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Velocity statistics in two-dimensional granular turbulence
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We studied the macroscopic statistical properties on the freely evolving quasielastic hafdrdraldaj
system by performing a large-scdl#p to a few million particlesevent-driven molecular dynamics system-
atically and found it to be remarkably analogous to an enstrophy cascade process in the decaying two-
dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system,
which are homogeneous, sheariwgrteX), clustering, and final state. In the shearing stage, the self-organized
macroscopic coherent vortices become dominant. In the clustering stage, the energy spectra are close to the
expectation of Kraichnan-Batchelor theory and the squared two-particle separation strictly obeys Richardson
law.
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The dynamics of granular materials becomes one of theompared with the nonscaled case in case of hard sphere
most important topics in the studies of nonlinear, dissipativesystem. Therefore, one simply replaces the usual timigh
and nonequilibrium statistical physi¢4]. Granular media the new-scaled timés. This operation is the same as the
are collections of macroscopic particles with rough surfaceswell-known velocity scaling metho@4] in the usual MD
and dissipative and frictional interactions. The granular syssimulation, in which the velocities of all particleg(t), are
tems require an energy source in order to be in a steady staaled following each collision by the factgs(t) [i.e.,
and the external gravitational force much affects their dy-8(t)Vi(t)] and the total energy is kept fixed strictly all over
namics. the time.

To focus on the dissipative features, a smooth inelastic 1€ two-dimensional2D) turbulence in nature is a large-

hard spherélHS) model is often used as an ideal model. TheSc@l€ fluid motion in the atmosphere or ocean dynamics on
freely cooling granular fluid has been studied as an ideaf"arth' The most remarkable feature of 2D turbulence is de-

it : . cribed by the enstrophy cascade dynamics, which is com-

dg;sggatta/ ee Sisr:g:rlﬁ |Sg sct)irlr; I2 otr?::) oe;besdenocfe a?qf ?ﬁéﬁgi f?];CreS'r:etely different from that of 3D turbulence represented by
. .. the K41 theory. The existence of enstrophy cascade process

sphere and no relevant energy scale exists, the restitutiqf) originally proposed by Kraichnds] and Batchelof6]
_coeﬁicient between_ g:ol_lision particles is t_he only parameter, . theory expected that the enstrophy injected at é pre-
in terms of nonequilibrium. The assumption of an inelastiCsqiheq scale is dissipated at smaller scales, undergoing a
hard sphere potential is also employed in kinetic theorycascading process at a constant enstrophy transfer rate; this
which facilitates comparisons between theory and simulageq tq predicting &2 spectrum for the energy, in a range of
tion. In order to construct the theory of the macroscopic phescales extending from the injection to the dissipative scale.
nomenology in nonequilibrium dissipative particle system,The granular kinetic energy spectrum in connection with the
an IHS model is the most promising as a microscopic modeljuid turbulence was first pointed out by Tagudfi in 2D
A linear stability analysis of hydrodynamic equations for granular vibrated beds. He obtained the results ofkth#&®
IHS model has revealed that the initial spatially homoge-spectrum in his simulation with a few hundred particles. An-
neous cooling state is unstable in the formation of vorticessther important nature of 2D turbulence is the self-organized
and clusters. The shearirfgorteX) and cluster instabilities coherent vortices, which develop into larger ones through the
were theoretically predicted and were tested by moleculagerging process of vortices with the same sign of circula-
dynamics(MD) simulations[2]. tion.

Since the total energy is monotonically decreasing in the |n this paper, we especially focus on the velocity statistics
freely evolving process, a steady state in terms of energynd statistical laws of the fluid turbulence. To specify what is
fluctuation can be realized by scaling the velocity of the enthe universal character in a dissipative system, both macro-
tire particle to the total energy remaining constg8it Here,  scopic equation and microscopic dissipative particle, we per-
we introduce the new-scaled tinigwhich is described by  formed extensive event-driven molecular dynamics simula-

¢ dt tiondslyst_errratitlzall_y on a}_ freerlly cooling Q/Vroc?ss |(;1 2D IHS
N — ot model with velocity scaling thermostat. We found a strong
ts foﬁ(t)’ BH=NTO)/T(V), @ similarity between the 2D IHS model and 2D Navier-Stokes
(NS) fluid turbulence.
where T(t) is the average kinetic energy per particle as a The freely 2D IHS(granulajy model is so simple that the
function of usual timd. The great advantage of this scaling system is completely characterized by only three dimension-
operation is that the trajectories of particles do not changéess parameters: the restitution coefficigrthe total number
of disksN, and the packing fraction. The system size in the
unit of disk diameted is L/d=\wN/v/2. All the disks are
*Email address: isobe@nitech.ac.jp identical, i.e., the system is monodispersed. The collision is
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instantaneous and only binary collisions occur. When two
disks,i andj, with respective velocitieg; andv; collide, the
velocities after the collisionv; andv;, are given by

Vi =vi—3(1+0)[n-(vi—vpIn, @

Vi =Vvj+3(1+)[n-(vi—vjIn, ©)
wheren is the unit vector parallel to the relative position of
the two colliding disks in contact. Our system consists of
more than 250 thousand hard diskg to a few million
placed in a square box with periodic boundaries without any
external force. To perform such a large-scale simulation, we
implemented the simple and efficient event-driven algorithm,
which can actually simulate more than a few million par-
ticles even in the personal compuf8i. Initially, the system

is prepared as the equilibrium state by the long enough pre-
liminary run with the restitution coefficient=1, in which
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FIG. 1. The time evolution of various properties from an equi-

librium, which are density fluctuatiofdotted ling, velocity corre-

the density is uniform and the disk velocities are Maxwell- |5t within a short distancesolid line), anisotropy of total veloc-
Boltzmann .d|str|but|on. The pgckmg frac'tlon and the restitU-jry (qot-dashed ling and enstrophydashed ling respectively. The
tion coefficient (,r) were varied from dilute to dense and ot,) indicated four normalized properties as a functiortof The
within shearing regime, which is estimated by the criterionparameters are fixed at,(N,»)=(0.99109,512,0.60) during the
of McNamara and Young9], respectively. In the case of simulation. An inset in the below-left-hand corner shows the early
(N,v)=(1024,0.25), McNamara and Young have found thatstage of time evolution when shearing and clustering instability
the final states have three typical states, which are kinetigppears.

shearing, and collapse regime. However, the spatiotemporal

structure of the shearing regime is not known yet especialltage. Note that there are several works on the existence of

at the macroscopic level.
The criterion of kinetic-shearing boundary in Rg9] is
based on the results of Jenkins and Richrfii, in which

the short-range velocity correlations even in HCIS,12.
Our simulation also seems to show that velocity correlation
“gradually” increases from the beginning of simulation in

the high wave number cutoff for the unstable shear modethe first stage. Therefore, it might be difficult to determine
was derived. On the contrary, the shearing-collapse boundatje exact time between first and second stages. In this stage,
is estimated by 1D theoretical analyses for inelastic collapsesoherent vortices self-organize and the coherent vortices de-
which are known as the phenomenon on the divergence ofelop into larger ones through the mutual confluence and the
the collision number during a finite time. By using the re- merging process among vortices with the same sign of cir-

gime criterion described by McNamara and YoU®g, one

culation[Fig. 2(a)]. These self-organized vortices were found

can find that both regime boundaries become close to thfirst by McWilliams[13] in the direct numerical simulation
unity in the thermodynamic limit. These theoretical expecta{DNS) of 2D NS fluid turbulence. In the third stage, the
tions indicate that the system is always unstable even in thdensity fluctuatiorv,, (dotted line in Fig. 1, which is cal-
quasielastic limit. This fact implies the important conjectureculated by the square root of the space averpggx)
discussed later when we consider a large-scale IHS model asy]?, exhibits instability compressive floyFig. 2(b)]. Fi-

the macroscopic fluid model.

nally, steady state is realizedourth stagé In the final

In the large-scale simulations, the restitution coefficientssteady states, the spatial correlation of inelastic hard disks,

within the shearing regime become quasielastie- {). In

which gradually increases from the beginning of simulation,

our simulations by changing various parameters within thenight reach beyond the system size and begin to interfere
shearing regime, the system evolves to the final steady statgith each other through the periodic boundary condition. In
after several stages. As described by McNamara and Youngur simulations, in the shearing regime, there is no sign of

[9], we can calculate the packing fractiar(x), velocity
u(x) = (ux(x),uy(x)), and temperatur@(x) at any pointx.

the inelastic hard disks assembling to one cluster during the
simulation time. This is because the shear mode expanded to

Figure 1 presents a typical evolving process for four normalthe whole system might be stable through the periodic

ized properties as a function of new-scaled tirpa the 2D

boundary condition. Therefore, we call them “final steady

IHS model. During the relaxation process, four stages can bstates.” We found there are four characteristic final steady

distinguished. After the homogeneous cooling stdES)

states, which are shedlaminar, oscillating, and turbulent

continues for a certain time from initial thermal equilibrium and vortex(one pair of vortices with opposite sign of circu-
state (first stage, the short-range velocity correlation for lation) flows, by changing both packing fraction and the res-
each time(i.e., both precollisional and postcollisional veloc- titution coefficient within the shearing regime, systemati-

ity correlation, within the distancex,u(x)-u(x’), sharply
deviates from zerdsolid line in Fig. 1, wherex’ is the
location aroundk with a distance of disk diameter(second
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cally. Vortex flows of final pattern are also observed in the
DNS simulation for 2D incompressible turbulence with the
periodic boundary condition.
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FIG. 2. (Color) The typical snapshots for coherent vortices and turbulent clustering patterns are &jolire absolute vorticity field
after 1200 collisions per particle withr (N, »)=(0.994 52,640 000,0.65). The self-organized coherent vortices in the vorticity field grow
spontaneously from the initial equilibrium state) The density field after 3590 collisions per particle in inelastic hard disk system with
(r,N,v)=(0.997 25,2 560 000,0.65). The turbulent compressive flow appears in density field.

The velocity anisotropyA= =[uy(x)2—u,(X)?]/[ux(x)?

phy Z=3|w(x)|2, where w(x)=rot u(x), are also plotted

confirmed that the total vorticit{,w(X) is zero throughout

the simulation.

spectrum in granular material, energy injectidtieermostat
are driven by the vibration cyclé7] and the periodical-
stochastic thermost@l4]. These energy injections resemble which the two-fluid particle separatioR=|r;—r;| obeys
those of forced fluid turbulence. On the other hand, velocitypower law (R?)~t%). We also show that the timg depen-
scaling thermostd8], in which the system is driven continu- dence of the space-averaged squared two-disk separation in
ously, is thought as corresponding to a freely decaying case,

because the statistics itself does not change by introducing 1st

the new-scaled timés. Actually, we found that the energy
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spectrapower spectra of velocity fiejdn the 2D IHS model
+uy(x)2], in which one can distinguish the final state aswith the velocity scaling thermostat are close to the expecta-
shear A=—1 or 1) or vortex A=0) flows, and the enstro- tion of Kraichnan-Batchelor theoryE(k)~k 3] after the

third stage(Fig. 3). Therefore, our simulations show the en-
by dot-dashed line and dashed line in Fig. 1, respectively. Wstrophy cascade, as is expected by the theory for freely de-
caying 2D fluid turbulence. We have confirmed this power
law by changing several different system sizes. In Fig. 3, we
The 2D fluid turbulence has different characters on thecan estimate the characteristic spatial scdg~0.3) for

statistical law between forced and freely decaying casesninimal dissipative domairisuch as Kolmogorov scale in
However, in the granular case, no systematic consideratiotie fluid turbulencg which is composed of about a thousand
seems to exist yet. In the previous studies related to energyisks.

The first quantitative phenomenological observation in
developed turbulence was shown by Richard$aB], in

2nd
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FIG. 4. The evolving squared two-particle separation in terms of
new-scaled timeg is plotted. An inset in the upper-left hand corner

FIG. 3. Energy spectra of the velocity field are plotted for eachshows the time dependence of enstrophy decay. The parameters are
stage. The parameters are atN, ») =(0.99109,512,0.60).

at (r,N,»)=(0.99109,512,0.60).
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2D IHS model strictly obeys the Richardson dispersion lawincompressiblesystem, but is less than system size when we
in the third stagéFig. 4). In the inset of Fig. 4, the enstrophy consider the thermodynamic limit. Therefore, this extreme
evolution is also plotted in terms of the new-scaled tige  condition seems to really correspond to NS fluid turbulence.
The enstrophy seems to decay as power-law behavior in the |n this paper, we showed the remarkably similar aspects
second stage, in which the coherent vortices self-organizeyn the statistical law of vorticity between 2D IH§ranulay
However, since the second stage itself is relatively short, thig rbulence and 2D NS fluid turbulence. These results were
behavior needs further confirmation. As the intermittency ofgptained by only solving a simple Newton’s equation system
vorticity, McWilliams found that the probability distribution {5, inelastic hard disks in terms of an event-driven scheme.
function of vorticity significantly devig’ges from the Gaussian grom the microscopic dynamics of inelastic hard disk to the
[13]. By calculating flatness of vc_>rt|C|tyf(u=(w4>/<w2>2) ~ macroscopic fluid, it is important to study the origins of the
in the 2D IHS model, our simulations also show the devia-statistical law for turbulence at the microscopic level, but
tion from the Gaussian after the third stage. _there are very few studies so far from this point of view. The
How should we understand the obtained results? The difgiscussion for three limitédense, thermodynamic, and elas-

ferent points between fluid turbulence and granular turbutic) might make a connection between 2D granular turbu-
lence are compressibility, the origin of dissipatior., vis-  |ence and 2D fluid turbulence.

cosity and inelasticity between particlesand the ratio of

particle size and system size. Is the granular turbulence close | would like to thank Professor Y. Hiwatari, H. Nakanishi,
to fluid turbulence in the thermodynamic limit? Let us as-H. Hayakawa, and S. Noder making helpful comments. |
sume the extreme condition, that is, dense, thermodynami@lso acknowledge helpful discussion with Professor T. Gotoh
and elastic limit. In this situation, a litle amount of dissipa- and Dr. T. Watanabe on the two-dimensional fluid turbu-
tion in the system always results in an unstable state. We aldence. This work was partially supported by the Ministry of
obtained the fact that the velocity correlation lengkol- Education, Science, Sports and Culture, Grant-in-Aid for
mogorov scale becomes larger in a dens@ge., quasi- Scientific ResearckC), Grant No. 15560042, 2003.
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