 corresponds to a power-law divergenc
while k1 /u f 18 (x1)u51 corresponds to a ‘‘marginal’’ logarith
miclike integrable divergence#. This result is consistent with
the physical intuition that probability density builds up nea
stable fixed point, especially when the switching rate is lo

The normalization condition*x1

x11LP(x)dx51, together

with Eq. ~5!, leads to the following expression for the mea
velocity:

^ẋ&5LH E
x1

x11L

dxU f 1~x!2 f 2~x!

f 1~x! f 2~x!
U E

x2

x

dzsgnF f 1~z! f 2~z!

f 1~z!2 f 2~z!G
3F k11k2

f 1~z!2 f 2~z!
1S f 1~z!1 f 2~z!

2@ f 1~z!2 f 2~z!# D 8G
3expS 2E

z

x

dw@k1 / f 1~w!1k2 / f 2~w!# D J 21

. ~12!

This expression reduces to the one mentioned in Ref.@16# for
the particular case of a symmetric additive dichotomo
noise.

C. Each of the alternating dynamics has two fixed points
in †0,L …

Consider as abovex1,x2 as the stable, respectively un
stable, fixed points of the ‘‘1’’ dynamics, and suppose now
that the ‘‘2 ’’ dynamics also has two fixed points,x3,x4.
Depending on the relative positions of these four points,
well as on their nature~stable or unstable!, two different
types of situations might occur.

~i! In all the situations in whichx1 has as direct neighbo
another stable fixed point, it is physically clear that the
asymptotic dynamics settles into a random alternating m
tion between these points, so that they delimit the interva
which the steady-state probability density is nonzero@5#. Ob-
viously, in this casê ẋ&50, i.e., there is no net flux of the
particles, whileP(x) is given by

P~x!5C
f 1~x!2 f 2~x!

f 1~x! f 2~x!

3expS 2E
x0

x

dz@k1 / f 1~z!1k2 / f 2~z!# D , ~13!

for x andx0 lying between the two stable fixed points, whi
the constantC is determined through the normalization co
dition for P(x).

~ii ! The cases that correspond to an alternation of
stable and unstable fixed points are of more interest to us
they lead to a nontrivial behavior ofP(x) and to a nonzero
1-3
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flow of the particles. Without loss of generality we suppose that 0,x1 (s),x3 (u),x4 (s),x2 (u),L, with the following
results:

P~x!5

¦

^ ẋ&
L U f 1~x!2 f 2~x!

f 1~x! f 2~x!
U E

x3

x

dzsgnF f 1~z! f 2~z!

f 1~z!2 f 2~z!GF k11k2

f 1~z!2 f 2~z!
1S f 1~z!1 f 2~z!

2@ f 1~z!2 f 2~z!# D 8G
3expS 2E

z

x

dw~k1 / f 1~w!1k2 / f 2~w!! D for xP~x1 ,x4!

^ẋ&
L U f 1~x!2 f 2~x!

f 1~x! f 2~x!
U E

x2

x

dzsgnF f 1~z! f 2~z!

f 1~z!2 f 2~z!GF k11k2

f 1~z!2 f 2~z!
1S f 1~z!1 f 2~z!

2@ f 1~z!2 f 2~z!# D 8G
3expS 2E

z

x

dw@k1 / f 1~w!1k2 / f 2~w!# D for xP~x4 ,x11L !.

~14!
t
e

to
ints.

-
of
on.
e in-
We

lve
e-
ions
ill
ely,
r-
al
at

n

P(x) is continuous throughout (x1 ,x4) and (x4 ,x11L) and,
in particular, at the unstable fixed pointsx2 andx3 it takes,
respectively, the values~10! and

lim
x↗x3

P~x!5 lim
x↘x3

P~x!5
^ẋ&
L

~k11k2!/ f 28 ~x3!11

f 1~x3!@k2 / f 28 ~x3!11#
.

~15!

The periodicity ofP(x) is connected with the behavior a
the stable fixed pointx1 that was already discussed in th
preceding section, see Eq.~11!.

Concerning the behavior ofP(x) at the other stable fixed
point x4, it is either divergent ~but integrable! for
k2 /u f 28 (x4)u<1, or it is continuous,

lim
x↘x4

P~x!5 lim
x↗x4

P~x!5
^ ẋ&
L

~k11k2!/u f 28 ~x4!u21

f 1~x4!@k2 /u f 28 ~x4!u21#
,

~16!

whenk2 /u f 28 (x4)u.1.
Imposing the normalization condition forP(x), one ob-

tains the corresponding asymptotic drift velocity:

^ẋ&5LH E
x1

x4
dxU f 1~x!2 f 2~x!

f 1~x! f 2~x!
U E

x3

x

dzsgnF f 1~z! f 2~z!

f 1~z!2 f 2~z!G
3F k11k2

f 1~z!2 f 2~z!
1S f 1~z!1 f 2~z!

2@ f 1~z!2 f 2~z!# D 8G
3expS 2E

z

x

dw@k1 / f 1~w!1k2 / f 2~w!# D
1E

x4

x11L

dxU f 1~x!2 f 2~x!

f 1~x! f 2~x!
U E

x2

x

dzsgnF f 1~z! f 2~z!

f 1~z!2 f 2~z!G
3F k11k2

f 1~z!2 f 2~z!
1S f 1~z!1 f 2~z!

2@ f 1~z!2 f 2~z!# D 8G
3expS 2E

z

x

dw@k1 / f 1~w!1k2 / f 2~w!# D J 21

, ~17!
04111
which completes the discussion.
All these results are suitable for a rapid generalization

cases when both dynamics have several pairs of fixed po
In particular, note that when there are several pairs ofadja-
cent stable fixed points, the system is no longer ergodic. De
pending on the initial conditions, the asymptotic motion
the particles is limited to one or another basin of attracti
These attractors are represented, on the real axis, by th
tervals between such pairs of adjacent stable fixed points.
shall not go into further details here.

IV. ROCKING RATCHET

The general formulas that were derived above still invo
triple integrals. One interesting case for which explicit r
sults can be obtained is that of piecewise constant funct
f 1 and f 2 . To illustrate the results for this case, we w
focus on one of the paradigms for Brownian motors, nam
the rocking ratchet@20#. In this problem an overdamped pa
ticle is gliding in a deterministic sawtooth-like potenti
U(x) subject to an additional dichotomous forcing th

FIG. 1. The potentialU(x) used for numerical calculations o
the rocking ratchet (f 151.0, f 250.5, L51.0, andL150.25).
1-4
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switches between the valuesA1 and2A2 . The equation of
motion is of the form

ẋ5 f ~x!1
A12A2

2
1

A11A2

2
j~ t !, ~18!

with f (x)52U8(x), and thusf 6(x)5 f (x)6A6 . Without
loss of generality, we assume that the mean value of
04111
e

forcing is zero, i.e.,A1 /k15A2 /k2 , and, in order to fix
ideas, we suppose thatA2>A1.0 ~the equality corre-
sponds to a symmetric dichotomous noise!. We now proceed
to a presentation of the results as they follow from the m
general discussion exposed earlier. Explicit closed analyt
expressions for the stationary probability density and
mean asymptotic velocity can be obtained in the case o
continuous, piecewise linear force profile:
he results
the

repre-
ined both

f
the
f ~x!55
f 1 for xP@0,L12 l !

f 12~ f 11 f 2!~x2L11 l !/ l for xP@L12 l ,L1!

2 f 2 for xP@L1 ,L11L22 l !

2 f 21~ f 11 f 2!~x2L12L21 l !/ l for xP@L11L22 l ,L11L2!,

~19!

with f (x1L)5 f (x), where L5L11L2; also, f 1 and f 2 are supposed to be two positive constants, with, e.g.,f 2, f 1.
However, the corresponding final formulas are rather lengthy and will not be presented here. Instead, we reproduce t
that are obtained by taking the~well-defined! limit l→0 in the final expressions for the asymptotic probability density and
mean velocity. Note that the limitl→0 corresponds, formally, to a periodic ‘‘block-wave’’ profile:

f ~x!5H f 1 for xP@0,L1!

2 f 2 for xP@L1 ,L11L2!.
~20!

Although analytical calculations are done in full generality, all our numerical results were obtained for the potential
sented in Fig. 1, i.e., we considered the case of a negative bias. In this case, the mean asymptotic velocity is determ
by a ratchetlike effect~if present! and by the bias of the potential. Of course, one can also consider~as usually done when
studying ratchet effect! the case of an untilted potential, which corresponds to the conditionf 1L15 f 2L2.

A. Strong forcing: No fixed points

WhenA2. f 1 andA1. f 2, running solutions appear for both tilts1A1 and2A2 , and there is no fixed point in any o
the separate dynamics ‘‘1’’ and ‘‘ 2. ’’ Applying the results obtained in Sec. III A, one finds the following expression for
probability density in the two subintervals of one periodL:

P~x!55
^ẋ&
L H 2~ f 11 f 2!A1A2~ef221!

f 1f 2~A11 f 1!~A22 f 1!~ef22f121!
exp~2f1ux2L1u/L1!1

1

f 1
J for xP@0,L1!

^ ẋ&
L H ~ f 11 f 2!A1A2~ef121!

f 1f 2~A12 f 2!~A21 f 2!~ef12f221!
exp@2f2~x2L1!/L2#2

1

f 2
J , for xP@L1 ,L !.

~21!

We used here the dimensionless quantities

f15
~k11k2! f 1L1

~A22 f 1!~A11 f 1!
and f25

~k11k2! f 2L2

~A21 f 2!~A12 f 2!
. ~22!

Because of the first-order discontinuity off (x) at x5L1 ,L, P(x) is also discontinuous at these points.
The mean asymptotic velocity reads

^ẋ&5LF S L1

f 1
2

L2

f 2
D1

A1A2

k11k2
S f 11 f 2

f 1f 2
D 2S 12e2f12ef21ef22f1

ef22f121
D G21

, ~23!

and it is determined by the interplay between the characteristics of the noise and those of the potential~in particular, its bias,
if any!. Some limit cases of interest include the following.

~i! Whenk6→` ~but A6 finite! one finds, of course,̂ẋ&50—the noiseless~deterministic! result.
1-5
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~ii ! The quenched noise limitk6→0 @i.e., a fractionA2 /(A11A2) of the particles, chosen at random, are subjected
constant external forcingA1 , while the remaining ones are subjected to an external forcing2A2] results in the following
mean velocity:

^ẋ&5L
f 1f 2~L1f 22L2f 1!2A1A2~L1f 12L2f 2!2L f 1f 2~A12A2!

~L1f 22L2f 1!22L~A12A2!~L1f 22L2f 1!2L2A1A2

. ~24!
-

at

s

in
c.
~iii ! One obtainswhite shot noise@2# by taking the limit
A2→`, k2→`, such thatA2 /k25A1 /k1[lÞ0 (A1

andk1 being finite!. The mean velocity is then

^ẋ&5LF S L1

f 1
2

L2

f 2
D1lA1S f 11 f 2

f 1f 2
D 2

3
12e2f12ef21ef22f1

ef22f121
G21

, ~25!

where f15 f 1L1 /@l(A11 f 1)# and f25 f 2L2 /@l(A1

2 f 2)#. In the case of a symmetric potential (f 15 f 2 and
L15L2), one recovers the result in@21#.

Moreover, for very large values ofA1 ~and finitel) one
recovers the noiseless limit, namely,^ẋ&'( f 1 L12 f 2 L2)/L
~that is strictly due to the bias of the potential!.

~iv! Finally, the white noise limit:A15A2[A→` and
k15k2[k→`, with A2/2k5D finite. Then

f15
f 1L1

D
and f25

f 2L2

D
, ~26!

and the mean velocity~23! takes the well-known form~see,
e.g., Ref.@22#!:
04111
^ẋ&5LF S L1

f 1
2

L2

f 2
D1DS f 11 f 2

f 1f 2
D 2

3S 12e2f12ef21ef22f1

ef22f121
D G21

. ~27!

In the case of an unbiased potential one has nowf15f2
5f, implying a zero mean velocity~as required by the sec
ond law of thermodynamics! and a probability density profile
that assumes the Boltzmann form

P~x!5
f 1f 2

~ f 11 f 2!D~12e2f!

3H exp~2fux2L1u/L1! for xP@0,L1!

exp@2f~x2L1!/L2# for xP@L1 ,L !.

~28!

B. Intermediate forcing: Two fixed points

For intermediate forcing, there are two situations th
might occur.

~1! When A2. f 1 but A1, f 2, the ‘‘1’’ dynamics has
two fixed points, namely,x5L1 ~stable, which correspond
to an asymmetricd peak in the probability density!, and x
5L ~unstable, which corresponds to a finite discontinuity
the probability density!. One obtains from the results in Se
III B:
that
P~x!52
^ẋ&
L

2A2~A11 f 1!~ef121!

k1 f 1~A11A2!
d2~L12x!2

^ẋ&
L

2A2~A12 f 2!~ef221!

k1 f 2~A11A2!
d1~x2L1!

25
^ẋ&
L f 1

F A2ef1

A22 f 1
exp@2f1ux2L1u/L1#21G for xP@0,L1!

^ẋ&
L f 2

F2A2ef2

A21 f 2
exp@2f2~x2L1!/L2#11G for xP@L1 ,L !.

~29!

Hered6(x) are the half Dirac-d functions@28#. A simple intuitive explanation for their appearance is related to the fact
in the limit of the block-wave forcef (x), Eq. ~20!, a particle can reach the stable fixed pointx5L1 ~coming either from its
left or from its right! in a finite time, and, once there, it will stay at this position for the reminder of the ‘‘1’’ dynamics. Thus,
in time average, this will give rise to a finite weight at this precise point. The corresponding mean velocity is then
1-6
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^ẋ&52LH S L2

f 2
2

L1

f 1
D1

A2~A11 f 1!~ef121!

f 1
F 1

k1~A11A2!
1

1

~k11k2! f 1
G

1
A2~A12 f 2!~ef221!

f 2
F 1

k1~A11A2!
2

1

~k11k2! f 2
G J 21

. ~30!

The direction of the mean velocity is, as expected, the same as that of the ‘‘2 ’’ dynamics, i.e.,^ẋ&,0 in this case.
One interesting limit in this case is that of white shot noise:A2→`, k2→`, so thatA2 /k25A1 /k1[l finite. Our

results are equivalent to those presented in Ref.@18# for the probability density~although written under a closed, compa
form!. One obtains the following expressions for the asymptotic velocity

^ ẋ&52LF S L2

f 2
2

L1

f 1
D1

l~A11 f 1!2~ef121!

A1 f 1
2

2
l~A12 f 2!2~ef221!

A1 f 2
2 G21

. ~31!

Figure 2 shows the variation of the average asymptotic velocity as a function ofA1 @according to Eqs.~25! and ~31!# for
various fixed values of the transition ratek1 . Note the peak and the discontinuity in the slope of the velocity atA15 f 2,
connected with the appearance of the fixed points whenA1 decreases belowf 2.

~2! WhenA1. f 2 but A2, f 1, there are no fixed points in the ‘‘1’’ dynamics, but two fixed points in the ‘‘2 ’’ dynamics,
namely,x5L1 ~stable! and x5L ~unstable!; together with the discontinuous character off (x) at these points, they lead
respectively, to an asymmetricd peak ofP(x) at x5L1 and to a first-order discontinuity ofP(x) at x5L:

P~x!5
^ẋ&
L

2A1~A22 f 1!~ef121!

k2 f 1~A11A2!
d2~L12x!1

^ẋ&
L

2A1~A21 f 2!~ef221!

k2 f 2~A11A2!
d1~x2L1!

15
^ ẋ&
L f 1

F2A1ef1

A11 f 1
exp@2f1ux2L1u/L1#11G for xP@0,L1!

^ẋ&
L f 2

F A1ef2

A12 f 2
exp@2f2~x2L1!/L2#21G for xP@L1 ,L !.

~32!
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This leads to a mean velocity that reads

^ẋ&5LH S L1

f 1
2

L2

f 2
D1

A1~A22 f 1!~ef121!

f 1

3F 1

k2~A11A2!
2

1

~k11k2! f 1
G

1
A1~A21 f 2!~ef221!

f 2

3F 1

k2~A11A2!
1

1

~k11k2! f 2
G J 21

. ~33!

Note that in this casêẋ&.0, as dictated by the sign of th
‘‘ 1’’ dynamics. One can thus clearly realize the role of t
ratchet effect if, e.g., one considers a potential with nega
bias ~like the one in Fig. 1!: indeed, in this case the mea
velocity is directed against the bias. The above expres
simplifies for the case of a symmetric dichotomic noiseA1

5A2[A andk15k2[k, and reads
04111
e

n

^ẋ&5LF S L1

f 1
2

L2

f 2
D2

~A2 f 1!2~ef121!

2k f1
2

1
~A1 f 2!2~ef221!

2k f2
2 G21

. ~34!

C. Weak forcing

Finally, when A2, f 1 and A1, f 2, there are no freely
running solution in either of the dynamics. The pointsx
5L1 ,L are fixed points for both ‘‘1’’ and ‘‘ 2 ’’ dynamics.
One concludes that the mean asymptotic velocity is zero,
all the particles are concentrated at the stable fixed poinx
5L1, i.e., P(x)5d(x2L1). In this case additional therma
noise is needed to generate rectified motion. This prob
has been solved for adiabatically slow forcing@10,11#.

D. Comparison with numerical simulations

The Langevin equation~18! is simulated numerically us
ing 100 000 particles and the probability distribution is av
1-7
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aged over ten snapshots. The biased potential shown in F
is used for all numerical calculations. Figures 3 and 4 sh
respectively, the probability distributionP(x) and the aver-

age velocity^ẋ& for the strong forcing case, and Figs.
and 6 for the intermediate forcing case. Agreement betw
theory and simulations is very good. Discontinuities inP(x)
at x5L1 and x5L are clearly seen in both cases. Figure
also illustrates the existence of ad peak atx5L1. Note
the phenomenon ofcurrent reversalwhen one decrease
the amplitude of the perturbation~for a fixed k), i.e.,
when one passes from strong forcing~no fixed points, cf.
Fig. 4! to intermediate forcing~fixed points appearing, cf
Fig. 6!.

FIG. 2. For the white shot noise limit@Eqs.~25! and~31!#: The
mean asymptotic velocity as a function ofA1 for various values of
the transition ratek1 . The sawtooth potential is the one represen
in Fig. 1.

FIG. 3. Probability distributionP(x) for the strong forcing
case@A15A252.0 andk15k255.0; see Fig. 1 for the param
eters of U(x)#. The solid line shows the theoretical result~21!
and the shaded histogram presents the results of numerical sim
tions.
04111
. 1
,

n

V. PERSPECTIVES

The results obtained above reinforce the impression
dichotomous noise can be put on a par with Gaussian w
noise as far as obtaining analytic results is concerned. Al
this line of thought, we expect that one can obtain ex
results for the first passage time moments when unst
fixed points are crossed. Also one can extend the calculat
for the asymptotic diffusion coefficient in periodic system
subject to additive Gaussian white noise@23,24# to the case
of dichotomous forcing via its relationship to the first tw
moments of the first passage time@14#. Furthermore, the re-
sults presented here can be directly applied to various o
problems, including Stokes’ drift@13# and hypersensitive
transport@25#.

d

la-

FIG. 4. Mean asymptotic velocity as a function of the transiti
ratek for the strong forcing case~see Figs. 1 and 3 for paramete
values!. The solid line shows the theoretical result~23! and the open
circles the results of numerical simulations.

FIG. 5. Probability distributionP(x) for the intermediate forc-
ing case@A15A250.75, k15k250.5; see Fig. 1 for the param
eters ofU(x)]. The solid line shows the theoretical result~29! and
the shaded histogram presents the results of numerical simulat
1-8
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APPENDIX

From the point of view of the mathematical steps
volved in solving Eqs.~4! and ~6!, there are several case
that have to be considered separately:

Case I.When the coefficient ofp(x) in Eq. ~4!, namely
@ f 1(x)2 f 2(x)#, has no zeros in@0,L), one can solve this
equation forp(x).

Case II. When the coefficient ofP(x) in Eq. ~4!, i.e.,
@k1 f 2(x)1k2 f 1(x)#, has no zeros in@0,L), one can solve
Eq. ~4! for P(x). Note that cases I and II do not necessar
exclude one another.

Case III.When both the coefficients ofp(x) and ofP(x)
in Eq. ~4! have zeros,but not the same zeros, in @0,L).

Case IV.When f 1(x) and f 2(x) have~at least! a common
zero in@0,L). In this case one can directly notice that there
no net flow of particles, i.e.,J50, given the existence of th
common fixed point that cannot be crossed in any of the
dynamics. This case will hence not be studied any furthe

A detailed analysis reveals that the results obtained
cases I and II are completely equivalent and apply also w
@ f 1(x)2 f 2(x)# and/or@k1 f 2(x)1k2 f 1(x)# havedifferent
zeros in@0,L#, i.e., in case III. We therefore focus exclu
sively on the main results pertaining to case I.

In case I one can solve Eq.~4! with respect top(x), i.e.,

p~x!5
J~k11k2!2@k1 f 2~x!1k2 f 1~x!#P~x!

f 1~x!2 f 2~x!
,

~A1!

FIG. 6. Particle velocity as a function of the transition ratek for
the intermediate forcing case~see. Figs. 1 and 3 for parameter va
ues!. The solid line is the theoretical result~30! and the open circles
result from numerical simulations.
04111
e

-

s
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n

and by substitution in Eq.~6! one can obtain a closed firs
order differential equation forP(x):

@ f 1~x! f 2~x!#P8~x!1$@ f 1~x! f 2~x!#82@ f 1~x! f 2~x!#

3@ lnu f 1~x!2 f 2~x!u#81@k1 f 2~x!1k2 f 1~x!#%P~x!

5JH ~k11k2!1@ f 1~x!2 f 2~x!#

3F f 1~x!1 f 2~x!

2@ f 1~x!2 f 2~x!#G8J . ~A2!

Recall that (•••)8 denotes derivation with respect tox.
The crux of the problem resides in finding thecorrect

solution to Eq.~A2! @26#. A blind application of the standard
method of variation of parameters leads to the familiar so
tion

P~x!5
^ẋ&
L U f 1~x!2 f 2~x!

f 1~x! f 2~x!
U@CG~x,x0!1K~x,x0 ;x!#,

~A3!

where C is a constant of integration that arises from t
general solution to the homogeneous part of Eq.~A2!, the
second contribution is the particular solution of the full i
homogeneous equation,x0 is an arbitrary point in@0,L), and
we have defined the functions

G~u,v !5expH 2E
v

u

dzF k1

f 1~z!
1

k2

f 2~z!G J ,

K~u,v;w!5E
v

u

dzsgnF f 1~z! f 2~z!

f 1~z!2 f 2~z!GF k11k2

f 1~z!2 f 2~z!

1S f 1~z!1 f 2~z!

2@ f 1~z!2 f 2~z!# D 8GG~w,z!.

The point is now to get thecorrect integration constantC, or
ratherconstants, since one cannot apply the above solution
the points where the differential equation forP(x) is singu-
lar, which is precisely at the location of fixed points, i.e.,
the zeros off 6 .

1. No fixed points: f¿„x…fÀ„x…Å0 in †0,L …

In this case there is no fixed point in any of the alternat
dynamics ‘‘1’’ and ‘‘ 2. ’’ The usual procedure to determin
C in Eq. ~A3! can now be followed, i.e., we require period
icity of P(x), i.e., P(x)5P(x1L), recalling that both
f 1(x) and f 2(x) are periodic. This results in Eq.~7! given in
the main text. The mean velocity at the steady state, cf.
~8! in the main text, follows from the normalization ofP(x).

2. One of the alternating dynamics has two fixed points
in †0,L …

The situation is entirely different, both physically an
mathematically, when the system can crossunstablefixed
points within the interval@0,L) in the long-time limit. Con-
sider the simple case described in Sec. III B in the main te
1-9
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Clearly, the steady-state results leading to Eqs.~4! and ~6!
still apply, but the solution of Eq.~6! is more delicate than
the ‘‘blind’’ integration that led to expression~A3! for P(x).
Indeed, in the vicinity of the fixed pointsx1 and x2, if we
simply try to apply formula~A3!, we are led to the depen
dence

P~x!;ux2x1,2u212k1 /[ f 18 (x1,2)] . ~A4!

For the case of the stable fixed point,P(x) is therefore con-
tinuous whenk1 /u f 18 (x1)u.1, and divergent but integrabl
for k1 /u f 18 (x1)u<1, a result that causes no conceptual d
ficulties. However, at the unstable fixed pointx2, this proce-
s

o
n

u

e

-
o

e

04111
-

dure leads to an apparent nonintegrable divergence, whic
clearly unphysical, and mathematically improper in view
the requirement of normalization ofP(x).

As explained in detail in Ref.@19#, the fallacy lies in the
assumption that a single integration constantC, see Eq.~A3!,
is valid throughout the region@0,L#. One solves the problem
by choosing different integration constants in each of
separate intervals@0,x1), (x1 ,x2), and (x2 ,L# between the
fixed points. There isexactly onechoice of this constan
valid for both (x1 ,x2) and (x2 ,L) such that the divergence a
x2 is removed, namely,C52K(x2 ,x0 ;x0); and another
choice valid in the interval@0,x1) that ensures the require
continuity and periodicity ofP(x). The acceptable expres
sion for the probability density is therefore found to be
P~x!55
^ ẋ&
L U f 1~x!2 f 2~x!

f 1~x! f 2~x!
U@K~L,x2 ;L !G~x,0!1K~x,0;x0!# for xP@0,x1!

^ẋ&
L U f 1~x!2 f 2~x!

f 1~x! f 2~x!
UK~x,x2 ;x! for xP~x1 ,L !.

~A5!
i-

.

ver-
is

ed
ire-
ble
of
These expressions can be further simplified if one take
the basic period not@0,L#, but @x1 ,x11L#. Then the simple-
looking, ‘‘compact’’ expression P(x)5^ ẋ&/Lu@ f 1(x)
2 f 2(x)#/ f 1(x) f 2(x)uK(x,x2 ;x) @Eq. ~9! in the main text#
holds throughout this new basic period. With this choice
the basic interval, the normalization conditio
*x1

x11LP(x)dx51 leads to the expression~12! for the mean

velocity.
P(x) as given above@Eq. ~A5! or Eq. ~9!# meets all the

requirements enumerated in Sec. II. In particular, let
check its behavior at the fixed pointsx1 andx2. In order to
do this, it is useful to write Eq.~9! as

P~x!5
^ẋ&
L U f 1~x!2 f 2~x!

f 2~x!
U K~x,x2 ;0!

u f 1~x!uG~0,x!
. ~A6!

For x5x2 ~the unstable fixed point!, K(x,x2 ;0)/
$u f 1(x)uG(0,x)% presents an indeterminacy of the typ
‘‘0/0;’’ applying Hôspital’s rule one simply finds thatP(x) is
continuous atx5x2, and its value is given by Eq.~10!.

For x5x1 ~the stable fixed point!, there are three situa
tions that might occur, depending on the value
k1 /u f 18 (x1)u:

~a! For k1 /u f 18 (x1)u.1, both K(x,x2 ;0) and
u f 1(x)uG(0,x) present a divergence forx↘x1 , x↗x11L;
therefore, P(x) presents an indeterminacy of the typ
‘‘ `/`. ’’ Applying Hôspital’s rule one finds thatP(x) has the
same finite limit asx↘x1 , x↗x11L, as indicated in Eq.
~11!.

~b! For k1 /u f 18 (x1)u,1, K(x,x2 ;0) is finite and non-
zero at x5x1 and x11L, while u f 1(x)uG(0,x)→0

as ux2x1u12k1 /u f 18 (x1)u and ux2x12Lu12k1 /u f 18 (x1)u, respec-
as

f

s

f

tively. Therefore,P(x) presents a power-law integrable d

vergence,P(x);ux2x1u211k1 /u f 18 (x1)u in the neighborhood

of x1, and P(x);ux2x12Lu211k1 /u f 18 (x1)u in the neigh-
borhood ofx11L.

~c! Finally, for k1 /u f 18 (x1)u51, K(x,x2 ;0) behaves like
lnux2x1u in the vicinity of x1 ~respectively, like lnux2x12Lu
in the vicinity of x11L), while u f 1(x)uG(0,x) has a finite
limit at these points. Thus,P(x) has a ‘‘marginal,’’ logarith-
miclike divergence at these points.

3. Each of the two alternating dynamics has two fixed
points in †0,L …

Suppose that each of the two dynamics, ‘‘1’’ and ‘‘ 2, ’’
has two fixed points~one stable and one unstable! in the
interval @0,L), i.e., the situation described in Sec. III B
Again, if one blindly applies the result~A3! for P(x), then in
the vicinity of the fixed points

P~x2x1,2!;ux2x1,2u212k1 /[ f 18 (x1,2)] ,

P~x2x3,4!;ux2x3,4u212k2 /[ f 28 (x3,4)] . ~A7!

One again encounters the nonphysical, nonintegrable di
gence at theunstablefixed points. The correct procedure
again to use the solution~A3!, but with different integration
constantsC in each of the open intervals between the fix
points. The latter constants are determined by the requ
ments~i! to remove the strong divergences at the unsta
fixed points, by imposing the condition that the coefficient
1-10
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the divergent term becomes zero at these points;~ii ! to en-
sure continuity and periodicity ofP(x); and~iii ! through the
normalization condition, to determine the flowJ and the
mean asymptotic velocitŷẋ&.

Case a: 0<x1 ~s! ,x3 ~u! ,x4 ~s! ,x2 ~u! ,L. The
above ‘‘program’’ leads to the expression~14! in the main
m

l.

.

an

.

v.

,

s.

-

04111
text for the probability density~in the appropriately chosen
basic period@x1 ,x11L#), and to the corresponding mea
asymptotic velocity, Eq.~17!.

Case b: 0<x1 ~s! ,x2 ~u! ,x3 ~s! ,x4 ~u! ,L. One gets
the following expression for the probability density, again
the basic interval@x1 ,x11L#:
n

P~x!55
^ẋ&
L U f 1~x!2 f 2~x!

f 1~x! f 2~x!
UK~x,x2 ,x! for xP~x1 ,x3!

^ẋ&
L U f 1~x!2 f 2~x!

f 1~x! f 2~x!
UK~x,x4 ,x! for xP~x3 ,x11L !,

~A8!

with the good behaviors~continuity! at the unstable fixed pointsx2 andx4 and either continuity or~integrable! divergences at
the stable fixed pointsx1 andx3, as well as the required periodicity forP(x). The mean asymptotic velocity is therefore give
by

^ẋ&5LH E
x1

x3
dxU f 1~x!2 f 2~x!

f 1~x! f 2~x!
UK~x,x2 ,x!1E

x3

x11L

dxU f 1~x!2 f 2~x!

f 1~x! f 2~x!
UK~x,x4 ,x!J 21

. ~A9!
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