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Langevin equation for the Rayleigh model with finite-range interactions
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Both linear and nonlinear Langevin equations are derived directly from the Liouville equation for an exactly
solvable model consisting of a Brownian particle of mikmteracting with ideal gas molecules of massia
a quadratic repulsive potential. Explicit microscopic expressions for all kinetic coefficients appearing in these
equations are presented. It is shown that the range of applicability of the Langevin equation, as well as
statistical properties of random force, may depend not only on the massdfiobut also on the parameter
Nm/M, involving the average numb&t of molecules in the interaction zone around the particle. For the case
of a short-ranged potential, whéh<1, analysis of the Langevin equations yields previously obtained results
for a hard-wall potential in which only binary collisions are considered. For the finite-ranged potential, when
multiple collisions are importantN>1), the model describes nontrivial dynamics on time scales that are on
the order of the collision time, a regime that is usually beyond the scope of more phenomenological models.
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[. INTRODUCTION convergence properties of the series are trivial for this
model, since all terms in the expansion higher than zeroth
The explicit derivation from first principles of the Lange- order vanish. As a result, the memory kernel for the linear
vin equation, describing the evolution of a small number ofdamping force in the LE does not depend on the mass ratio,
variables in a complex system, is often necessary since iand all nonlinear terms are identically zdig.
many cases the statistical properties of the random force, the One goal of this paper is to present and analyze a simpli-
range of applicability and even the form of the equation ardied model that serves as a useful and nontrivial testing
far from evident[1]. The need for microscopic consider- ground for examining some of the subtle aspects of the
ations is especially compelling in the case of a nonlineatheory of Brownian motion. The model considered here is a
Langevin equation where the usual phenomenological apgeneralization of the well-known Rayleigh model of a
proach of adding stochastic terms to the deterministic nonBrownian particle of mas#1 constrained to move in one
linear equation describing the relaxation of targeted variabledimension and subjected to collisions with an equilibrium
may be inadequate]. Although statistical properties of the ideal (noninteractivg gas of particles of mass. The Ray-
random force in the nonlinear Langevin equation may bdeigh model is perhaps the oldest model of nonequilibrium
deduced phenomenologically in some cas¥sit is gener-  statistical physic$8], and has attracted much attention over
ally necessary to start from the microscopic behavior of thehe years, with early work9—11] focusing on the model as a
system in order to construct the appropriate form of thetest of the systematic derivation of macroscopic kinetic equa-
equation. tions for the heavy particle from the master equation. More
The conventional systematic method for deriving therecent investigations have examined the stationary and tran-
Langevin equation(LE) for a Brownian particle exploits sient solutions of the asymmetric Rayleigh model in which
Mori’s projection-operator techniqud4], which allow the the thermodynamic parameters characterizing the gas to the
transformation of the microscopic Liouville equation to aleft and right of the piston diffef12]. In all these studies, the
non-Markovian predecessor of the LE, generally known asnteraction between the Brownian particle and the bath is
the generalized Langevin equation. The LE can be then okassumed to be short ranged with a negligible collision time
tained by a subsequent perturbation expansion of the,. Only binary collisions are considered in this model be-
memory kernel appearing in the generalized Langevin equazause the range of interaction is assumed to be short com-
tion using the square root ratio of the mass of a bath particlpared to the average distance between bath particles. The
to that of the Brownian particlenf/M)*?, as a perturbation usual starting point for analysis of the Rayleigh model with
parametei. While the first step in the derivation of the LE, binary collisions is a Markovian master equation for parti-
involving rearrangement of the Liouville equation with pro- cle’s velocity distribution function. The master equation is
jection operator methods, is an exact algebraic procedure, ttanly an approximate form of the fully microscopic Liouville
guestion of convergence of the expansion in the second equation, and valid only for time scales longer than To
step is subtle and can be strictly justified only under assumptest many aspects of the theory of Brownian motion, it is
tions that are difficult to prove in generfd]. Mazur and essential to start from a fully microscopic description of the
Oppenheim developed an alternative projection-operator aglynamics directly from the Liouville equation so that any
proach more suitable to analyze the convergence ofathe non-Markovian character of bath correlations is properly in-
expansion[5]. The validity of the perturbation analysis in corporated and particle dynamics on time scales lesstpan
both the Mori and the Mazur-Oppenheim approach has beecan be described. To this end, one may generalize the inter-
examined for an exactly solvable model consisting of taggedction between the bath and Brownian particles from a hard-
particle motion in a harmonic lattides]. Unfortunately, the wall to a parabolic repulsive potential. The generalized
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model is analytically solvable, allowing explicit calculation the particle’s motion are small and that the force on the par-
of all terms appearing in the derivation of both linear andticle, F(t)=e“'F, is close to the pressure force, i.e., to the
nonlinear LE beyond the binary collision approximation. Weforce on the fixed tagged particle,
demonstrate that in addition to the small parameter ™
=(m/M)*2, the character of the dynamics of a tagged par- Fo(t)=e™'F. (6
ticle can be governed by an additional parametgf\, in-
volving the average numbeX of bath particles simulta-
neously interacting with the Brownian particle. For a large
Brownian particle, it is shown that whe¥i>1 and multiple
collisions are important, the parameter of the forrmaéx-
pansion is actualljN/\.

The paper is organized as follows. In Sec. I, the Mazur-
Oppenheim approach is reviewed to provide groundwork for PA=<A>EJ pAH dx; dp;, (7
all subsequent analysis. In Sec. I, the structure of terms in :

the A expansion is examined and presented in a convenient , . -, . B
form. In Sec. 1V, the general formalism is applied to theWherez 's the canonical partition function anfl=1KkgT.

Rayleigh model with a quadratic repulsive potential describ-USIng the operator identity13]

ing bath-Brownian particle interactions, and the LE is de- t
rived for the heavy particle. The nonlinear LE is obtained in e(A*B)tze“‘“Jrf dr eAt=NpeA+B)T (8)
Sec. V and various aspects of this equation are discussed. 0

Finally, a few concluding remarks are made in Sec. VI.

In the Mazur-Oppenheim approaf®l], the forceF(t) is de-
composed using the projection operafmwhich averages a
dynamical variableA over the canonical distributiorp
=Z"Yexp(—BH,), for bath variables at fixed position of the
tagged particle,

with A= £ andB= —PL, one may formally decompose the
force F(t) on the tagged particle into a “random” part and a

Il. BASIC EQUAT'ONS remainder as
The Hamiltonian for a Brownian system composed of a ¢
tagged particle of madd in a bath of point particles of mass F(t)y=F'(t)+ f dr £ DpLET (1), (9)
mis 0
p2 whereF'(t)=e2*'F and Q=1—P. The factorPLF'(7) in
H= W+H°’ (1) the integral in Eq(9) can be simplified taking into account
the orthogonality of? and £, (i.e., PLy=0), and the equal-
p? ity
Ho=>, =—+U(x,X), 2
072 g V) @ (V' (1) =~ BCFoF (1), 10

where x={x;} and p; are positions and momenta of bath Which can be derived by integration by parts. As a result, one
particle, ancH, is the Hamiltonian of the bath in the field of Momentum of the tagged particle:
the tagged particle fixed & One can expect that on average

P~ JMKkgT, wherekg is Boltzmann’s constant antlis the dP. (1) =)\FT(t)+)\2Jt dr eﬁ(t—r)( Vo — Ep*)
temperature, and that the scaled momenRin+= AP, where dt 0 *m
N=+m/M, is of the same order as the average momentum of t
. . X(FF'(71)), (11
a bath particle. In terms of scaled momentum, one can write
the Liouville operator as where F(t) is a zero-centered random force obeying
3 (F'(t))=Pe?*'F=0.
L=Lo+NLy, 3) The random forc& T(t) = e(*o**eLUE can be further ex-
o p panded in terms of the mass ratio paramateising identity
: .
= LY (8) to obtain
Lo=2 fm o TF ﬁpi], (@
t t
FT(t)=F0(t)+)\f dt, eﬁo“—tl)chFO(tl)HZf dt;
=20 el 5) ° °
"moox oaP,’

ty
X | dt, et gL el QL Fo(ty) + ...
whereF;= -V, U andF=—V,U are the forces on thith fo 2 ! 1Foltz

bath particle and on the Brownian particle, respectively. The (12)
operatorL, dictates the dynamics of the bath in the field of
the fixed Brownian particle. Similarly, the kerneK (t)=(FFT(t)) appearing in the exact

If the mass of the tagged particle is large., a Brownian equation of motion(11) of the tagged particle may be ex-
particlg, one might intuitively expect that inertial effects of panded in a power series &
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The local equation17) is applicable on arbitrary time

K(t):<FFT(t)>:EI Ki(t), (13)  scales and fors 7, assumes the form of the conventional LE
with a time-independent damping coefficienty,
Ko(t) =\(FFq(1)), = [5dt Mq(t). It is then evident from Eq(17) that the au-

tocorrelation function of the momentum of a heavy particle
¢ decays on a time scabq,~)\‘2 that is much longer than the
Kl(t)=)\1j dt;Cy(t,ty), characteristic time of the bath,~\°. One can therefore
0 expect the local form of the LE with time-independent damp-
ing to be a good approximation for E(L7) except at short

2! J'tl times determined by< 7.
Ka(U)=A jo dty 0 dtCa(tit t2) - . It will be shown below that for homogeneous bath
K,(t)=0, so the next approximation for the expansion
where the correlation functiorS, are defined to be (13) is of the form K(t)~Kg(t) +K,(t). The equation of
B Colto—ty) motion for the momentum of the tagged particle in this case
Ci(to,ty) =(F(e™0M0™WQLy)Fo(ty)), (14 includes a nonlinear damping term of third ordeip. This

e v equation will be considered in Sec. V.
Co(to,ty,tp) =(F(efolo"W QL) (et QL) Fy(ty)),

Ill. STRUCTURE OF THE TERMS IN N EXPANSION

|
J— £ tl_ 7t| - .
Ci(tosty, - .. 'tl)_<':(iH1 efolli-a )Qﬁl) FO(tI)> To examine the convergence properties of khexpan-
sion and other features of the projection-operator derivation
The truncation of thex expansion to zeroth ordeK(t) of the LE, the structure of the correlation functio@g de-

~Ko(t), leads from Eq.(11) directly to the generalized fined in Eq. (_14) which appear in the expansion of the
Langevin equation memory function must be analyzed. Although only the func-

tions C, and C, are needed to obtain the nonlinear LE to
t lowest order in\, it is useful to know general properties of
=>\FT(t)—>\2‘f dr Mo(n)P.(t=7), (15 ¢,
0 By inspection of the symmetry properties of the system, it
where is immediately apparent that the correlation functi@hs, |
corresponding to odd powers Bfcontain an odd number of
B B factorsF andV y, and therefore vanish for isotropic systems.
Mo(t) = - Ko() = M(':Fo(t»- (16)  In fact, in the absence of external field, the dependence on
the particle coordinate appears only through the difference
This approximation is sensible provided the correlation funcXi—X, and it is useful to introduce new variableg=Xx;
tions C, appearing at higher order in theexpansion decay —X. Since the vectorss=-V,U=%;V,U and Vy=
on a similarA-independent time scale; characteristic of —X;V, have negative parity and the Hamiltonigly is in-

motions of the fiXGd-partiCle SyStefhe., governed b)ﬁo) . variant with respect to transformati@qi_) —q, pi—— pi},

dP, (1)
dt

Mazur and Oppenheirfb] succeeded in proving that this is the correlation function€,1(t,ty, . . . tons1) vanish.
the case assuming the factorization properties Correlation functions of even ordef3,, do not vanish
t>7, and have a rather complicated structure. For notational sim-
licity, we restrict the analysi h f one-dimensional
(A(t) e 'B(t,)) — (A(t))(B(ty)). plicity, we restrict the analysis to the case of one-dimensional

diffusion, expecting no physical features in higher dimen-
While being formally nonlocal in time, Eq15) can actually ~ sions. For future development, it is convenient to define
be written in a form that is local in time by expanding
P, (t—7) aroundr=0 to obtain Go(t)=Fo(1),
dP, (t G(t,t1)=S(t—tq)Fo(ty),
gf LN~ N2y P, (1), (17 R e

Ga(t,ty,t5) =S(t—t1)S(t1 —t)Fo(ta),
whereyo(t)zf})dr Mo(7). The nonlocal correction terms to

this approximation are of the forfii4] Gy(t,ty, ...ty =S(t—ty) --S(tg_1—ty)Fo(ts), (19

t t . h

)\ZJ’ dr MO(T)J dr’ P, (7')~\%, (18 where
0 t—7
, . . S(t;—t ):e‘o“i*tﬁi (20)

and are therefore of higher orderin Naturally, this analy- P X’
sis is pertinent only if the characteristic timg for decay of
Mo(t) does not depend oK. Note the property
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(Gi,Gi,G;)=0 21

i, 90,
which holds for arbitrary time arguments whepti,+ - - -
+i; and | have different parities. For exampléG;) and
(GoGoG;j) vanish for even i, while (GyG;) and
(GGoG(G;) are zero for odd.

Using the definitions above and according to E@s),
the second-order correlation functi@y can be written as

2
(GoGa(t,tg,t5))

P

Ca(tity, tp)= (H
1

+ —(GoGo(t—t)Ga(L,t))

1
- E<GOGO(t_t1)><Gl(t!t2)>- (22

Using cumulants, denoted K - - )) and defined via the re-

lations
(AY=(AL),
(A1A2) =(A1)(A2) + (A1A),

(A1AZAz) = (A)(A2)(Ag) + (A (A2Az) + (A2) (AzAL)
+(Az) (A2A) + (A1A2A3),

the functionC, can be written as

P, 2
F) (GoGa(t,ty,tp))

Cy(tty,ty)=

1
+E«GOGO(I_tl)Gl(tth)»' (23

Note that the zeroth-order kernkl, is also a cumulant{,

PHYSICAL REVIEW E68, 041107 (2003

where here and below time arguments have been omitted for
brevity. The indices, ... i, may take any values from the
set{0,1, ... ]} provided

i tipt =1 (25)

For example, fol =1 the correlation function of maximal
order inG; which contributes taC, is (GyGyG;), as can be
seen from Eq(23). Forl=2 the functionC, includes con-
tributions of the formgG,G,GoG,) and(G,G,G,G,), and
S0 on.

All other contributions of order+2 in G; can be written
as products of correlation functions of lower orders which
can be obtained dividing the sequences

Gol(71)Go(72)G,(79)Gi(74)- -G (142)  (26)

into groups in all possible ways without permuting functions.
For example, fot =2 the three remaining terms are

(Go(71)Gol 72)){Go(73) Gyl 74)),
(Go(71)Gol 72)){G1(73)G1(74)),
(Go(71)Go(72)G1(73))(G1(74)),
(Go(71)Go(72))(G1(73))(G1(74))-

Clearly, the terms of maximal order in cumulants correspond
to the case when all indicésin Egs.(24) and(25) are equal

to 1. Then the cumulant expansion of all such terms contains
the contribution

(GoGo)(G1){(G1)- - (Gy), (27)

which containd factors(G(t;)) and, therefore, is of order
I+1 in cumulants. However, all terms of ordet 2 in G;
described above enter @, via combinations

(GoGoGi,Gi, - Gi)—(GoGo)(Gi Gy, -~ Gi ),

(GoGoGi, XGi, - Gi ) =(GoGo){Gi, }{Gi, - - Gi),

=(FFq(t))={GeGy(t))). The relevance of cumulant repre-
sentation forC, follows from the fact that one expects the
cumulants to have similar scaling properties with respect to
parameters of the system independent of their order. For ex-
ample, it will be established in the following section that
cumuIants((GilGi2~ -Gy )) of any order are linear functions which is a consequence of the presence of the ope@tor

of the average numbe\ of particles in the interaction zone (first from the left in the definition ofC; [see Eq(14)]. As

around the particle for the Rayleigh model. Therefore, ford result, contribution$27) involving I+1 cumulant factors

this model, the first two nonvanishing terms in thexpan- cancel, and the maximal order in cumulants of surviving
sion (13) n’amely K, andK,, are both linear i terms in the expression fd€, contain at most cumulant
Consider the correlation functionS, with I1=1. It is fac|t_|ors_. tablished that th tributi f
tedious, though not difficult to establish that these correlatioq awr;g esta IIS % H_‘; . é contri fu '%n‘; % rom
functions are of ordef in cumulants(G; G; - - - G; ). Note erms of maximai orde info; are ol order In cumu-

hatCo: has th buti h t order? or | . lants, it is clear that the terms of order 1 and lower inG;
thatC, has the contributions that are of order2 orless in -onn0t contain more thdrcumulant factors since such terms
G, . First consider the terms of maximal ordet2: One

i : contain at least one isolated factor@f whose average van-
type of these terms are the correlation functions of the fom?shes Hence,, containsat most Icumulant factors
In the following section, we examine the consequences of
the cumulant expansions of the memory function for a spe-

(GoGoGi,Gi ) (Gi, - Gy))
—(GoGo)(Gi,Gi,XGi, - Gi), - .,

(GoGoGi G, - - Gj)), (24)
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cific system, namely, the Rayleigh model with a repulsivefixed in space. Below we derive the explicit expressions for
parabolic potential. It will be demonstrated that for the Ray-these correlation functions in the thermodynamic limit, ne-
leigh model, cumulants are linear functions of the averagelecting recollisions of the piston and gas particles due to the
numberN of particles in the interaction zone around the par-finite size of the bath.

ticle. This, in turn, implies that the terms in thheexpansion Consider the force on the left side of the fixed piston,
behave as

Koy~ (N+N2+ - +NHA? (28) F.(t)=—kf2i q;(t) 6(ai(1)), (32

for I>1. Clearly, for a large particle and/or long-ranged po-
tential leading toN>1, these results suggest thét,
~N'\?, demonstrating that the actual parametex @xpan-
sion for this exactly solvable model is in faNf/>\. On the
other hand, for a short-ranged potential, whidr<1, all
terms in the expansion are linear My and one sees that

whereq;=x;— X, is the position of gas particlerelative to
the boundary of the interaction zong(x) is the step func-
tion, and summation over indeéxs over all particles in the
tube of diamete6to the left of the piston. In this section we
omit for brevity the subscript O for the force on the fixed
K, ~N\? and the effective small parametenogxpansion pisto_n. The simplifying feature of parabo_lic pote_ntial is that
is in fact the square root of the mass ratio. To further illus-the time 7 _that a p_art|cle spends in th(_e Interaction zone of
trate this analysis, an explicit form of the cumulant expan-the flxed p|st_on is independent of the initial velocity of the
sion of C, is presented in Appendix A. particle and is given byr.=m/w, wherew=yk;/m. At a
given timet, the only gas particles in the interaction zone are
those that had positive velocities and coordinajeis the
interval —v 7,<g<0 at timet— 7. At time t, the position of
the gas particle is determined lmy(t) = (v/w)sinw(t—t;,),
Consider the random motion of a piston of madsand  wheret;,=t— 7.—qg/v corresponds to the time at which the
cross-sectional are@ subjected to collisions with an ideal gas particle enters the interaction region arid the position
gas particles of mags. The gas particles and the piston are of the gas particle at timé— 7.. It then follows thatq(t)
constrained to move in one dimension perpendicular to the= (v/w)sinw(7,+g/v)=—(v/w)sinwg/v, which implies that
piston faces. The velocity distribution of incident particlesthe total instantaneous force on the left side of the fixed
fu(v) before collision with the piston is Maxwellian with piston at timet>0 can be written as
inverse temperaturg, namely,

IV. THE LINEAR LANGEVIN EQUATION FOR A HEAVY
PARTICLE OR IDEALIZED PISTON

mg\2 [ 1 F|(t)=—kffw dvfo dq N(x|+q,u;t—rc)%sin“;—q.
= —— — 0 —vTg
fu(v) (277 ex;{ 2ﬁmv ) (29 33

The piston-particle interaction is assumed to be described by, gq. (33), g=x— X, andN(x,v;t) is the microscopic linear
a purely repulsive parabolic potential. For particles to the leflyensity of particles defined by

of the piston the interaction potential between a gas particle

and the piston is

N(x,v5t)= 2, 8(x—x;(t))8 —v;(t)). (34)
[%kf(x—xl){ x>X 0 '

! 0, x<X|, Similarly, the total instantaneous force acting on the right

side of the piston is
wherek; is a force constantx is the coordinate of the gas

particle, X;= X, —a the boundary of the piston-particle in- 0 —v7e v . wq
teraction zoneX; is the coordinate of the left face of the Fr(t)=—k; J_m dv fo dg N(X;+q,v5t= 7o) sin—,
piston, anda is the width of the interaction zone. Similarly,

the gas particle—piston potential for the particles to the right (35
of the piston has the analogous form whereq=x—X, .
N ) For a particle outside the interaction zone of the fixed
_ | 2ki(x=Xp)% X<X; piston(i.e., forx<<X,, andx>X;), the average linear density
U= (31 : : :
0 x>X,, of particles is(N(x,v))=nSfy(v), wheren is the total

(three-dimensionaldensity of bath particles, an8 is the
where X, =X,;+a, and X,; is the position of the piston’s cross-sectional area of the piston. It then follows from Egs.
right face. We assume that the temperature is low endaigh (33) and (35) that the average force acting on the I&R;)

k is sufficiently large so that the probability for a particle to and the right(F,) side of the piston is(F))=—(F,)
reach the piston’s surface is negligible. =nSpB.

In the previous sections it was established that the dynam- It is straightforward to show that the stationary distribu-
ics of the piston can be deduced from time correlation function in the vicinity of the fixed piston, including the interac-
tions describing molecular motion in the field of the pistontion zone, assumes Boltzmann’s form
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(N(X,0))=nSHy(v)exd —U(x)/kgT]. (36)

To calculate the force correlation functions required to ana-

lyze the damping terms in the LE, correlation functions of
the form(N(Y1)N(Y,)- - -N(Ys)) must be evaluated, where
Y denotes the position-velocity paig,p). It is sufficient to

consider only the case when time arguments are equal for ak |
functions, since time displacement can be transformed intc

spatial displacement for a free particle, i.e.,
N(X,v;t+t)=N(Xx—vty,v;t). (37)

Note that the produdi(Y;)N(Y,) can be written as
N<Y1>N<Y2>=i2j S(Y1=Y)&(Y2=Y))
=2, A(Y2= Y)Y~ Yi)
+§j 8(Y1=Y) (Y= Y)).

Since §(Yl_ Y|) 5(Y2_ Y|) = 5(Y1_ Yz) 5(Y1_ Yi); fOI‘ the
ideal gas system one obtains

(NCYDN(Y2))=8(Y1=Y2)(N(Y1)) +{(NCYD)XN(Y2)).
(38

PHYSICAL REVIEW EG68,
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FIG. 1. The functiongy(t) (solid line) governing the time de-
pendence of the memory functiav 5(t) = Nw?&,(t) in the non-
Markovian Langevin equatiofl5), and the damping functiofy(t)
(dashed lingin the local Langevin equatio8).

force Fo=F,+F, is determined by the constrained piston-
bath Liouville operator £y. Since (F)=—(F,) and
(FIF1 (1) =(F:F: (1)),

(FFo(t)=2(F|F (1)) = 2(F))>=2(F|F\(t)). (4D

For the three-point correlation function, the same arguments

lead to the result
(NCYDN(Y2)N(Y3))=8(Y1—Y2) 8(Y2= Y3)(N(Y1))
+ (Y1 = Y2)(N(Y1))(N(Y3))
+6(Y1=Ya)(N(Y1))(N(Y2))
+6(Y2= Ya)(N(Y1))(N(Y2))
+H(NCY1))(N(Y2)}(N(Y3)).
(39

Equations(38) and (39) are the cumulant expansions of
(N(Y1)N(Y,)) and(N(Y{)N(Y,)N(Y3)), where the cumu-
lants

ENCYDN(Y2) )= 8(Y1—=Y2)(N(Y21)),

ANCYDN(Y2N(Y3) )= 8(Y1=Y2) 6(Yo = Y3)(N(Y1)),
(40)

ANCYDN(Y5) - - -N(Yg))
=0(Y1—=Y2)8(Yy,—Yg): - 5(YS,1—YS)<N(Y1)>

are proportional to the equilibrium densityof gas particles.

To order\?, the dynamics of the piston is described by

the LE (17) with a time-dependent damping coefficient,
Yo(t)=BImfd(FFy(7)), where the evolution of the total

From Egs.(41) and (33), one sees tha{FFy(t)) can be
expressed in terms of the cumulant{N(x,v;t
—71J)N(X',v"; = 7). Using property(37) and Eq.(41), the
cumulant may be rewritten as
UN(x—vt,v;—1)N(X" 0" — 7))

=d0(x—vt=x")8(v—v')nSty(v). (42
Then, using Eqs(41), (33), and(42), one obtains

nSk _
(FFo(t))=—= 0(r.—t){sinot+ o(7.—t)coswt}
w

XJ’ dv fy(v)vs. (43
0
This can be reexpressed in the compact form
,M
(FFo(t))=Naw Ego(t), (44)

whereéy(t) is a dimensionless functioisee Fig. 1 given by

&o()

\/% O(7.—t){sinwt+ (7— wt)coswt}, (45

and
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<U2>1/2

N=nS (46)

PHYSICAL REVIEW E 68, 041107 (2003

age number of collisions of bath particles with the piston for
t~ 7, is of ordern(v?)*?r,=\"2 and depends neither on
temperature nor on the piston’s size, but only on the mass

is the average number of particles in the shell of thicknesgatio.

| = (v?)/w around the piston. The parametespecifies the

Equation (51) is obtained under the condition that the

length at which the average bath particle penetrates the irtharacteristic time-; for the force autocorrelation function is

teraction zone, antN=nSl is the average number of par-
ticles in the layer of thicknedsaround the piston. Thus, it is
evident that in addition to the mass raNd=m/M, the rel-

negligible on a time scale, of the dynamics of the momen-
tum of the piston. Assuming in addition that the random
force in this equation is Gaussian, one can obtain the Fokker-

evant physics depends strongly on another characteristic pglanck equation for the momentum distribution function

rameter of the system, namelf\?, which can be inter-
preted as the ratio of total mabs, = mnSlof bath particles
in the layer of thicknestin the vicinity of the piston to the
massM of the piston.

With these definitions in hand, the time-dependent damp-

ing coefficient in the LE17) can be written as

'3 t
yo()=— fo dr(FFo(t)=wN{o(t),  (47)
and therefore the LE17) assumes the form
P
d Jt(t)=)\FT(t)—w)\2N§0(t)P*(t), (48)

where the damping functiody(t)= o 5d7 &(7) is given
by

Lo(t) = \/%0( re—1){2(1— coswt) + (7— wt)sinwt}

\F
+4\/—=0(t—7¢)
T

(see Fig. 1 This expression describes the interesting tim

(49

development of the dissipative force, an aspect of the dy-
namics that is outside the scope of more phenomenological

models. Fort<r;, Eq. (48) describes essentially nonexpo-
nential relaxation of the momenturtP(t))=P(0)e X
with

t
X(t)IAZwaodrgo(T)

2
=\2N \/;{77+ 2wt— (7— wt)coswt—3 sinwt}.

(50

For smallwt, x(t)~ (wt)?. On a time scalé> r, the damp-

€

af(P) S4m [2kgT| o Bi(p MkTazf(P)
ot - "SwN m | aplPT(PITMke P2

(52

This coincides exactly with the equation for the piston inter-
acting with the bath particles through a hard-wall potential
previously obtained by van Kampen from the master equa-
tion [10].

The assumption of a Gaussian random force appears to be
justified for Eg. (51) describing dynamics on time scales
much longer thanr.. In this case one can use a coarse-
grained description of the dynamics with time resolutiqn
<At<r,. The coarse-graining procedure corresponds to re-
placing the instantaneous random force in Esfl) by its
average over a time window of duratiofit, i.e., F(t)
—F(t)=At 1" AF(t) dt. As previously discussed, the
number of collisions of bath particles with the piston for the
time interval, is of order\ ~?>1. Therefore the resolution
time interval At may be chosen sufficiently long that the
piston experiences many uncorrelated collisions dudrng
Then, according to the central limit theorem, one may expect

that F(t) is Gaussian distributed.

For the more general LEL7) with time-dependent damp-
ing, the random force is generally not Gaussian distributed.
However, one can easily demonstrate that the distribution of
the random force is approximately Gaussian in the limit
N>1 where the piston interacts simultaneously
with many bath particles. In fact, the cumulant expansion
(23) of the multiple-time correlation function Cyg
=(F(ty)F(ty)- - -F(tys)) contains the products afpair cor-
relation functions(F(t;)F(t;))=(F(t))F(t;))). Since a cu-
mulant of any order is proportional fd, these terms are of
order N°. The other terms in the expansion contain fewer
factors of the cumulants and therefore fewer factors\Npf
and hence may be neglected. Tt@p can be approximately
expressed as a linear combination of pair correlation func-

ing function reaches its plateau value and the Markoviaions, a well-known characteristic of a Gaussian random
limit of the Langevin equation, in which the damping coef- yariaple. The explicit form of the distribution function for the

ficient is independent of time, is recovered:

2
dP. (1) =\FT(t)—4 \/;w)\ZN P, (t).

dt

(51)

Note that the characteristic time for relaxation of the momen-

tum 7,= o (A\®N) ! is governed by the parametarN,

rather thar\?. It is also interesting to observe that the aver-

random forcef(Fy) can be obtained using the inverse Fou-
rier transformation of the generating functigsee, for ex-
ample, Ref[2]):

1 (= _ 5 (ik)s
f(Fo)= Ef_m dkexp{ —|kF0+521 S—!«FS»]-
(53
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The cumulants of odd orders vanish, and the cumulants of 8
even orders ar§F3%)=2(F?°) whereF, is given by Eq. Ma(t)= —Aq(t). (61)
(33). Using Eq.(41) one finds that m
I'(s+1/2) It is interesting to note that a nonlinear LE of this form has
(F; 5)) —Ng®sl————, (54) previously been obtained using a mode coupling approach
J— I(s+1) " [15]. A similar Markovian version of a nonlinear Langevin

equation with a cubic damping term was considered by Mac-
where g?=kZ(v?)/l2w?, andT(s) is the gamma function. Donald[16] on purely phenomenological grounds.
Substituting Eq(54) in Eq. (53) gives the following integral Equation (59) differs from the linear LE (15 with
representation for the distribution function: memory functionMy(t) = B/m(FFgy(t)) not only by the
presence of nonlinear dazmping, but also by appearance of
1 (= . a2 correction terms of ordex“ to the memory functiorM ,(t)
f(F)= ﬂfﬁm dkexp{—ikF —2aN(1—e (99} for the linear damping. Note also that the last term on the
(55) right-hand side of Eq(59) can be written in the local form
)\4P3 (t)f5d7 M,(7) since the nonlocal correction to this
If N>1, one can approximately write in the above expres-expression\*[idr M,(7)[i_ . d7’ P,3(7') is of order\®
sion 1—e (@K°< ~(gk)?, which leads immediately to the [14]. However, the linear damping term in E(&Q) cannot be
Gaussian distribution for the force. Similar argumentsSImply written in the local form—\2P, (t)4d7 M(7)
hold for the distribution function of higher order since in this case the nonlocal correction has contributions of
f(F(ty),F(ty), .. .F(ty)). order\® and\* which must be retained. This correction can
be written in the form

V. THE NONLINEAR LANGEVIN EQUATION

t t .
We now turn our attention to the terms of higher order in 7\2J'0 dr Ml(T)fti d7' P, (7")
N in the N expansion(13) of the memory functionK(t) T

=(FF'(t))==K(t). It was shown in Sec. lll that for a L[t t
homogeneous batk,(t)=0, and the first nonzero correc- =\ fo dr Mo(T)f dr’Fi(+")
tion to Ko(t) =(FFq(t)) is K,(t) which is of second order in T
\. From Egs.(13) and (23) one can see tha, has the 4
structure -\ f dr Mo(T)f dr’ f d7” Mo(7")
\? A2 XP, (7' =7")+0(\), (62
Ka(t)= — AP+ 1o AalD), (56)

where we have used the result thdg(t) =Mq(t) + O(\?)
according to Eq(60). The first term in the right-hand side of
this expression depends on initial coordinates of the bath and
may be treated as a small correction to the random force

t t
Aj(t)=| dt ! dt,{GoGy(1,t1,15)), (57) FT(t). The second term can be written in the local form
0 0

where the functiong\;(t) andA,(t) are given by

t ty —x4P*a)JthM0@oft dHJ}'df’Moﬂﬁ)+cxx%
Az(t):fo dtlfo dt,((GoGo(t—t1)Gy(t,t2)). (58 0 t=7 0

(63
Substitution ofK ~ K+ K into the exact equation of motion to order\®. As a result, Eq(59) can be written in the local
(11) leads to the nonlinear generalized LE of the form form
dP, (1) 1k dP, (1)
SN L ELN —r MO (O ()M ya(OPE(),

(64)

t
—vf dr My(1)P3 (t— 1), 59 -
0 with the modified random force

where the memory functiond ;(t) andM,(t) are - t t

FWU=FWU+W3J dTMouoj dr'F'(7") (65
0 t—7

2)\2 A28

M (t)=My(t)— —At+ S Aot (60)
1t ol 1t 20, and the damping functions given by
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t t t ”
yl(t)=J' dr Ml(T)-H\Zf dr My(7) dr’ G|2(t-t11t2):kff do N(X—v(t+7e),0; = 7o)
0 0 t—7 0
“ 0 b w
<[ e, (66 k[ T[T da N
0 0 *U(tJrTc) v
: q
t XSIHw(H— ;)‘ka(ﬁ(tl,tz)
vz(t)=f0 dr My(7). (67)

XJ dv N(X|—vt,v;—7¢),
0

(71)

For t> 7., the time-dependent coefficienjs(t) attain their
limiting time-independent valueg; , which can be obtained Where the functionp(t,t;,t,) is
from the expressions above by setting the upper integration
limit t to infinity.

It is possible to obtain explicit expressions for the
memory functiondM;(t) and the damping functiong(t) for
the extended Rayleigh model. To accomplish this, explicitand the upper integration limi is
expressions for the functior; defined by Egs(19) must be
computed. It is convenient to express these functions as the
sum of two parts corresponding to the force acting on the left
and right sides of the pistorG;=Gj;+G,;. It is some-
what problematic to calculate terms such d&3,; G2 using replacement§0), and, in addition, by multiplying
=e%o7 9F,(t)/9X due to the parametric dependence¢ft) the first and the last terms on the right-hand side of (Zd)
on X that is evident when the force is expressed in terms oby —1. Recall that we anticipateG,)=0 by symmetry so
gi(t) andv;(t) [see Eq.(33)]. One straightforward, albeit that(G,)=—(G,), which can be explicitly verified from
inelegant, way to circumvent this difficulty is to express thethe expressions above.
force in terms oN(x,v)=N(x,v;t=0). Details of this tech- It has been shown above that the damping forces in the
nique can be found in Appendix B. Using this approach, wenhonlinear Langevin equation can be expressed as integrals of

obtain for the left-side part 0B, the cumulants(G,G,) and {(GyGyG,)). From Eqgs.(68),
(71), (33), and (40), one can get explicit expressions for
these cumulants. Fae-t,>t, we find

(GoGa(t,ty,t2) p=2(GoGya(t,t1,t2)))

d(t1,t5)=0(t,— 7¢) — 0(t1— 7¢) O( 7. —t5) COSwt,

+0(7.—11)0(7.—1y)COSwt, cOswty, (72

b=—v(7,+t—1ty)0(7.—ts) —vtO(t,— 7). (73

A similar expression foG,, can be obtained from that for

o b
G|1(t1't2):kff dvf dg N(X+q,0; — 7o)
0 —v(7etty)

q nSk >
X COSw t1+5 —kfﬂ(TC—tz)COSwtz = w (l)l(t,tl’tz)jo dU fM(U)v,
. oty (74
xf dvf dg N(Xj+q,v;—7),
0 —v(7etty—tp) where
(68) P1(t,t1,t,)=26(7.—t)Sinwt coswt, coswt,. (75
where the integration limib is The second cumulant required is
(GoGo(t—t1)Ga(t,t2))
b=—v(7ett1=t) (7c—tz) ~0118(tp= 7). (69) = 2(G1oGyo(t—t) Gy (L,t2))

3 o0
¢2(tvt11tz)fo dv fy(v)v?,

{3
=—nyg —
w

where the functionp, has the form

The expression fo6G,; can be obtained from the above one
by replacements,

i 0 a2 a1
j dUHJ‘ dv, f dg— dg. (70
0 - a1 a2

Note that(G,,)=(G,1).
For the left-side contribution t&,, we obtain

do(t,ty,ty) = 0(7.—t)coswt{w(7.—t)cosw(t—1t;)
+3sinw(t+1t;)+3sinw(t—t,)}.

These results allow one to calculate the functiénét)
defined by Eqs(57) and (58),
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2.2 )
Al =m o N &,(1), (78 82('£)=w3f0t d7éo(7) t dr’ JOT d7"¢&y(7"). (85

Aa(t) = —m?w?B N £y(1), (77 o
i . . ] Note thate;(t) ande,(t) are of different signs for alt. If
where dimensionless functiog(t) are given by N<1 the correction is determined mostly ky(t)<0 and
tends to decrease the damping functigt). In contrast, if

1 s . . .
£ = DS o, N2 he man corecion comes flom () -0 effctvely
. .
For a coarse-grained description on the time stale,
1 with a time resolution7.<At<r7,, one can replace the
gz(t)z\/?a(rc—t){sin3 ot+ ot(7— ot)sinwt}. damping functionsy;(t) in the LE (81) by their limiting
™ valuesy;(7¢).

(79

The memory functions in the non-Markovian LE9) take

the form The notion that the character of Brownian motion of a
finite-sized particle may depend on parameters other than the
M1(D)=No™{&(D) =200 -A6(0} (79 hass ratio\2 dates back to Lorentz and has been examined
by many authorgsee Refs[17-19, and references theregin
Mz(t)=Nw2£§1(t), (80) It is known that when hydr(_)dynami(_: effects are import_ant
another relevant parameter is the ratio of the mass density of
) o the bath to that of the particle. In this paper we have dem-
Here the functiorto(t) is given by Eq.(45) and governs the  gnstrated that even when hydrodynamic effects are absent, as
memory function Mo(t) in the linear LE (15, Mo(t)  in the extended Rayleigh model, the character of the behav-
=Nw?£y(t). The additional\*-correction terms lead to & jor of a tagged particle may not be governed\ybut by the
faster decay of the linear damping keri{(t) compared to  renormalized parameter? = NA2, which can be interpreted
Mo(t). The kernel for nonlinear dampiniyl,(t) is not @ 5 the ratio of the average total mass of particles in the in-
decaying function of time but rather has a maximumt at {sraction zoneM, to the massM of the tagged particle.
=T72. . ) i ) . When the average number of particles in the interaction zone
Explicit expressions for damping functiong(t) in the s |arge(i.e., N>1), A, <1 is a necessary condition for the
local-in-time LE (64) by integratingM;(t) according to EGS. applicability of a conventional perturbation scheme of deri-
(66) and (67), and the nonlinear LE for the Rayleigh model yation of the LE. In this case the conventional assumption of

VI. CONCLUDING REMARKS

with a parabolic potential takes the form Gaussian random force is justified for any time scaleN If
dP. (t <1, the parameter of the expansion\i§ and the Gaussian
A =\El(t)— N)\Zw{ gl(t)p*(t)+)\zﬁgz(t)pi(t) ’ force approximation holds only on a time scale that is much
dt m longer than the characteristic time for the relaxation of the
(81)  bath.

Although this paper focuses on the specific model of an
ideal gas bath interacting with a Brownian particle through a
t quadratic repulsive potential, many of the results obtained
§2(t)=wJ dréy(7) are quite general. In particular, the L(E4) and expressions

0 (66) and(67) for the damping coefficients in terms of micro-
scopic time-correlation functions, which may be considered

where the nonlinear damping functi@g(t) is given by

= L o( Tc_t)[E — coswt + lco§ ot as the generalized version of the fluctuation-dissipation theo-
2 3 3 rem, are limited neither to the specific form of interaction
potential between the bath and the tagged particle nor to the
n —\/Ea(t—r ) 82) ideal gas bath. The results of Sec. Ill concerning the cumu-
3 V7w e lant expansion of the kern#l(t) =(FF'(t)) are also general
and not limited to any specific model. Combined with quite
and the linear damping functiop, (t) can be written as general theorems about cumulant properfi2g], these re-
sults may be useful for more realistic models with interacting
{1(1)=o(t) +N%e1 (1) + NAZ &5(t). (83)  path particles.

. o ) o The explicit expressions for the kinetic coefficients and
The main contribution to the overall <t:1amp|ng coefficient memory functions appearing in the Langevin equations have
£1(t) is given by the functionfo(t) = w[odT £o(7), While  peen derived in this paper in the thermodynamic limit, so
the corrections arising at higher orders in thexpansion are  that any correlations due to finite size of the system are ne-
. glected. It should be mentioned, however, that the equations
81(t):_wf dr{2&,(7) + &), (84) them_selves, as \_NeII as t_he quctuatlon-d_|SS|pat|0n relations
0 relating the kinetic coefficients to correlation functions, also
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hold for a system with finite baths. For finite systems the 1

explicit form of the kinetic coefficients may be rather com- C(Z)——{<Gl(t ts,to—t3)){(GoGo(t—t1)Gy(t,ts)))
plicated even for a bath composed of ideal gas particles.

In this paper we have considered the case of the totally +(GoGolt—ta) N(Golt—t) Galt, o ta))
1 1t2:44

symmetric bath when thermodynamic and microscopic prop-
erties of the gas to the left and to the right of the piston are

+{(GoGa(t,t2,t) D{Go(t—t1) Go(t—t3)))

the same. Some interesting physical implications arising in

the case of an asymmetric bath will be presented elsewhere

[21].
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APPENDIX A

+{(GGq(t—11)G1(t—t3,to—t3)G4(t,t4)))
T {GoGo(t—1t1)Go(t—t3) Gy(t,t5,t4) Gy(t,t4) )}

The third term is

P
CE=—5{(GoB1)~(GoB2)(Ga(tz,a) + 2(GoBa)l,

where

In this appendix, for the sake of completeness, we show

explicitly that the functionC, defined by Eqs(14) is of

second order in cumulants of products &f. C, can be

written as the sum
C,=C+cP+cP+cl,

where the first constituent

2
Csll)ZEKGoGo(t_tl)Go(t—tz)Gz(tataat4)>
— <GOGO(t—t1)><Go(t—t2)G2(t,t3 ,t4))},

is obviously quadratic in cumulants,

2
C&7=—{{(GoGo(t~ 1) }(Golt~t1) Galtits, ta))

+{Go(t—t1)Go(t—t) Y(GoGa(t,t3,t4))

+(GoGo(t—1t1)Go(t—t5) Gy(t,t3,t4) )}

The second term is

1

CE=—{{BoGo(t—t)A1) ~(GoGo(t—t1)(Ar)
—(G1(t,t))[(GoGo(t—11) Gy (t—t3,t,—t3))
—(GoGo(t—t1) (G (t—tg,t,—t3)) ]},

where A;=S(t—t,)Go(to—t3)G4(t,,t4). Noting that A;
can be written as

A1=Gy(t—t3,t—t3) G(t,t4) + Go(t—t3) Ga(t,15,14),

and recalling that due to symmet(®,(t)) and(GyG,(t))

are zero at all timefsee Eq.21)], one can see thaly )is

also quadratic in cumulants,

B1=S(t—1t1)S(t—15)Go(ta—t3)G1(ty,ta),

By=S(t—1t;)S(t—t,)Gp(t,—t3),

Bs=S(t—1t1)Go(t;—t2)Go(ty,135,t4)

can be expressed as

B1=G,(t—t3,t;—153,t,—t3)Gy(t,1ty)
Go(t,ty,ts)
2(t,t,t)

+Go(t—1t3)Gs(t,ty,t5,t4),

+Ga(t—t3,t,—t3)
+Gy(t—tg,t;—t5)G

B,=G,(t—t3,t;—t3,t,—t3),

=Gq(t—ty,t;—t5)Gy(t,t3,t4)
+ Go(t—tz)Gg(t,tl {3 ,t4).

Then using the symmetry propert1) one can see that$®
is quadratic in cumulants.
The remaining term

P 2
C514): ( H*) <GOG4(t1tl !t2 lt3 1t4)>

2
+ _;{<G0Go(t_t1)63(tat2 t3,t4)

—(GoGo(t—t1))(Gs(t,tz,t3,t4))}

is clearly linear in cumulants,

C514):

P, \?
F) (GoGalt,ty ts,tg,ts))

3pP2
+— {(GoGo(t—11)G3(t,t5,t3,t4)).
m
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APPENDIX B IF (1) o
i , ) , = —Kks COSthZ(t)—ka dv
In this appendix the function; defined by Eqs(19) are X 0
evaluated for the extended Rayleigh model of diffusion.
These functions are defined in terms of powers of alternating > Ja(t) dg NOX,+q,0) KCOSw t+ 9)
operatorsy/ X ande*o(li~%_ As mentioned in the text, rep- —ut T v/’

resentationg33) and (35) for the force on the fixed piston
are unwieldy since these invohg(t) andv;(t) which are
functions of X. For the purpose of evaluating ti& , it is
convenient to express the force in terms BRX,v)
=N(x,v;t=0). Fort>0, we have

(B2)

Here N,(t) is the number of particles which were in the
interaction zone at=0 and remain at>0,

th o
v

o a(t)
F|(t)=kff dvf dq N(X,+q,v)£sinw w o
0 —ut @ N,(t)= e(rclz—t)f dvf dg N(X,+q,v)
0 0

+0(7‘C/2_t)kff dvf dg N(X,+q,v)q(t) 0 -
0 0 + 0(TC/2—t)J dvf dg N(X,+q,v)
— Q(t)

0 ©
+0(TC/2_t)kff dvf dg N(X;+q,v),q(t) - Q)
o Q) +0(t—TC/2)6(TC—t)f va dg N(X;+q,v).
+0(t—72) 0( 7.~ t)ks S (B3)

xfm dvam da NOX+G,0)q(1), (B1)
0 0

N,(t) can be written in compact form in terms of the density
at time — 7. according to
where

a(t)y=—vé(t—ro)(t—7c), " ot
Nz(t)=9(Tc—t)f0 dvf_ dag N(X+q,0; = 7c).

g(t)=qcoswt+ %sinwt, (B4)

v In fact, the number of particles in the interaction zond at
Q(t)y=— ;tanwt. =0is

The first term in Eq(B1) describes the contribution to the o 0
force F|(t) from the particles that were outside the interac- f dvf dg N(X+0q,v; = 7c), (B5)
tion zone at=0 (i.e.,q<0) and are in the interaction zone 0 e
at the moment [i.e., q(t)>0].
The remaining terms give the contribution from particles
that were in the interaction zone it 0 (i.e.,q>0) and are  while at timet it is given by
still there at the momertt[i.e., q(t)>0]. In fact, all particles
in the interaction zone with positive initial velocities &t
=0 will be still in the interaction zone a& 7./2 (the second . o
terr_n), Whl_Ie the p_art|cles Wlth_neganve |n|t|a_l velocities will f dvj dg NOX +q,0;t— 7o)
be in the interaction zone at tineZ 7./2 only if att=0 they 0 —urg
reside deep inside the interaction zone, nantelyQ(t) (the . ot
fch_lr_d term. _For T>t> T2 o_nly the _partlcles Wlth positive =f dvf dg N(X,+q,v;— 7). (B6)
initial velocity will be in the interaction zone at timepro- 0 —u(t+7g)
vided their initial coordinates are less th&{t) (the last
term).
From expression(B1), one easily calculatesF,(t)/dX By definition N,(t) involves the particles that contribute to
writing dN(X;+q,v)/dX=dN(X,+q)/dq and integrating by  both integralgB5) and(B6), which leads to Eq(B4). Com-
parts to obtain bining Egs.(B2) and(B4), we have
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&Fﬁ;((t) J va dq NOX,+q,0)cose| t+ j) where the upper integration limit is
—kfa(Tc_t)COSwtfw dv b=—v(t;—t2) 0(7c—ty) —v(ty— 7c) Ot~ 7).
0
X J_Ut dg N(X+0,0;— 7). (87)  The second term on the right-hand side of E8g) can be
—v7g expressed as

For comparison, let us calculate the average derivative of

the total forceFo(t)=F,+F,, — k¢ 6( Tc—tz)COSwtsz dv
0

IFo(t)\ RO\ 2knS (= e
X =2 oX - w fo fm(v)v dv (7. —t) XJUTC da NXra=oltimte) =)
X [sinwt + (7— wt)coswt]. :
[sinwt+ (7— wt)coswt] _—kfe(rc—tz)COSa)tzf dv
0

Comparing this expression with E@¢43) for the memaory oty
kernel KO(t):<FF.0(.t)>’ it is evident that(aFO(t.)/aX>= . f dg N(X,+q,v;— 7). (B10)
— B{ FFy(t)). This is the general result used in the main —u(retti—ty)
text, Eq. (10), confirmed using the explicit expression for
AFo(t)/oX.
From Eq.(B7), we obtain the following expression for If t,> 7., then all particles that contribute to this integral at
Gy t=0 will be outside the interaction zone in tleinterval

from —v(t;—t,) to —v(t;— 7). Therefore, fort;> 7 the
second term equals

t
Gja(ty,tp)=efoltita) ——= FFts)

dX
o a(tp) B _ _ *
= _kff dvf 2 dg NOX + vty —t,) kiO(Tc—t5) 0(ty rc)cosmzfo dv
0 —vty
q —v(ty—7¢)
X COSw t2+; _kfe(TC_tz)COS(J)tz X f—v(tl—tz) dq N(XI+QaU) (Bll)
viz
x fo dv f—vrc da NCXi+a.viti—t— 7o), If t,<7., then two sets of particles contribute to expression

(B10). The first set of particles is composed of particles that
(B8) at time — 7, are in theq interval from —v(7.+t;—t5) to
—v 7. Att=0, these particles will be outside the interaction

where, according to Eq13), it is assumed that;>t,. Ex- 2N in the interva(—u(t,—1,),0), and hence their contri-
’ ’ i bution is

pressing this in terms of the microscopic density at time
— 7. using Eq.(37), one obtains Eq(68) of the main text.

To evaluateG,, one has to take the derivative @Gf, with
respect toX. Let us expres&; in terms of the density at time o 0
t=0, N(x,v), as done above fdF(t). The first term in the —kaOSthJO do Jf 1) dgN(X;+q.v). (B12)
right-hand side of Eq(B8) involves only particles located B
outside the interaction zone, so using prop€gy), the first
term can be written as

The second group of particles are those that were ingthe

interval from—uv . to —vt, attime—7.. At t=0, all these

particles will be in the interaction zone. Taking into account

Eq. (B4), the corresponding contribution can be written as

—k;icoswtNL(t). Using expressioniB3) for N,(t), one ar-

. (B9) ri\Ees ;at the following representation f@g,; in terms of
N(x,v),

a(tp) q
—kff dvf dg N(X;+g—v(t;—t,),v)c0Sw t2+;
0 —vty

o b
= —kff dvf dg N(X;+q,v)cosw| t;+ g
0 —vty v
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—ki6(7.—1,) O(t— 7.)COSwL,

o b
G|1(t1,t2)=—kfj dvf dg N(X,+q,v) cosw t1+g
0 —vty

© —v(ty—7¢)
Xf va ' dg N(X;+q,v) —ks0(7.—t5) (7. —t1) COSwt,
0 —u(ty—ty)
% 0
XJ va dg N(X|+q,v) —ksO( 7. —t5) 6( 7./[2—t;) cOSwt,
0 —u(ty—tp)
0 0 0 0
XJ dvf dq N(X|+q,v)—kfﬁ(Tc—tz)0(7‘c/2—tl)COSwt2f dUJ dq N(X|+q,v)
0 0 - Q(ty)

» Q(ty)
_ka(TC_tz) 0( Tc_tl) 0('[1— TC/Z)COS(I)tzf dUJ’ ' dq N(X|+q,U) (813)
0 0

Taking derivative of this expression with respectdaives

J kS ®
é—XGH(tl,tz):ka dv N(X|—Ut1,v)+kf[0(t2—Tc)—G(Tc—tz)ﬂ(tl—TC)COSth]J dv NOX|—v(ty—70),v)
0 0

ES b
_kfj dvj dq N(X|+q,U)$Sinw tl+ g)+0(7’0/2—'[1)H(Tc—tz)kCOSwtz
0 —vty
0 o]
XJ dv NCX 4+ Q(t1),v)— 0(7.—1t7) 0(t;— 7:/2) O( 7. —15)k COSwtzf dv N(X;+Q(ty),v). (Bl14)
% 0

The last two terms can be written as

X+v 0
o’ tanet;

=K O(7o—1t,) O( 7o—t Coswtszd N— .,
=Ki0(7.—15) 0( 7, 1)tanwt1 o v | sinwtl’Sinwtl’ Tc

K O(7o—t,) O( 7o —t cos:utszd N
f (Tc 2) (Tc l)tanwtl 0 v

=KiO(7.—1t,) (7. —11)COSwl, COSwtzf dv N(X,—vtq,0;—7¢), (B15
0

where we have used the property that if the initial coordinate and velocity of the particle in the interaction zone are

\Y;
q(0)=—, v(0)=- (B16)

tanwt
with V>0 and 0<t<r., then att=— 7,

V
Sinwt’

q(—r)=—v(=7I)t, v(—7)= (B17)

Substituting Eq.(B15) into Eq. (B14), acting on the result by the propagatefo' "'V and using again the property
N(x,v;t+ 7)=N(x—v,v;t) for the motion outside the interaction zone, we finally obtaintfet,>t,,
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J
Gi(ty,12)

= LO(t_tl) -
Gio(t,ty ty)=e X

:kff dv N(X|_Ut,U)+kf9(t1_Tc)e(tz_Tc)f dv NOX|—v(t—70),v)—K;0(7.—15) 8(t; — 7¢) COSwt,
0 0

)
v

+KiO(7.—1,) O(7.—t1)COSwL, COSthJ dv N(X,—vt,v;—7¢), (B18)
0

) 0 b
Xf dv N(X|_U(t_7'c),v)_kfj dvf dq N(Xﬁq,v)%sinw
0 0 —vt

whereb=—v(t—t5) 0(7.—t,) —v(t—7¢) 8(t,— 7.). EXpressing the first three terms throudtx,v; — 7.) rather tharN(x,v),
one arrives at Eq.71) of the main text.
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