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Generalizations of the Bruggeman equation and a concept of shape-distributed particle composites
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We consider generalizations of the classical symmetrical Bruggeman equation based on the concept of
shape-distributed particle systems. The use of the Beta distribution for the particle shape is shown to result in
some known as well as unknown equations of the effective medium theory. However, these equations yield no
percolation threshold. On the other hand, the use of one- and two-dimensional steplike distributions of sphe-
roidal (ellipsoida) shapes yields a percolation threshold depending on the distribution parameters. The problem
of finding the percolation threshold to fit the systems under consideration, as well as the applicability area of
the generalized Bruggeman equation and its relation to the Bergman representation, are discussed.
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[. INTRODUCTION can be exactly realizable by some multiscale hierarchical mi-
crostructures where spheres of arbitrary dimension are well
Since 1935, when the classidaymmetrical Bruggeman separated with self-similarity on all length scales. Consider-
equation(BE) was put forward 1] up to the present it has ing disordered random resistor networks and applying a dia-
been extensively used in various areas of solid state and saffammatic technique, Ludki6] found that the effective con-
matter physics despite the availability of a rich variety of ductivity generically deviates from the BE at the fourth order
alternative, more modern homogenization theories. There amaf perturbation theory; on a square lattice, due to the duality
numerous examples of using the BE in completely differensymmetry, the BE becomes incorrect only in the fifth order.
situations for various effective transport coefficients, such a&inally, using a target optimization procedure, Torquato and
electric and thermal conductivity, permittivity, permeability, Hyun [43] found that periodic arrays of generalized hypocy-
diffusivity, etc. (see, e.g.[2—39)). The Bruggeman theory cloidal inclusions arranged in a checkerboard pattern ap-
has also been extended to the somewhat more complex proproximately achieve the BE.
lem of the elastic constants of composite materj&lgl0— At the same time, the BE has disadvantages that lead to its
42]. It should be noted, however, that its use does not alwaymapplicability in many cases. Here it is assumed that each
seem justified. Nevertheless, unfortunately very often aupolarizable cell is surrounded by the effective medium. The
thors apply the BE to various systems without sufficient reaenvironment of a given cell is not really a fixed effective
son[43]. medium, however, but is variable. At high concentrations
What is the reason for this popularity of the BE? Of (and particularly near the percolation threshotde above
course, simplicity and the clear physical meaning of theassumption can be poor. Indeed, isolated occupied sites, sites
Bruggeman equation play an important role. However, in ouwhich are along a single strand path, sites surrounded by
view, another fact is also important, namely, for many inho-other occupied sites, and sites along a dead end branch are all
mogeneous systems, for natural and also for artificially prein very different environments. In other words, the BE relies
pared composites, theeal values of transport coefficients on the average field concept and completely neglects the lo-
are close to those predicted by the equatidhis is particu- cal field fluctuations; this allows one to obtain an approxi-
larly inherent in systems whose components possess similanate analytical solution. Of course, as a statistical theory
microgeometry, for example, a mixture of two liquids in- the BE ignores imperfect interface contact and boundary
soluble in one another, a mixture of fine powders after sinscattering, i.e., actual energy dissipation at boundaries due to
tering, etc. It is commonly supposed that the Bruggemarnteraction between current or heat carriers and defects or
geometry consists of intermixed components. Stroud anticiinterfaces[47-52. This problem, however, is outside our
pated[44] that the BE is most appropriate to a compositeconsideration.
made up of uniform cells which all together fill the space It should be noted that the BE does not contain parameters
completely and are compact and roughly spherically shapedignifying the system microgeometry. As a consequence the
Irene believes that the equation “may be appropriate foiBE gives the fixed percolation threshdig= 1/d, whered is
mixed phase films and large amounts of impurities in subthe space dimensionality. As we will see later, this value of
strates and damagg¢10]. p. is, however, a rarity for natural and artificial heterosys-
The problem of applicability of the BE is closely related tems.
to finding microgeometries for which this equation is realiz-  As noted earlief53], the validity of the BE increases with
able. Milton showed45] that one of such microgeometries decreasing dimensionality. This is due to the fact that as the
dimensionality increases the opportunity for current flow
around (or toward a region of differing conductivity in-
*On leave from Institute of Semiconductor Physics, Nationalcreases. Clearly, as the path around the compo(eifij in
Academy of Sciences of Ukraine, 45 prosp. Nauki, 03028 Kyiv,question becomes more important, the fluctuations in this
Ukraine. path also become more important.
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Looking through the literature concerning generalizationsof spheroids instead of the real composite system, which can
of the BE we would like to note some papers which are, inbe rather complex. We will return to this problem later, in
our view, of interest. First of all, we note the contribution dueour discussion. In Sec. Il we consider the classical formalism
to Granqvist and Hundefi54,55. They showed that it is by Bruggeman and Landauer. In Secs. IlI-IV we present
possible to represent resonance frequencies of various coMarious extensions of the BE using the concept of shape-
figurations of identical touching spheres using one triplet ofdistributed particle composites. A brief review and our dis-
effective depolarization factors_{) which signifies an el- Ccussion of the percolation threshold problem are given in
lipsoidal shape. This means that a complex systerimtef- _Sec. V. Finally, in Sec. VI we discuss the results obtamed and
acting spheres may be effectively replaced by a system of! Sec. VII sum up the results and give our concluding re-
noninteractingellipsoids. In addition, they also pointed out Marks.

the crucial possibility of using a distribution of the depolar-
ization factors to obtain the needed value of the critical ex-!l. CLASSICAL BRUGGEMAN-LANDAUER FORMALISM

ponent for conductivity. The classical BE was pioneered by Bruggerajn How-

McLachlan [56,57] and McLachlan, Blaskiewicz, and . . . o .
Newnham[58] considered some generalized versions of theever, in our mind, a physically more correct derivation of this

) ; . equation was given by Landauf®3,68. In this theory a
B.E wnt;en n term.s. of mlcrogeometry parametéu@ space typical element of the two-phase composite is embedded in
dimensionality, critical volume fractiofi,, and critical ex-

A ! . _an effective medium. The properties of the medium, in turn,
ponenj. The main idea was to relate effective medium brop

. . . are to be determined self-consistently. To do this, it is nec-
theory to percolaﬂon theory. Thus their quatlons are somSssary to solve for the local field around the element and
hybrid of both theories or a bridge connecting them.

. . impose the requirement that the local field fluctuations are
Ghosh and Fuchi$9] proposed a theory for the dielectric zer0 on average.

response O.f roch-aryd-brme systems, pased_ on the spectra Following Landauer’s line of reasoning, let us consider a
repre_sentatlo_n with its sum rules. Stz_ir_tlng_ with the .SpeCtragpherical inclusion with a conductivity; and volumeV and
densny function fo_r the BE, they mpdme_d I a’?d denv.ed aNassume it is embedded in a uniform medium with an effec-
analytical expression for the effective dielectric function Oftive conductivity oo . If the applied(far) field is E, then a

g;el C(?[rr?pcf)sgeﬁ Itn's spomvvnnth?t tEe fe?tl:;es conmgnog trci)vth ipole moment related to the volume under consideration is,
electric functions of many rock systems can be derived " oo dimension&3D),

from the theory. In particular, it predicts static and/or dy-
namic scaling near the percolation threshold under appropri- 3V
ate conditions. Moreover, it is in quantitative agreement with P =1
the experimental data. However, the theory has three free Tr
parameters whose connection with the system microgeomyq e 0,= (0, — oe)l(0i+204) is the dimensionless sphere
etry is, generally speaking, unclear. . polarizability. This polarization produces a deviation from
Pecharroman and Iglesia80] assumed both composite g 't the average deviation frof, is considered to vanish,
components to be randomly oriented spheroids. The expregia (otal polarization'summed over both elements of our

sion obtained is a two-parameter generalization of the BE.,mqsjte must vanish too. This leads to the well-known
where the depolarization factors of the spheroids are fregimple equation

parameters. Alternatively, one of the depolarization factors
and the percolation threshold can be considered as free pa- f10,+f,6,=0, 2
rameters.

Dvoynenkoet al. [61] treated the system dimensionality wheref; andf, are the filling factorgvolume fraction$ of
entering the BE as a free parameter varying near the percghases 1 and 2, respectively. There is another way to obtain
lation threshold where the correlation length is large. As ahe classical BE, namely, one imposes the condition that the
result, their model allows one to describe with reasonabl@eviation of the current from the average must vah&s|.
accuracy the experimental transmittance spectra of semicon- Bruggeman'’s theory is trivially extendable to arbitrary di-
tinuous gold films evaporated onto glass substrates. mensionality of the system. In this case we have to take in

In this report we develop another, unified approach baseéq. (2) [53]
on the concept of a shape-distributed particle system. Prepa-
ratory to considering the BE in detail, we would like to men- b= O~ Oeff 3)
tion this concept briefly. This issue may be of interest from "o+t (d—1)oey’
two angles. On the one hand, real particle systems are usu-
ally shape distributed. From this standpoint it is of interest towhered is the system dimensionality.
consider, for example, assemblies of particles with a shape Equation(2) is a quadratic equation and to be physically
distribution to take into account its effects on the linear andcorrect its solution has to be positive. If we deal with a
nonlinear optical respong®2—64. On the other hand, the multiphase composite system then E2). can obviously be
effective transport coefficients for any composite systems argeneralized to
the same as for a shape-distributed system of sphefiéids
This is a direct and evident consequence of Bergman'’s theo- 2 f0.=0. (4)
rem[66,67 (see alsd59]). Thus we may consider a system -

6iEo, @
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It should be noted that there is an algorithm based on con-
formal mapping allowing one to select the physically correct

solution for this cas¢69].

PHYSICAL REVIEW B8, 041108 (2003

fldLP(L)=1. (13)
0

The classical BE can be easily generalized to the case of | ot s consider the percolation properties of B) for a
typical elements of ellipsoidal shape. For the isotropic COMyyy0-phase composite medium. Usually the percolation prob-
posite two methods of generalization are possible. If the eliem, is formulated in terms of the conductivity; we will also
lipsoids are equally oriented and the electric field is directedq) o\ this rule. If o, and o, are the conductivities of the

along one of the ellipsoid axes, thésee, e.g.[70])

0_1 O~ Oeff
'3 geft (0= o)L

©)

insulating and metallic phases, respectively, then we may
write (see alsd61]) o4<o, Or

$,=0 (14)

whereL is the ellipsoid depolarization factor correspondingbelow the percolation threshold, where there is no percola-

to the direction of the above fiel@1]. If the ellipsoids are

randomly oriented, thefb5,70

6—1 : i~ Oeff ©6)
" 3151 oent (07— oen)L

tion, ando <o OF
s=-1 (15

above it, where percolation exists. Both conditigfhd) and
(15 have to hold at the percolation threshold. Substituting
Eqgs.(14) and(15) in Eq. (12), one has

For the sake of convenience we introduce the designation

Oeff  Meff
- ]
0= Oeff  Mi™ Meff

S =

()

whereu is a transport coefficient. Then Ed8) and(4) may
be rewritten as

> fi[1+ds] t=0. (8)
Combining Egs(5) and(4) one obtains
> fils+L] t=0. 9)

At the same time, combining Eq&) and(4) one obtains

3
> figl (s+Lj)~t=0, (10)

where the well-known condition for the ellipsoid depolariza-

tion factors
L3:1_L1_L2 (11)

has to be taken into account.

IIl. 1D DISTRIBUTIONS

A. General considerations

It would appear natural to consider a generalization of Eq.

(9) of the form
P(L)

> fifoldL— 0 (12)

s+L

whereP(L) is a distribution function. Clearly, this function

is to be normalized to unity,

t P L. PL)
(1—fc)f0 dLm‘i‘chOdLT:O, (16)

where f is the critical value of the metallic phase filling
factor. Equation16) may be rewritten as

foldLP(L)G(L)=O, (17)

where

c

GL= =g

(18

Equations(17) and (18) signify an important condition con-
necting the critical filling factor with general 1D distribu-
tions of ellipsoidal shapes, and we will use them below. For
further consideration we have to signify the form of the dis-
tribution functionP(L).

B. Distribution as two é functions

It seems likely that the simplest nontrivial distribution de-
serving consideration is that as twd&functions, namely,

1
P(L)=5[8(L-L])+8(L-L3)]. (19

To satisfy Eq.(17) we ought to take herésee Fig. 1

L-fe
G(L):m—_a, (20)

which yields two solutions,

L2t 1-(1+a)*—4af,

1 2a

(21)

and
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where C=T'(a+ B)/T'(a)I'(B) is the normalization con-
stant and’(---) is the gamma function.

The properties of this distribution are well known. In par-
ticular, its variance is
L; aﬁ
ot A D(L)_(a+[3)2(a+,8+l)'

-a

(26)

At the same time, at various values of its parametarand

B) the Beta distribution has radically different properties. As
a result, many distributions may be approximated by this
. distribution.

Substituting Eq(25) into Eq. (12) gives(see, €.9.[76])

. . . . . . . . . > LB(“:ﬂ)zFl a,liat ;- i) =0, 27
[ 01 02 03 04 °L5 06 07 08 0.9 1 i Si Si
FIG. 1. lllustration for Eqs(19)—(22). whereB(«a,B) is the Beta function angF,(---) is the hy-
pergeometric function. It is easy to check tHa&=0 for a
_1+(1—a?+4af. system with such distribution. Obviously, this is because the
zza (1-a) a c (22) Beta distribution possesses the following property: for any
2a L>0 (it goes without saying that<1), P(L)>0. This

means that there can be needles in the system under consid-
After direct substitution of Eq(19) into Eq.(12) one has the eration as long as one likes. Thus, the system undergoes the

final equation forweg, percolation threshold af=0. In other words, for corre-
sponding microgeometries a conductor retains conductivity
1-f 1-f f f until it is completely replaced by an insulator.
R + SENE: + g + SEE: =0. (23 The distribution has two parameters. Varying in the inter-

val [0;1], its parameters enable us to consider a wide class of

Earlier, a similar equation was derived by Pecharroman an omposite microgeometries. Some particular cases of the
’ d y eta distribution admitting analytical solutions are consid-

Iglesias[60]. We note that Eq(23) is a two-parameter equa-

> . X . : ered below.
tion and it describes a system consisting of particles of two
kinds, namely, elongate and flattened spheroids for each
phase. One of the parameteey €hows how far the spheroid )
shapes deviate from spherical. The other parametdris, In this case we use the fact tHag]
as before, the critical filling factor. The degeneracy condition AN (1 on-a

(a—0) yields a simpler one-parameter equation, 2Fi(a:1:2)=(1-2)"%, (28

1. a=1-8

and one obtains the one-parameter equation

1-f f
s+ fg " sZ+fc:0’ 24 3 (I-f)pug t+fug™? 29
which is nothing more nor less than a combination of Egs.
(4) and(5) and will be considered by us as a particular casdf now one takesx=1/2 then one obtains
of Eqg. (23). It should be noted that a similar equation was
proposed by Xia, Hui, and Stroyd?2] to calculate the opti- 1+f(Vuolpwi—1) 30
i -acti i i Meff= M1 :
cal properties of Faraday-active composites. Later, it was e 1+f( m_ 1)

repeatedly used for description of the optical spectra of mag-
netic materials(see, e.9.[73,74)). At f;=1/3 Eq.(24) re-  Earlier this equation was considered[#7—79.
duces to the classical BE. Davidson and Tinkhats] take

heref.=1/6 [see Eq(45) below], which yields good agree- 2. a=2—p

ment with experimental data for the effective conductivity of

three metal-insulator composites. This case has been given adequate considerati¢p80h

(see als@81]). It reduces to the well-known and widely used

Lichtenecker equation
C. Beta distribution

Let us now consider a rather general distribution, namely, Méf;azz filuil*a, (3D
the Beta distribution i

P(L)y=CL* }(1-L)# 1, (25  where the single parameterlies in the interval0;2].
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FIG. 2. Dependencé,(A) calculated according to EG37). ook N N e R
3. a=1/2, B=1 ] R o v _ _
In this case we use the fact tHa6] otk N
osl i)
1 3 1 1+z
2F1(2,1;2;22 ziz’llnﬁ. (32 <ost

oal ] o [ e - S
This yields the final equation |

03[ --

> fistAn[1+2(s Y- 1)"Y=0, (33

01~

0.1

which, as far as we know, has not been used in the relevan®)
literature yet.
FIG. 3. (a) Surfaceu¢(f,A) calculated according to Eq&34)—
D. Steplike distribution of spheroidal shapes (36)._ (b) Patterns of isolines lggue«(f,A)=const calculated ac-
cording to Eqs(34)—(36).

For a spheroid one can taksee, e.g.[62]) L;=L, and

L=Ls=1-2L,=1-2L,. Thus, for shape-distributed sphe- gy applying Eqs.(14), (15), (34), and(36) to a two-phase

roids equally oriented along their revolution axis E¢l2)  composite {=2), the equation for the critical filling factor
can be rewritten as may be written as

1
Ei fiﬁi:Z fiJ\OdLP(L)(Si‘FL)il:O. (34) (1 fc)ln 1-4A +f In%=0. (37)

The simplest form of the distribution function that deservesThe solution of this equation is presented in Fig. 2. As may
attention in this case is the one-parameter steplike distribuye geen, percolation can take place when<tf/3 1/2.
tion [82,83 The dependence.«(f,A) calculated according to Egs.
(34)—(36) for a two-phase composite is presented in Fig.
3(a); in order for the figure to be more dramatic we take here
(35  the transport coefficients of the phases as extremely different
from one anotheru,/u,=10" It is interesting also to con-
struct the isolines log(ucx)=const[see Fig. 8)]. As may
be seen,u.s changes abruptly as the filling factor goes
through its critical valugthe values ofu.¢ are given on a
logarithmic scale hepelt should also be noted that, whereas
2 s+ 1/3+ (23 A 3g the dependencee(f) is always monotonic, the dependence
A? : s+ 13— (13 A (36) Mei(A) is not. So at smalf this function first decreases and

N
T373

2 1
P(L)=52x| L— 3+3A

wherex(- - ) is the Heaviside unit function andl is a param-
eter signifying nonsphericity. Direct integration yields

0i=
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then rises. In contrast, at lardeit decreases monotonically s}
with increasing nonsphericity parameter

071
IV. 2D DISTRIBUTIONS 06
For an ellipsoid two depolarization factors are linearly < ost

independent. Thus forandomly oriented shape-distributed
ellipsoids Eq.(10) can be rewritten ag34] o4r

3 03+
Z fiai=2i fif f dleLzP(Ll,Lz)gl (s+Lj~t=0, 0ol
(38 01l

where we have to take into account E@.1). The one- b) o y ; 04 05 06 07 08 09
parameter steplike distribution for this case may be written !
as[64,65,85,86

FIG. 5. (a) Surfaceu¢(f,A) calculated according to Eq&8)—

2 1 1 1 1 (40). (b) Patterns of isolines lggu.x(f,A)=const calculated ac-
P(L):PX |—1_§+§A L, A

3 + 3 cording to Eqs(38)—(40).
2 case the percolation can take place only wherl/3.
x| Thaimha gt 3A> (39 The dependence.q(f,A) calculated according to Egs.

(38)—(40) for the two-phase composite and the isolines
Substitution of Eq(39) into Eq.(38) yields after direct inte-  10g;¢( ief) =CONSt atu,/u,=10" are presented in Figs(&
gration[85] and §bh), respectively. As may be seen, the functippy
changes abruptly as the filling factor goes through its critical
2 —A} (40) value. At smallf the function rises monotonically with the
AZ nonsphericity parametey; at largef it decreases with it. At

some intermediaté (about 0.4 it depends almost not at all
As before for spheroids, we consider first the percolatioron this parameter.

prope_rties of a similar two-phase system of ellipsoids. By Of course, many variants exist for choosing the shape
applying Egs.(14), (15), (38), and (40) to the two-phase distribution function of randomly oriented ellipsoids. For ex-

composite, the equation for the critical filling factor may be ample, one can choose the generalized Beta distribution
written as

, 2 ) s+ 13+ (2/3) A
=

1
st3t3d s E—1ma

1+2A P(Ly,Ly)=consxL{ H(1—Ly)P s H(1-Ly)P !
+f.(1+2A)In =3A.
o T3 @1 X(1=Lyi—Lp)* HLy+Ly)Ft (42)

2(1—f lA|1+A/2
(1-fo)(1— )nﬁ

Its solution is presented in Fig. 4. It is interesting that in thisor the generalized steplike distributi¢@5]
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tinuum percolation has evolved in different directidisge,
e.g.,[91-94 and references thergirDne approach showing
considerable promisg95-97 uses a mapping between the

T
— t+arctal

P(L4,L,)=consX >

’{ L+ 1/3—A/3}
a—
Li(L1—1)

T —L,+1/3—A/3 continuum percolation model and the so-called Potts fluid
x| tarcta am [98]. The authors 0f97] suggest, in particular, that their
model can be useful to describe microemulsions and com-
iy —L;—L,+2/3+A/3 posite materials. We note that the percolation thresifiold
x| g arctanag— L— L)L+ Ly | this theory one calls it the critical density of interacting par-

ticles) is not universal but is sensitive to all the details of the

(43 system under considerati$a7].

The Scher-Zallen approach is shown to be applicable only
or clusters built up of hardnonoverlapping particles. The
phenomenological continuum percolation theory for overlap-
ping objects is developed, particularly, [89—-101. These
authors discuss percolation in 2D and 3D, using the model of
randomly oriented overlapping holes of various shapes and

As we see, the percolation threshold is the important paéllipsoids of revolution. They notefil0O0] some important
rameter in our consideration. It is well known also that per-materials science applications of their model, such as crack
colation processes play a major part in the physics and chenfiormation, sintering ceramic powders, and hydrating cement-
istry of composites, helping to describe the overallbased materials; a good review of the percolation theory ap-
dependence of various transport properties on the microgddlied to concrete is given by Garbodzi02]. We would like
ometry. At the same time, it is our opinion that there exists &0 note three important conclusions made by the authors of
lot of misunderstanding related to this issue. Because of thi§99—101 on the basis of their computer simulations.
we will consider the problem of the percolation threshold in (i) In 2D, the percolation threshold for identical overlap-
more detail. ping ellipses with aspect ratig, whose centers and orienta-

The percolation problem is versatile and complex by it-tions are random, can be well fitted to the formula
self. On the one hand, there are some general approaches and ¢ g2t g+l (46
models allowing one to calculate the percolation threshold in c '
various situations. On the other hand, many situations exist
that have defied explanations within the framework of these

We note, however, that neither of the above distribution
provides a nonzero percolation threshold, for the same re
sons discussed in Sec. |l C for the Beta distribution.

V. PERCOLATION THRESHOLD

In particular, for circles this yields

approaches; to be specific, we shall present some examples f.=1/3. 47
below.
The well-known work of Scher and Zalldi87,89 con- (ii) Of all objects of a given volume, the sphere has the

siders the problem osite percolation on lattices; another maximum percolation threshold for overlapping objects. In
problem of lattice percolation, known as thend percola- 3D this threshold

tion problem, reduces to the above problem, but on a differ-

ent lattice(see alsd89,90 and references therginin par- f.=0.29. (48)

ticular, for the site percolation problem on a lattice these

authors proposed that the critical fraction of sites is to be an‘sI n;irzsst'r:gg’sg?:;n:é gﬁ;@ﬂg?gﬂggﬁ fc())r: 22?2aﬁ’5?3bic
invariant when expressed as a fillifgolume factor, de- P ’ ' P

pending on dimensionality only. Becaukeis approximately lattice yields[103]

universal, i.e., essentially independent of the lattice structure, f =0.034. (49)
they suggested that it may be carried into continuum sys- ¢
tems. So the critical filling factors It is considered to be useful for description of sandstones and

some other porous systems.

(i) In 3D, even for simple overlapping shapes, the de-
pendence of the percolation threshold cannot be completely
described by single-particle shape functionals.

Interestingly, we do not know of any published work on

f.=0.16 (45)  the percolation threshold of shape-distributed particle sys-

tems despite the fact that such systems are doubtless of prac-

in 3D were found to be invariant. Later, a similar approachtical interest. Moreover, most studies cover the percolation of
was repeatedly applied to continuum percolation problemsequal-sized constituents only. There are only fragmentary
Below we will see that some experimental work approxi-data on percolation in polydisperse syste(sse, e.9.[104]
mately supports these results and some does not. At presentind references thergin
is believed that Eq45) is valid for such hardimpermeablg Let us now consider some experimental results concern-
spheres of a single size that nearest neighbors just touchng the percolation threshold in composite media. At present
situated randomly on all lattices in 3D, as well as for randomthere are comprehensive data on percolation properties of
closely packed systems. At the same time, the theory of corthin films. Semicontinuous metallic films obtained by vari-

f.=0.45 (44)

[some other estimations giig=0.5 (see, e.g.[58])] in 2D
and
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ous methods of deposition on dielectric substrates may be
considered as quasi-2D. For thin gold films made at room
temperature by electron-beam evaporation onto amorphou

SisN, windows, the percolation threshold is found to he ’

=0.74[105]. At the same timef.=0.71 for thin gold films Y

deposited by thermal evaporation at room temperature on a °

amorphous substrate, arfige=0.53 for those deposited on a ¢ 5

polycrystalline substrat¢106]. Other results[61] give f, =y R \

=0.75 for gold films deposited on glass at high temperature 2~ A& \\ W
~ f 1. Iz’.“ \\\\\\\\\\\\\\\\\\

andf.=0.56 for those deposited at lofhoom) temperature. q M@@g\\\:&\&\\\}}\

For copper films thermally evaporated onto quartz-glass sub  °

strates, Dobierzewska-Mozrzymas al. [107] obtained f oAl

=0.63. In recent experiments by Seslal. [108], f.=0.65
for semicontinuous silver films on dielectric substrates ob-
tained by laser ablation.

Relatively thick(Cermej films obtained by cosputtering @)
(or coevaporatingmetals with insulators may be considered
as quasi-3D. Here we would like to note the results of Abeles
et al. for W-Al,O; Cermet films[109] (f.=0.47), Barzilai
et al. for Co-SiQ, Cermetq110] (f.=0.55), and Niklasson
and Grangvist for Co-Al0; Cermets[111] (f.=0.25). For
Ni-MgO composites obtained by coprecipitation of NiO-
MgO solid solutions and their preferential reduction in a hy-
drogen atmospherd.=0.32[112]. For amorphous carbon-
Teflon composites obtained by mixing and compressing=
initial fine powders, the estimated value of the percolation
threshold isf.=0.29[113]. For YBgCu;0;_5/CuO com-
positesf.=0.18[114]. For carbon-wax mixtures exhibiting
the tunneling mechanism of conductivify,=0.1[115], and
for filamentary nickelf .=0.075[116]. Finally, for graphite-
hexagonal boron nitride powder mixtures Wu and
McLachlan obtained,=0.12-0.15117]. In addition, they
noted that the values df; are typically 0.11-0.125 in the () | 03 g ,
powders.

The authors of many of the above works advance various FIG. 6. Relative change of the effective transport coefficients
arguments to justify why their values of the percolation 7:(f,fc) atu,/uy=(a) 1¢%; (b) 10%.
threshold differ from the theoretical ones. Some consider-
ations of how to achieve either a very low or a high perco-homogenization theories. We have obtained, in particular,
lation threshold and some practical examples are given byertain one-parameter as well as two-parameter generaliza-
McLachlan[118]. We would like, however, to note the fol- tions of the classical BE. Obviously, the simplest generaliza-
lowing. There is no question that the percolation threshold ision is that signified by Eq(24). Its properties are identical
a nonuniversal parameter explicitly depending not only onyith those of the classical BE, but the criticéhreshold
dimensionality but on the system microgeomefon the filling factor is a free parameter here. So it is interesting to
type of the percolation system considered well; generally  compare the numerical results far.¢ obtained using Eq.
speaking, it is sensitive to all the details of the system ang24) and our other approximations. Because the use of the
may be between zero and unity. It is a challenging task t®eta distribution(see Sec. Il ¢ yields no nontrivial perco-
predict beforehand the percolation threshold for a compositgation threshold, we consider some results obtained with the
system under study. In our view, however, a problem existgise of Eq.(34) supplemented with Eq36), and with the use
which can be formulated as follows. Due to the diversity ofof Eq. (38) supplemented with Eq40). So in Figs. 6 and 7
composite systems, both natural and artificial, they can havge show the dependences;(f,fc)=(uls—ma) s and
various microgeometries and exhibit various percolation, (f f )= (u" —u*)/uts, where u¥, uls, and u'y are
mechanisms. Hence, it is of value to catalog the main typeg,culated using Eq€24), (34)—(36), and(38)—(40), respec-
of such. microgeometrie; and to stL_de the correspondingvew_ We see that in the case of a very higlery low) ratio
mechanisms. It looks as if there is still a long way to go o4 he phase transport coefficienfat p,/u, =10 Fig.
solve the above problem. 6(a)], Egs.(24) and(34) can yield radically different values
of the effective transport coefficients, especially close to the
point f.=1/2, where the nonsphericity parameteis large.

The results reported here demonstrate that the choice df the ratio is not so highiat u,/u, =107, see Fig. )], the
the shape distribution function can lead to widely differentdifference between the values pis is not large either. As
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into account fluctuations of the local fields, and interactions
among phases are represented by a constamraged far
field. However, they indirectly take into account higher mul-
tipole interactions. Needless to say, an exact calculation of
the interactions in random composite systems containing
complex-shaped phases is intractable. The multipole interac-
tion is of particular value at high concentrations and near the
percolation threshold due to the significant clustering of con-
ducting and insulating areas. Granqvist and Hund#t] de-
scribed this situation by incorporating dipole-dipole interac-
tions (which are the most important of the multipole
interactions locally using the ellipsoid effective depolariza-
tion factors. In other words, in their treatment the shape- and
interaction-governed effects on the effective transport coeffi-
cients are similar and consonant. Similar to the work by
McLachlan[56,57], we consider the percolation threshold as
FIG. 7. Relative change of the effective transport coefficientsa free parameter that enables one to circumvent the corre-

7o(f,fo) atuy /=100 sponding difficulties and impose the needed percolation
threshold value.
for Eq. (38), it does not yield very high values of, even at (2) Our models cover a wide range of composite systems

wol =10 (see Fig. 7. One should note also an interesting whose percolation threshold can vary from 0 to 1/2. As dis-
distinction between our models based on E84)—(36) and ~ cussed earliefsee Sec. V the percolation threshold of most

on Egs.(38)—(40). While consideration of equally oriented Studied 3D composites lies within that interal0]. Actu-
shape-distributed spheroifgs.(34)—(36)] leads to increas- ally, our model equationg36) and (40) are derived for 3D
ing the percolation threshold relative to the case of the clascOmposite systems. Indeed, we have chosen the shape distri-
sical BE for sphere$Eq. (2)] wheref.=1/3, consideration bufuon function in such a manner that it is centered at the
of randomly oriented shape-distributed ellipsdifisis.(38)— ~ PointL=1/3(or L, =L,=1/3) which corresponds to the per-
(40)] leads to its decrease; so the valije=0.16 [see Eq. cplanon threshold qf the F:Iassmal BE in 3D. At the.same
(45)] is reached at =0.993. In connection with this one can time, our approach is easily extended to 2D composites. To
note the work of Sherwiret al. [119]. They considered the do this we ought to center our shape distribution function
percolation threshold problem fadentical parallel metallic ~ (Which has to be one dimensional in this daaethe point
ellipsoids in an insulator host with similar geometry usingL=1/2, which corresponds to the percolation threshold of
the Bruggeman formalism. In particular, their results showthe 2D classical BE. _

that for the direction along the longest principal semiaxis of (3) It goes without saying that our equations do not take
spheroids the percolation threshold value is low for prolatdnto account such phenomena as scattering at interfaces and
spheroids and increases as the length of this semiaxis dénneling of carriers. One of the phenomenological ap-
creases relative to the lengths of the other two semiaxes. S¥oaches to the scattering problem liesenormalizationof

the percolation threshold can be high for strongly oblateh® phase transport coefficients. To account roughly for quan-
spheroids. This means that the percolation threshold for iderfum mechanical tunneling one can increase the effective vol-

tical similarly oriented ellipsoids can increase as well as deWme of the conductive phage21]. o
crease relative to that for spheres. (4) Obviously, the key question of our consideration is the

What are the physical meaning and the importance of thé"éa of applicability of our approach. On the face of it, be-
approximation signified by Eq$34), (36), and(40)? At first ~ cause we have chosen_the_funct_lérto be the same f(_)r all
glance it would seem that they describe some abstract arihases, our consideration is valid only for geome.trles that
unlikely microgeometries, and so their importance is limited.fank among the so-called aggregate ones. Following Lamb
Indeed, for corresponding microgeometries the effective me€t al-[122], we distinguish aggregate composite topology as
dium is one where each ellipsoid is surrounded by a mixturdhat where all phases occur on an equal footing; for this
of the two component§phasesthat has the effective value topology the microgeometries of phases are similar. In con-
of the medium. This means that the ellipsoids are of an infiffast, for another type of topologfcermettopology, the
nite range in size, and that the larger ellipsoids are separatdlase microgeometries are different; there, particles of one
by a medium containing smaller ones. Moreover, the ellipPhase (inclusiong are completely surrounded by another
soids are distributed in shape. In fact, however, the geometrjhase(hosy.
of actual composite systems is not necessarily so complex. According to Bergmaii66,67), for any two-phase macro-
The above microgeometries are only models admitting &0Mogeneous systee may be represented as
simple mathematical description and their parameters are not
directly related to the real shapes of the particles. One might L
note some dlstl_ngwshlng features _of these mod_els. _ 1+f2f dLg(L)[ (ol py—1) " L+L] 2,

(1) The classical BE, as well as its generalizations consid- 0
ered here, are completely mean-field equations, not taking (50

Meff= M1
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whereg(L) is the so-called spectral density function satisfy- 1 Pi(L)
ing the sum rules > fif dL——=0. (53
I 0 SI + L
1 1 . .
_ —(1_ From the above discussion one can suppose that our rep-
fo dLg(L)=1 and fo dLig(L)=(1~12)/3. (5D resentation(12) and Bergman'’s representati¢f0) are not

equivalent. Strictly speaking, the applicability area of Egs.

: . 12) and (38) has been something of a mystery; we believe
The spectral density function does not depend on the matéﬁat this problem will be considered in more detail else-

rial constantsu; andu, and describes the microgeometry of Yvhere. At the same time, the shape distribution funce

a composite. Since it gives the spectrum of configuratione\Ne” as the spectral density functignsignify the microge-

resonances, it contains all geometrical information about th%metry of the composite. In addition, they signify the inter-
composite. At the same time, depending on the filling factor,. . P g S 2
it signifies the interactions inside the system. Thus the re actions inside it; in doing so they signify them in different

resentation(50) allows one to separate the effects of micro- ways. We note that, owing to the simple form of the spectral

. . ensity functiong Eqg. (50) might be more suitable for com-
geometry and material constants on the effective transport~ . ' .
o . osites with Maxwell-Garnett-like microgeometf$4,65,
coefficients. Let us now formulate two important statement

which, it seems, loom large in the effective medium theory. while, owing to the simple form of the shape distribution
Statement 1The effective transport coefficients of any function P, Egs.(12) and (38) might be more suitable for

composite system are the same as those of a cermet Compgg_mposnes with Bruggeman-like microgeometry. Thus, one

. . . advantage of the approach is that it suggests extensions for a
ite system with the same material parameters. . . .
. ; . wide class of composites based on some free topological
This statement is a direct consequence of the above Berg-

man theoren{see, €.9.[65,83). Indeed, in terms of electro- %arameters.

dynamics the factof (u,/u,—1)"*+L]" 1 in Eq. (50) is

simply the dipole polarizability of a spheroid with the depo- VII. CONCLUDING REMARKS

larization factorL. The functiong(L) signifies the distribu- This report is written to present our main idéhe use of

tion of the spheroids in shape. Thus natural mogfeso- ﬁhe concept of shape-distributed particle systeinsuch a

nmaondcsggff sarﬁgl?quoriséfslmZ%Seezxgrﬁzsrg%én Itr?:)Tr?e?fV\?oart(;Jsraway as to be accessible to the researchers in various fields.
y P P ' ' Eollowing this line of attack, we considered generalizations

diagonal component of the tensagy of the two-phase com- . of the well-known classical BE in 3D. To demonstrate the

positg Is the same as for a system O.f equally oriented nonlr}éfﬁciency of our approach, we showed that various assump-
teracting spheroidéhere, the orientation of the applied elec- tions for the shape distribution function yield many known

tric field has to correspond to the revolution axis of the . . -

. X . equations for the effective transport coefficients. At the same
spheroids We note that Eq(50) is written for _cerme_t topol- tir?1e, to develop the approach Fl)Jsed we proposed two other
ogy where the phases 1 and 2 are host and inclusions, resloes‘?r'nple distributions for spheroidal and ellipsoidal shapes.

tively. Consequently, two composites having different to'This enabled us to obtain two one-parameter equations of the

pologies can have the same effective transport CoefﬁCiem%'frective medium theory whose parameters signify the per-
For example, a typical aggregate composite described by th

classical BE has the same effective transport coefficients as(?qlanon threshold of the composite systems under consider-
cermet composite with a known spectral density function
[59].

Statement 2Some(cermej composite systems exist such
that their effective transport coefficients differ from those of

any aggregate composite system with the same material p

What are the future trends of our approach? Considering
transport and relaxation in porous media, Hilf&23] noted

that almost all corresponding studies are motivated by one
central question: How are the effective transport parameters
ffluenced by the microscopic geometric structure of the me-

rameters. . s )
. . dium? In our opinion, however, two problems, as applied to

This means that Eq¢12) and(38) are not always apph- our situation, can be considered independently of one an-
cable. One can suppose, for example, that they are mapplg

cable in the case of a dilute suspension of spheres for whic ther, namely(i) if we know what our composite microge-
(see, e.9[83) P P metry is then we can try constructing the corresponding

function P; and (ii) if we know what the functiorP for an
actual composite system is, we can try finding the corre-
Mo— sponding microgeometry. In other words, our problem is to
m : (52 find the relationship between the shape distribution function
and microgeometry of particular kinds of composites.

h ds. | h oai It seems reasonable to apply the following approaches to
In other words, in a sense the aggregate topologies are @, spove problems.

subset of cermet topologies. Indeed, we have assumed that
the functionP(L) is the same for all phases, and hence the(1) Since some composite systems can be generated artifi-
phase microgeometries are similar. At the same time, it cially, their optical properties can be measured in a wide
would be more natural to suppose that each phase has its frequency range using laboratory experiments. In prin-
own functionP(L). So Eq.(12) is rewritten as ciple, this makes it possible to solve the inverse problem

Herr=p1| 1+ 35
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of determining the shape distribution functiBrfor such
systems directly from experimental data. A similar prob-
lem for the spectral density functiog(L) has already
been considere(kee, e.g.[124-126).

Direct fitting based on some intuitive assumptiofRge-
guently, one cannot extract the needed function from ex-
perimental data because the latter can be limited by a
narrow spectral region or not be informative enough. In
some cases, however, starting franpriori assumptions
concerning properties of the shape distribution function,
one can try to signify their general analytical form and
determine the model parameters. For instance, some
models for the functiong(L) were proposed in
[127,128.

Numerical modeling with further fittingSome homog-
enization theories are based on numerical modeling.
There are some examplgER29] where the internal fields

4
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pansion [130]. Using the corresponding numerical
algorithms, one can find the required functidhgor the
problem under consideration.

Finally, since some actual microgeometries are close to
those corresponding to the well-known approximations,
an opportunity exists to generalize the corresponding
functionsP which are known, say, for such approxima-
tions as the Bruggeman and Lichtenecker ones. As indi-
cated above, Ghosh and Fu¢h8] applied this approach

to the spectral density functiog using Bergman'’s for-
malism. In the present work the formalism of the shape
distribution function is used, a conceptual alternative for
Bergman’s formalism.
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