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Path coalescence transition and its applications
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We analyze the motion of a system of particles subjected to a random force fluctuating in both space and
time, and experiencing viscous damping. When the damping exceeds a certain threshold, the system undergoes
a phase transition; the particle trajectories coalesce. We analyze this transition by mapping it to a Kramers
problem which we solve exactly. In the limit of weak random force we characterize the dynamics by comput-
ing the rate at which caustics are crossed, and the statistics of the particle density in the coalescing phase. Last
but not least we describe possible realizations of the effect, ranging from trajectories of raindrops on perspex
surfaces to animal migration patterns.
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This paper discusses a surprising phase transition il
trated in Fig. 1. This figure shows trajectories for a system
particles with positionsxi(t) subjected to a random forc
fluctuating in both space and time, and experiencing a re
tive force proportional to their velocities@the equations of
motion are defined by Eqs.~1! and~2! below#. The motion of
any one particle is obviously diffusive. Two particles wi
very close positions and momenta must follow similar traj
tories, at least for a while. Diffusive motion usually tends
reduce inhomogeneities in density, and we might expect
the motion should resemble the simulation in Fig. 1~a!. How-
ever, a slight increase in the resistive force causes a p
transition to the situation shown in Fig. 1~b!, which we term
‘‘path coalescence.’’ This effect has been described in a
per by Deutsch@1#, who gave a theoretical analysis and n
merical simulations indicating the existence of a phase tr
sition in this model.

Here we point out that these and related equations of
tion have a very broad range of applications in the phys
sciences, ranging from tracks of raindrops on randomly c
taminated glass surfaces to energetic electrons in disord
solids. In the ‘‘overdamped’’ limit, where inertia is negl
gible, the model could describe the response of animal
random fluctuations of their environment. Possible appli
tions of this type include migration tracks of mammals a
clustering of micro-organisms. Because of the large var
of applications we believe that the path-coalescence ef
deserves to be thoroughly understood. This paper make
following contributions. First, adopting an approach@2# used
in the theory of Anderson localization, we map the equatio
of motion to a Kramers problem which we solve exact
This enables us to obtain an exact criterion for the ph
transition. Second, we characterize the dynamics by com
ing the rate at which trajectories~in Fig. 1! cross caustics
Third, in the coalescing phase, we determine the statistic
the particle density by calculating its pair-correlation fun
tion. This allows us to deduce, at timet, the expected numbe
of particles condensing into a trail. Fourth, we argue that
model we consider~which is more general than that put fo
ward in Ref.@1#! exhibits a complex phase diagram. Final
we conclude with a discussion of some of the applications
the path-coalescence effect. Given the ubiquity of diffus
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dynamics, the effect we describe here is bound to occur
wide variety of different contexts.

We consider trajectories for a system of independent p
ticles with positionsxi(t) and momentapi(t). The equations
of motion for any particle are

ẋ5p/m, ṗ5 f ~x,t !2gp, ~1!

whereẋ5dx/dt, andg characterizes the strength of the vi
cous damping. The statistical properties of the forcef (x,t)
are translationally invariant in both space and time,

^ f ~x,t !&50, ^ f ~x,t ! f ~x8,t8!&5c~x2x8,t2t8!. ~2!

^A& is the ensemble average ofA. The correlation function
decays rapidly asux2x8u→` and as ut2t8u→`. A
suitable form ~adopted in Fig. 1! is c(Dx,Dt)
5e2exp(2Dx2/2j2)exp(2Dt2/2t2), where e denotes the
magnitude of the force. The dynamics of the model is ch
acterized by two independent dimensionless variablesx
[et2/mj is a dimensionless measure of the strength of
random force, and the motion is overdamped whenn[gt
@1.

Phase transition. The phase transition is determined b
the fraction of initial conditions for which the separation
pair of infinitesimally close trajectories approaches zero

FIG. 1. Positions of 25 particles with viscous dissipation su
jected to a spatially and temporally varying random force. The
namics are described by Eqs.~1! and ~2!. In both casesm5t51,
j50.05, e50.001; ~a! g'0.04, ~b! g'0.1.
©2003 The American Physical Society01-1
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t→`: this is either 0 or 1. The separationdx of two nearby
trajectories has a lognormal distribution. We have

^ lnudx~ t !/dx~0!u&5lt, ~3!

we call l the Liapunov exponent. Whenl,0, almost all
nearby trajectories eventually merge, conversely, whenl
.0, nearby trajectories almost certainly diverge. The con
tion for the phase transition is thereforel50, and evaluation
of l is also valuable because it gives the rate of coalesce
Linearizing the equations of motion~1! gives d ẋ5dp/m,
and d ṗ52gdp1]xf (x,t)dx. Here dx and dp are small
separations between pairs of trajectories. Ast→`, the ratio
betweendp and dx has a stationary distribution. We ther
fore write X5dp/dx and find equations of motion in term
of X anddx:

d ẋ5Xdx/m, ~4!

Ẋ5]xf „x~ t !,t…2gX2X2/m. ~5!

Since the distribution ofX remains stationary, Eq.~4! implies
that

l5^X&/m. ~6!

Consider the dynamics ofX. When 2X is sufficiently
large, the noise term]xf „x(t),t… may be neglected and Eq
~5! implies thatX reaches2` in finite time. This point is a
caustic, wheredx passes through zero andX jumps from
2` to 1`. As t→`, one obtains a stationary distributio
with X going to2` at a rate2J.

We now specialize to the case where the displacemen
X during the correlation timet is small compared to the
deterministic terms (x!1), adopting the approach used
Ref. @2#. In this limit the probability densityP(X,t) for X
satisfies a Fokker-Planck equation@3#

] tP5]X@~X2/m1gX!P#1D]X
2 P, ~7!

with diffusion constant

D52
1

2

]2

]x2E2`

`

dt c~x,t !U
x50

. ~8!

We require a steady-state solution of Eq.~8!, P(X), with a
constant fluxJ, satisfyingJ5v(X)P2DdP/dX with v(X)
52X2/m2gX. It is convenient to express the solution
terms of dimensionless variables:

P~X!5az~Z,V!, Z5
X

~mD!1/3, V5
gm2/3

D 1/3 , ~9!

where the constanta and functionz are to be determined
The exact stationary solution of Eq.~7! is

z~Z,V!5exp@2f~Z,V!#E
2`

Z

dYexp@f~Y,V!#. ~10!

Heref(Z,V) is proportional to the integral ofv(X),
04010
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f~Z,V!52
1

DE0

X

dX8v~X8!5
Z3

3
1

VZ2

2
. ~11!

The fluxJ is determined by normalization. Using Eq.~6! we
obtain the Liapunov exponent

l5~D/m2!1/3C1~V!/C0~V!, ~12!

whereCn(V)5*2`
` dZ Znz(Z,V). The Liapunov exponen

is shown in Fig. 2~a!. Consider the form of Eq.~10!. When
V is large, the integral is approximately constant ov
the interval between the maximum off(Z,V) at Z52V,
and the pointZ5 1

2 V where f is equal to its local maxi-

mum. In the interval @2V, 1
2 V#, the function z(Z,f)

;b exp@2f(Z,V# for some constantb. Writing z(Z,V)
5b exp(2VZ2/2)@12Z3/31O(Z4)#, we obtain

l52
1

3 S D
m2D 1/3

^Z4&052
D 1/3

m2/3V2
52

D
g2m2

, ~13!

where ^A&0 defines the average ofA with the Gaussian
weight, z0(Z)5b exp(2VZ2/2).

Sincel is negative forV@1, paths coalesce in this re
gime. When V50, on the other hand, l
5(D/m2)1/3A3125/6G(5/6)/(24Ap).0, which establishes
the existence of a noncoalescing phase for smallV ~at V
50 the system is conservative; recent studies@4# of mono-
dromy matrices for such systems obtain an expression fol
equivalent to ours atV50). The transition between the tw
phases occurs atVc'0.827. The two examples shown i
Fig. 1 are atV50.5 and 1.25, respectively. The dampin
which causes the maximum rate of coalescence is determ
by the minimum ofC1(V)/C0(V): this is atV'2.035.

Rate of crossing of caustics. The magnitude of the flux
determines the rate at which caustics appear on a given
jectory: uJu5(D/m2)1/3/C0(V), shown in Fig. 2~b!. uJu is
largest atV50, uJu5(D/m2)1/3G(5/6) 125/6/(8p3/2), of the
same order atVc , and quickly drops to zero at largeV. In
Fig. 1~a! caustics are still discernible.

Statistics of the particle density. In the overdamped limit
(n@1), the momentum is approximately p(t)
5 f (x(t),t)/g, so that Eq.~1! is approximated by

dx~ t !

dt
5

1

mg
f „x~ t !,t…. ~14!

FIG. 2. ~a! Liapunov exponent: theory~line! and numerical ex-
periments forx50.1 (L), 0.02 (h), and 0.001 (s). ~b! RateuJu
of crossing of caustics, theory~line!, and numerical experiments fo
x50.02 (h).
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In this regime, a more concrete and complete understan
of the path-coalescence effect is obtained by considering
statistics of the density of particles%(x,t)5( id„xi(t)2x….
Translational invariance implies that an initially unifor
density remains uniform,̂%(x,t)&5%0. Path coalescence i
revealed by the density-density correlation functi
K(x,x8;t)5^%(x,t)%(x8,t)&2%0d(x2x8). Because of
translational invariance, the correlation functionK is a func-
tion of Dx5x2x8 only: we write K(x,x8;t)5K(Dx,t). A
tendency for particles to cluster is demonstrated byK(Dx,t)
becoming large forDx small, in the limitt→`.

Whenx!1, we find that the correlation function satisfie
a Fokker-Planck equation@3#

]K~Dx,t !

]t
5

]2

]Dx2 @D~Dx!K~Dx,t !#. ~15!

The diffusion constant

D~Dx!5
1

m2g2E
2`

`

dt@c~0,t !2c~Dx,t !# ~16!

approaches zero quadratically at the origin:D(Dx);kDx2

for Dx!j. WhenDx@j the diffusion constant approaches
constant valueD0.

Now consider the properties of solutions of Eq.~15!. We
note that Eq.~15! is in the form of a continuity equation
]K/]t1] j /]Dx50, so that the integral of the correlatio
function over allDx is a conserved quantity. The flux of th
correlation function passing the separation parameterDx at
time t is

j ~Dx,t !52
]

]Dx
@D~Dx!K~Dx,t !#. ~17!

Consider an initially uniform distribution of density, wit
value %0 @corresponding toK(Dx,0)5%0

2]. For Dx!j the
diffusion constant is an increasing function ofDx. Together
with Eq. ~17! this implies an initial flux of correlation to-
wards Dx50. At large times,K(Dx,t) is thus sharply
peaked at the origin. ForDx@j, on the other hand, the ap
proximate solution of Eq.~15! is

K~Dx,t !;%0
2 erfS uDxu

A4D0t
D . ~18!

Using the fact thatK(Dx,t) satisfies a conservation law, w
deduce that the average number of particles condensing
each trail at timet is

N~ t !;
4

Ap
%0AD0t. ~19!

Whent/t is large andDx!j ~but not too close to zero!, the
flux j (D,t) is found to be approximately uniform. This im
plies
04010
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K~Dx,t !;
%0

2

k
AD0

p

1

DxAt
. ~20!

The 1/X divergence of Eq.~20! is nonintegrable, so that thi
expression must fail near the origin. An exact calculati
shows thatK(0,t)5exp(2kt).

Tracking-minima regime. When x@1, there is an over-
damped phase in which the particles follow minima of t
random potential obtained by integrating the force with
spect tox. A particle executes a rapid jump to a lower min
mum whenever the minimum that it has been tracking dis
pears.

Discrete model.The simplest model exhibiting the path
coalescence effect is a discrete-time random walk which
proximates Eq.~14!:

xi~ t1t!5xi~ t !1Fn„xi~ t !…, ~21!

with t5nt. By analogy with Eq.~2!, we take^Fn(x)&50
and^Fn(x)Fn8(x8)&5dnn8C(x2x8). Deutsch@5# gave a de-
tailed analysis of Eq.~21!. Here we remark that Eq.~21!
allows us to obtain the simplest possible understanding
why coalescence occurs. Consider the linearization of
~21!:

l5t21^ lnudx~ t !u/udx~0!u&5^ lnu11Fn8u&/t. ~22!

When the magnitudes of the derivativesFn85dFn /dx are
small compared to unity, Taylor expansion of the logarith

gives l;2 1
2 ^Fn8

2&/t, so thatl is negative. This approxi-
mation is equivalent to Eq.~13!. This argument indicates tha
the coalescence is a second-order effect. Also, if the rand
displacements are larger than their correlation length,
coalescence effect disappears: ifFn has a Gaussian distribu
tion, Eq. ~22! shows thatl becomes positive when̂Fn8

2&
exceeds 2.421 . . . . Figure 3 shows numerical results co
firming Eqs. ~18!–~20!, using numerical simulations of th
mapping~21!.

Applications. In the remainder we discuss a number
possible realisations of the path-coalescence effect.

One example is the motion of liquid droplets on a surfa
moving in one direction under a constant force~rain blown
off a perspex windshield is an example of this situation!. If
the surface is randomly contaminated, the wetting angle
be different on opposite sides of each drop, and the trajec
of the droplet will be randomly deflected. We assume that
surface contaminants are smeared over a large area com
to that of the droplets~perhaps resulting from cleaning th
windshield with a waxy polish!, so that nearby droplets ar
deflected in the same direction. There is no interaction
tween the drops unless they are close enough to combine
to surface tension: we stress that the coalescence is th
the paths taken by different drops, not of the droplets the
selves. We model the motion of a droplet across the surf
by a particle of massm. At positionr5(x,y) on the surface,
the drop is subject to a forceF(r )1F0j , whereF0 is the
magnitude of a steady force acting in the direction of the u
vector j defining they axis andF(r ) is a homogeneous an
1-3
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isotropic random force with correlation lengthj. We assume
that the particles are subjected to a viscous resistive fo
proportional to their velocity across the surface, such that
equations of motion are

m
dr

dt
5p,

dp

dt
5F0j1F~r !2gp ~23!

~wherep is the momentum of the drop!. When the fluctuat-
ing force is weak, the trajectories are locally approxima
by straight lines, withx approximately constant and withy
increasing at a ratevy5F0 /mg. The equation of motion in
the direction transverse to the constant force is then in
form of Eq. ~1!, with f (x,t)5Fx(x,vyt). In the case where
the motion of the droplets is sufficiently damped, the traj
tories coalesce onto fixed trails.

The path-coalescence effect may also be relevant to
motion of energetic electrons in disordered solids. For
ample, the effect may be relevant to a ‘‘branching’’ observ
in the flow of electrons away from a constriction in a tw
dimensional electron gas with very low scattering@6#. The

FIG. 3. Statistics of%(x,t) in the coalescing phase.~a! Density
correlation K(Dx,t) of the process~21!: numerical experiments
(s), limiting theoretical forms~18!, full line, and Eq.~20!, dashed
line. Parameter values:«2'1.2531028, j'6.431023, and t5(5
3105)t. ~b! Numerical results verifying thatK(0,t)5exp(2kt) for
the same parameter values.~c! Mean cluster sizeN(t) of the pro-
cess~21!: numerical experiments (s), theory~19!, line. Parameter
values:«2'231027 andj'1.631023. Particles are considered t
be part of a cluster ofN if their positions are within an interval o
lengthj.
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experiment shows regions of markedly increased curr
density persisting to some distance from the constricti
This was explained by showing similarity to simulations
independent electron motion in the smoothly varying rand
potential of the doping atoms. This model is essentially E
~23!, with g50. Theoretical discussion of this system@7#
has emphasized that caustics are important in understan
the empirical results. We remark that these experime
might show an even more pronounced effect if dissipat
were introduced. Figure 1~a! is similar to the flows discusse
in Ref. @6#, showing the branching effect and caustics. Ad
ing dissipation to the electron motion would cause the pa
of the electrons to coalesce, as in Fig. 1~b!. We note that
dissipation of the electron motion could be increased by
creasing the temperature of the system. As well as givin
criterion for the phase transition, our expression forJ also
gives a quantitative prediction for the rate of formation
caustics along a given trajectory.

There are also potential applications of the overdam
equations, Eq.~14! or Eq. ~21!, in the biological sciences
involving the movement of organisms in response to sm
random fluctuations in their environment. The model p
vides a mechanism through which large numbers of org
isms can congregate without communicating. One exam
of this type is the migration of animals across a nearly h
mogeneous smooth terrain. Thus Fig. 1~b! could be thought
of as a map showing paths of animals on an eastward mi
tion. The paths of the animals will be deflected by sm
random fluctuations of topography or vegetation: the anim
can be drawn together onto the same paths, even if the
no communication between them, and no gross feature
the terrain favoring particular routes. A second example
plies to simple organisms such as plankton which can m
in response to changes in their environment, such as nut
concentration. In cases where there are small, spatially
related random fluctuations of the nutrient concentration,
path-coalescence effect could lead to unexpectedly large
centrations of organisms. Such a mechanism could have b
utilized by evolution, enabling simple organisms which ca
not communicate directly to congregate for sexual reprod
tion.

Anders Eriksson~Gothenburg University! suggested to us
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