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Path coalescence transition and its applications
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We analyze the motion of a system of particles subjected to a random force fluctuating in both space and
time, and experiencing viscous damping. When the damping exceeds a certain threshold, the system undergoes
a phase transition; the particle trajectories coalesce. We analyze this transition by mapping it to a Kramers
problem which we solve exactly. In the limit of weak random force we characterize the dynamics by comput-
ing the rate at which caustics are crossed, and the statistics of the particle density in the coalescing phase. Last
but not least we describe possible realizations of the effect, ranging from trajectories of raindrops on perspex
surfaces to animal migration patterns.
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This paper discusses a surprising phase transition illusdynamics, the effect we describe here is bound to occur in a
trated in Fig. 1. This figure shows trajectories for a system ofvide variety of different contexts.
particles with positionsx;(t) subjected to a random force ~ We consider trajectories for a system of independent par-
fluctuating in both space and time, and experiencing a residicles with positionsc;(t) and momenta;(t). The equations
tive force proportional to their velocitiegthe equations of ©of motion for any particle are
motion are defined by Eqsl) and(2) below]. The motion of . .
any one particle is obviously diffusive. Two particles with x=p/m, p=f(x,t)—yp, 1)
very close positions and momenta must follow similar trajec- )
tories, at least for a while. Diffusive motion usually tends towherex=dx/dt, and+y characterizes the strength of the vis-
reduce inhomogeneities in density, and we might expect thatous damping. The statistical properties of the for¢e,t)
the motion should resemble the simulation in FigplHow-  are translationally invariant in both space and time,
ever, a slight increase in the resistive force causes a phase
transition to the situation shown in Fig(, which we term (f(x,1))=0, (f(x,Df(x",t"))=c(x=x",t—t"). (2
“path coalescence.” This effect has been described in a pa- ] .
per by Deutschil], who gave a theoretical analysis and nu-(A) is the ensemble average Af The correlation function
merical simulations indicating the existence of a phase trandecays rapidly as|x—x'|—e and as [t—t'[—=. A
sition in this model. suitable form (adopted in Fig. 1 is c(Ax,At)
Here we point out that these and related equations of mo= €°€xp(—AX/2£%) exp(~At?/27%), where e denotes the
tion have a very broad range of applications in the physicamagnitude of the force. The dynamics of the model is char-
sciences, ranging from tracks of raindrops on randomly conacterized by two independent dimensionless variabjes:
taminated glass surfaces to energetic electrons in disorderege™/mé is a dimensionless measure of the strength of the
solids. In the “overdamped” limit, where inertia is negli- random force, and the motion is overdamped whenyr
gible, the model could describe the response of animals t& 1.
random fluctuations of their environment. Possible applica- Phase transitionThe phase transition is determined by
tions of this type include migration tracks of mammals andthe fraction of initial conditions for which the separation a
clustering of micro-organisms. Because of the large varietyair of infinitesimally close trajectories approaches zero as
of applications we believe that the path-coalescence effect
deserves to be thoroughly understood. This paper makes the L5
following contributions. First, adopting an approdéh used

in the theory of Anderson localization, we map the equations " 0'(5)

of motion to a Kramers problem which we solve exactly. 05

This enables us to obtain an exact criterion for the phase

transition. Second, we characterize the dynamics by comput- L5

ing the rate at which trajectorigén Fig. 1) cross caustics. 1

Third, in the coalescing phase, we determine the statistics of " 0’3

the particle density by calculating its pair-correlation func- 05

tion. This allows us to deduce, at timghe expected humber 0 200 400 600 800 1000

of particles condensing into a trail. Fourth, we argue that the t

model we considefwhich is more general than that put for-  F|G. 1. Positions of 25 particles with viscous dissipation sub-
ward in Ref.[1]) exhibits a complex phase diagram. Finally, jected to a spatially and temporally varying random force. The dy-
we conclude with a discussion of some of the applications ohamics are described by Eq4) and(2). In both casesn=7=1,

the path-coalescence effect. Given the ubiquity of diffusivet=0.05, e=0.001;(a) y~0.04, (b) y~0.1.
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t—oo: this is either 0 or 1. The separatiéix of two nearby 0.4 b
trajectories has a lognormal distribution. We have T o2
&
(In[ 8x(t)/ 8x(0)[)=t, 3 S 0‘;
we call A the Liapunov exponent. When<0, almost all 0.4 : ; £ty

nearby trajectories eventually merge, conversely, wken
>0, nearby trajectories almost certainly diverge. The condi-
tion for the phase transition is therefore= 0, and evaluation FIG. 2. (a) Liapunov exponent: theorfline) and numerical ex-
of \ is also valuable because it gives the rate of coalescencperiments fory=0.1 (¢), 0.02 (J), and 0.001 Q). (b) Rate|J|
Linearizing the equations of motiofl) gives SX= sp/m, of crossing of caustics, theoftiine), and numerical experiments for

and Sp=— ydp+ dyf(x,t) 5x. Here 6x and dp are small x=0.020).
separations between pairs of trajectories.tAs», the ratio

3 2
betweendp and 6x has a stationary distribution. We there- H(Z,0)=— ifxdxlv(xf)z Z_+ - (1)
fore write X=6p/6x and find equations of motion in terms Do 3 2
of X and éx:
The fluxJ is determined by normalization. Using E&) we
ox=Xdox/m, (4)  obtain the Liapunov exponent
X =3, f (x(t),t)— yX—X2/m. (5) N = (DIm?) W (Q) /W o(Q), (12)
Since the distribution oK remains stationary, E@4) implies ~ where ¥ (Q)=[”_.dZ Z"¢(Z,Q). The Liapunov exponent
that is shown in Fig. 2a). Consider the form of Eq10). When
Q is large, the integral is approximately constant over
A= (X)/m. ) the interval between the maximum ¢{(Z,Q) atZ=—Q,

intz=1 i i i-
Consider the dynamics oK. When —X is sufficiently and the pointz=5(} where ¢ is equal to its local maxi

large, the noise term,f(x(t),t) may be neglected and Eq. Mum. In the interval[—0,50], the function {(Z,¢)
(5) implies thatX reaches— in finite time. This pointis a ~Bexd—¢(Z] for some constan{3. Writing {(Z,1)

caustic, wheredx passes through zero antjumps from  =Bexp(-QZ%2)[1-2°/3+0(Z*)], we obtain

—o to +. Ast—o, one obtains a stationary distribution, 13

with X going to — at a rate—J. 1D 24y _ D13 D 13
We now specialize to the case where the displacement of A== 3l m2 (Z2%0=- m2302 V?m?’ (13

X during the correlation timer is small compared to the
deterministic terms ¢<1), adopting the approach used in \yhere (A)o defines the average ok with the Gaussian
Ref. [.2]. In this limit the probaplllty densityP(X,t) for X weight, £4(Z) = B exp(— QZ3/2).
satisfies a Fokker-Planck equatifsi Since\ is negative forQ>1, paths coalesce in this re-
_ 2 2 gime. When Q=0, on the other hand, X\
HP= o (XMt yX)P]+DxP, D (DIm?) Y3 3127 (5/6)/(24/7) >0, which establishes
with diffusion constant the existence of a noncoalescing phase for sfiallat ()
=0 the system is conservative; recent studdgsof mono-
dromy matrices for such systems obtain an expression for
(8 equivalent to ours a2 =0). The transition between the two
x=0 phases occurs d2.~0.827. The two examples shown in
Fig. 1 are atQ=0.5 and 1.25, respectively. The damping
which causes the maximum rate of coalescence is determined
by the minimum ofW ,(Q)/WV(Q): this is at(l~2.035.
Rate of crossing of caustic§he magnitude of the flux
determines the rate at which caustics appear on a given tra-
X ym?/3 jectory: |J|=(D/m?) Y3 ¥ ,(Q), shown in Fig. 2b). |J| is
P(X)=al(Z,Q), Z=—=13, Q=-—=13, (9 largest at)=0, |J|=(D/m?)®(5/6) 126 (87%?), of the
(mD) D .
same order af)., and quickly drops to zero at larde. In
where the constant and function are to be determined. Fig. 1@ caustics are still discernible. o
The exact stationary solution of E(f) is Statistics of the particle densityn the overdamped limit
(v>1), the momentum is approximately p(t)
=f(x(t),t)/v, so that Eq(1) is approximated by

SRLA
——zﬁ . tC(X,t)

We require a steady-state solution of E§), P(X), with a
constant fluxJ, satisfyingd=uv(X)P—DdP/dX with v(X)
=—X?/m—yX. It is convenient to express the solution in
terms of dimensionless variables:

VA
((Z,0)=exq — ¢(Z,Q)]£deexp{¢>(Y,Q)]. (10)
dx(t)

1
Here ¢(Z,Q) is proportional to the integral af(X), dat m_yf(x(t)'t)' (14
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In this regime, a more concrete and complete understanding 02 [b, 1

of the path-coalescence effect is obtained by considering the K(AX,t)~ 2022 . (20)
statistics of the density of particles(x,t) =X;5(x;(t) —x). K ™ Ax\/f

Translational invariance implies that an initially uniform

density remains uniform,o(x,t))=p,. Path coalescence is The 1X divergence of Eq(20) is nonintegrable, so that this
revealed by the density-density correlation functionexpression must fail near the origin. An exact calculation
K(x,x";t)=(o(x,t)o(x",t))—0¢8(x—x"). Because of shows thak(0,)=-exp(2t).

translational invariance, the correlation functins a func- Tracking-minima regimeWhen y>1, there is an over-
tion of Ax=x—x" only: we write £(x,x";t)=K(Ax,t). A damped phase in which the particles follow minima of the
tendency for particles to cluster is demonstratedIf x,t) random potential obtained by integrating the force with re-

becoming large foAx small, in the limitt— oo, spect tox. A particle executes a rapid jump to a lower mini-
Wheny<1, we find that the correlation function satisfies mum whenever the minimum that it has been tracking disap-
a Fokker-Planck equatidr3] pears.
Discrete modelThe simplest model exhibiting the path-
IK(AX,t) 9 coalescence effect is a discrete-time random walk which ap-
i o 2lP(AXKAXY]. (19  proximates Eq(14):

The diffusion constant Xt 1) =X (0 +Fa(xi(1), (21)
1 (o with t=nr. By ?nalogy with Eq/.(2), we take(F,(x))=0
D(Ax)= ﬂj d[c(0)— c(Ax,t)] (16) and(Fn(x)an(x ))= S, C(x—x"). Deutsch5] gave a de-
m=y=J - tailed analysis of Eq(21). Here we remark that E¢q21)
allows us to obtain the simplest possible understanding of
approaches zero quadratically at the origd(Ax)~«Ax?>  why coalescence occurs. Consider the linearization of Eq.
for Ax<<¢. WhenAx> ¢ the diffusion constant approaches a (21):
constant valud,,
Now consider the properties of solutions of Efj5). We A=t XIn[ox()|/|x(0)[)=(In|1+Fy[)/7. (22
note that Eq.(15) is in the form of a continuity equation,
dK/ot+ajldAx=0, so that the integral of the correlation When the magnitudes of the derivativeg=dF,/dx are
function over allAx is a conserved quantity. The flux of the small compared to unity, Taylor expansion of the logarithm
correlation function passing the separation paraméteat  gives \~— 3 (F/2)/7, so that\ is negative. This approxi-
timetis mation is equivalent to Eq13). This argument indicates that
the coalescence is a second-order effect. Also, if the random
displacements are larger than their correlation length, the
coalescence effect disappearsFjf has a Gaussian distribu-
tion, Eq. (22) shows that\ becomes positive whe(F,?)
Consider an initially uniform distribution of density, with exceeds 2.4R. ... Figure 3 shows numerical results con-
value g, [corresponding tdK(Ax,0)=g2]. For Ax<¢ the  firming Egs.(18)—(20), using numerical simulations of the
diffusion constant is an increasing function k. Together ~Mapping(21).

J
i(Ax === [D(AXK(AXD]. (17)

with Eq. (17) this implies an initial flux of correlation to- Applications.In the remainder we discuss a number of
wards Ax=0. At large times,K(Ax,t) is thus sharply Possible realisations of the path-coalescence effect.
peaked at the origin. Fakx> £, on the other hand, the ap- ~ One example is the motion of liquid droplets on a surface,
proximate solution of Eq(15) is moving in one direction under a constant folcain blown

off a perspex windshield is an example of this situatidh

K(AX,t)~ 03 erf( | ) (18)  be different on opposite sides of each drop, and the trajectory
V4Dt of the droplet will be randomly deflected. We assume that the
surface contaminants are smeared over a large area compared
Using the fact thak (Ax,t) satisfies a conservation law, we to that of the dropletgperhaps resulting from cleaning the

deduce that the average number of particles condensing intsindshield with a waxy polish so that nearby droplets are
each trail at timd is deflected in the same direction. There is no interaction be-

tween the drops unless they are close enough to combine due
4 to surface tension: we stress that the coalescence is that of
N(t)~ —QO\/D_OL (19 the paths taken by different drops, not of the droplets them-
\/; selves. We model the motion of a droplet across the surface
by a particle of masm. At positionr =(x,y) on the surface,
Whent/ 7 is large andAx<< ¢ (but not too close to zejpthe  the drop is subject to a forcE(r) +Fgj, whereF, is the
flux j(A,t) is found to be approximately uniform. This im- magnitude of a steady force acting in the direction of the unit
plies vectorj defining they axis andF(r) is a homogeneous and

X| ) the surface is randomly contaminated, the wetting angle will
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experiment shows regions of markedly increased current
density persisting to some distance from the constriction.
This was explained by showing similarity to simulations of
independent electron motion in the smoothly varying random
potential of the doping atoms. This model is essentially Eq.
(23), with y=0. Theoretical discussion of this systdi
has emphasized that caustics are important in understanding
the empirical results. We remark that these experiments
might show an even more pronounced effect if dissipation
were introduced. Figure(8) is similar to the flows discussed
in Ref.[6], showing the branching effect and caustics. Add-
o : ; : P ing dissipation to the electron mot?on yvould cause the paths
103 ¢/r Tt o_f the glectrons to coalesce, as in Fidb)1 We note that .
dissipation of the electron motion could be increased by in-
FIG. 3. Statistics ob(x,t) in the coalescing phaséa) Density ~ Creasing the temperature of the system. As well as giving a
correlation K(Ax,t) of the process(21): numerical experiments ~Ccriterion for the phase transition, our expression Jaalso
(O), limiting theoretical formg18), full line, and Eq.(20), dashed ~ gives a quantitative prediction for the rate of formation of
line. Parameter values?~1.25<10 8, ¢~6.4x10° %, andt=(5  caustics along a given trajectory.
X 10°) 7. (b) Numerical results verifying that (0,t) = exp(2xt) for There are also potential applications of the overdamped
the same parameter valugs) Mean cluster sizé\(t) of the pro-  equations, Eq(14) or Eq. (21), in the biological sciences,
cess(21): numerical experiments(q), theory(19), line. Parameter involving the movement of organisms in response to small
values:s’~2x 10" " and¢~1.6x 10 °. Particles are considered to random fluctuations in their environment. The model pro-
be part of a cluster ol if their positions are within an interval of yvides a mechanism through which |arge numbers of organ-
length €. isms can congregate without communicating. One example
. ] . ) of this type is the migration of animals across a nearly ho-
isotropic random force with correlation lengéh We assume mogeneous smooth terrain. Thus Figb)lcould be thought
that the particles are subjected to a viscous resistive forcgs gg a map showing paths of animals on an eastward migra-
proportional to their velocity across the surface, such that thggn The paths of the animals will be deflected by small

0° K(Az,t)

B

=

0 K(0,1)

equations of motion are random fluctuations of topography or vegetation: the animals
dr d can be drawn together onto the same paths, even if there is
moe =P, d—F::FoHF(F)— vp (23)  ho communication between them, and no gross features in

the terrain favoring particular routes. A second example ap-

_ plies to simple organisms such as plankton which can move
(wherep is the momentum of the dropWhen the fluctuat- iy response to changes in their environment, such as nutrient

ing force is weak, the trajectories are locally approximatet,oncentration. In cases where there are small, spatially cor-
by straight lines, withx approximately constant and with (e |ated random fluctuations of the nutrient concentration, the
increasing at a ratey=F,/my. The equation of motion in ¢ coalescence effect could lead to unexpectedly large con-
the direction transverse to the constant force is then in theantrations of organisms. Such a mechanism could have been
form of Eq. (1), with f(x,t)=F,(x,v\1). In the case where jjized by evolution, enabling simple organisms which can-

the motion of the droplets is sufficiently damped, the trajecy,qt communicate directly to congregate for sexual reproduc-
tories coalesce onto fixed trails. tion.

The path-coalescence effect may also be relevant to the
motion of energetic electrons in disordered solids. For ex- Anders ErikssoiGothenburg Universifysuggested to us
ample, the effect may be relevant to a “branching” observedthat the path-coalescence effect might be relevant to animal
in the flow of electrons away from a constriction in a two- migration patterns. Financial support from Vetenskapsradet
dimensional electron gas with very low scatterij. The is gratefully acknowledged.
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