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Errorless reproduction of given pattern dynamics by means of cellular automata
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In this paper we propose the two methods to reproduce given binary pattern dynamics with cellular au-
tomata. The point is that one can easily find a sequence of rules or specified rules in two-state multineighbors
cellular automata, which enable an errorless description and reproduction of given multiple sequences of binary
patterns. Actual examples using computer experiments for one-dimensional bit-patter(didetéd sound
signals, multiple sequences of cycle patt¢rm® given. Noise robustness and the other important dynamical
properties of these methods are investigated from the perspective of “rule dynamics” and in comparison with
a recurrent neural network model, which enables us to embed given binary patterns as multiple attractors in the
form of fixed points or limit cycles.
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[. INTRODUCTION of only two rules, perfectly reproducible coding of digital
sound data by CA rule dynamics is possible for a great deal

Biological systems have been attracting a lot of interesof spoken-word data and music data formatted and used in a
because of their excellent functions that work under varioustandard compact disk. It should be noted that our coding
environments. Traditionally, the main methodologies for sci-method is associated with data compression without any loss
entifically approaching their mechanisms have been physic®f information.
chemistry, and so on. In contrast, however, the last few de- In this paper, extending our viewpoint more generically,
cades have seen that new approaches appear associated Wighreport the dynamical properties produced by this method
the remarkable development of computers and simulatioH more detail, including a discovery that each rule sequence
methods. Furthermore, the discovery of chaotic dynamics ifvorks as a generator of attractor dynamics for arbitrarily
biological systems, including the brain, has produced a bigiven initial patterns, where the word “attractor” is used in a
impact and also has been attracting great interest from mar{ftle nonconventional meaning which will be mentioned in a
scientists with the question of “what is the role of chaos inlater sectionSec. Il A). Furthermore, we would like to pro-
biological systems?” However, the great complexity origi- Pose another method for reproducing multiple sequences of
nating from dynamics in systems with large but finite de-Cycle patterns that are rather long data strings represented by
grees of freedom such as biological systems is still preventoit patterns. We shall briefly investigate dynamical properties
ing us from understanding the scientific mechanisms of theind noise robustness, particularly in comparison with a re-
excellent information or control functions, in spite of much current neural network model.
effort by ambitious researchers in a variety of scientific fields
[1-13].

In these situations, we believe that chaotic dynamics, even
in systems with many degrees of freedom, could be gener-
ated by a single or a sequence of certain simple deterministic
rules, as observed in systems with few degrees of freedom A. Errorless reproduction of sound data
[7,8]. By virtue of this, one could gain a considerable under-
standing of the dynamical mechanisms of their functioningm
which could be applied to realizing complex controls or (a
[Cf(r)rlpllgx information processing via a certain simple rlJIeranged on a one-dimensional chain. We employ variabjes

' o - =0or1,i=1,... N) which indicate the state of thi¢h site

Based on these motivations, we focused on describing an . : . . .

. . . . ; ; ..~ 10 chain at time step. The state of théth site at time step
reproducing high-dimensional chaotic dynamics by utilizing 41 a*lis determined by the stat f itself and th f
a certain set of rules or a sequence of simple rules, whic & 1S determined by the states of [Set and those o
could be regarded as an inverse problem in nonlinear dynanii'€ N€ighboring two sites at time stepso that the updating
ics. Cellular automaté&CA) is one such method and has beenrule can be represented as
intensively studied, for instance, [T—9]. Recently, we fo-
cused on real digital sound datspoken-word data and mu-
sic data as an example of chaotic dynamics, and have pro-
posed a method for describing them by rule dynamics ofvhere the functiorf(-) is called a transition function, which
one-dimensional CA with the two states and three neighborspdates the state & to ai‘“. To specify updating func-
[14-16. In particular, Ref[16] had shown that, with the use tions, we introduce the following abbreviations:

II. DYNAMICAL PROPERTIES OF AN ERRORLESS
DESCRIPTION OF DIGITAL SOUND DATA
BY ONLY TWO CA RULES

Let us briefly introduce CA and our method that considers
e-dimensional two-state—three-neighbor cellular automata
bbreviated as 1-2-3 CA herealftewhere each cell is ar-

+1_¢

a (ai_1.a,a1), @

1063-651X/2003/688)/0367078)/$20.00 68 036707-1 ©2003 The American Physical Society



TAMURA, KUROIWA, AND NARA PHYSICAL REVIEW E 68, 036707 (2003

30000 (a)rule90 (b)rulel80 (c)rule90,180

20000 ?

10000
0

-10000

~200steps

FIG. 1. An example of sound data taken from musippe) and
16 bit-pattern sequencébwer) which correspond to digital data
sampled and quantized according to the standard musical data for-
mat of CDs(compact disck i.e., a frequency of 44.1 kHz and 16
bits, so that the horizontal axis is in the unit of time step 1/44100 s
and the vertical axis is in the dimensionless scale fvgith the

maximum amplitude unit. FIG. 2. Left: pattern dynamics of 16 cells starting from a cer-
tain initial condition where the rule number is 90. Middle: the same
f(0,0,00=fy, f(0,0,)="1y, initial condition but the rule number is 180. Right: an actual ex-
ample of sound data description by 1-2-3 CA, where only the two
£(0,1,0=f,, f(0,1,)=fs, rules, 90 and 180, are used. The arrows indicate the 16-bit patterns

corresponding to the sound data, where the intermediate patterns are
these produced by the two-rule sequence, which perfectly repro-

f(1,0,0=f,, f(1,0,)=fs, 2 duces the original sound data by sequentially applying the two
rules. It should be noted that gray cells and black cells correspond

f(1,1,0=fs, f(1,1,)=f, to the rule numbers, 9@ray) and 180(black), respectively.
wheref;=0or 1 (=0,...,7). Bychoosing eacl; to be 0  are many cases that exhibit not only perfect reproduction, but

or 1, we can determine a certain specified rule. If we assigi|so result in data compressiésee[16]). An example of a

the two states of each cell to 0 or 1, respectively, the timesequence of patterns that describes a sound signal without
deVelOpment of a certain initial state in the 1-2-3 CA giVeS aerror is shown in F|g Q:) (On|y ~50 Steps for Saving space
sequence of one-dimensional bit patterns consisting of O or &f showing.

[19]. By introducing a number a:i=2%,+2'f;+2°f, Furthermore, we have discovered that the rule sequence
+2%3+2%,+ 2%+ 2%+ 27f;, one can name each  does not care for the existence of noise. For instance, an
“the specified rule number” from O to 258otally 2°=256 initial condition including one-bit noise surely converges
rules in 1-2-3 CA Now, let us brlefly present our basic idea into the origina| pattern sequence by app|y|ng the rule se-
for describing digital sound data by rule dynamics of thequence(see Fig. 3 Even starting from arbitrary given initial
1-2-3 CA[14]. In modern technologies, analog signals arepatterns, the sequence of original patterns can be recovered
often recorded as dlglta| Signals both in time and amp'ltUdQ)y app|y|ng the sequence of two rules. This means that the
following sampling and analog-digital transformation. For sequence of rules for reproducing given pattern dynamics
instance, in the standard musical data format of C&8n-  works as a generator of “attractor dynamics.” One would
pact discg signals are sampled at a frequency of 44.1 kHzgyess that, in a conventional interpretation, “attractor” is
and 16-bits amplitude quantization. An example is shown irmeaningful only when phenomena occur in autonomous
Fig. 1. Digital sound data are also represented as a sequenggstems—i.e., systems in which the evolution rules do not
of binary pattern strings consisting of 16 bits, which can bechange as time goes on. In the present case, although the
regarded as the time development of a corresponding 1-2¥pdating of states is associated with changing rules, there is
CA consisting of 16 cells. the remarkable dynamical property that dynamics removes

The problem is how to determine a rule sequence of th@oise and results in converging into a specified pattern dy-
1-2-3 CA that can reproduce the sequence of 16 bit patterngamics. It could be interpreted as “attractor dynamics” in
that describes the digital sound signals. our work and we use it in later descriptions.

In the previous papeifd4,15, all 256 rules were applied
once to each successive step and the best rule to reproduce .
original binary data pattern was chosen. In most of the steps, B. Attractor _dynamlcs generated .by sequences of two rules
however, original data cannot be reproduced without a cer- o give perfect reproduction of sound data
tain error tolerance. Thus, the second proposed method is As noted in the previous section, one-bit difference
“repeated applications of rules” and we successfully found(noise expands slightly during the initial stage of updating,
that errorless reproduction of original binary patterns is posfesulting in the pattern dynamics becoming slightly different
sible with only two rules of 1-2-3 CA, for instancé1, 240  from the original pattern sequence. However, in rather short
or (90, 180, and so on. We had shown that theretime steps, it returns to the original pattern sequence. We
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FIG. 3. (8 The original pattern sequence that describes the FIG. 5. D!stributioq qf amplitude until the updating of patterns
sound signal perfectly, where the data are taken from 1-50 stepSPnVverges with the original sound data patterns, where the rule se-
The gray stripe corresponds to the sound amplitude, while the oth&f€nce of two rules, in this case, 90 and 180, are applied.

patterns are intermediate ones generated by multiple application of . . .
the two rules, 90 and 180.(b) The original pattern sequence from distributions of amplitude values that are generated during

1143 steps to 1193 steps(c) The pattern sequence starting from the update of bit patterns until they return the corresponding
an initial pattern having noise, in the case(af. Note that one-bit sound data patterns, where in the latter, bit patterns are con-
difference extends and the pattern dynamics becomes totally diffei/erted to actual integer values represented by 16-bits at each
ent to (a). (d) The same pattern ag), where the cells having time step.
different states to the original pattern sequence are shown in blue From these two figures and our simulation results, we can
color (neglect this figure if the paper is published in noncolor print-gain an insight into the process of attracting dynamics gen-
ing). (e) The pattern sequence starting from the same initial condierated by the rule sequences corresponding to each sound
tion as(c), where the steps from 1143—1193 are shown. It is impor-signal.
tant to note that the differences vanish, which means that the noise (1) In most cases, the number of steps taken until the state
vanishes and the updated patterns return to the original bit patterngpdating converges to the recorded signals is, at most, from
several hundred to a few thousand. Thus the convergence is

have confirmed by the computer experiment the fact thafiuite rapid in the sense that the length of each pattern se-
even when all of 3 patterns are taken as initial conditions, uence obtained from onla 1 ssound signal consists of
they all converge to the pattern sequence of the correspond4 100 steps in the present experiment. This means that the

ing sound data, so that the rule sequence only works as orfitracting force generated by the rule sequence is quite

strong attractor in the state space. This is one of the cruciall§t"ong: _ _
important points of the present paper. (2) From the rough evaluation of Fig. 5, one can observe

Now, to study a little more in detail how the converging that there are not many paths to the attractors because the

dynamics recover the original pattern sequence, let us shoWensity of points quickly decreases as the patterns are up-
in Fig. 4, the distributions of step numbers until the updatingdated. This means that the“2nitial patterns quickly con-

of bit patterns returns the original one. Figure 5 shows thé’?rge during updating within a rather small number of time
steps.

(3) The statement of2) is also confirmed by the fact that
the distribution of step numbers until the updated patterns
return the corresponding attract@he sound signalis con-
siderably localized to a small number of steps. This means
that updated patterns quickly converge into the same se-
guence of patterns.

04

03t

0.2

the distribution

Ill. ERRORLESS REPRODUCTION OF MULTIPLE
CYCLIC BINARY PATTERN SEQUENCES
01 1 BY TWO-STATE MANY-NEIGHBORS CA

r ‘ t 1 A. Totalistic rule and errorless description in symmetric
“ | neighboring cell configuration

0 ' 10‘00 ' 2(;00 l 30I00 ' 4600 ' 5000
In this section we consider the other method of describing
pattern dynamics that consist of rather long data strings at
FIG. 4. Distribution of the step numbers until the updating of each time step. These data are observed in many fields of
patterns converges with the original sound data patterns, where ttg€ience and/or engineering. For instance, two-dimensional
rule sequence of two rules, in this case, 90 and 180, are applied.video images are often discretized by an appropriate sam-

step number until convergence
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TABLE |. Totalistic rule in CA. If one employ#-neighboring IR H ﬁl 5
cells asG when updating patterns, thévi+1 cases can occur in I I illg gﬁglg%%gil;} H g’ i g g }
Z; EGa} , and for each case the next state can take either 0 or 1. ALY
FIG. 7. Periodic pattern dynamics when>20=400 pixels are
2 ar 0 1 1.1 M reconfigured into one string by raster scanning, where the upper-
el most periodic cycle is shown in this figure.
f ,EG a}) Oorl Oorl Oorl lead to totally different states from the desired perfect pattern

sequence. We will discuss the noise robustness of our
method later in this section, but let us first explain our new

lina in the time d . d led f . .method in a little more detail.
piing [in the imé domain and one sampled Irame 1Mage IS - tha point jsto employ an optimized totalistic rule for

decomposed into one-dimensional image signals by rastelach cell A totalistic rule is a rule for deciding the state of a

scanning. Furthermore, if image signals are digitized by SaMzqa|| at the next time step, depending on the number of cells

pling in the scanning time domain and amplitude quantizay, paye the state tor 0) in certain specified neighboring

tion, then the final data are a sequence of long bit pattemg.g) s \where the configuration of neighboring cells can be

Long binary data strings are, however, difficult to descr'bechosen, if one wants, to optimize or realize the errorless de-

and reproduce by l.'2'3 CA because they_vary W|dely n tlrnescription of data, as shown in the later sections. In this
development of various local patterns, which could give CONheme . the totalistic rule of this cell is written as

tradictory updating rules when described with 1-2-3 CA,
even if the rules are repeatedly applied. Thus, apart from ( E .
a.

. j

jeGj(M)

1-2-3 CA used for the sound data case, we would like to ait+1:f

propose a new alternative method to reproduce arbitrarily
given binary data strings that also use the other CA rule. The;i, respect to théth cell. Here,G;(M) represents a set of

essential point is to introduce totalistic rules with many -q|is with a given spatial configuration includingcells (M:

neighbors. This is a strong contrast to a recurrent neural Nefy 4| integer numbgrandf; is the function that takes 0 or
work model (NN) which enables us to embed given binary 1 depending on the valuB; . ¢ ynal. Thus one can know
patterns as multiple attractors in the form of fixed points or JeGi(M)F]

limit cycles, i.e., patterns are recorded in an extended state g€, t0tal number of cases to determine the values, afre
real numbers or, in the other words, real values of connectiofi - 11iS is illustrated in Table I. Now, let us show an

strength between neurons, which are called “synaptic Congxample that explains the conditions employed in this paper

nection strength.” This contrasting point was discussed by @ little more detail. We prepared the 30 patterns shown in
Nagaiet al, who also proved the dynamical equivalency be-F9- 6, With éach pattern consisting of 400 pixels.

tween CA and NN17,18. In comparison with NN, the de- We intend to reproduce the periodic state sequences con-
scription by CA is quite simple but has to sacrifice retrieval Sisting of five cycles, each of which contains the sequence of

performance, namely “association ability or noise robust-the six patterns shown in each row of Fig. 6. This means that

ness.” Rules of CA determine the state of each cell at th&NCe any of the patterns are given, the next pattern in the

next time step depending on the present state of neighboringy€!€ Should be reproduced by applying the specifiedsyle
cells, so that even a one-bit difference between them could® that one has to find the r¢se to describe the 85=30
cases of a two-pattern step. As stated above, each pattern is
represented by a 400-Kitell) string with an appropriate ras-

ter scanning. Figure 7 shows the periodic bit pattern se-

quence for the first cycle in Fig. 6.

. ()

state of f; in each value of _2 a;
SEGi

i
[Ty

i

g T T S SR S

- :fi(ﬁ%?j)zo 2 :f,'(je%?j)zl

«: f,(3 a;) does not assign specific value
JGi

FIG. 8. The totalistic rule for each cell used in perfect reproduc-

FIG. 6. Pattern sequences that are used in this paper to be r&en of pattern sequences shown in Fig. 6. The rules for only 40
produced perfectly by certain totalistic rules proposed in this papetnitial pixels are shown. White cells mean that one should take 1 if

The patterns with strong structures have been used in the works d]‘jeea} falls into this case and black cells, and should take 0 if it
one of the authord12] who has extensively studied complex falls into this case. Gray cells mean that in this description, no cases
dynamics of NN, including chaos. of reproducing the given pattern sequences shown in Fig. 6 occur.
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state of f; in each value of >a;
SEGi

site

. = ol f. =1
fz(F%]a.l) 0 fl(/e%JaJ)

FIG. 9. The same totalistic rule as shown in Fig. 8, where the
cells shown in gray are all interpolated to be 1 or O.

These cycle patterns were chosen to compare dynamical

proper_ties occurring in NN, which were intensively investi- includes noiseg(five pixels inverted It should be noted that the
gated in Refs[10—-12. Now, for each cell, one should search noise considerably deforms the updated pattern from the original

a specified totalistic rule by the following algorithm. ones. However, they are not random patterns and appear to be itin-
(i) Start from one cell and decide the neighboring numbegant in the spaces near the original patterns.

and the configuration of neighbor cells, for instance, the

neighbor number is 3 and the configuration is taken as thge employ the following interpolated extension of totalistic
cell itself and the neighboring cells on both the rlght and |Eftru|es_ We propose an idea that used Ce(ﬁesr 0 at certain
sides. In taking a symmetric neighboring configuration, forspecified cellsshould be extended to the unused cases until
instancer neighbors on both the right and left sides, one haghey are fully interpolated, then any of tie+1 cases in
R=2r+1 neighboring cells and has to sum up the+ZL 3. _.a; can be used, even in the existence of noise during

FIG. 10. Updated patterns that start from an initial condition that

cell states for the 30 cases of the given pattern steps. updating. Figure 10 shows an initial pattern with five pixels
(ii) To specify the totalistic rule which reproduces the 30inverted from+1(0)—0(+1). One can observe that pass-
cases of two-pattern steps without error. ing time results in differences to the original sequence of

(iii) If errorless reproduction is not possible, then increasgatterns, but similar patterns are produced. It should be noted
the number of neighboring cells and, if one wants to opti-that five-pixels inversion leads not to random patterns but to
mize the method, change the configuration, continuing untiltinerant orbits that are quite close to the cycles we wanted to

the errorless reproduction is obtained. describe. This simulation result suggests that the rules could
(iv) The procedure fronii) to (iv) should be done for all - derive new dynamics without the complex mechanism that is
cells, which in the present simulation is 400 cells. necessary for, say, neurodynamics. However, a large devia-

Figures 8 and 9 shows one of the rules determined by thgon from the original patterns may occur, thus this method

above algorithm with a symmetric configuration of cells. Inyould be a weak neural network model with respect to noise
the figure it should be noted that most of thet2l cases are removal.

not used because the total summation of cell states under a

given number and configuration of neighboring cellg in theg, Optimized errorless description by asymmetric neighboring

30 patterns does not exhaust all cases, due to certain pattern cell configuration

structures as observed in Fig. 6. The results of computer ] ) .

experiments are shown in Table(the symmetric cage The problem with the method employed in the previous
Now, let us investigate the robustness of our method t$ection is that one needs considerably large numbers of

noise. An important point is that if noise is introduced in an

initial pattern or during updating of patterns, unused cases of state of f; in each valueof 3.9/

Yiccq; in perfect pattern sequences occur due to the exis- : | =

tence of noise. Thus, one needs to determine the rules, which

states whether 1 or 0 should be employed in those cases. For

instance, there arB+1=(2r+1)+1 cases o ¢a; for

determining each cell state at the next step, where most cases

do not occur. There would be many choices because a large ot fi(Zan=0 =S (Fan-]

number of cases iR+ 1 are not used. In the present paper,

site

=: f( 3 a;) does not assign specific value
EGi

TABLE II. Maximum, minimum, and averaged neighboring

numbers in an errorless description with totalistic rules for each cell FG- 11. The totalistic rule used to perfectly reproduce pattern
for the multiple cyclic-pattern sequences shown in Fig. 6. sequences shown in Fig. 6, where the rules are optimized with
respect to the configuration of cell§) to evaluateX;_ca;. The

rules for only the 40 initial pixels are shown. White cells mean that

Max Min Average ) \ ’ '
one should take 1 it;_ga; falls into this case, and black cells
Method 1 627 1 178.06 mean that one should take 0. Gray cells mean that no case of re-
Method 2 129 1 52.19 producing the given pattern sequences shown in Fig. 6 occurs in

this description.
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|

FIG. 12. Updated patterns starting from an initial condition that  FIG. 14. Updated patterns that start from an initial condition that
includes the noiséive pixels invertegdl where the initial state is the includes the noiséive pixels invertegl where the initial state is the
same as in the case of Fig. 10. It should be noted that the noise dosame as the cases of Figs. 10 and 12. It should be noted that the
not extend and the updated patterns are almost the same as thosemaése vanishes, meaning that the rule works as a generator of attrac-
want to reproduce. tor dynamics.

neighboring cells to obtain a perfectly reproducible descrip-Where the noise number and the configuration are the same

iion. To i this difficult ¢ timize th as in the previous cases.
lon. 10 Improve this ditlicuily, we propose 1o optimiz€ € 5,5 can gpserve that the updating of patterns converges
configuration of neighboring cells. That is, while in the sym-

i takes 2 1 neighbori I th I to the original pattern sequence. This means that this inter-
MELrC case, one lakes neignboring cells as the ce polation method generates an attractor dynamics.
itself andr cells on both the right and left sides, in our

improved method, one can take 21 cell configuration C. Noise robustness and transitions between attractor patterns
asymmetrically, namely an idea to make the configuration™ P
adjustable. When we introduced this optimization procedure due to rule sequences
in the proposed algorithm, great improvement was obtained, In this section we have evaluated the noise robustness of
as shown in Table Il as Method 2. Figure 11 shows an exdynamics described by subsequent application of the en-
ample of optimized cases, where only the rules for the 4@oded sequence of rules via further computer experiments. In
initial pixels are shown. The same experiments are done fgprocessing numerical calculations, we have found a new dy-
the other patterns, which are other face patterns and randonamical property, i.e., there are transitions between different
patterns, to prove that our improved method is genericallyattractor patterns depending on the number and the positions
effective. of bit noises. An example is shown in Fig. 15, where an
How is the noise robustness of this method improved?nitial pattern, including a considerable number of randomly
The computer experiment shown in Fig. 12 represents thatonfigured bit noises, does not make the initial patterns re-
noise robustness is also improved. cover the pattern before adding noise, but converges into the
It should be noted that, in this figure, we did not employcyclic patterns with slightly different bits or into the one of
the interpolation method for unused cases of totalistic ruleslifferent perfect cyclic patterns. To investigate these dynami-
and, if 2;.sa; takes a value that is not assigned, we use &al properties more accurately, the following statistical data
method in which such cells keep the states in the next timare evaluated by numerical calculations, i.e.:
step. To evaluate the effect of our interpolation method, we
now employ the same method stated in the previous section.
The interpolated totalistic rule is shown in Fig. 13, while the
results of the computer experiments are shown in Fig. 14,

state of f; in each value of X d/
SCGi

1

=
H.——. o e ——
.—_—_-;"_L"‘——-—

1 g, -

. £ N o f. =1
f’(ﬁzafz}) 0 f’(,ezgfl/)

site

40

FIG. 13. The totalistic rule in the optimized case, where the FIG. 15. The two examples in which an initial pattern, including
unused cases are all interpolated to be 1 or 0. Only the rules for the certain amount of noise, does not recover the pattern before add-
40 initial pixels are shown. White cells mean that one should take ing noise but converges into the cyclic patterns with slightly differ-
if Zjeea} falls into this case, and black cells should take O. ent bits(uppe) or into one of perfect cyclic patterrifower).
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i Comfigence rate

~ 10000samples

FIG. 16. Statistical data for the 10 000 initial patterns including
noise bits from 2—50. Note that the units and the scales are the
same as for the previous figures.

FIG. 17. Cases of evaluating attractor transitions related to other
(1) To prepare the 10000 initial patterns including Perfect patterms by adding noise bits from 2-50.

K-noise bits K=2-50) with respect to one of the original \hich any initial pattern consisting of 16 bits is pulled into
perfect patterns. o the original pattern dynamics.

(2) To subsequently apply the 10 000 initial patterns to the (2) Rule dynamics consist of sequences of only two rules
encoded sequence of rules for sufficiently long time stepg, 1.2_3 CA: these two rules belong to the two classes named
and to confirm that the passing time has converged into CYpy Wolfram, Class2 and Class3, namely the class giving a

clic sequences. o limit cycle and the class giving a chaotic state. This means
(3) To specify the cqnverged perfect periodic patterns Qhat a sound signal is standing on the delicate point between

which they belong in Fig. 6 and to calculate the ”Orma“ZEd“convergence" and “divergence” dynamics.

distribution with respect to the 10000 samples. (3) Perfect description of arbitrarily given pattern dynam-
An example is shown in Fig. 16. One can observe that thgcs py CA rules has a great advantage in that it needs only a

rate of initial patterns which recover the perfect original pat-gmall amount of information to describe and record.

terns decreases and the' other initial pat.ter.ns'Jump to the (4) Although this coding is rather weak for noise, it may

other perfect cycles as noise increases. This indicates that ”E)‘F‘esent other possibilities, such as producing new informa-

encoded sequence of rules is not very robust to noise, by, for new functions such as memory synthesis, and so on.
does generate a new dynamical property. This pattern transi-

tion is rather generic because we have evaluated the same ACKNOWLEDGMENTS
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