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The influence of polydispersity on the equilibrium properties of dipolar systems with short range repulsive
interactiongmodeled by a shifted and truncated Lennard-Jones pair podeatslidied by means of canonical
Monte Carlo simulation and a high field approximation perturbation theory. The particle concentrations and the
average magnetic moments of the investigated systems are typical of real ferrofluids. The magnetization curves
are calculated and the microstructures are analyzed as a function of density, and the obtained results are
compared with the data determined in the monodisperse equivalents of the systems. At weak and moderate
magnetic fields the magnetization is found to be generally higher in the polydisperse system than in the
corresponding monodisperse one. Our findings for the magnetic properties can partly be explained by the
structural characteristics obtained from the simulations.
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I. INTRODUCTION of the initial gradient of the magnetization curgisitial sus-
ceptibility) in comparison with the value predicted in E)
Ferrofluids(ferrocolloids, magnetic fluidsare stable col- [9].
loidal dispersions of magnetic particles in liquid carriers, Real ferrofluids are more or less polydisperse. This means
which have a wide range of technological applicatiphs  that the nanoparticles are not necessarily the same: they can
The particle size is chosen to be sm@k14 nm to reduce  have different sizes and different magnetic moments. A poly-
magnetostatic interactions and the particles are coated W"@isperse fluid can be considered as a mixture with a large
surfactants to prevent aggregation. An important feature ojumber of components, where the particle size, shape or in-
ferrofiuids is that each particle in the fluid is a magneticieraction changes essentially continuously. This additional
monodomain, i.e., has a permanent magnetic dipole momeqg iapie not only affects the equation of state for the system
which intensity is fixed, depending on the nature of the may, + 554 the existence of phase transitions. Size polydisper-

tenqgl g?ﬁtgungg'?; '3&;2(:53’ :rr:t(lj pr;)p;rrttl?Poarlqt(ihtge VO; ity, for example, has been shown to have a large effect on
u particie. sequently, ap USUi e coexistence densities. It is known, furthermore, that

spherically symmetric interactions: van der Waals attractions

) . ! 0
and electrostatic or steric repulsions, dipolar particle interac[nonOdISperse colloidal systems can fill at mes60% of

tions play a fundamental role in their properties. It can pe>Pace in the liquid state, while colloids with a properly cho-

useful to treat ferrofluids as dipolar fluids, where only theSEn Particle-size distribution can be made essentially space
colloidal particles are explicitly taken into account. Many filling, both in the solid and in the liqui@10]. _
theoretical studies dealing with dipolar fluids take ferrofluids "€ reports on investigation of the influence of polydis-
as an experimentally available example of dipolar fluidsPersity on the behavior of dipolar systems are scanty in the
[2-7]. literature[7,11—-14. From a theoretical point of view a per-
The physical properties of dilute ferrocolloids can be de-turbation theoretical study was given by Ivaretval.[11,12
scribed adequately in the framework of the one-particleand a cluster expansion study was proposed by Huke and
model, which takes ferrocolloid as a gas consisting of nonLucke [13]. The only simulation study using realistic poly-
interacting particleg8]. It is possible to write the equilib- disperse models has been carried out in a strongly dipolar
rium magnetization by applying the Langevin function, hard sphere system where the existence of a spontaneous

L(«)=—coth(@)—1/a: ferroelectric fluid phase can be observed for the monodis-
perse casg7]. This work showed that polydispersity either in
~ MmN the magnetic moments or in the size of the hard spheres
M =——L(a). (1) )
MoV reduces the ferroelectric order.

In this paper our main concern is the influence of poly-
Here, m denotes the magnetic moment of a colloidal par-dispersity on the equilibrium properties of dipolar systems of
ticle, N is the particle numberV is the volume, uy  which particle concentrations and average magnetic mo-
=4mx10 7 H/m, anda= mH/KT represents the Langevin ments are typical of real ferrofluids. The magnetization
parameter withH being the magnetic field intensityk  curves are calculated and the microstructures are analyzed as
the Boltzmann constant, antl the temperature. However, a function of density, and the obtained results are compared
the interparticle interactions play a very important role inwith the data determined in the monodisperse equivalents of
concentrated ferrofluids leading to a significant increasehe systems.
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TABLE |. Experimental datdsaturation magnetizatiod 5, number density\N/V) and parameters of the

gamma distribution for two ferrofluidsl1].

Ferrofluid Mg (KA/m) N/V (m~3) m (Vsm)? a Xo (NmM) X (nm)®
1 87.1 43.% 1072 2.50x 1025 7.54 0.97 8.2838
2 88.6 42.x 1072 2.65x 1025 2.72 2.03 7.5516
afﬁ: /.LoM SV/N
B =xq(a+1).
Il. METHOD magnetic interactions we assumed that this relation is valid
A. Models for each individual particle of the ferrofluid, i.e., for particle

The systems consist of spherical particles of diameter
which have permanent point dipoleagneti¢ momentsm; .
The short range repulsive interaction between partieled|
is modeled by a shifted and truncated Lennard-Jdsk9
pair potentiall 15]

12 6 12
(ﬂ) _(ﬂ) _<ﬂ) +(ﬂ
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rierc—a'inZ y
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pij=4e

)

wheree is the energy parameter;; is the interparticle dis-
tance,r is the cutoff radius, and;; = (o + o})/2. This cut-

i, miocxis. In this approach, the polydispersity in size was
neglected first, and the particle diameter was chosen to be
o;=x (model ). However, the simple equalityy;=x;, al-
lows us to take into account the size polydispersity of these
fluids in a natural waymodel II).

B. Theory

In a strong external magnetic field it may be assumed
[17,18 that the orientation of magnetic dipole moments is
governed mainly by the external field and the dipole-dipole
interaction can be considered as a perturbation. According to
this assumption the potential energy of this reference system
is

off radius ensures that the short range interaction potential is

very close to the hard sphere potential. The dipole-dipole

potential between particlésand] is given by

1 |m-m (1) (M=)
33 5
ij

d
d_ , 3
P Tmg| T ] 3

@0:; ¢{j+2i X, 7)

The reference pair correlation function is given by the prod-
uct of the pair correlation function of the shifted and trun-
cated Lennard-Jones fluid and the orientation distribution

and the interaction of dipole moments with an external fieldfunctions of ideal dipoles:

H can be written as

ext_

@i =-—m-H.

(4)

®

9ij (N2, 01,0 = fi(0) G112 (),

where, e.g.,

To introduce realistic polydispersity into calculations we
started from the experimental magnetization curves of two a;

ferrofluids consisting of magnetite particlgd]. The particle

fi(w) = expla; cosd;)

(©)

Sinhai

polydispersity of these fluids is described by the gamma dis-

tribution [16]

aexp(—x/Xg)

I'a+1) ’ ®)

1/ x
p“):x—o(x—o)

wherex is the magnetic core diameter of particleg,anda
are the parameters of the distribution ahddenotes the

with a;=m;- H/KT and ¥, is the angle between thi¢h di-
pole and the external field. The corresponding configura-
tional integral is

Qo QSLJH sinhe; 10

¢4 '

gamma function. Table I shows the parameters of the di.striThe long-ranged dipole-dipole interactiffq. (3)] is consid-
bution as well as eXpeI’Imenta| data for the two ferroﬂulds.ered as a perturbation and, on the basis of the conventional

Supposing spherical particles, the mean magnetic moment @fiayer function expansion of the configurational integgal
the ferrofluid,m depends linearly on the bulk magnetization e obtain

of the ferromagnetic componeit:

m: ,lLoM d X3. (6)

6

HereM 4=480 kA/m (solid magnetitkand? stands for the

Q 1
Q—OE WIE’J NIN]I drldrzdwlde

In

X fi( @)t (I 01,0) 05 1) fi(w), (11)

mean cubed core diameter. To model polydispersity of thavhere
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04 (r 10, 07, @») The initial magnetic susceptibility is calculated from the field

M ijil 12, %1, ™2 L o

fij (ri2, 1, ;) =€X - ! (12)  strength derivative of the magnetization. After some elemen-
tary calculation,

is the dipole-dipole |ntgract|on Mayer fu_nctlon. Helhg, de- X:XL+XE/3 (18)
notes the number of dipoles bearing dipole monmant In

the expansion of the configurational integral those termgan be obtained. The aforementioned equation is identical
which contain higher order distribution functions are dis-ith the first order equation of lvanov and Kuznets$¥ay,
carded. To calculate the integrals in HGl) a further ap-  and with the formula of Szalaét al. [18,19, which was
proximation is necessary. Here we expand the Mayer funcoriginally derived for the dielectric constant of monodisperse
tions into first order Taylor series and therefore obtain twopolar fluids.

types of integrals instead of the original one. The integration

with respect taw; andw, can be performed analytically. The C. Computational data

remaining integration with respect 1§y andr,, using the
asymptotic value of th@isju(rlz) pair correlation function,
can also be carried out analytically on an infinitely prolat
ellipsoid to avoid the depolarization. From the configura-
tional integral[Eq. (11)] the magnetic field dependent free
energy can be predicted,

Standard canonical Monte CarlMC) calculations were
eperformed for the dipolar systems dt=300 K using N
=500 particles. The simulations were started either from a
face-centered-cubic lattice configuration with a random dis-
tribution of the dipole moment orientations, or from an out-
put configuration of a previous run. The equilibration period
sinhai) in the simulations included 100 OG@nonodisperse caser

500000 (polydisperse cagecycles, the total length of the
production period varied between 400 00@onodisperse
2 case and 600 000(polydisperse casecycles, and in some
- S—VE NiN;mim;L (o)L (a;)). (13)  cases up to 1000000 cycles. Each cycle consisted af-
h tempted translational and orientational moves of the par-

. . . L ticles, where the maximum changes were adjusted to obtain a
Assuming continuous polydispersity in dipole moment the

free energy can be expressed by the help of integrals co 40-50 % acceptance rate for the move. In the case of the
taining the distribution functiofiEg, (5)]. rE)olyd|sperse systems, each cycle included additional 40—80

The derived maanetization function reads cluster moves. A general cluster moving schef@@] was
9 applied using cluster translation and rotation. Here, for sim-
N plicity, all moves leading to an inclusion of a new particle
M=—[L(a)+x. L(a)L (a)], (14)  into the cluster were rejected. The clusters were defined on
MoV the basis of the pair energies of the interacting particles
[21,15: two particles were considered to be bound if their
where potential energy was less than 75% of their contact energy in
. perfect co-alignment.
f(a):f m(&)p(&)L[ a(&)]dé, (15) The long-range dipolar interactions were treated using the
0 Ewald summation with conducting boundary condit[@2].
In this case the applied external field is identical to the inter-
and nal field acting on particles throughout the simulation box.
In the course of the simulations the convergence profiles
T [T / of the quantities of interest were monitored. Estimates for the
L' ()= Jo MAEP(EL Ta(£)]dé. (16) error bars were made by dividing the whole runs into 20-50
blocks and calculating the standard deviation of the block

In these equationd,’ (x) is the derivative of the Langevin average$23].

function andy, = m?N/3uoVkT is the Langevin susceptibil- ~ The results for the dipolaimagneti¢ fluids are presented
ity. It should be noted that in the case of model Il the variablgin reduced unitsT* =kT/e is the reduced temperaturg?
¢is replaced by the molecular diameter variable. It is impor-=No?/V is the reduced density* =M/\4me/(uoo”) is
tant to see that the shifted Lennard-Jones reference systelime dimensionless magnetizatidty =H\4mpo’le is the
does not give any contributions to the magnetic properties inlimensionless magnetic field, ana* 2=m?/(4muoeo®) is
this first order approximation. Furthermore, it is not surpris-the reduced squared dipole moment, where paranseten-
ing that the terms of Eq14) also appear in a more compli- trols the strength of the isotropic repulsion as compared to
cated cluster expansion method proposed by Huke anthe dipole-dipole potential. Here we adoptedk=300 K
Lucke[13]. To improve our first order perturbation theoreti- and, as we mentioned earlier=x (note thatx is different
cal approximation the external field strength inside the magfor the two ferrofluids investigated

F=FY—kT> N, In(
1

A

netic fluid is substituted by an effective field strenddh, The discretization of the particle distribution dengitfx)
which was calculated on the basis of the Weiss model: necessary for molecular simulation with limited number of
particles is illustrated in Fig. 1. Furthermore, to demonstrate
He=H+M/3. (17 the diversity of the dipole-dipole interaction strength be-
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FIG. 1. Discretization of the particle distribution density. Solid
and dashed lines represent Halistributions for ferrofluids 1 and
2, respectively.

tween two patrticles of different magnetic core sizes, we tabu-
lated the dipolar coupling constanis=m*2/T* at selected
particle sizes for ferrofluid {cf. Table II; the magnitudes are
the same for ferrofluid 2

IIl. RESULTS AND DISCUSSION

Deviations from the Langevin formulggqg. (1)] clearly
reflect the variations in the interparticle interactions, so we
begin with the discussion of the magnetization curves. In the
simulation the equilibrium magnetization can be obtained
from the expression

1 N
|\/|—<_E1 mi>, (19)

where the brackets denote canonical ensemble average. The

calculated magnetization values are displayed in the unit of
the saturation magnetization of the ideal ferrocolloid gas,

mN

Ms

(b o

(©

FIG. 2. Dimensionless magnetization as a function of the

Figure 2 shows th? results for the polydllsper.se ferrofluids 1 angevin parameter for the monodisperse fiuasfor model I(b),
and 2 aﬂd for their monodisperse equivalefits., m;=m and model ll(c). Symbols represent the simulation results and lines
ando;=Xx for each particlg The magnetization curves from are the theoretical predictions. The triangles and the dotted lines
the perturbation theory are given by Hd4). According to  correspond to ferrofluid 1 gi*=0.1809, the circles and the solid
this expression, the theory does not give any distinction betines to ferrofluid 1 atp* =0.2490, the diamonds and the dashed
tween the two models used. The influence of the density walines to ferrofluid 1 atp* =0.3500, and the crosses and the dash-
dotted lines to ferrofluid 2 gt* =0.1809. The thin continuous line
TABLE II. Coupling constank between two particles of differ- is drawn to guide the eye: this represents the Langevin function
ent magnetic core sizes for ferrofluid 1. L(a)=coth(e) —1/«. The statistical uncertainties of the simula-

Particle 1
Particle 2 x=4nm x=8 nm x=12 nm x=16 nm
x=4nm 0.01 0.09 0.30 0.72
x=8 nm 0.72 2.42 5.74
x=12 nm 8.17 19.36
x=16 nm 45.88

tion results are only partially displayed in the insets for clarity; error
bars are drawn only if the estimated statistical uncertainty is not less
than the symbol size. For the polydisperse fluids; mH/kT.

investigated in the case of ferrofluid 1: in addition to the
experimental density two different reduced densities, one is
just the experimental value for ferrofluid 2, were chosen. The
agreement between simulation and theory is “better than
qualitative,” which verifies the efficiency of this simple first
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TABLE IIl. Initial susceptibility for model 1. The numbers in 2.0+ .
parentheses represent data for the corresponding monodisperse sys- B D R £'=0.1809
tem. — £'=0.2490
. 13T --== p"=03500
Ferrofluid Xsimulation Xtheory % 1
1, p*=0.1809 7.51.5(1.8+0.7) 5.56 (1.81) 1.0
1, p*=0.2490 10.51.7 (2.7£0.5 9.05(2.77) 1 4 = 0.1809 (0)
=0.3500 18.82.4 (4.4+0.9 15.64(4.49 0.5 — p"=0.2490 (0)
. ---- p"=0.3500 (o)
order theory. For the monodisperse systems, the theory pro- 0.0
vides a very good reproduction of the simulation results. The 00 10 20 3.0 40 5.0
figure also shows that in the polydisperse case the theoretical (@) r/c
predictions are weaker. It can be seen that the magnetization
curves can be split into two parts. In the range of the strong 2.0
external magnetic field the differences in magnetization data .
of the various systems are generally small and becoming 1.5
progressively smaller with increasing The different curves =
tend to the same limiting valuévl/M g~ 0.96; this implies Y
that the high external energy dominates the systems and the 1.0
magnetization no longer depends on the details of the sys- i
tem’s constitution, i.e., the distribution of the particle mag- 0.5-
netic moments. At weak and moderate magnetic fiddss ’
generally higher in the polydisperse system than in the cor- T
OO t i L§ 1 1 ¥ ) J | 1
1.01 00 1.0 20 30 40 50
- 0 (b) ¥/c
0849 4 & %
4 F FIG. 4. Pair correlation functions at zero figlg) and at differ-
0.6 g ent magnetic fields g»*=0.2490(b) for ferrofluid 1. o indicates
Q. 2 x model 1l andm denotes the monodisperse case.
0494 x responding monodisperse system. This difference is more
pronounced and evident in the case of model Il, while the
0.2 application of model | has remarkable consequences in the
simulation. First, seemingly spontaneous magnetization oc-
0.0 AN curs at zero external field at all the investigated densities for
0 > 101520 25 model I. This is due to the formation of large aggregates and
() o we will discuss this point later. Nevertheless, it is obvious

(b) o

FIG. 3. Order parametetpolarization as a function of the
Langevin parameter for model&) and model li(b). The results for

the monodisperse fluids are presented as curves fitted to the discrete
points for clarity. The meaning of the lines and symbols is the same

as in Fig. 2. For the polydisperse fluidg=mH/KT.

that finite size effects are not negligible here. Second, it was
necessary to use a cluster-move technique in these fluids be-
cause the mobility of the particles with magnetic moments
greater than the average magnetic moment is rather low. At a
given microstate, there is high probability that such a particle
is “cluster-bound” and thus the cluster moves are mostly
carried out with the inclusion of particles of larger magnetic
moments. However, despite the cluster-move algorithm used,
very long simulations are needed even at stronger external
fields.

Although the influence of the density on the shape of the
magnetization curves seems to be weak, there is a significant
density dependence of the initial gradient of the curves. The
initial susceptibility, which can be expressed by the linear
relationshipM = yH at H—0, was determined from the zero
field simulations using the following fluctuation formula

" allE) Bl

1
X7 3k TV
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TABLE IV. Average percentage of particles mmers at different magnetic fields for model I.

Ferrofluid a Dimer Trimer (4-8)-mers (9-39-mers (40-)-mers 3
1 0 1.2 0.1 0.03 0.2 16.0 17.5
p*=0.1809
1 1.5 0.3 0.3 0.6 15.1 17.8
5 2.5 0.4 0.7 3.9 11.6 19.1
25 35 0.7 1.5 9.9 3.8 194
1 0 1.6 0.1 0.1 0.7 15.9 18.4
p*=0.2490
1 2.0 0.3 0.4 1.6 14.2 18.5
5 3.3 0.9 0.6 1.7 13.0 19.5
25 4.1 0.8 2.1 8.9 4.9 20.8
1 0 2.4 0.2 0.1 0.8 15.3 18.8
p*=0.3500
1 2.9 0.5 0.6 2.2 12.9 19.1
5 4.2 0.9 2.0 9.3 4.0 20.4
25 5.2 0.9 1.8 12.9 15 22.3
2 0 0.8 0.03 0.05 4.4 15.9 21.2
p*=0.1809
1 0.9 0.1 0.04 0.2 21.0 22.2
5 1.5 0.5 0.9 54 14.6 23.0
25 3.0 0.8 1.7 8.8 9.0 23.3

For some monodisperse systems, we have checked the apphirge dipoles in the systems. Furthermore, it is important to
cability of the formula by comparing our results with litera- note thatP is practically zero for the systems studied in the
ture y values determined from data of the initial region of the absence of the external field. The obtained small deviations
magnetization curves by linear regression fittin@s]. The  from zero in the case of polydisperse model | are probably
initial susceptibility data for model Il are summarized in due to finite size effects and do not indicate that these sys-
Table Il. It should be noted that E€R1) provides unrealistic tems exhibit ferroelectric order.

results for model | proba_bly .because of the large deV|at|9ns TABLE V. Average percentage of particlesriamers at different

of the Calcula.ted magnetization values from ZEr0. The an'sorhagnetic fields for model II. The numbers in parentheses represent
tropic behavior cannot be adequately de_scrlbed by the4ta for the corresponding monodisperse system.

present perturbation theory as well. To estimate the range

over whichM is directly proportional tax for ferrofluid 1(in Ferrofluid «  Dimer  Trimer (4-8-mers s
the case of model Il angh*=0.2490, the magnetization

were determined also in the range®from 0 to 0.5. It can 1 0 2929 0201 001(-) 3130
be seen from the enlarged part of Figcj2that the linear ~ p*=0.1809 1 30@4 0201 00l 3235
relationship can be considered valid, at most, up$e0.2. 5 3357 02(0.3 001002 3560

Figure 3 shows the calculated polarization data for the

investigated systems. The polarization is defined as the en- 25 42(76 0305 0020004 45@D

semble average of the order parame?er 1 0 42(3.9 04(0.1) 0.04(-) 4.6(4.0
p*=0.2490

1 N m: 1 4246 04(0.2 0.04(-) 4.6 (4.8

P=(P,)= N< > —'-d>, (22 5 47(7.) 04(0.5 0.04(0.03 5.1(7.6

i=1 M 25 59(9.2 05(0.89 0.05(0.06 6.5(10.1

whered is the averagéinstantaneoysorientation of the di- 1 0 6.2(55 0.8(0.3 0.1(0.01) 7.1(5.9

poles, called the directd21]. Similar to the magnetization p*=0.3500
curves, the density dependence is also weak here, at least in

the moderate and strong field regime. However, the polariza-

tion data magnify the existing differences between the sys-

6.3(6.3 0.8(0.4 0.2(0.02 7.3(6.7
5 6.9(9.0 09(0.7 0.2(0.09 8.0(9.9
25 85(11.2 1.1(1.1) 0.2(0.1) 9.8(12.9

tems of various types of polydispersity and between the 2 0 4.0(7.7 0.3(0.6 0.04(0.04 4.3(8.3
polydisperse and monodisperse systems. The polarizatiops =0.1809

curves are shifted downward from the curves of the mono- 1 4.0(89 0.3(0.8 0.04(0.09 4.3(9.9
disperse systems to those of ferrofluid 2, which means that 5 4.1(12.9 0.4(1.8 0.04(0.2 45(149
the ability of the dipoles of these systems to co-align with the 25 4.7(16.) 0.4(2.8 0.04(0.5 5.1(19.4

field direction reduces with the increase of the proportion of
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Figure 4a) illustrates that there is a marked contrast be-
tween the pair correlation functiongr) produced by using
model | and model Il for ferrofluid I(ferrofluid 2 yields
similar result$. This is not surprising since the structure in
condensed phases is primarily affected by the short range
repulsion forces. The comparatively featureless peaks for
model Il do not reveal association, which resembles, in this
respect, the monodisperse cage. Fig. 4(b), curve «
=0(m)]. In contrast, the calculations for the structure of
model | demonstrate strong aggregation: a shoulder appears
atr/o<1.0 and the distances between the peaks are less than
1. The density dependence of the structure is also seen in
Fig. 4@). The height of the peaks slightly increases with the
increase ofp, the only exception being the shoulders in the
case of model I. However, noteworthy is that the radial dis-
tribution functionJ(r)=4mr?pg(r), which gives the num-
ber of particles at a given distance from an arbitrary chosen
center, shows approximately the same intensity for these
shoulders. When the external field is switched on, the peaks
become more intense and the shoulder shrinks. This ten-
dency is represented in Fig(b} at p* =0.2490 for model I.

The peak height changes similarly also in the case of model
Il (and for the monodisperse systemsut to a lesser degree,
reflecting that the increase of the field strength induces a
more ordered state.

The results of our cluster analysis are compiled in Tables
IV and V. It is clearly seen that the increase of either the
density or the mean magnetic moment of the ferrofluid leads
to a larger percentage of particles organized in clusters in the
system(see also Table m is greater for ferrofluid 2 than for
ferrofluid 1). The increase of the amount of clusters with the
field strength is also an obvious result since the better align-
ment of the dipoles along the field direction gives a better
chance to the particles to form aggregates. Certainly, these
clusters are not necessarily stable structures throughout the
simulation but are continuously breaking and recombining
with other clusters or monomers. In the case of model I, the
most striking point is the large proportion of particles found
in aggregates. Here, at a given microstate, the majority of
particles organized in clusters generally belongs to one large
aggregate containing even up to 120 magnetic dipoles. Our
analysis showed that nearly all particles with magnetic mo-
ments greater than the average magnetic moment can be
found in clusters. This is evidently due to the application of
a uniform repulsive core size in model I, which enables the
particles with larger magnetic moments to get closer to each
other. In contrast, the picture is somewhat complicated if we
use the magnetic core diametey,for o; (cf. Table ). The
average percentage of particlesrirmers is mostly smaller
than that obtained in the monodisperse system, and it may

FIG. 5. Snapshots of the simulation cell of ferrofiuid 1 at zero ©XC€ed the corresponding monodisperse value only at zero or
field (a), at @=3 (b), and ate=25 (c) for model | atp*=0.2490. Weak external fields. The weak field dependence of these
The dipolar particles are depicted as arrows with lengths prodata can be attributed to the nonuniform short range repul-
portional to the magnetic core diameters. Dipoles belonging tcsive interaction that prevents the close contact of the larger
the same large cluster are represented in black, the others {oint dipoles. By visual inspection of the three-dimensional
gray. The arrow on the frame indicates the direction of the magneticonfigurations formed at different magnetic fields, we have
field. made sure that the structure of the latter polydisperse system
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is characterized by randomly distributed short clusters and In summary, on the basis of our simulation results we can
the resultant dipole moments of these clusters can easily ceonclude that the behavior of model Il reveals more similari-
align with the field direction. ties with monodisperse systems than model |. Under the

Finally, let us return to the problem connected with thestudied conditions, unlike model Il, model | implies the for-
magnetization curves obtained for model I. At weak and in-mation of an anisotropic phase. Considering the chain forma-
termediate field strengths large metastability effects werdion, which generally cannot be observed in real ferrofluids
found. Smaller magnetization data were calculated when thi§ the absence of the external magnetic field, model I is a less
simulations were started from a configuration initially equili- €@listic polydisperse model, but it may represent an impor-
brated in the absence of the external field as compared &t first step to understand the structure and physical prop-
those obtained in the standard cgseface-centered-cubic ert|e§ of polyd|sperse d|p9lar sy§tems. According _to t.he
lattice configuration with random distribution of the dipole physical picture for magnetic colloids, model I certainly IS
moment$. We have to emphasize that the initial configura—the better choice for modeling .SUCh systems. However, this
tion dependence can be as large as 40%<e2. The snap- moplel_does not show any chain formations at strong mag-
shot of a typical configuration of the system at zero fleid ~ Netc fields.

Fig. 5a)] reveals that a large cluster spreads through th%_ lr? ord%r to |mprot;/e_the applied th(ladoLy the inclusion oféhe.
whole simulation box forming a chainlike structure. Here Igher order perturbation terms would be necessary to obtain

the nonzero value d¥l may result from the finite size of the better agreement between simulation and theory. Further-

simulated system and indicate this structure rather than more, to explain the structure of polydisperse systems, either

weak ferroelectric phase. Starting from such configurations'n the absence or in the presence of the external magnetic

the external field can break the previously developeJield' the application of a.density functional theory, instgad of
branched chains, within the length of our simulations, only if2 conventional perturbation theory, would be worthwhile.

it is sufficiently strong. In the strong field regime, the system

. . . ACKNOWLEDGMENT
also contains an aggregate with several tens of dipoles, but
now this aggregate exhibits a columnlike structiok Figs. Financial support from the Hungarian National Research
5(b) and gc)]. Fund (OTKA-TO38239 is acknowledged.

[1] R. E. RosensweigFerrohydrodynamic§Cambridge Univer- [13] B. Huke and M. Leke, Phys. Rev. 67, 051403(2003.

sity Press, Cambridge, 1985 [14] V. Russier, J. Colloid Interface Sci74, 166(1995.
[2] M. E. van Leeuwen and B. Smit, Phys. Rev. Létl, 3991  [15] Z. Wang, C. Holm, and H. W. Mier, Phys. Rev. B66, 021405
(1993. (2002.
[3] B. Groh and S. Dietrich, Phys. Rev. LeTt2, 2422(1994). [16] M. 1. Shliomis, A. F. Pshenichnikov, K. I. Morozov, and I. Yu.
[4] H. Zhang and M. Widom, Phys. Rev. 49, 3591(1994. Shurubor, J. Magn. Magn. Mate35, 40 (1990.

[5] M. J. Stevens and G. S. Grest, Phys. Ret1E£5976(1995. [17] Yu. A. Buyevich and A. O. Ilvanov, PhysicaZ90, 276(1992.
[6] M. A. Osipov, P. I. C. Teixeira, and M. M. Telo da Gama, Phys. [18] I. Szalai, K.-Y. Chan, and Y. W. Tang, Mol. Phy%01, 1819

Rev. E54, 2597(1996. (2003.
[7] B. J. Costa Cabral, J. Chem. Ph{42 4351(2000. [19] I. Szalai, K.-Y. Chan, and D. Henderson, Phys. Rev6 &
[8] M. I. Shliomis, Usp. Fiz. Naukil12 427 (1974. 8846(2000.
[9] K. I. Morozov and A. V. Lebedev, J. Magn. Magn. Mat8b, [20] D. Frenkel and B. SmitJUnderstanding Molecular Simulation
51(1990. (Academic Press, San Diego, 1996hap. 12.
[10] L. Bellier-Castella, H. Xu, and M. Baus, J. Chem. Ph{s3 [21] D. Levesque and J. J. Weis, Phys. RevW® 5131(1994).
8337(2000. [22] S. W. de Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc.
[11] A. O. Ivanov and O. B. Kuznetsova, Phys. Rev6& 041405 London, Ser. A373 27 (1980.
(2001). [23] M. P. Allen and D. J. TildesleyComputer Simulation of
[12] A. O. Ivanov, Colloid J. USSF9, 446 (1997). Liquids (Clarendon Press, Oxford, 1987

041109-8



