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Generalizations of the Bruggeman equation and a concept of shape-distributed particle composite
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We consider generalizations of the classical symmetrical Bruggeman equation based on the concept of
shape-distributed particle systems. The use of the Beta distribution for the particle shape is shown to result in
some known as well as unknown equations of the effective medium theory. However, these equations yield no
percolation threshold. On the other hand, the use of one- and two-dimensional steplike distributions of sphe-
roidal ~ellipsoidal! shapes yields a percolation threshold depending on the distribution parameters. The problem
of finding the percolation threshold to fit the systems under consideration, as well as the applicability area of
the generalized Bruggeman equation and its relation to the Bergman representation, are discussed.
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I. INTRODUCTION

Since 1935, when the classical~symmetrical! Bruggeman
equation~BE! was put forward@1# up to the present it ha
been extensively used in various areas of solid state and
matter physics despite the availability of a rich variety
alternative, more modern homogenization theories. There
numerous examples of using the BE in completely differ
situations for various effective transport coefficients, such
electric and thermal conductivity, permittivity, permeabilit
diffusivity, etc. ~see, e.g.,@2–39#!. The Bruggeman theory
has also been extended to the somewhat more complex p
lem of the elastic constants of composite materials@6,40–
42#. It should be noted, however, that its use does not alw
seem justified. Nevertheless, unfortunately very often
thors apply the BE to various systems without sufficient r
son @43#.

What is the reason for this popularity of the BE? O
course, simplicity and the clear physical meaning of
Bruggeman equation play an important role. However, in
view, another fact is also important, namely, for many inh
mogeneous systems, for natural and also for artificially p
pared composites, thereal values of transport coefficient
are close to those predicted by the equation. This is particu-
larly inherent in systems whose components possess sim
microgeometry, for example, a mixture of two liquids i
soluble in one another, a mixture of fine powders after s
tering, etc. It is commonly supposed that the Bruggem
geometry consists of intermixed components. Stroud an
pated@44# that the BE is most appropriate to a compos
made up of uniform cells which all together fill the spa
completely and are compact and roughly spherically shap
Irene believes that the equation ‘‘may be appropriate
mixed phase films and large amounts of impurities in s
strates and damage’’@10#.

The problem of applicability of the BE is closely relate
to finding microgeometries for which this equation is real
able. Milton showed@45# that one of such microgeometrie
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can be exactly realizable by some multiscale hierarchical
crostructures where spheres of arbitrary dimension are
separated with self-similarity on all length scales. Consid
ing disordered random resistor networks and applying a
grammatic technique, Luck@46# found that the effective con
ductivity generically deviates from the BE at the fourth ord
of perturbation theory; on a square lattice, due to the dua
symmetry, the BE becomes incorrect only in the fifth ord
Finally, using a target optimization procedure, Torquato a
Hyun @43# found that periodic arrays of generalized hypoc
cloidal inclusions arranged in a checkerboard pattern
proximately achieve the BE.

At the same time, the BE has disadvantages that lead t
inapplicability in many cases. Here it is assumed that e
polarizable cell is surrounded by the effective medium. T
environment of a given cell is not really a fixed effectiv
medium, however, but is variable. At high concentratio
~and particularly near the percolation threshold! the above
assumption can be poor. Indeed, isolated occupied sites,
which are along a single strand path, sites surrounded
other occupied sites, and sites along a dead end branch a
in very different environments. In other words, the BE reli
on the average field concept and completely neglects the
cal field fluctuations; this allows one to obtain an appro
mate analytical solution. Of course, as a statistical the
the BE ignores imperfect interface contact and bound
scattering, i.e., actual energy dissipation at boundaries du
interaction between current or heat carriers and defect
interfaces@47–52#. This problem, however, is outside ou
consideration.

It should be noted that the BE does not contain parame
signifying the system microgeometry. As a consequence
BE gives the fixed percolation thresholdf c51/d, whered is
the space dimensionality. As we will see later, this value
pc is, however, a rarity for natural and artificial heterosy
tems.

As noted earlier@53#, the validity of the BE increases with
decreasing dimensionality. This is due to the fact that as
dimensionality increases the opportunity for current flo
around ~or toward! a region of differing conductivity in-
creases. Clearly, as the path around the component~cell! in
question becomes more important, the fluctuations in
path also become more important.
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ANATOLIY V. GONCHARENKO PHYSICAL REVIEW E 68, 041108 ~2003!
Looking through the literature concerning generalizatio
of the BE we would like to note some papers which are,
our view, of interest. First of all, we note the contribution d
to Granqvist and Hunderi@54,55#. They showed that it is
possible to represent resonance frequencies of various
figurations of identical touching spheres using one triplet
effective depolarization factors (Li* ) which signifies an el-
lipsoidal shape. This means that a complex system ofinter-
acting spheres may be effectively replaced by a system
noninteractingellipsoids. In addition, they also pointed o
the crucial possibility of using a distribution of the depola
ization factors to obtain the needed value of the critical
ponent for conductivity.

McLachlan @56,57# and McLachlan, Blaskiewicz, an
Newnham@58# considered some generalized versions of
BE written in terms of microgeometry parameters~the space
dimensionality, critical volume fractionf c , and critical ex-
ponent!. The main idea was to relate effective mediu
theory to percolation theory. Thus their equations are so
hybrid of both theories or a bridge connecting them.

Ghosh and Fuchs@59# proposed a theory for the dielectr
response of rock-and-brine systems, based on the spe
representation with its sum rules. Starting with the spec
density function for the BE, they modified it and derived
analytical expression for the effective dielectric function
the composite. It is shown that the features common to
dielectric functions of many rock systems can be deriv
from the theory. In particular, it predicts static and/or d
namic scaling near the percolation threshold under appro
ate conditions. Moreover, it is in quantitative agreement w
the experimental data. However, the theory has three
parameters whose connection with the system microge
etry is, generally speaking, unclear.

Pecharroman and Iglesias@60# assumed both composit
components to be randomly oriented spheroids. The exp
sion obtained is a two-parameter generalization of the
where the depolarization factors of the spheroids are
parameters. Alternatively, one of the depolarization fact
and the percolation threshold can be considered as free
rameters.

Dvoynenkoet al. @61# treated the system dimensionali
entering the BE as a free parameter varying near the pe
lation threshold where the correlation length is large. A
result, their model allows one to describe with reasona
accuracy the experimental transmittance spectra of semi
tinuous gold films evaporated onto glass substrates.

In this report we develop another, unified approach ba
on the concept of a shape-distributed particle system. Pr
ratory to considering the BE in detail, we would like to me
tion this concept briefly. This issue may be of interest fro
two angles. On the one hand, real particle systems are
ally shape distributed. From this standpoint it is of interes
consider, for example, assemblies of particles with a sh
distribution to take into account its effects on the linear a
nonlinear optical response@62–64#. On the other hand, the
effective transport coefficients for any composite systems
the same as for a shape-distributed system of spheroids@65#.
This is a direct and evident consequence of Bergman’s th
rem @66,67# ~see also@59#!. Thus we may consider a syste
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of spheroids instead of the real composite system, which
be rather complex. We will return to this problem later,
our discussion. In Sec. II we consider the classical formal
by Bruggeman and Landauer. In Secs. III–IV we pres
various extensions of the BE using the concept of sha
distributed particle composites. A brief review and our d
cussion of the percolation threshold problem are given
Sec. V. Finally, in Sec. VI we discuss the results obtained
in Sec. VII sum up the results and give our concluding
marks.

II. CLASSICAL BRUGGEMAN-LANDAUER FORMALISM

The classical BE was pioneered by Bruggeman@1#. How-
ever, in our mind, a physically more correct derivation of th
equation was given by Landauer@53,68#. In this theory a
typical element of the two-phase composite is embedde
an effective medium. The properties of the medium, in tu
are to be determined self-consistently. To do this, it is n
essary to solve for the local field around the element a
impose the requirement that the local field fluctuations
zero on average.

Following Landauer’s line of reasoning, let us conside
spherical inclusion with a conductivitys i and volumeV and
assume it is embedded in a uniform medium with an eff
tive conductivityseff . If the applied~far! field is E0 then a
dipole moment related to the volume under consideration
in three dimensions~3D!,

pi5
3V

4p
u iE0 , ~1!

whereu i5(s i2seff)/(si12seff) is the dimensionless spher
polarizability. This polarization produces a deviation fro
E0 . If the average deviation fromE0 is considered to vanish
the total polarization~summed over both elements of ou
composite! must vanish too. This leads to the well-know
simple equation

f 1u11 f 2u250, ~2!

where f 1 and f 2 are the filling factors~volume fractions! of
phases 1 and 2, respectively. There is another way to ob
the classical BE, namely, one imposes the condition that
deviation of the current from the average must vanish@53#.

Bruggeman’s theory is trivially extendable to arbitrary d
mensionality of the system. In this case we have to take
Eq. ~2! @53#

u i5
s i2seff

s i1~d21!seff
, ~3!

whered is the system dimensionality.
Equation~2! is a quadratic equation and to be physica

correct its solution has to be positive. If we deal with
multiphase composite system then Eq.~2! can obviously be
generalized to

(
i

f iu i50. ~4!
8-2
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GENERALIZATIONS OF THE BRUGGEMAN EQUATION . . . PHYSICAL REVIEW E68, 041108 ~2003!
It should be noted that there is an algorithm based on c
formal mapping allowing one to select the physically corr
solution for this case@69#.

The classical BE can be easily generalized to the cas
typical elements of ellipsoidal shape. For the isotropic co
posite two methods of generalization are possible. If the
lipsoids are equally oriented and the electric field is direc
along one of the ellipsoid axes, then~see, e.g.,@70#!

u i5
1

3

s i2seff

seff1~s i2seff!L
, ~5!

whereL is the ellipsoid depolarization factor correspondi
to the direction of the above field@71#. If the ellipsoids are
randomly oriented, then@55,70#

u i5
1

3 (
j 51

3
s i2seff

seff1~s i2seff!L j
. ~6!

For the sake of convenience we introduce the designa

si5
seff

s i2seff
5

meff

m i2meff
, ~7!

wherem is a transport coefficient. Then Eqs.~3! and~4! may
be rewritten as

(
i

f i@11dsi #
2150. ~8!

Combining Eqs.~5! and ~4! one obtains

(
i

f i@si1L#2150. ~9!

At the same time, combining Eqs.~6! and ~4! one obtains

(
i

f i (
j 51

3

~si1L j !
2150, ~10!

where the well-known condition for the ellipsoid depolariz
tion factors

L3512L12L2 ~11!

has to be taken into account.

III. 1D DISTRIBUTIONS

A. General considerations

It would appear natural to consider a generalization of
~9! of the form

(
i

f iE
0

1

dL
P~L !

si1L
50, ~12!

whereP(L) is a distribution function. Clearly, this functio
is to be normalized to unity,
04110
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dLP~L !51. ~13!

Let us consider the percolation properties of Eq.~12! for a
two-phase composite medium. Usually the percolation pr
lem is formulated in terms of the conductivity; we will als
follow this rule. If s1 and s2 are the conductivities of the
insulating and metallic phases, respectively, then we m
write ~see also@61#! seff!s2 or

s2>0 ~14!

below the percolation threshold, where there is no perco
tion, ands1!seff or

s1>21 ~15!

above it, where percolation exists. Both conditions~14! and
~15! have to hold at the percolation threshold. Substitut
Eqs.~14! and ~15! in Eq. ~12!, one has

~12 f c!E
0

1

dL
P~L !

L21
1 f cE

0

1

dL
P~L !

L
50, ~16!

where f c is the critical value of the metallic phase fillin
factor. Equation~16! may be rewritten as

E
0

1

dLP~L !G~L !50, ~17!

where

G~L !5
L2 f c

L~L21!
. ~18!

Equations~17! and ~18! signify an important condition con
necting the critical filling factor with general 1D distribu
tions of ellipsoidal shapes, and we will use them below. F
further consideration we have to signify the form of the d
tribution functionP(L).

B. Distribution as two d functions

It seems likely that the simplest nontrivial distribution d
serving consideration is that as twod functions, namely,

P~L !5
1

2
@d~L2L1* !1d~L2L2* !#. ~19!

To satisfy Eq.~17! we ought to take here~see Fig. 1!

G~L !5
L2 f c

L~L21!
56a, ~20!

which yields two solutions,

L1* 5
a112A~11a!224a fc

2a
~21!

and
8-3
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ANATOLIY V. GONCHARENKO PHYSICAL REVIEW E 68, 041108 ~2003!
L2* 5
a211A~12a!214a fc

2a
. ~22!

After direct substitution of Eq.~19! into Eq.~12! one has the
final equation formeff ,

12 f

s11L1*
1

12 f

s11L2*
1

f

s21L1*
1

f

s21L2*
50. ~23!

Earlier, a similar equation was derived by Pecharroman
Iglesias@60#. We note that Eq.~23! is a two-parameter equa
tion and it describes a system consisting of particles of
kinds, namely, elongate and flattened spheroids for e
phase. One of the parameters (a) shows how far the spheroi
shapes deviate from spherical. The other parameter (f c) is,
as before, the critical filling factor. The degeneracy condit
(a→0) yields a simpler one-parameter equation,

12 f

s11 f c
1

f

s21 f c
50, ~24!

which is nothing more nor less than a combination of E
~4! and~5! and will be considered by us as a particular ca
of Eq. ~23!. It should be noted that a similar equation w
proposed by Xia, Hui, and Stroud@72# to calculate the opti-
cal properties of Faraday-active composites. Later, it w
repeatedly used for description of the optical spectra of m
netic materials~see, e.g.,@73,74#!. At f c51/3 Eq. ~24! re-
duces to the classical BE. Davidson and Tinkham@75# take
here f c51/6 @see Eq.~45! below#, which yields good agree
ment with experimental data for the effective conductivity
three metal-insulator composites.

C. Beta distribution

Let us now consider a rather general distribution, nam
the Beta distribution

P~L !5CLa21~12L !b21, ~25!

FIG. 1. Illustration for Eqs.~19!–~22!.
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where C5 G(a1b)/G(a)G(b) is the normalization con-
stant andG~¯! is the gamma function.

The properties of this distribution are well known. In pa
ticular, its variance is

D~L !5
ab

~a1b!2~a1b11!
. ~26!

At the same time, at various values of its parameters~a and
b! the Beta distribution has radically different properties.
a result, many distributions may be approximated by t
distribution.

Substituting Eq.~25! into Eq. ~12! gives ~see, e.g.,@76#!

(
i

f i

si
B~a,b!2F1S a,1;a1b;2

1

si
D50, ~27!

whereB(a,b) is the Beta function and2F1(¯) is the hy-
pergeometric function. It is easy to check thatf c50 for a
system with such distribution. Obviously, this is because
Beta distribution possesses the following property: for a
L.0 ~it goes without saying thatL<1), P(L).0. This
means that there can be needles in the system under co
eration as long as one likes. Thus, the system undergoe
percolation threshold atf 50. In other words, for corre-
sponding microgeometries a conductor retains conducti
until it is completely replaced by an insulator.

The distribution has two parameters. Varying in the int
val @0;1#, its parameters enable us to consider a wide clas
composite microgeometries. Some particular cases of
Beta distribution admitting analytical solutions are cons
ered below.

1. aÄ1Àb

In this case we use the fact that@76#

2F1~a,1;1;z!5~12z!2a, ~28!

and one obtains the one-parameter equation

meff5m1m2

~12 f !m2
a211 f m1

a21

~12 f !m2
a1 f m1

a . ~29!

If now one takesa51/2 then one obtains

meff5m1

11 f ~Am2 /m121!

11 f ~Am1 /m221!
. ~30!

Earlier this equation was considered in@77–79#.

2. aÄ2Àb

This case has been given adequate consideration in@80#
~see also@81#!. It reduces to the well-known and widely use
Lichtenecker equation

meff
12a5(

i
f im i

12a , ~31!

where the single parametera lies in the interval@0;2#.
8-4
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3. aÄ1Õ2, bÄ1

In this case we use the fact that@76#

2F1S 1

2
,1;

3

2
;z2D5

1

2
z21ln

11z

12z
. ~32!

This yields the final equation

(
i

f isi
1/2ln@112~si

21/221!21#50, ~33!

which, as far as we know, has not been used in the rele
literature yet.

D. Steplike distribution of spheroidal shapes

For a spheroid one can take~see, e.g.,@62#! L15L2 and
L5L35122L15122L2 . Thus, for shape-distributed sph
roids equally oriented along their revolution axis Eq.~12!
can be rewritten as

(
i

f iu i5(
i

f iE
0

1

dLP~L !~si1L !2150. ~34!

The simplest form of the distribution function that deserv
attention in this case is the one-parameter steplike distr
tion @82,83#

P~L !5
2

D2 xS L2
1

3
1

1

3
D DxS 2L1

1

3
1

2

3
D D , ~35!

wherex~¯! is the Heaviside unit function andD is a param-
eter signifying nonsphericity. Direct integration yields

u i5
2

D2 ln
si1 1/31 ~2/3! D

si1 1/32 ~1/3! D
. ~36!

FIG. 2. Dependencef c(D) calculated according to Eq.~37!.
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By applying Eqs.~14!, ~15!, ~34!, and ~36! to a two-phase
composite (i 52), the equation for the critical filling facto
may be written as

~12 f c!ln
12D

11D/2
1 f c ln

112D

12D
50. ~37!

The solution of this equation is presented in Fig. 2. As m
be seen, percolation can take place when 1/3, f ,1/2.

The dependencemeff(f,D) calculated according to Eqs
~34!–~36! for a two-phase composite is presented in F
3~a!; in order for the figure to be more dramatic we take he
the transport coefficients of the phases as extremely diffe
from one another,m2 /m15104. It is interesting also to con-
struct the isolines log10(meff)5const@see Fig. 3~b!#. As may
be seen,meff changes abruptly as the filling factor goe
through its critical value~the values ofmeff are given on a
logarithmic scale here!. It should also be noted that, where
the dependencemeff(f ) is always monotonic, the dependen
meff(D) is not. So at smallf this function first decreases an

FIG. 3. ~a! Surfacemeff(f,D) calculated according to Eqs.~34!–
~36!. ~b! Patterns of isolines log10meff(f,D)5const calculated ac-
cording to Eqs.~34!–~36!.
8-5
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then rises. In contrast, at largef it decreases monotonicall
with increasing nonsphericity parameterD.

IV. 2D DISTRIBUTIONS

For an ellipsoid two depolarization factors are linea
independent. Thus forrandomly oriented shape-distribute
ellipsoids Eq.~10! can be rewritten as@84#

(
i

f iu i5(
i

f iE E dL1dL2P~L1 ,L2!(
j 51

3

~si1L j !
2150,

~38!

where we have to take into account Eq.~11!. The one-
parameter steplike distribution for this case may be writ
as @64,65,85,86#

P~L !5
2

D2 xS L12
1

3
1

1

3
D DxS L22

1

3
1

1

3
D D

3xS 2L12L2 1
2

3
1

1

3
D D . ~39!

Substitution of Eq.~39! into Eq. ~38! yields after direct inte-
gration @85#

u i5
2

D2 F S si1
1

3
1

2

3
D D ln

si1 1/31 ~2/3! D

si1 1/32 ~1/3! D
2DG . ~40!

As before for spheroids, we consider first the percolat
properties of a similar two-phase system of ellipsoids.
applying Eqs.~14!, ~15!, ~38!, and ~40! to the two-phase
composite, the equation for the critical filling factor may
written as

2~12 f c!~12D!ln
11D/2

12D
1 f c~112D!ln

112D

12D
53D.

~41!

Its solution is presented in Fig. 4. It is interesting that in t

FIG. 4. Dependencef c(D) calculated according to Eq.~41!.
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case the percolation can take place only whenf ,1/3.
The dependencemeff(f,D) calculated according to Eqs

~38!–~40! for the two-phase composite and the isolin
log10(meff)5const atm2 /m15104 are presented in Figs. 5~a!
and 5~b!, respectively. As may be seen, the functionmeff
changes abruptly as the filling factor goes through its criti
value. At smallf the function rises monotonically with th
nonsphericity parameterD; at largef it decreases with it. At
some intermediatef ~about 0.4! it depends almost not at a
on this parameter.

Of course, many variants exist for choosing the sha
distribution function of randomly oriented ellipsoids. For e
ample, one can choose the generalized Beta distribution

P~L1 ,L2!5const3L1
a21~12L1!b21L2

a21~12L2!b21

3~12L12L2!a21~L11L2!b21 ~42!

or the generalized steplike distribution@65#

FIG. 5. ~a! Surfacemeff(f,D) calculated according to Eqs.~38!–
~40!. ~b! Patterns of isolines log10meff(f,D)5const calculated ac-
cording to Eqs.~38!–~40!.
8-6
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GENERALIZATIONS OF THE BRUGGEMAN EQUATION . . . PHYSICAL REVIEW E68, 041108 ~2003!
P~L1 ,L2!5const3H p

2
1arctanFa

2L111/32D/3

L1~L121! G J
3H p

2
1arctanFa

2L211/32D/3

L2~L221! G J
3H p

2
1arctanFa

2L12L212/31D/3

~12L12L2!~L11L2!G J .

~43!

We note, however, that neither of the above distributio
provides a nonzero percolation threshold, for the same
sons discussed in Sec. III C for the Beta distribution.

V. PERCOLATION THRESHOLD

As we see, the percolation threshold is the important
rameter in our consideration. It is well known also that p
colation processes play a major part in the physics and ch
istry of composites, helping to describe the over
dependence of various transport properties on the micro
ometry. At the same time, it is our opinion that there exist
lot of misunderstanding related to this issue. Because of
we will consider the problem of the percolation threshold
more detail.

The percolation problem is versatile and complex by
self. On the one hand, there are some general approache
models allowing one to calculate the percolation threshold
various situations. On the other hand, many situations e
that have defied explanations within the framework of th
approaches; to be specific, we shall present some exam
below.

The well-known work of Scher and Zallen@87,88# con-
siders the problem ofsite percolation on lattices; anothe
problem of lattice percolation, known as thebond percola-
tion problem, reduces to the above problem, but on a dif
ent lattice~see also@89,90# and references therein!. In par-
ticular, for the site percolation problem on a lattice the
authors proposed that the critical fraction of sites is to be
invariant when expressed as a filling~volume! factor, de-
pending on dimensionality only. Becausef c is approximately
universal, i.e., essentially independent of the lattice struct
they suggested that it may be carried into continuum s
tems. So the critical filling factors

f c>0.45 ~44!

@some other estimations givef c>0.5 ~see, e.g.,@58#!# in 2D
and

f c>0.16 ~45!

in 3D were found to be invariant. Later, a similar approa
was repeatedly applied to continuum percolation proble
Below we will see that some experimental work appro
mately supports these results and some does not. At pres
is believed that Eq.~45! is valid for such hard~impermeable!
spheres of a single size that nearest neighbors just to
situated randomly on all lattices in 3D, as well as for rand
closely packed systems. At the same time, the theory of c
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tinuum percolation has evolved in different directions~see,
e.g.,@91–94# and references therein!. One approach showing
considerable promise@95–97# uses a mapping between th
continuum percolation model and the so-called Potts fl
@98#. The authors of@97# suggest, in particular, that the
model can be useful to describe microemulsions and c
posite materials. We note that the percolation threshold~in
this theory one calls it the critical density of interacting pa
ticles! is not universal but is sensitive to all the details of t
system under consideration@97#.

The Scher-Zallen approach is shown to be applicable o
for clusters built up of hard~nonoverlapping! particles. The
phenomenological continuum percolation theory for overla
ping objects is developed, particularly, in@99–101#. These
authors discuss percolation in 2D and 3D, using the mode
randomly oriented overlapping holes of various shapes
ellipsoids of revolution. They noted@100# some important
materials science applications of their model, such as cr
formation, sintering ceramic powders, and hydrating ceme
based materials; a good review of the percolation theory
plied to concrete is given by Garboczi@102#. We would like
to note three important conclusions made by the author
@99–101# on the basis of their computer simulations.

~i! In 2D, the percolation threshold for identical overla
ping ellipses with aspect ratioh, whose centers and orienta
tions are random, can be well fitted to the formula

f c53 4/~21h11/h!. ~46!

In particular, for circles this yields

f c51/3. ~47!

~ii ! Of all objects of a given volume, the sphere has t
maximum percolation threshold for overlapping objects.
3D this threshold

f c>0.29. ~48!

~Interestingly, another percolation algorithm for overlappi
spheres, the so-called Swiss-cheese model, on a simple c
lattice yields@103#

f c>0.034. ~49!

It is considered to be useful for description of sandstones
some other porous systems.!

~iii ! In 3D, even for simple overlapping shapes, the d
pendence of the percolation threshold cannot be comple
described by single-particle shape functionals.

Interestingly, we do not know of any published work o
the percolation threshold of shape-distributed particle s
tems despite the fact that such systems are doubtless of
tical interest. Moreover, most studies cover the percolation
equal-sized constituents only. There are only fragment
data on percolation in polydisperse systems~see, e.g.,@104#
and references therein!.

Let us now consider some experimental results conce
ing the percolation threshold in composite media. At pres
there are comprehensive data on percolation propertie
thin films. Semicontinuous metallic films obtained by va
8-7
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ANATOLIY V. GONCHARENKO PHYSICAL REVIEW E 68, 041108 ~2003!
ous methods of deposition on dielectric substrates may
considered as quasi-2D. For thin gold films made at ro
temperature by electron-beam evaporation onto amorph
Si3N4 windows, the percolation threshold is found to bef c
>0.74 @105#. At the same time,f c>0.71 for thin gold films
deposited by thermal evaporation at room temperature o
amorphous substrate, andf c>0.53 for those deposited on
polycrystalline substrate@106#. Other results@61# give f c
>0.75 for gold films deposited on glass at high temperat
and f c>0.56 for those deposited at low~room! temperature.
For copper films thermally evaporated onto quartz-glass s
strates, Dobierzewska-Mozrzymaset al. @107# obtained f c
>0.63. In recent experiments by Sealet al. @108#, f c>0.65
for semicontinuous silver films on dielectric substrates
tained by laser ablation.

Relatively thick ~Cermet! films obtained by cosputtering
~or coevaporating! metals with insulators may be consider
as quasi-3D. Here we would like to note the results of Abe
et al. for W-Al2O3 Cermet films@109# ( f c>0.47), Barzilai
et al. for Co-SiO2 Cermets@110# ( f c>0.55), and Niklasson
and Granqvist for Co-Al2O3 Cermets@111# ( f c>0.25). For
Ni-MgO composites obtained by coprecipitation of NiO
MgO solid solutions and their preferential reduction in a h
drogen atmosphere,f c>0.32 @112#. For amorphous carbon
Teflon composites obtained by mixing and compress
initial fine powders, the estimated value of the percolat
threshold isf c>0.29 @113#. For YBa2Cu3O72d /CuO com-
positesf c>0.18 @114#. For carbon-wax mixtures exhibiting
the tunneling mechanism of conductivity,f c>0.1 @115#, and
for filamentary nickelf c>0.075@116#. Finally, for graphite-
hexagonal boron nitride powder mixtures Wu a
McLachlan obtainedf c>0.12– 0.15@117#. In addition, they
noted that the values off c are typically 0.11–0.125 in the
powders.

The authors of many of the above works advance vari
arguments to justify why their values of the percolati
threshold differ from the theoretical ones. Some consid
ations of how to achieve either a very low or a high perc
lation threshold and some practical examples are given
McLachlan@118#. We would like, however, to note the fol
lowing. There is no question that the percolation threshol
a nonuniversal parameter explicitly depending not only
dimensionality but on the system microgeometry~on the
type of the percolation system considered! as well; generally
speaking, it is sensitive to all the details of the system a
may be between zero and unity. It is a challenging task
predict beforehand the percolation threshold for a compo
system under study. In our view, however, a problem ex
which can be formulated as follows. Due to the diversity
composite systems, both natural and artificial, they can h
various microgeometries and exhibit various percolat
mechanisms. Hence, it is of value to catalog the main ty
of such microgeometries and to study the correspond
mechanisms. It looks as if there is still a long way to go
solve the above problem.

VI. DISCUSSION

The results reported here demonstrate that the choic
the shape distribution function can lead to widely differe
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homogenization theories. We have obtained, in particu
certain one-parameter as well as two-parameter genera
tions of the classical BE. Obviously, the simplest generali
tion is that signified by Eq.~24!. Its properties are identica
with those of the classical BE, but the critical~threshold!
filling factor is a free parameter here. So it is interesting
compare the numerical results formeff obtained using Eq.
~24! and our other approximations. Because the use of
Beta distribution~see Sec. III C! yields no nontrivial perco-
lation threshold, we consider some results obtained with
use of Eq.~34! supplemented with Eq.~36!, and with the use
of Eq. ~38! supplemented with Eq.~40!. So in Figs. 6 and 7
we show the dependencesh1( f , f c)5(meff8 2meff* )/meff* and
h2( f , f c)5(meff9 2meff* )/meff* , where meff* , meff8 , and meff9 are
calculated using Eqs.~24!, ~34!–~36!, and~38!–~40!, respec-
tively. We see that in the case of a very high~very low! ratio
of the phase transport coefficients@at m2 /m15104, Fig.
6~a!#, Eqs.~24! and ~34! can yield radically different values
of the effective transport coefficients, especially close to
point f c51/2, where the nonsphericity parameterD is large.
If the ratio is not so high@at m2 /m15102, see Fig. 6~b!#, the
difference between the values ofmeff is not large either. As

FIG. 6. Relative change of the effective transport coefficie
h1( f , f c) at m2 /m15(a) 104; ~b! 102.
8-8
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for Eq. ~38!, it does not yield very high values ofh2 even at
m2 /m15104 ~see Fig. 7!. One should note also an interestin
distinction between our models based on Eqs.~34!–~36! and
on Eqs.~38!–~40!. While consideration of equally oriente
shape-distributed spheroids@Eqs.~34!–~36!# leads to increas-
ing the percolation threshold relative to the case of the c
sical BE for spheres@Eq. ~2!# where f c>1/3, consideration
of randomly oriented shape-distributed ellipsoids@Eqs.~38!–
~40!# leads to its decrease; so the valuef c>0.16 @see Eq.
~45!# is reached atD>0.993. In connection with this one ca
note the work of Sherwinet al. @119#. They considered the
percolation threshold problem foridentical parallel metallic
ellipsoids in an insulator host with similar geometry usi
the Bruggeman formalism. In particular, their results sh
that for the direction along the longest principal semiaxis
spheroids the percolation threshold value is low for prol
spheroids and increases as the length of this semiaxis
creases relative to the lengths of the other two semiaxes
the percolation threshold can be high for strongly obl
spheroids. This means that the percolation threshold for id
tical similarly oriented ellipsoids can increase as well as
crease relative to that for spheres.

What are the physical meaning and the importance of
approximation signified by Eqs.~34!, ~36!, and~40!? At first
glance it would seem that they describe some abstract
unlikely microgeometries, and so their importance is limite
Indeed, for corresponding microgeometries the effective m
dium is one where each ellipsoid is surrounded by a mixt
of the two components~phases! that has the effective valu
of the medium. This means that the ellipsoids are of an i
nite range in size, and that the larger ellipsoids are separ
by a medium containing smaller ones. Moreover, the el
soids are distributed in shape. In fact, however, the geom
of actual composite systems is not necessarily so comp
The above microgeometries are only models admitting
simple mathematical description and their parameters are
directly related to the real shapes of the particles. One m
note some distinguishing features of these models.

~1! The classical BE, as well as its generalizations cons
ered here, are completely mean-field equations, not ta

FIG. 7. Relative change of the effective transport coefficie
h2( f , f c) at m2 /m15104.
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into account fluctuations of the local fields, and interactio
among phases are represented by a constant~averaged! far
field. However, they indirectly take into account higher mu
tipole interactions. Needless to say, an exact calculation
the interactions in random composite systems contain
complex-shaped phases is intractable. The multipole inte
tion is of particular value at high concentrations and near
percolation threshold due to the significant clustering of c
ducting and insulating areas. Granqvist and Hunderi@54# de-
scribed this situation by incorporating dipole-dipole intera
tions ~which are the most important of the multipo
interactions! locally using the ellipsoid effective depolariza
tion factors. In other words, in their treatment the shape-
interaction-governed effects on the effective transport coe
cients are similar and consonant. Similar to the work
McLachlan@56,57#, we consider the percolation threshold
a free parameter that enables one to circumvent the co
sponding difficulties and impose the needed percolat
threshold value.

~2! Our models cover a wide range of composite syste
whose percolation threshold can vary from 0 to 1/2. As d
cussed earlier~see Sec. V!, the percolation threshold of mos
studied 3D composites lies within that interval@120#. Actu-
ally, our model equations~36! and ~40! are derived for 3D
composite systems. Indeed, we have chosen the shape d
bution function in such a manner that it is centered at
point L51/3 ~or L15L251/3) which corresponds to the pe
colation threshold of the classical BE in 3D. At the sam
time, our approach is easily extended to 2D composites
do this we ought to center our shape distribution funct
~which has to be one dimensional in this case! at the point
L51/2, which corresponds to the percolation threshold
the 2D classical BE.

~3! It goes without saying that our equations do not ta
into account such phenomena as scattering at interfaces
tunneling of carriers. One of the phenomenological a
proaches to the scattering problem lies inrenormalizationof
the phase transport coefficients. To account roughly for qu
tum mechanical tunneling one can increase the effective
ume of the conductive phase@121#.

~4! Obviously, the key question of our consideration is t
area of applicability of our approach. On the face of it, b
cause we have chosen the functionP to be the same for al
phases, our consideration is valid only for geometries t
rank among the so-called aggregate ones. Following La
et al. @122#, we distinguish aggregate composite topology
that where all phases occur on an equal footing; for t
topology the microgeometries of phases are similar. In c
trast, for another type of topology~cermet topology!, the
phase microgeometries are different; there, particles of
phase ~inclusions! are completely surrounded by anoth
phase~host!.

According to Bergman@66,67#, for any two-phase macro
homogeneous systemmeff may be represented as

meff5m1H 11 f 2E
0

1

dLg~L !@~m2 /m121!211L#21J ,

~50!

s
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whereg(L) is the so-called spectral density function satis
ing the sum rules

E
0

1

dLg~L !51 and E
0

1

dLLg~L !5~12 f 2!/3. ~51!

The spectral density function does not depend on the m
rial constantsm1 andm2 and describes the microgeometry
a composite. Since it gives the spectrum of configuratio
resonances, it contains all geometrical information about
composite. At the same time, depending on the filling fac
it signifies the interactions inside the system. Thus the r
resentation~50! allows one to separate the effects of micr
geometry and material constants on the effective trans
coefficients. Let us now formulate two important stateme
which, it seems, loom large in the effective medium theo

Statement 1. The effective transport coefficients of an
composite system are the same as those of a cermet com
ite system with the same material parameters.

This statement is a direct consequence of the above B
man theorem~see, e.g.,@65,83#!. Indeed, in terms of electro
dynamics the factor@(m2 /m121)211L#21 in Eq. ~50! is
simply the dipole polarizability of a spheroid with the dep
larization factorL. The functiong(L) signifies the distribu-
tion of the spheroids in shape. Thus natural modes~reso-
nances! of a composite may be expressed in terms of natu
modes of small variously shaped spheroids. In other word
diagonal component of the tensormeff of the two-phase com
posite is the same as for a system of equally oriented no
teracting spheroids~here, the orientation of the applied ele
tric field has to correspond to the revolution axis of t
spheroids!. We note that Eq.~50! is written for cermet topol-
ogy where the phases 1 and 2 are host and inclusions, res
tively. Consequently, two composites having different
pologies can have the same effective transport coefficie
For example, a typical aggregate composite described by
classical BE has the same effective transport coefficients
cermet composite with a known spectral density funct
@59#.

Statement 2. Some~cermet! composite systems exist suc
that their effective transport coefficients differ from those
any aggregate composite system with the same material
rameters.

This means that Eqs.~12! and ~38! are not always appli-
cable. One can suppose, for example, that they are ina
cable in the case of a dilute suspension of spheres for w
~see, e.g.,@83#!

meff5m1F113 f 2

m22m1

m212m1
G . ~52!

In other words, in a sense the aggregate topologies a
subset of cermet topologies. Indeed, we have assumed
the functionP(L) is the same for all phases, and hence
phase microgeometries are similar. At the same time
would be more natural to suppose that each phase ha
own functionP(L). So Eq.~12! is rewritten as
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i

f iE
0

1

dL
Pi~L !

si1L
50. ~53!

From the above discussion one can suppose that our
resentation~12! and Bergman’s representation~50! are not
equivalent. Strictly speaking, the applicability area of Eq
~12! and ~38! has been something of a mystery; we belie
that this problem will be considered in more detail els
where. At the same time, the shape distribution functionP as
well as the spectral density functiong signify the microge-
ometry of the composite. In addition, they signify the inte
actions inside it; in doing so they signify them in differe
ways. We note that, owing to the simple form of the spec
density functiong Eq. ~50! might be more suitable for com
posites with Maxwell-Garnett-like microgeometry@64,65#,
while, owing to the simple form of the shape distributio
function P, Eqs. ~12! and ~38! might be more suitable for
composites with Bruggeman-like microgeometry. Thus, o
advantage of the approach is that it suggests extensions
wide class of composites based on some free topolog
parameters.

VII. CONCLUDING REMARKS

This report is written to present our main idea~the use of
the concept of shape-distributed particle systems! in such a
way as to be accessible to the researchers in various fie
Following this line of attack, we considered generalizatio
of the well-known classical BE in 3D. To demonstrate t
efficiency of our approach, we showed that various assu
tions for the shape distribution function yield many know
equations for the effective transport coefficients. At the sa
time, to develop the approach used we proposed two o
simple distributions for spheroidal and ellipsoidal shap
This enabled us to obtain two one-parameter equations o
effective medium theory whose parameters signify the p
colation threshold of the composite systems under consi
ation.

What are the future trends of our approach? Conside
transport and relaxation in porous media, Hilfer@123# noted
that almost all corresponding studies are motivated by
central question: How are the effective transport parame
influenced by the microscopic geometric structure of the m
dium? In our opinion, however, two problems, as applied
our situation, can be considered independently of one
other, namely,~i! if we know what our composite microge
ometry is then we can try constructing the correspond
function P; and ~ii ! if we know what the functionP for an
actual composite system is, we can try finding the cor
sponding microgeometry. In other words, our problem is
find the relationship between the shape distribution funct
and microgeometry of particular kinds of composites.

It seems reasonable to apply the following approache
the above problems.

~1! Since some composite systems can be generated a
cially, their optical properties can be measured in a w
frequency range using laboratory experiments. In pr
ciple, this makes it possible to solve the inverse probl
8-10
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of determining the shape distribution functionP for such
systems directly from experimental data. A similar pro
lem for the spectral density functiong(L) has already
been considered~see, e.g.,@124–126#!.

~2! Direct fitting based on some intuitive assumptions. Fre-
quently, one cannot extract the needed function from
perimental data because the latter can be limited b
narrow spectral region or not be informative enough.
some cases, however, starting froma priori assumptions
concerning properties of the shape distribution functi
one can try to signify their general analytical form a
determine the model parameters. For instance, s
models for the function g(L) were proposed in
@127,128#.

~3! Numerical modeling with further fitting. Some homog-
enization theories are based on numerical model
There are some examples@129# where the internal fields
are calculated numerically for various problems, thus
abling one to compute the effective transport coe
cients. Another example is the renormalized cluster
pl
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pansion @130#. Using the corresponding numerica
algorithms, one can find the required functionsP for the
problem under consideration.

~4! Finally, since some actual microgeometries are close
those corresponding to the well-known approximatio
an opportunity exists to generalize the correspond
functionsP which are known, say, for such approxim
tions as the Bruggeman and Lichtenecker ones. As in
cated above, Ghosh and Fuchs@59# applied this approach
to the spectral density functiong using Bergman’s for-
malism. In the present work the formalism of the sha
distribution function is used, a conceptual alternative
Bergman’s formalism.
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