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Theory of the lattice Boltzmann method: Acoustic and thermal properties
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The focus of the present work is to provide an analysis for the acoustic and thermal properties of the
energy-conserving lattice Boltzmann models, and a solution to the numerical defects and instability associated
with these models in two and three dimensions. We discover that a spurious algebraic coupling between the
shear and energy modes of the linearized evolution operator is a defect universal to the energy-conserving
Boltzmann models in two and three dimensions. This spurious mode coupling is highly anisotropic and may
occur at small values of wave numbealong certain directions, and it is a direct consequence of the following
key features of the lattice Boltzmann equati@h:its simple spatial-temporal dynamid®) the linearity of the
relaxation modeling for collision operator, af@) the energy-conservation constraint. To eliminate the spuri-
ous mode coupling, we propose a hybrid thermal lattice Boltzmann equ&titrBE) in which the mass and
momentum conservation equations are solved by using the multiple-relaxation-time model due to ddsumie
whereas the diffusion-advection equation for the temperature is solved separately by using finite-difference
technique(or other means Through the Chapman-Enskog analysis we show that the hydrodynamic equations
derived from the proposed HTLBE model include the equivalent effeet-eCp /C,, in both the speed and
attenuation of sound. Appropriate coupling between the energy and velocity field is introduced to attain correct
acoustics in the model. The numerical stability of the HTLBE scheme is analyzed by solving the dispersion
equation of the linearized collision operator. We find that the numerical stability of the lattice Boltzmann
scheme improves drastically once the spurious mode coupling is removed. It is shown that the HTLBE scheme
is far superior to the existing thermal LBE schemes in terms of numerical stability, flexibility, and possible
generalization for complex fluids. We also present the simulation results of the convective flow in a rectangular
cavity with different temperatures on two opposite vertical walls and under the influence of gravity. Our
numerical results agree well with the pseudospectral result.
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[. INTRODUCTION To appreciate what has been accomplished so far and to
place the present work in perspective, we begin with a con-
In spite of its success in solving various challenging flowcise review of existing work on thermal and compressible
problems involving athermalor isotherma) fluids, the lat- lattice Boltzmann schemes. We classify the existing TLBE
tice Boltzmann equatioLBE) has not been able to handle models into three categories. The first category, which is also
realistic thermaland fully compressiblefluids with satisfac-  the simplest approach, is that of passive scdla]. In this
tion. Even though there has been a continuous endeavor gpproach, the temperature is treated as a passive scalar,
this area for obvious reasof$—36], the prospect of apply- which is advected by the flow velocity but does not affect the
ing the lattice Boltzmann method to thermo-hydrodynamicsflow fields (density and velocity The flow fields and the
is not yet entirely clear. From a practical point of view, the passive-scalar temperature are represented by two sets of dis-
application of the thermal lattice Boltzmann equationtribution functions: one simulates the Navier-Stokes equa-
(TLBE) is hampered by numerical instabilities when the lo-tion, and the other simulates the advection-diffusion equation
cal velocity of the flow increases. Even though the equationsatisfied by the passive scalar driven by the fl[@#5]. Nu-
for mass, momentum, and energy-conservation laws can heerically, this is not very efficient because there is no need
derived from some existing LBE models, the numerical stato use a full set of distribution functions to simulate a passive
bility of the existing TLBE models is often confined to such scalar, even though this numerical inefficiency can be im-
a narrow region in the parameter space of the transport cgeroved somewhat by using some redundant degree of free-
efficients and to such small velocities that the LBE simula-dom in some LBE model$6]. The limitation of this ap-
tions are limited to flows of relatively small Reynolds num- proach is obvious, and we shall have no further discussion of
bers. This poses a severe limitation on TLBE schemes foit.
realistic applications of computational fluid dynam{&=D). The second category of the TLBE models includes vari-
ous shock capturing schemes based on the lattice Boltzmann
method to treat fully compressible EulEr—9] or Navier-
*Electronic address: lalleman@asci.fr Stokes[10—15 equations. The existing LBE Euler schemes
"Present address: National Institute of Aerospace, 144 Resear@re constructed in several ways. The first approach uses an
Drive, Hampton, VA 23666. Electronic address: luo@NIAnet.org; interpolated advection such that the viscous term can be can-
URL: http://research.nianet.orgluo celed out in the leading order of the Taylor expansion for the
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distribution function[8]. The second one solves the discretetures associated with the LBE models can preserve the en-
velocity model of the Boltzmann equation by a finite- ergy and heat flux exactlj42—44.

difference schemf9]. It should be noted that the equilibrium (5) To use a velocity set of better symmetry, which does
distribution functions in all these LBE Euler schemes arenot naturally coincide with a lattice structure in physical
polynomials of hydrodynamic variables: density, velocity, spacg27-31]. Interpolations in physical space must be used
and internal energyor temperaturg and therefore the Mach in this case, and these schemgv—-31 are no longer
number cannot be too large. There are also several LBEonservative—interpolations destroy local conservation
models for the compressible thermal Navier-Stokes equadaws. Often the symmetry of the spatial interpolations used
tions[10-15. In order to allow large speeds, the advectionin these schemes differs from that of the discrete velocity set,
step is adapted to the local flow velocit$7], thus it is no  thus the anisotropic nature of these interpolations can dictate
longer a simple process of hopping from one grid point to thethe isotropic property of these schemes regardless the sym-
next, and interpolations have to be used. Interpolation cametry of the discrete velocity set. In addition, interpolations
introduce undesirable numerical artifacts which can affectan increase numerical dissipation, particularly on small
small scale details, and thus its effects in the LBE methodcales comparable to the size of grid spacifgAppendix G
need to be considered more carefully. The equilibrium can band Ref[45]).

a polynomial[10] or other more complicated algebraic func-  (6) To use energy-dependent discrete velocifigd]. In
tions [11], or a Kroneckers function that helps to increase this case, interpolations in velocity space must be applied in
the Mach numbef12-14. (This approach is, in fact, related addition to spatial interpolations. Specifically, because the
to the beam schem&8,39.) Another approach is to use a directions of discrete velocities are fixed, the interpolations
large set of discrete velocities with a set of distribution func-must consider energy variations. This may exacerbate nu-
tions of Maxwellian form for particle number density and merical dissipation and other artifacts due to spatial interpo-
another for particle energy densit§5]. This scheme effec- lations, and the scheni82] is no longer conservative. These
tively doubles the number of discrete velocities and is im-numerical artifacts can be much more severe than in the case
plicit [15]. It is important to note that the numerical analysiswith spatial interpolations only46], and are particularly

for the LBE shock capturing schemes is yet to be done—thatrong in small scales comparable to the size of grid spacing
numerical accuracy of these schemes remains by and lardef. Appendix G.

unknown. It is not clear what benefit these schemes can offer (7) To use a hybrid scheme in which the flow simulation
especially when there are other more mature shock capturing decoupled from the solution of the temperature equation.
schemes based on kinetic thedcy. Refs.[40,41 and refer-  Specifically, the flow simulation is accomplished by using
ences therejn We shall not further discuss the LBE models the lattice Boltzmann equation, while the temperature equa-
in the second category because it is beyond the scope of thien is solved by using finite-difference scheni&8,34] or
present work. other mean$35].

The third category of the TLBE models corresponds to In spite of all the effort, the success of the thermal lattice
their athermal counterparts with energy-conservation conBoltzmann equation is still rather limited in the sense that it
straint and possibly other modifications. To the best of ouiis not yet as competitive as the athermal lattice Boltzmann
knowledge, most energy-conserving TLBE models in thisequation, and it cannot perform as well as traditional CFD
third category are characterized by I¢ar moderate at best methods in many aspects. As it has been noticed previously,
Mach number and Boussinesq approximations. The essendiee main difficulty the thermal lattice Boltzmann equation
of Boussinesq approximation is that the density variatiorfaces is the numerical instability. Although there are some
only appears in the forcing tertthe buoyancy forceand all  discussions of the numerical instability in the TLBE schemes
the transport coefficient&riscosities and heat conductivity [1,18,20,28,3§ so far the true nature of the numerical insta-
and the sound speed afalmos) independent of tempera- bility is still not well understood.
ture. There has been a number of proposals to make the It is the aim of this work to first present a systematic
energy-conserving lattice Boltzmann equation capable oénalysis of the defects and numerical instability of the TLBE
simulating thermohydrodynamics. schemes, and then to propose an approach to eliminate these

(1) To increase the number of velociti$6,18, and to  defects and to improve the numerical stability. The scope of
include higher-order nonlinear terris flow velocity) in the  this work is limited to the TLBE schemes for lo(@r possi-

equilibrium distribution function$19]. bly moderate Mach number flows. The hydrodynamic sys-
(2) To use equilibrium distribution functions depending tem considered here has correct mass and momentum con-
on variable temperaturg,16,17. servation equations and correct acoustics. However, we do

(3) To implement an advection with finite-difference not include nonlinear dissipation terms in the temperature
schemes, such as the Lax-Wendroff scheme, to improve nwequation for two reasons. First, these terms are not important
merical stability by increasing numerical dissipationsfor acoustics(which is the focus of the present workand
[20,21. second, they are, in fact, negligible for nearly incompressible

(4) To use two sets of distribution functions for particle fluids[35,47. Our analysis begins with a comparative analy-
number density, and energy density, which effectivelysis of athermal and thermal lattice Boltzmann equations. We
doubles the number of discrete velocitig2—25. This is  find that a very severe defect of the energy-conserving lattice
based on a linearization of temperature dependence of thH&oltzmann models is the spurious algebraic coupling be-
distribution functions and the fact that the Gaussian quadratween the viscous mode and the energy mode of the linear-
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ized evolution operator of the systefef. Appendix B. proposed TLBE scheme can significantly enhance the nu-
The location ink-space where this spurious coupling merical stability.
takes place is highly anisotropic and can occur at a very The remaining part of the paper is organized as follows.
small value ofk or on a continuous range &falong certain  Section Il reviews the athermal lattice Boltzmann models
directions, and it depends on the Prandtl number Pr. Also, th&ithout the energy-conservation constraint. These models are
energy-conserving TLBE models are prone to numerical instudied within the MRT-LBE frameworkor the moment
stabilities, which can be instigated by fluctuations of a wide-method [1,45,49,50. Through the analysis of the linearized
ranged scale. In contrast, for the athermal LBE models &liSPersion equatiopdS], constraints on various parameters
similar coupling occurs only when the wave numkés near N the eqU|I!br|a of nonconserved moments are obtained. Sec-
7, making the athermal LBE models only sensitive to thetion lIl studies the lattice Boltzmann models with the energy-

small scale fluctuations. Hence the athermal LBE models Caﬁ_onservatiqn co_nstrain'_[. The analysis of the Iineari;ed disper-
. . sion equation is applied to the energy-conserving lattice
be extremely stable if small scale fluctuations are carefull

| .
dealt with[45]. We also observe that the spurious mode Cou_Boltzmann models. Transport coefficients and the sound

lina bet th d sh d tb speed are determined for various models in two and three
piing between the energy and shear modes cannot b€ I'iinensions. Based on the linear analysis, we conclude that,
moved by increasing the number of discrete velocities—it i

Lo N : ; Sue to a spurious mode coupling and numerical instabilities
intrinsic to the simplicity of the spatial-temporal evolution of \;hich can be instigated by fluctuations of wide-ranged

the lattice BoItzmapn equation. To overcome th_is difficulty, scales, the energy-conserving lattice Boltzmann models
we propose a hybrid lattice Boltzmann equation in which theBGk or MRT model3 are not suitable for numerical simu-
mass and momentum conservation laws are solved by thgtions. It is shown that the spurious mode coupling cannot
usual athermal lattice Boltzmann equation, while thepe removed by increasing the number of discrete velocities.
advection-diffusion equation satisfied by the temperature iBased on analysis presented in Sec. lll, Sec. IV proposes a
solved separately by finite-difference technidoe by other  hybrid TLBE scheme that uses the athermal lattice Boltz-
means. In this approach the energy-conservation law is demann equation for the mass and momentum conservation
coupled from the mass and momentum conservation lawdaws, and solves the diffusion-advection equation for the
and therefore the spurious mode coupling is removed. Itemperature by using finite differen¢er other techniques
addition to the improvement of numerical stability, the pro- The dispersion equation analysis is applied to the HTLBE
posed hybrid TLBE(HTLBE) method is numerically effi- schemes in two and three dimensions to ensurglthean
cient because it uses less degrees of freedom than enerdfability. We observe that once the spurious coupling is re-
conserving TLBE models. moved, the numerical stability improves drastically. Section
Since in the present work we adopt the strategy of a hy-V_ presents simulations of th_e convective flow @n a thr_ee-
brid lattice Boltzmann method which has been advocatedimensional rectangular cavity with two opposite vertical
previously[33,34, it is imperative to point out the differ- Walls at different temperatures by using the 13-velocity
ences between the method proposed in the present work ahlif LBE model. Critical Nusselt number obtained by using
the existing one. First and foremost, we use the multiple{N® HTLBE scheme agrees well with the pseudospectral re-
relaxation-time(MRT) collision model due to d’Humies sult. _Fmally, S_ec. VI co_ncludes the paper. Several appen_dlxes
[1,45,49,50 and abandon the popular single-relaxation-timeprO\_"de technical deta_uls referred to in the f[ext. Append|x A
model due to Bhatnagar, Gross, and Krd8iGK) [51], i.e., putlmes the constr.uctlonl of the transfprmatlon matrix by us-
the lattice BGK model. We shall demonstrate that the latticd"d the D2Q9(2-dimensional 9-velocitymodel as an ex-
BGK model (LBGK) is intrinsically inferior to the MRT ample. Appendlx B gives a concise discussion on the dllsper-
model, and it is largely responsible for numerical instabilitiesSion eguation analysis within LBE framework. Appendix C
observed in the TLBE simulations. Second, because of tharovides the finite-difference stencils for the gradient and the
MRT model, appropriate coupling between the temperature-@Placian operators for the D2Q9 model. Appendixes D—F
mass, and momentum can be easily accomplished, and this@gov[de the transformat!on matrices and the stencils for the
not possible for the lattice BGK models. Specifically, the9radient and the Laplacian operators for the D3Q13, D3Q15,
ratio of specific heatsy=Cp/C,) in the proposed scheme and D3Q19 r_nodels |n.three dlmen_S|ons,.respecﬂyely. Fi-
is an adjustable parameter, as opposed to a fixed constant Aly: Appendix G studies the two-dimension@Db) nine-
the previous one§33,34. We do not explicitly use the Velocity “octagonal” LBGK model[27-31 through the dis-
Boussinesq approximation, and thus are able to considdt€rsion Qquatlon analysis and discusses the effects due to
temperature-dependent transport coefficients and other efterpolations.
fects. Third, the finite-difference stencils used for the tem-
perature equation in the present work are uniquely deter- Il. BRIEF REVIEW OF ATHERMAL LATTICE
mined by the dispersion equation analysis to optimize the BOLTZMANN EQUATION
linear stability of the system. And fourth, we avoid using
interpolations in the proposed TLBE scheme. Because the
finite-difference stencils used for the temperature equation There are three discretizations involved in the lattice
have the same symmetries as the underlying discrete veloci§oltzmann equation: velocity space, physical space, and time
set in the model, the isotropy determined by the discreteliscretizations, i.e., phase space and time discretizations.
velocity set remains intact. With the above new features, thdloreover, these three discretizations are coupled together so

A. Multiple-relaxation-time lattice Boltzmann equation
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that the lattice Boltzmann equation has a very simple twospacel of moments, while the advection step is performed
step spatial-temporal evolution consisting of collision andin the spacd of distribution functions so that the relaxation
advection. The simplicity of the LBE dynamics has a draw-rates for different nonconserved modes can be adjusted.
back in terms of the numerical instability. There are three elements in the above evolution equation:

We consider the lattice Boltzmann equation as a fully dis+hg jinear mapping/, the equilibrium values of the moments
crete dynamical system evolving onxdimensional dis- {m;eq)|i:1 2 b+1)}, and the relaxation matrig. The
crete lattice based on a setBf (b+ 1) discrete velocities, eqllJiIibria (’)f ,the r,noment’s should depend only on the local

] values of the conserved momei(itisass density, momentum,
{cli=0,... b}, and energy for TLBE modelsThe values of the relaxation
rates{s;[i=1,2,...,0+1)} in S are determined by a linear
according to a set of rules which enforces the local conseranalysis[45)].
vation laws. With the discrete velocity set given, a seBof For a given velocity set on symmetric lattices, the trans-
real numbers on each lattice poiptand at a discrete time formation matrixM can be easily constructed by applying
th, the Gram-Schmidt orthogonalization procedure to monomi-
als of Cartesian components of the discrete velocities
{fi(r; t)]i=0, ... b}, {cixcly/m,n=0} in two dimensions(and {c!xc{;ci“zﬂ,m,n
=0} in three dimensions[1,45,49,50. Appendix A dis-

is used to represent the discretized analog of the singlez'>>c> the construction of the transformation malution

particle distribution function of a real gas. A column vector symmetric 2D square lattices and 3D cubic latticésor

: - g asymmetric lattices, see R¢b2].)
in phase space is denoted by a *ket” vector, We note that the LBGK model is a special case of its

MRT counterpart: by choosing a special set of parameter
[F(rj ta)) = (Fo(ry ta) Fa(rj ta), ooy )T, values in the equilibria of the moments and one single relax-
ation rates;=1/7, the MRT LBE model reduces to the BGK
whereT is the transpose operator. Without losing any infor-model[45]. In the MRT setting, all modes are orthogonal and
mation,B (=b-+1) number of distribution functions can be can be controlled individually. This therefore allows the

linearly mapped to an equal number of moments, MRT model to include the maximum number of adjustable
parameters. The dispersion equation analgs Neumann
mi(r; t)]i=1,2 (b+1)} analysig, as briefly discussed in Appendix B, can provide
1 J i'n 1 L L)

insights into hydrodynamic and nonhydrodynamic behaviors
. 5 . and the(linearn numerical stability of the underlying lattice
i.e., the spacé&=R" spanned byf) can be linearly mapped Boltzmann model, and in turn determines fireearly opti-

into another spacél=R® spanned by mal values of the adjustable parameters in the MRT model
[45]. Because of the equivalence between the moment and
Im(r; )= (Mg (rj ,tn),Ma(r t), . o My (T )7, discrete velocity representations, it is obvious that introduc-

ing more and more velocities means including moments of
higher and higher orders, and therefore more and more ad-
justable parameters. We assume that a minimum number of
discrete velocity is required by the underlying physics, and
Imy=M|f), |f)=M"1m). the choice of the velocity set affects the numerical properties
of the model. The dispersion equation analysis can provide

In the setting of the generalized lattice Boltzmann equa@n understanding of the influence of the adjustable param-
tion or the moment method, as proposed by Réf.and eters on the ability of the model to simulate fluid flows—the

advocated by otherg}5,49,50, the lattice Boltzmann equa- parameters appear in the_ transport coeﬁicients, the sound
tion can be written as speed, and Galilean-invariance factor as functionk.oiVe

observe that beyond a certain number of degrees of freedom,
1 adding higher order terms in the equilibria will not affect
[f(rj+cita+ 1)) =[f(rj,t0)) = M7IS[m(r} . ty)) hydrodynamic behavior, even though this may help to im-
—|mE(r; t))], (1) prove stability and Galilean invariance. We will demonstrate
b this point through examples in what follows.

by an invertible linear mappiniy! such that

where elements of the diagonal matBxare relaxation rates
{sili=1,2,...,0+1)}, ie, B. 13-velocity model on a 2D square lattice

S=diags;,Sy, - . . Sps1) We use a thirteen-velocity model with four spe€@s 1,
V2, and 2 on a two-dimensional square latti¢®2Q13S
and |m©%) is the equilibrium-moment vector, the compo- mode) as an example. The labeling of the velocities is de-
nents of which are the equilibria of the moments picted in Fig. 1. The transformation matiu for this model
[1,45,49,50. Therefore, the collision step is executed in theis
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(pl 1 1 1 1 1
(ixl 0 1 0 -1 0
(yl 0 0 1 0o -1
(€| -28 —-15 —15 —15 —15
(Pud 0 1 -1 1 -1
(Pyyl 0 0 0 0 0
(ef | =] 140 -2 -2 -2 -2
(n| -12 8 8 8 8
(7] 0 -4 4 -4 4
(g 0o -2 0 2 0
(7 0 4 0 - 0
(ay| 0 0 -2 0 2
<77y| 0 0O -4 0 4

The row vectors irM (from top to bottom correspond to the
following moments: the mass densigy (zeroth-order mo-
meny, and x andy components of momentunj, and j,
(first-order moment the energye (second-order moment
the components of the stress tenggr=(jz—j5) and pyy
=]xly (second-order momeptenergy squarex<e? (fourth-
order moment energy cubichxe® (sixth-order moment a
fourth-order momentr,,xep,,, X component of heat flux
gx>ejy (third-order moment x component of the flux of
energy squarey,«eqy (fifth-order momeny, y component of
heat fluxqy>ej, (third-order moment andy component of
the flux of energy squarg,=eq, (fifth-order moment Note

PHYSICAL REVIEW E 68, 036706 (2003

1 1 1 1 1 1 1 1
1 -1 -1 1 2 0 -2 0
1 1 -1 -1 0 2 0 -2
-2 -2 =2 =2 24 24 24 24
0 0 0 0 4 -4 4 —4
1 -1 1 -1 0 0 0 0

—-67 —67 —67 —67 34 34 34 34, 2
-6 -6 -6 -6 1 1 1 1
0 0 0 1 -1 1 -1 0
-1 1 1 -1 2 0 -2 0
-3 3 3 -3 1 0 -1 0
-1 -1 1 1 0 2 0 -2
3 3 -3 -3 0 -1 0 1

[

mgeq): pit;q): Jxl ys (30

=0 g, @

mid=h(e=ayp, (39

mf*d=m{5=0, (30

mg.%(,]?l.Zz qg(?;‘): Clj X,y 1 (39)

m(lel(,]:)LS: 77&?3): C2 J Xy (3h)

that the row vectors are not arranged according to the asAmong the adjustable parameters in equilibda, £,, and
cending order of the corresponding moments, but the ordek; are the most important ones. It should be noted that the

ing plays absolutely no role in the analysis.

above equilibria do not include nonlinear terms in terms of

The equilibria of the nonconserved moments, up to secmomentumj and heat fluxy that are not essential for acous-

ond order inj, are given by[45,53

miV=el®=azp+ B, (3a)
mi=p{SV=j3- i, (3b)
10
6 5
2
11 3 Y 9
4
7 8
12

tic and hydrodynamic behavior of the system. However,
these nonlinear terms can help to improve Galilean invari-
ance of the system by reducing the flow velocity dependence
of the viscosity[54].

The first-order(in k) solution of the dispersion equation
(cf. Appendix B gives the sound speed

1
C§=%(a2+ 28). 4

The Galilean invariance constraint requires that
Br,=13. (5)

The second-order solution of the dispersion equation
yields the attenuation rates of the hydrodynamic modes. Isot-
ropy of a model is optimized by setting the prefactors in
angular dependent terms in attenuation rates to zero. These
terms depend on the adjustable parameters in the model,
hence constraints on these parameters can be obtained. In
particular, the isotropy of the transverse mode of the linear-

FIG. 1. Discrete velocities of the D2Q13S model. The first nineized collision operatofcf. Appendix B requires that

velocities are identical to those for the D2Q9S model.
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TABLE I. The sound speeds, the proportional factoA between relaxation rates, ands,, as defined
in Eq.(7), and the value of parameter, ci , such thaiA(c}) =1, for 2D athermal models on square lattice.

Model c2>0 A>0 c}
D2Q9S }(4+ @) e o
6 22+¢)
D2Q13S i(28+ @) (85+4%,) %
26 2(10-7cy) 63
D2Q17S i(60+ ) M ,E
34 2(1054+ 101c,) 83
D2Q21S i(3,2+ a,) 48755+ B97cy) 4975
14 2(16915+ 14%,) 133
D2Q25S i(168+ ) (8752 1316,) _ 208
50 (15008+ 667c,) 19
020295 1 4y (352230+ 407c,) 18905
2 (390040+ 158%,) 588
1 (13570~ 25%,) 6785
D2Q33S 22120+ @2) (54280+ 140, “278

1 1| (85+4%;) (1 1 The positivity of the bulk viscosity gives the upper bound
(S_s - 5) = 2(1T701)(S_5 - 5) , (6a  for the sound speed:
_ 1
c,=0. (6b) c§<§(3+cl), (10

Therefore,ss=ss when c;=—65/63. In general, the isot-
ropy constraint for the transverse mode always leads to where Eq.(4) has been substituted. In particular, when
relationship betwees,, ands,, (respectively, the relaxation = —65/63(i.e., whenss=ss), the upper bound of the sound
rates for stresses,, andpyy), speed isc§< 62/63.
11 It should be noted that the sound speed in athermal LBE
(sxy 2) A

model is a free parameter and that E8g) can be rewritten
as
where A depends on adjustable parameté&sch asc,) in
the equilibria. Note that the isotropy of the shear viscosity
leads to the relationship betweep, ands,, such that in | practice, the numerical value of sound speed is determined
generals,,# sy, . This constraint cannot be recovered from py the linear stability analysigi5]. Specifically, the linearly
the simple BGK approximation in whicg=1/7. ~ optimal value of the sound speed can be obtained numeri-
With the equilibria of the nonconserved moments givencally by minimizing the dependence of the eigenvalues of the
by Eq. (3), the transport coefficients of the D2Q13S model gispersion equation ik space with respect to a mean flow
are velocity. We also note that other parametpas, and a4 in
Egs. (3)] in the equilibria of nonconserved moments
{mYi=(D+2),...,b+1)} have little effect on the large
scale hydrodynami¢small wave numbek) behavior of the
system, they do, however, play a role at small scdmge
wave numbek). In particular, they affect the numerical sta-
bility of the model. Therefore, their values should be care-
fully chosen via linear stability analysis, similar to the way
the value ofcg (or equivalentlya,) is determined45].
For various 2D athermal LBE models, we provide in
Table | the sound speead as a function of the parametes,
the proportionality factoA betweens,, ands,, [as defined
in Eq. (7)], and the value’ of c,, such thatA(c})=1, and
hences,,=s,y. Table I includes models up to 33 velocities.
These models only include the velocities along axial and

1 1
( —5| (@)

S 2

m{ED=2(13c2—14)p+13 -j. (11)

1 1 1
v= %(85+ 49c1)(s—5 — 5) , (8a)

1 1 1
{= 2—6(1l+ 1301—61’2)(5—4—5). (8b)

In particular, wherc,=c} = —65/63(i.e., Sg=Ss),
B 31/1 1 9
"“eals 2) %3
62 L\[1 1
——ci||l——=].
63 slls, 2

{= (9b)
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TABLE Il. ;,, A,, andA; in 2D athermal models on square lattice.

Model B A, >0 A>0
D2Q9S 3 f(1-cy) F(1+c;—ay)=%(5+c,—6c2)
D2Q13S 13 1(85+49c,) 2(11+13c,— a,) = 3(3+c,;— 2c?)
D2Q17S 17 555(527—47c,) 765(109+ 17, — 3ar,) = £(17+ ¢, — 6¢2)
D2Q21S 7 T3550(48755+ 697c,) 765(197+ 7, — 12r,) = 35(83+ ¢, — 24c?)
D2Q25S 25 3316(3752- 131c,) 185(371+ 25¢, — 3a,) = 5(35+ ¢, — 6C2)
D2Q29S 1 TTam30(352230+ 407c,) 55(141+ ¢, — 29ar,) = 55(373+ ¢, — 116c2)
D2Q33S 11 5955(13570- 25%,) 55(289+ 11c, — 3a,) = £(59+ ¢, — 6¢2)

diagonal directions. However, our analysis also shows thaecular gases is introduced. However, the equivalent adia-
the results remain qualitatively the same when velocity setbatic sound speed; can be tuned with some parameters in
other than along the axial and diagonal directions, such athe modelother thanx, and3,), and thus one can define an
(*1,£2) and (*=2,x1), are considered. For instance, in- equivalent ratio of specific heats=Cp/C,,.

creasing the number of velocity cannot change the depen-

dence ofcs on ay, as given by Eq(4), but the numerical A. The acoustic properties
constants in Eq) depend on the velocity set. As the num- o
ber of velocities and the maximutparticle speed increase, ' ne equilibria of the nonconserved moments for the en-

so does the upper bound of the sound speed, and hence &Y conserving LBE models differ from their athermal
valid range ofa, within which c>0 widens. The similar Ccounterparts. Besides, the energy-miug) becomes a con-

observation can be made on parameter These observa- Served mode, the equilibrium of the mofte;)=|e) has to
tions are summarized in Table I. be redefined. For the energy-conserving D2Q13S model,

In general, we can write the viscosities as the following: M= 6 (€= 0 1 Bae. (13
1 l . . . . .
v=A, s "3 (12a Moreover, in order to achieve Galilean invariance for the
XX sound and energy modes, we have to include nonlinear con-
11 tributions to the equilibria of nonconserved moments. In par-
=Al——= 12p  ficular, we have

(eq)— i

: P q*V=(ci+hyptkse)j, (14

wheres,, ands, are the relaxation rates f(pxxoc(jf—ji) v '

andexj-j, respectively. Table Il provides the value of the whereq=(qy,dy) = (M0, M;,) corresponds to the heat flux,
arametep3, in m¥= e [cf. Eq.(3a)], A, andA, for the = (i )= ' ilibri

p 2 4 q Ea¥ ¢ andj=(jx,jy)=(my,mz) is the momentum. The equilibria

2D athermal models in Table I. The important observation taf nonconserved moments other thag=h=e3, m;;=q,,

note here is that once the collision and advection rules argndm,,= g, remain the same as in E¢p). It turns out that

chosen, the large scale hydrodynamic properties of the LBihe parameter; in m{® is proportional toc,. Specifically,

model does not change as the number of discrete velocitiggy the energy-conserving D2Q13S model, we have the fol-

increases. lowing results obtained via the linear analysis:
I1l. ENERGY-CONSERVING LBE MODELS 1078
a3=—37C1, (153

In order to simulate thermohydrodynamics, the energy
conservation must be satisfied. Therefore, in addition to the
mass density and momentum, there is one more slowly 17

evolving mode that is related to the temperature of real flu- h E_Cl' (150
ids. The energy conservation immediately makes the param-

etersa, and 8, become fixed constanfsf. Eq. (38)], con- 2

sequently the sound speed [which depends orw, for klzﬁ. (150

athermal models, cf. E@4)] cannot be adjusted by the same
paramete(s) in the equilibria of the moments as in the ather-

mal models, but it depends on other paramstén the equi- With the equilibria given above, the sound speed of the

libria. As will be shown below, the kinetic equivalence of the model is

isothermal sound speed depends only on the discrete velocity

set for the model, that is, once the velocity set is given, the Cs= \/;0507 (163
isothermal sound speed is a fixed constant, unless additional

degrees of freedom reminiscent of the internal energy in mo- Cso= V14/13, (16b
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13 parameterc, affects both the sound speed and the relax-
Y= 2_8(3+ C1). (160 ation ratesg simultaneously for energy-conserving models.
In other words, for the athermal models, the coupling be-
The quantitycy, is the isothermal sound speed of the model,tween “energy” modee (which is not a conserved quantity
andy is the ratio of specific heats<(Cp/C,), and thuscis ~ and density mode controls the acoustics, whereas in the
the adiabatic sound speed. It should be stressed that the iseaergy-conserving models, it is the coupling between the
thermal (athermal sound speed,, does not depend on the heat fluxg and the momenturthat renders the same effect.
adjustable parameters in the model:

B. Transport coefficients

, dpo e 1 . .
CSO_E_ — =58 E G-C, (17) With the energy conservation, the model now has four
I

P hydrodynamic modes: two relajenergy and shear modes
and two propagatésound. In the large scale limit, the at-
tenuation rates of these modes are proportion&ftand are
given below,

whereB is the total number of the discrete velociti@sclud-
ing the zero velocity, andpy andey are the static pressure
and the specific kinetic energy. Equatid) for c is iden-
tical to the results focg in Table | with a,=0. Obviously v, =vk?, (199
the isothermal sound speeg is fixed once the velocity set

is chosen. Changing the relative populations of particles with 1
different speedsin order to mimic the effect of the tempera- YV =§( v+
ture of Maxwell’s distribution in a real gasias no effect on

sound, which is a dynamic effect. One would probably need

to use more complicated relaxation equations for the mo- 7T=£k2, (190
ments to be able to modify the speed of sound. Note, how-
ever, that one could add some internal degrees of freedom to
allow changes in the speed of sound, as exists in molecul
gases. A simple LGA model was studied along this directio

(y—1)
Y

K) k2, (19b)

here the transport coefficients of the energy-conserving
20Q13S model are

[55].

The immediate ramification of Eq17) is that, with the y= w(i_ l) (203
polynomial equilibria and relaxation-type collision operators, 70 S5 2
the sound speec, in the energy-conserving LBE model can-
not have the correct temperature dependence. It is not clear . 2(130+2683—77cy) (i_ 1 (20b)
how to construct nonpolynomial equilibria while still insist- 1433+cq) Sig 2)°

ing on Galilean invariance within the LBE framework as-
sumed here. This is an intrinsic defect in the energy-AS expected from what is known in real gases, the thermal
conserving LBE models witlilinean relaxational collision. ~ diffusivity of the model,x [=\/(pCy)], is determined by
We note that the models on the triangular lattice seem tdéhe relaxation rates,,=s;, for the nonconserved moments
have a temperature-dependent sound sp&6cb6. This is  corresponding to the heat fluxj=(qy,q,)], and is also re-
due to the fact that with the triangular lattice, the conditionlated to the coupling parametergand 33 in the equilibrium
Syx= Sxy alone guarantees the isotropyf the viscosity in-  of the fourth-order momentn; =exe? [cf. Eq. (13)]. The
dependent of the parametef. The sound speed in these above formulas thus recover the results for a real gas. One
models[16,56 is c2=y(c;)cZ,, where y(c,) is a linear can, in principle, adjust the parametessand ;. It should
function of c;. Effectively, the degree of freedom rendered also be noted that in the energy-conserving D2Q13S model,
by the parametee; is used to mimic the temperature effect there is no bulk viscosity.
by directly relatingc; to e (or T). Nevertheless, the isother- 1N addition to the D2Q13S model, we also study a number
mal sound speedy, remains independent of the temperature©f €nergy-conserving models with more discrete velocities in
in these models. two dimensions. Our results are summarized in Tables I11-V.
The isotropy of the shear mode and that of the heat flux@ble Il provides the parameter values feg, h;, andk,.
require, respectively, that Table IV gives the results for the sound spegdthe ratio of
specific heatsy, and the proportionality factoA relating
relaxation rates,, ands,,, as defined in Eq(7). Table V
(183 shows the viscosity and the thermal diffusivityc in terms

( 1 1) _ (85+49cy) ( 1 1)
of A, andA,, whereA, is defined in Eq(123 andA, is

ss 2/ 2(10-7cy)\ss 2

S1,=S1. (18b) similarly defined as the following:
The coupling betweess and sg is identical to that for the _A i_ E 21
athermal D2Q13S modé¢tf. Eq. (6a)]. Note that the sound K=« sq 2/ (22)

speedc, is a function ofc, (the parameter ig®¥=c, j) for
the energy-conserving model, as opposed to a functiam,of wheres, denotes the relaxation rate for the heat fouxFi-
for the athermal modé€lcf. Eq. (4) and Table ]. Thus the nally, we observe that in addition to its effect on the thermal
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TABLE lll. Coefficients for Galilean invariance for 2D TLBE s,,=1.937 73. Henceforth we hawe= 1.2, the shear viscos-

models on square lattice. ity »=0.01, the thermal diffusivity«=0.016, and Prandtl
number P+=0.71 (P yv/ k). We choose along two direc-
Model @3 hy Ky tions: #=0 and#= 7/8 (22.5°), 0 being the polar angle df

(with respect tax axis). Figure 2 showsy, (k)/v, y(k)/v,

D2Q13S @01 1_7_c1 2 and y,(k)/v, wherev is given by Eq.(20a. For the case of
13 13 13 9=m/8 (22.5°), y, (k) and yy(K) coalesce at abok=k,
D2017S 1090, . 6 ~0.048, which is a branch point. There is another branch
17 17 17 point at about —k.), due to the symmetry of the operator

788 187 24 L. The critical valuek, at which the first branch point locates

D2Q21S v - G 7 is approximately proportional te\[1—Pr 1|. Between the
two branch point§k., m—Kk.], the corresponding eigenval-
72716 133 6 c c .
D2Q25S —5 G S5 C1 5E uesz, (k) and z(k) coalesce and become complex conju-
58 gate to each other, and the corresponding modes become
D2Q29S 188, 91-c, oscillatory. This coupling between the energy and shear
5780 71 6 modes takes place at a very small value of wave number at
D2Q33S 11 < 11 @ 11 k=k., and continues to a point nekre 7w—k.. It is inter-

esting to note that the spurious coupling between the energy
and shear’ modes imathematicallysimilar to that in the
diffusivity «, as seen in Eq20b) and Table V, parametgg, ~ Rayleigh-Baard convection with a gravity
produces no other observable effects. Therefore, for all prac- o
tical purposesB; can be set to zero. g= —sin(46), (22

14

C. Spurious mode coupling and numerical instability wherea is a complicated algebraic function ¢f «, v, and

As previously indicated, the analysis of the linearized dis-relaxation rates, ands,, and depends strongly op and
persion equatioB1) yields the constraints on the adjustable weakly on other parameters, amdis the polar angle ok.
parameters in the equilibria of nonconserved momeats ( We find that the energy-conserving LBE models are prone to
B3, hy, andk;) as well as the relationships between thenumerical instabilities which may be instigated by fluctua-
relaxation rates. The eigenvalues of the linearized evolutiotions of wide-ranged scales. Obviously, this undesirable cou-
operator gives th& dependence of the transport coefficientspling among the hydrodynamic modes is due to the small
v(K) [£(K)] and k(k), and the sound speeci(k). Such  number of degrees of freedom and simple spatial-temporal
analysis usually sheds light on the stability of the modeldynamics of the lattice Boltzmann equation. In contrast, the
under consideration. As an example, we numerically analyzeoupling among the modes in the athermal models occurs
the energy-conserving D2Q13S model with the following pa-only at a point neak= = (cf. Fig. 1 in Ref.[45]). The ather-
rameter valuesc,= —0.41538, 83=0, s5=1.95761, and mal models are much more stable and are only prone to

TABLE IV. The sound speeds, the ratio of specific heatg, andA defined in Eq.(7) for 2D TLBE
models on square lattice.

Model c2>0 y A>0
1 14, (49c3-31)
D2Q13S 5(3+c) 3% L1
1 17 , (221—-47c2)
D2Q17S 5(17+cy) 30°Cs —(202:§—221)
D2Q21S L (83+¢;) x c2 M
24 16 (298:2+379)
D2Q25S 1(35+ () 25 c2 M
6 84 (13342-2779
D2Q29S L (373+¢y) 10? (8146, 6913
58 4 (6911~ 3166:2)
1 11 , (9617-5182)
D2Q33S (59w 60° (28187— 9617
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TABLE V. Transport coefficients for 2D TLBE models on square lattice.

Model A,>0 A >0
D2Q13S ! 85140 1 aoro6
—5(85+4%y) 15413042683~ 77c,)
D2Q17S L (52747 L1054+ 1028, 10%
930" €1 5541054+ 10285~ 10%;)
1
D2Q21S
Q 5355048755+ 697c,) 77556965+ 568~ 197c,)
D2Q25S
Q 35763752 131cy) TEcg5 (53600 1508; - 2597,
D2Q29S —
Q T30 352230 407cy) 55 (7960 2, 4Tc,)
D2Q33S 5900 13570-25%,) 1732410120+ 6685~ 28%;)

instabilities due to small scale fluctuations.

It must beterpolations can smear the mode-mode coalescence and this

stressed that this coupling between the viscous and energkplains, in part, the reason why the TLBE schemes with
modes is common to all the energy-conserving LBE modelsnterpolations[12—-14,20,21,27—31tend to be more stable
that we have studied. The fact that it depends very little omumerically.
the relaxational properties of higher order moments convince

us to believe that it cannot be eliminated by increasing the

number of discrete velocities. However, we observe that in-

IV. HYBRID TLBE MODELS

As indicated previously, the spurious mode coupling and
numerical instability in the energy-conserving LBE models

1.5

(o0 Vn cannot be overcome by increasing the number of discrete
Q _____ velocities or including higher order terms in the equilibria.
g However, the athermal LBE models do not have such prob-
= lems. Therefore, we come to the conclusion that at present
é time the best approach to formulate a TLBE model is to treat
N the energy-conservation equation separately from the mass
é and momentum conservation equations. Similar treatment
N S was previously advocated to address the issue of numerical
1.0 . : 71 efficiency [33,34. This means that the lattice Boltzmann
15 by 6=22.5° ' equation is used to simulate the mass and momentum con-
= servation laws, and a finite-difference scherfue other
7 means is used to solve the diffusion-advection equation for
~ the temperature, with appropriate couplings between the
° equations.
2
N A. 9-velocity model in two dimensions
E We now illustrate the hybrid TLBE model using the
D2Q9S model. The moment corresponding to the energy,

m,=e, is not a conserved moment, and its equilibrium is
k coupled to the temperatufE (which is to be simulated by

FIG. 2. Attenuation rates for the hydrodynamic modes of then:eans (t)\f\?er t?ﬁn the lattice Bol_tzmandntﬁqlilatld'ﬂne ?O_lé-
D2Q13S model. The rates for the viscous and thermal modes thzﬁmg etween the energy mode, =€ an € temperatur

are given byy, andy,, are normalized by the shear viscosity IS chosen as
The rate for the sound modes, is normalized by its value &t
=0, ie., y-(0)=[v+(y—1)xl/yll2, y=1.2, v=0.01, and Pr
= yvlk=0.71.(a) The polar angle of the wave vectior §=0°. All
the hydrodynamic modes are decoupled and have Weddépen-
dence along this directioitb) #=22.5°. The viscous modg, and
the energy mode,, are coupled at abokt=0.048 and show strong
k-dependent behavior.

(23)

2
mﬁfq)z eled)= 6( Cgo_ 3 pt+(2—vy)j-j+6q,.T,

whereq; is a coupling coefficient to be determined later. The
isothermal sound speet], is an adjustable constant deter-
mined by the positivity of the bulk viscositycf. Eq. (29b)]
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and other stability criteria, and the ratio of specific heafs ( In the setting of the HTLBE method, there af@+1)

is an adjustable parameter in the model. The temperdture degrees of freedom at each lattice site. The linear analysis of
evolves according to the standard diffusion-advection equathe dispersion equation gives the sound speed of the model
tion, as

c2=[1+(y—1)g:92]c%. (26)

In order to havec?= ycZ, as in the real monoatomic gases,
and a correct coupling between the momenturand the
temperatureT [in Eq. (30)], we must have

AT+U-VT=xkAT+qy(y—1)c%V - u, (24)

where « is the thermal diffusivity as in Eq(20b) and the
coupling coefficient, is to be determined later. It should be
noted that the density does not appear in Eq24) for the g=0,=1. (27)
following reason. In general, the lattice Boltzmann equation
considers density variations while it intends to solve theNote that the sound speed of E&6) is independent of the
nearly incompressiblelor weakly compressibje Navier-  temperature in this model, indicating an inherent deficiency
Stokes equations. Theoretically speaking, the density variesf the lattice Boltzmann equation.
tions should be so small that they can be neglected except There are four hydrodynamic modes in the system: one
where they play a dominant rolg.g., in acoustigs The  transverse modéhear modeand three longitudinal modes
nonlinear terms are small corrections in the low Mach num<{two acoustic modes and one energy modgain, the isot-
ber limit, and therefore the density can be treated as a conopy of the transverse mode demands that the relaxation rates
stant in the nonlinear terms. This rationale allows us to use; andss, corresponding, respectively, to the diagonal and
p=po=1 in the nonlinear terms, anfp=(p—po) in those  off-diagonal components of the stress tensor, must satisfy a
terms linear inp. This practice helps to reduce the effects of relationship similar to Eq(7) with the coefficientA given in
round-off errors in simulationf50,57]. It also permits us to  Table I. The attenuation coefficients for the four hydrody-
replace the velocityu in Eq. (24) by the momentumj namic modes are similar to those in E¢k9), excepty.. for
=(Jx.Jy) obtained from the LBE model. the acoustic modes. The previous analysis needs to be
It is important to note that Eq24) of T does not have the slightly modified to include the discrete effects due to the
nonlinear terms related toV(-j)? and (aiuj+c9jui)2, as in finite-difference equatiori25) for T. This leads to a correc-
the energy equation for compressible flui@ls.g., Refs. tion for the attenuation rate of sound waves as the following:
[58,59). The reasons we neglect these terms are that we
restrict our focus here on the acoustics of the LBE system, (y—1) 1,
which is essentially of linear nature, and these nonlinear Y==5 (K_Zycso
terms are, in fact, negligible for incompressible fluids. How-
ever, the framework set used here does allow us to includ&éhe correctionyc§0/2 is similar to the “propagation” contri-
these nonlinear terms, which are to be considered in oupution to the viscosity first found by Hen in the context of
future work. the lattice gases automdté2]. The transport coefficients
The advection-convection equati¢®4) for the tempera- and{ in this model are identical to the previous results for
ture T is solved by the following finite-difference equation: athermal models given in E¢12) and Table Il. Specifically,
with ¢;=—1 and thussg=ss, the viscosities of the model

v+{+

. (28

T(r) t+1)=T(r) )= —j- V¥ T+KA*T are
. 1/1 1
+ap(y=1)CHV* ), (29 _Z(2_ =z
2 S0 =3l 2) (293
where operators with superscript * are the corresponding 2 S\ 1
finite-difference operatoief. Appendix Q. The stencil used = (— ~¥Cs0 (5 - 5) . (29b)

for the finite-difference operators must have the same sym-

it is a nine-point stencil for the D2Q9S model. It should be of the Jattice Boltzmann equatigi) and the finite-difference

emphasized that the use of the stencil defined by the discretguation(25) for T leads to the following set of hydrody-
velocity set does help to improve the numerical stability ofngmic equations:

the scheme. In contrast, the use of the simple five-point cen-

tral difference stencil, in fact, leads to severe numerical in- dp+V-j=0, (30a
stability. We should also point out that the stencils which

have the same symmetries of the discrete velocity set are not &j+j-Vi=—c3Vp+vAj+{VV-j+q,VT, (300
unique, although the lattice Boltzmann equation uniquely de-

fines a specific set of weighted stendit®,61]. We have not T+ -VT=kAT+qy(y—1)c2V j, (300
studied the influence due to the different stencils on the sta-

bility and the nonhydrodynamic behavigin k* or higher —whereq;=q,=1. Because the constant appears in the
ordep of the model. advection term in Eq(300), this equation must be rescaled.
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Effectively, this reducex by a factory, i.e., kef= /7. In S7=Sg, (323
the HTLBE schemex is an independent parameter.

The results for the transport coefficients of the HTLBE 1 1) 1/1 1 32b
model are similar to that of the athermal LBE model. That is, ss 2] 2\sg 2/ (32

the isothermal sound speeg, is an adjustable parameter in
the model and there is also a nonzero bulk viscogityrhe S10= Sg= Sg- (320
linear stability analysis shows that, so longjais not too far

away from 1, the HTLBE model is as stable as the athermaThe isotropy of the model is evident because the attenuation
model, i.e., the finite-difference equation fbdoes not have rates(proportional tok?) for these modes are independent of
much effect on the stability of the model, provided that thethe direction ofk:
appropriate finite-difference stencils are used. Further analy-

sis shows that there is no spurious coupling between the

energy and shear modes that exists in the energy-conserving

models, as shown in Fig. 2. It should be pointed out that the 7h:£k2, (33b)
present approach of hybrid schemes can be easily and effec- Y

tively extended to other situations. In particular, a second
scalar equation solved by finite-difference technique can be B
added to simulate double diffusions. Y£=5

v =1k, (339

114 (y—1)
SVt

3

1 2
K— E YCs0

k2, (330

as expected for a real gas. Note that the above formula for
v. includes the correction due to the second-order discrete
1. 13-velocity model effect (Henon correctiol, similar to the 2D result of Eq.

. . (28). The transport coefficients and ¢ in this model are
We now proceed to consider the HTLBE models in three iven by Eq.(12) and Table II. Specifically, witlt; =0,

dimensions. For the LBE part we use the simplest mode?

B. Models in three dimensions

with just 13 velocitiesD3Q13 [49]. The transformation ma- 1/1 1
trix M of the model is given in Appendix D. The equilibria of v= 5(_ ik (34a
the nonconserved moments are chosen as follows: Se
; (2 ) ( 1 1) (3ab
39 8 39/5 39 =137 Y|l 5
(ed)_nleaq) ="~ 2 _ i I T 3 S5 2
m5 € Z(CSO 13>P+ 4(3 7)] ]+ 2Q1T,
(314 The Chapman-Enskog analysis for the HTLBE system is
that the conserved momentp and j=(jy,jy,j;)] and T
o .o . o evolve according to the following equations, similar to Egs.
mE*D=3p{P=2j 3~ 3= i7=3i5—i"]. (31D (30 in two dimensions:
P dp+V-j=0 35
miEV=p{d=j7~jZ, (319 TV (353
1
o aj+j-Vi=—c3Vp+vAj+|zv+{|VV-j+q,VT,
mi(geq): pS;q):JXJy, (310 )T V] soY P J 3 J7T 01
(35b
miEP=p{ed=j i, (319 T+ VT=kAT+qy(y—1)c2V j. (350
o Again, we must sef; =q,=1 in order to have?= yc?,, as
mg%q): pg(?(q): Jz)x) (310 before. ° *0
The linear stability analysis shows that it is necessary to
m(leﬁz,m: ﬁoffﬁ)z: 0. 319 use the stencils that have the same symmetries of the discrete

velocity set in the finite-difference equati¢2b) for T. Using
a simpler seven-point central difference stencil would gener-
And temperaturel is solved by the scheme given by Eq. ate severe numerical instability. With the stencil generated
(25), with the stencil defined by the 13-velocity gef. Ap-  from the discrete velocity set, the stability of the hybrid
pendix D. TLBE system is almost the same as the stability of the lattice
There are five hydrodynamic modes in the model: twoBoltzmann equation alone. That is, the finite-difference equa-
transverse modes and three longitudinal ones. Among thgon for T with appropriate stencils has little effect on the
three longitudinal modes, two acoustic modes propagate witbtability. Because the stencil generated by the discrete veloc-
the adiabatic speed of sourdd=ycs, and one energy ity set naturally preserves the parity of the modek (i +j
mode relaxegor diffuses. The isotropy constraints on the +k)(mod 2) at a site i(j,k), which is conserved in the
attenuation rates lead to model[49], one can save one-half of the system size in simu-
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lations by considering only the sites with even or odd parity (p.&,&,jx,0x ]y Ay ) 2:0z2.3Pxxs 37Txx Puw
[49]. This is a unique feature of the 13-velocity model in
three dimensions. Tww Py Pyz:Pxz: @x 1 @y @)

2. 15-velocity model The transformation matri¥ is given in Appendix F.

The 15-velocity model in three-dimensional cubic lattices The equilibrium quantities are given by

has three particle speeds: 0, 1, af8. The corresponding

: : (ea) , 10\ 57(5 |\
moments are arranged in the following order: mied=eleD=57 c2,— To|P+ 5|3~ v|ii+57T,
(paeveanaQXvjyaqyajzquv3pxxvaWapxyvpyvazxﬂpxyz)a (399
and the transformation matrid with the corresponding or- m(aeQ)zs(eq)z aszp, (39b
der of the row vectors is given in Appendix E. (o) (eq)
The equilibria are given by my=3m5=0, myz=mul=0, (399
(ea)_ ~(eq) , 2 3(5 o where a3=3 is a constant that has no relevant role in
m; V=e**9=3 Co—3/Pt5lg =yl i+3T, hydrodynamics. The equilibria  of By, Pww.Pxy.
(36a Pyz:Pzx) = (M1g,M12,My4,My5,Myg) and @x:®x,P2)
=(my7,myg,Mg) are identical to that in Eq31), and the
M= g (D= 4p, (36h  equilibria of g=(ax,qy,9,) =(ms,m;,mg) are identical to
that in Eq.(36).
mEP,= qg(ey)zz Ciixy.z: (360 The relaxation rate¢s;[i=1,2, ...,19 must satisfy the
. s following constraints for the sake of isotropy:
(eq)— ,/(eq)—
Mis wxyz 0. (36d) S12=S10 for Pww and Pxx s (403)
whereaz;=—1 is a constant that plays no role in hydrody-
namics. The equilibria  of  (Bxx,Puww:Pxy:Pyz P2 S16=S15=S14 fOr Pzx,Pyz and pyy, (40b)
=(my,My1,My5,My3,My,) are identical to that in Eq31). 11 6— 11
The relaxation rate$s;|i=1,2, ...,15 satisfy the fol- (__ _) - (6-cy (1 _), (400
lowing constraints due to isotropy criteria: Sia 2/ 2(4+cy) sy 2
S11=S10  for pyy and py, (373 Ss=S7=89 for g=(0x,qy.q,). (400
S14=S13=S12  fOr Pyx, Pyz and pyy, (37b The viscosities of the model are
1 1) (1-cy (1 1 _(6-cy/1 1
— = :g il (370 V=20 5. 3/ (413
Si2 2] 2(4+cq)\Sp 2 XX
2
S5=S7=S9g for q= (qx yqy yqz)- (37d) — (9+ C1™ 157050) 1 1
{(=————\ =35/ (41b
15 Se 2

The transport coefficients of the model are

wheres,, (=s;9) ands, (=s,) denote the relaxation rates
_ (1—01)( 1 1) (383 for momentsp,, ande, respectively.

10 \s, 2

14

C. Summary of the hybrid thermal lattice Boltzmann equation

- (13+2¢,—15yc%) (i 1)

& ~5 (38b) The hybrid thermal lattice Boltzmann model is summa-
se

rized as follows. The evolution equations for the distribution

. functions and the temperature are
wheres,, (=50 ands, (=s,) denote the relaxation rates P

for momentsp,, ande, respectively. N [f(rj+ i tat+ 1)) =f(r},tn)) =M~ S[|m(r} ,t,))
The temperatureT evolves according to the finite-
difference equatiori25), with the stencils generated by the = mer; ty)], (423
15-velocity set(cf. Appendix B. The resulting hydrody- )
namic equations are given by E@5) with q;=q,=1. T(r t+1)=T(r; ;) =—j- V* T+ xA*T+gy(y—1)
2 .
3. 19-velocity model XCeV™ . (42b)

The particle speed in the 19-velocity model in three di-The coupling of the temperatufieto the fluid momentunis
mensions are 0, 1, and2. The corresponding 19 moments explicit in the above equation fdr. The coupling of the fluid
are arranged according to the following ordB0]: momentumj to the temperaturd is accomplished in the
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equilibrium of the second-order momeat(related to en- 1
ergy. The equilibria ofe and the fourth-order moment StepS: j"=j"+5F,
(related to energy squarare
Step 6: Compute{f;} from the moments{m;},
(ea)—
e = axpt ol it AT, (433 wherej’ is used as the measured field for output.

Several basic tests have been conducted to verify the
properties of the hybrid TLBE model. In a system with uni-
form flow velocity and periodic boundary conditions, trans-
verse modegshear wavesand longitudinal modegsound
waves and energy mogare found to have correct attenua-

e®V=agp, (43b)

where bothazzaz(cgo) and B,= B,(y) are determined by
the first-order solution of the linearized dispersion equation

The coefficienta, depends on théisothermal sound speed yjo rates and advection/propagation velocity in the long

Cso that is an adjustable parameter in the model, while th"?’/vavelength limit ofk— 0O, as predicted by the linear analysis.

coefficient3, affects the Galilean invariance and depends Onry, ongyre accurate tests for longitudinal modes, one must use
the adjustable parameter And the value of the parameter y,q initial conditions which are prepared to have pure acous-

a3 is determined so that in the equation fothe term linear i or thermal character to excite only these modes.
in the density gradienV p vanishes. The other two coeffi-

cients in the modelq, andq,, are determined by the linear

analysis and the Chapman-Enskog analysis so that the hydro- V. SIMULATIONS

dynamic equations derived from the model are We use the 13-velocity HTLBE model in 3D to simulate
the Rayleigh-Beard convective flows in the cubic cavity
dpt+V-j=0, (449 with two opposite vertical walls at different temperatures.

The geometry of the cavity is depicted in Fig. 3. The box size
&j+j-Vj= —CgoVPJF vAj+{'VV-j+VT, (44b is N, XNy XN,, whereN,=N,=50 is fixed throughout the

simulations whileN, varies from 6 to 80. For the lattice

GT+ - VT=kAT+(y—1)c2V -], (440 Bolt;mann part, the bounce-back boundary conditions are

applied for six walls. As for the temperature, two opposite
vertical walls located ak=1/2 andx=N,+ 1/2=50+1/2
(because of the bounce-back boundary condijians main-
tained with constant temperaturesT, and +T,, respec-
tively, as shown in Fig. 3. And the other four walls are adia-

batic, i.e.,d;T=0 at these walls, wher is the unit vector

The viscosities and¢ are controlled by the relaxation rates OUt-normal to a wall. The gravitation is pointing downward
S, ands,, respectively, and andy are adjustable param- (—Y direction. The Rayleigh number Ra is defined as
eters in the model. 3
We note that, becausecould be solved by more accurate Ra= 2TogByL —Pr-Gr (45)
numerical techniques other than the second-order finite dif- VKeff ’
ference of Eq(42b), the equilibrium ofe given by Eq.(439
would have to be modified in order to consider nonunifor-whereg is the gravitational acceleratioB, (= —drIn p|,) is
m|'[y of T over one Ce||(spa‘[ia| derivatives 01]') the coefficient of thermal eXpanSidﬂ,: NX: 50 in the simu-
The lattice Bolizmann equation can include externallations, and Gr2TogByL%»® is the Grashof number. Two
fields, such as gravity. For a forcitity one can simply add it effective Nusselt numbers are defined for the flow. The ef-
to the momentum, by+Fst—j (st=1). It is understood fective local Nusselt number Nus defined by the tempera-
that, in order to conserve mass up to the second order in tH&re gradient at the wall maintained at a constant tempera-
Chapman-Enskog analysis, the net effect of the forcing ternfure:
is that the resultant momentum is equaj toF 5t/2 [63,64].
Therefore it is preferable to execute the forcing term in two 1
steps, adding one-half of the forcing before relaxation and Nu=>771" > O Tlx-12, (46)
one-half after, and to use the momentum added with one-half 0=z vz
of the forcing before relaxatiofcollision) as the measured
field for output[65]. This can be concisely illustrated as whereL,=N, in the lattice units. The effectivévolume

where{’= ¢ in two dimensions and’ =+ v/3 in three di-
mensions, with the adiabatic sound speed

2_ 2
Cs=7Cs0-

follows: averaged Nusselt number Nis defined as
Step 1: Advection of{f;}, 1
Step2: Compute momentsm;} of {f;}, NUvzm xzy?z UT—1, (47)
1
Step 3: j'=j+ > F,

where k¢= k/7y. In the simulations, we use the following
Step 4: Relaxations of the momeitsllision), parameters:y=1.2, v=0.06, P=0.71 (for air), and T,
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Ra=10°

. . —
N — Nu

_TO 1g +TO

1—Nu/Nu”

1072 .

Ny 10 100
N

z

FIG. 3. Geometry of rectangular cavity. Two shaded opposite ] ] )
vertical walls are maintained with constant temperaturdg, and FIG. 4. Effective Nusselt number Nu as a function of the cavity
+T,, respectively. The temperature boundary conditions on othelngthL,=N_. The solid and dashed curves correspond to the vol-

four (transparentwalls ared;T=0—the adiabatic boundary condi- UMe measurement Nu_and t_he local measurement at wall, JNu
tions. respectively. The relative differences (NuNu)/Nu* are plotted

for Nu, =4.337 at Ra10° and Nu =8.640 at Ra= 10° obtained

=1, all in lattice units. Bear in mind that we can reduce theby using a pseudospectral methi@s].

system size by half by using the 13-velocity model because
of the parity conservation of the model. tween the energy and shear modes of the linearized LBE
We use two values of the effective Rayleigh number Raevolution operator. This coupling is nonphysical and inherent
=10> and 16 (corresponding togB3~2.028<x10°% and to all the existing energy-conserving TLBE models. This
2.028<10 2, respectively, and compute the two effective spurious coupling is forbidden in a continuum model be-
Nusselt numbers Nyand Ny, as defined above. Ak,  cause it violates rotational symmetiigotropy), but occurs in
—, the flow becomes quasi-two-dimensional. The two ef-a discrete model that is inherently anisotropic beyond certain
fective Nusselt numbers obtained are Nw4.27 and Ny order in k. The hybrid thermal lattice Boltzmann method
=8.31, compared to 4.337 and 8.640 obtained by an acclweliminates this unphysical coupling and significantly im-
rate pseudospectral methpe6]. Figure 4 shows the effec- proves the numerical stability. The hybrid TLBE model is
tive Nusselt numbers Npand Ny, respectively, normalized almost as stable as the athermal lattice Boltzmann equation
by 4.337 and 8.640 for Ral(® and 16, as functions of the without the temperature equation, provided that the appropri-
length of the cavity I,). The difference between the present ate finite-difference stencils with the same symmetry as the
results and that of Ref66] is partially due to the fact that discrete velocities are used.
the lattice Boltzmann equation simulates weakly compress- Similar to our previous work45], we analyze the effects
ible fluids, whereas the pseudospectral method used in Redf interpolations. In general, second- or higher-order spatial
[66] solves the incompressible Navier-Stokes equations. linterpolations applied to the distribution functions do not af-
fact, for Ra=10°, the magnitude of the mean velocity in the fect the values of the transport coefficients, the isotropy, and
cavity is about 0.081, which is not negligible compared toGalilean invariance of the LBE system at tke=0 limit;
the speed of soundc{=0.456) for the modelthe mean therefore they do not affect the large scale hydrodynamics.
Mach number Ma=0.18). A detailed convergence study of However, interpolations do introduce significant numerical

the numerical scheme is presented elsewh@r¢ viscosities, especially in small scales comparable to the lat-
tice spacing. The numerical viscosities dissipate small scale
VI. CONCLUSION fluctuations, and therefore improve the numerical stability.

Second, the interpolations used in the LBE schemes usually
In this paper we propose to solve the thermohydrody-have a symmetry different frorfoften much less tharthat

namic equations by using a hybrid lattice Boltzmannof the discrete velocity set, therefore they alter the overall
scheme: the usual lattice Boltzmann equation is used to solv&/mmetry propertiesthe isotropy and Galilean invariance
the mass and momentum conservation equations, while ef the LBE scheme. Again, this effect is especially severe at
finite-difference method is used to solve the diffusion-small scales. And finally, interpolations destroy the local con-
advection equation satisfied by the temperature, with apprcservation laws. Therefore, interpolations should be used with
priate couplings between the two systems. A number of hyeare.
brid models in both two and three dimensions are analyzed The present work differs from the existing ones in several
and compared with the energy-conserving TLBE modelsaspects. First, we advocate the multiple-relaxation-time
The rationale behind our proposal is based on the analysis dMRT) model as opposed to the simple BGK approximation
the existing energy-conserving TLBE models that suffer suclwhich is in part responsible for numerical instabilities in the
severe numerical instabilities that their applicabilities areexisting LBE models. Besides the improvement of the nu-
much limited. We have identified that a main defect in themerical stability, the Prandtl number is adjustable for the
existing energy-conserving TLBE models is the coupling be.MRT models, while the Prandtl number is fixed to unity for
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the BGK models. Second, we have provided a systematistructive suggestions. L.S.L. would also like to thank Dr. Z.
analysis of the proposed HTLBE model, and a comparativé.. Guo and Dr. R. Rubinstein for their careful reading of the
study to the energy-conserving TLBE models. The thermapaper. L.S.L. acknowledges the partial support from the
and acoustic properties of various models are analyzed ibnited States Air Force Office for Scientific Research under
detail. The analysis immediately offers insight into the short-Grant No. F49620-01-1-0142, and for his visit to the ASCI
comings of the existing TLBE models. We conclude thatLab in 2002, during which part of this work was performed.
many existing models gain numerical stability by using in-

terpolations at the expense of isotropy and relatively low APPENDIXA: CONSTRUCTION OF TRANSFORMATION
numerical viscosities. Finally, the HTLBE model studied MATRIX ON 2D SQUARE LATTICES

here does not use Boussinesq approximation explicitly. It can OR 3D CUBIC LATTICES

be extended to situations where Boussinesq approximation The construction of the transformation mathk is very
does not apply by mclud_mg nonlinear terms related to Com'(:Iosely related to the definition of moments used in kinetic
pressible effects and using temperature-dependent transp %ory of gasese.g., Ref[68]). The main difference is due

CqueEfé(éenti' It s.houI(? alsoll bebl nc;tedl th/at tdhe pro&osi o the absence of a weight factor in the LBE method similar
scheme Is only applicable for low/moderate Mach, o Maxwellian equilibrium in the evaluation of an aver-

nurgbler flp\r/]vs. 'Il'his Is 5}” inhlel;e_nt Iim(ijtathionMdFl;? to E?el LBE 4ge(i.e., a weighted norin In addition, degeneracies of mo-
models with polynomial equilibria, and the MOGEIS are ents arise due to the small number of geometrically sym-

not exceptions in t.his regard. . metrically collocated discrete velocities used in the LBE
It must be cautlpned tha.t our proposal to use the hybri ethod. For example, for a model with only unit spe&gte
method is not the final solution of the approach based on thBZQG D2Q7, or models with the single-speed “octagonal”
thermal Ia_ttlce Boltzmann equat|on._Th|s approach S'gmﬂ'_velocity sel, moments of (3i2x+0i2y)m are all equal form
cantly deviates from the orthodox lattice Boltzmann method — 1 leading to the absence of these moments which exist in
ology based on the kinetic theory, and it only provides a__ ., 9

compromised solution. The difficulty encountered in the Iat—:ﬁgge%ases' This can produce anisotropic behavior of the

ggag’ﬂtzwﬁﬁ nar?qel;faef::otir\]/ésvvt:attgvﬁqirr:fi‘::/ﬁerr;?t et;gf’unreaf?slfafo The considerations to uniquely determine the orthogonal
P y b basis vectors spanning the transformation maktfivare the

tistically” based on kinetic theory and still be as efficient S0 llowina. First. it is coordinate svstem dependent. The co-
the macroscopic approach. The reason that the lattice Boltz- 9. ' y P '

S : : ordinates used here are that of Cartesian coordinatg3 (n
mann equation is much more successful in handling the ma

and momentum conservation laws is that one does not ne veloiirl?esé(gézglwagg.aﬁnr?ezovr\n; ?i:eago%frérnZtgng;(Sezeesdec-
to deal with any quantity which is statistical in nature, such y 9 )

as the temperature. Several issues remain to be addressgtq.d' th_e n_ormallzatlon c_)f the vectors is arbitrary, and the
. ) . o normalization used here is that the components of the vectors
First, the factory in the advection term of th& equation is S . S : . .
. . are minimal integers to simplify algebraic manipulations.
undesirable. However, the effect of this only amounts to the . !
. - . . And third, symmetry properties of the moments are fully
rescaling ofk to k4= «/7y, as shown in the analysis and

simulations. Second, the isothermal sound speed is indepeﬁz(ploned’ as discussed in the following. This simplifies deri-

dent of the temperatur€. The validity of the linear analysis vations and leads naturally to moments with a clear physical

suggests that the relaxation type of the collision model in the5|gn|f|cance, which are particularly suited for the purpose of

lattice Boltzmann equation may not have sufficient nonIin-mOdGIing the dynamics of an isotropic fluid.
: - q y For square lattices in two dimensions, the construction of
earity to mimic the thermal phenomena and needs seve

I . : T
modifications. And third, we have not considered the nonlin-t%e tra_nsformat|on matrbM can be greatly S|mpl|f|e<_j_ by

T . : observing that for symmetry reasons nonzero velocit®s
ear dissipation terms in the temperature equation. However

within the HTLBE framework, including these nonlinear #0} are usually added in groups of four velocities of equal

terms, is in principle, as easy as considering a more Complr§peed, i.e., the axial velocities of integer speeds, and/or the

cated dynamics fof for more complex situations, and this is diagonal velocities of speeds in multiples g2. Both the

indeed one of the useful features of hybrid models. Thes ial and diagonal velocities contribute to the density mode
open questions are left for future work p| equally, but one nontrivial moment of a group of four
Based on the framework in the present work, the methog@ia! velocities only contributes to mf)d‘ﬁ’><><|°‘<(j>2<_,j _32/)|’
ology of the hybrid lattice Boltzmann scheme can be readilyVhereas that of four equal-speed diagonal velocities only
extended to other systems, such as fluids of multiple compdsontributes to modepyy|>(jxjy|, and these two modes are

nents with different diffusion coefficientef. Ref.[69] and  linearly independent. Thus, the transformation malfixcan
references thereipnand non-Newtonian fluidg70,71. be constructed from the subspaces of the zero velocity, the
group of axial velocities, and the group of diagonal veloci-

ties. Specifically, for the D2Q9S model the two subspaces of

ACKNOWLEDGMENTS axial and diagonal velocities are
The authors are particularly indebted to Professor George (p| 1 1
Vahala for his helpful comments which helped to improve (il
the paper. Specifically, Appendix G and significant part of M@= L 1 - (Ala)
Appendix A are the results based on Professor Vahala’s con- B <Jy| 1o -1’ a
<pxx| 1 - -1
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(pl TABLE VI. The orthogonal polynomials obtained from the el-
1 1 1 1 ementary polynomials of{1x,y,xy,(x*—y?)} via the Gram-
(jxl 1 -1 -1 1 Schmidt procedure for the D2Q9S and D2Q13S models. The or-
M@ = . _ (A1b) thogonal polynomials for the D2Q13S model must also include
(yl 1 1 -1 —-1l° those for the D2Q9S model.
(P 1 -1 1 -1 D2Q9S D2Q13S
Scalars 1, %%+Yy?), (x2+y?)? (x*+y?)®
We further note that, under the elementary transforma-
tions of a square on the plane, Vectors X X(+y?) x(x*+y?)?
Y, y(*+y?) y(x*+y?)?
X— —X, A23
- (A28) Tensors -vy?) (X2—y?)(x?+y?)
y—-Y, (A2b) ~
(X,¥)—(Y,X), (A2¢)

tensor. Similarly, the 12 velocities of speg@ can describe
the row vectors iMM@ andM©@ have the following behav- & scalar, a vector, a second-rank tensor, and part of a third-
ior: (p|'s behave as a scalafj,|'s and (j,|'s behave as a rank tensor, whereas the eight velocities of spe@dcan
vector component, ang,,|’s and(pxy| 's behave as compo- describe a _scalar, a vector, part of a second-rank tensor, and
nents of a second-rank tensor. These orthogonadt 4sub- part of a third rank tensor..The elementary polynomlals cor-
spaces provide the building blocks of the transformation mal€SPonding to each velocity group are given in Table VII.
trix M for the model with axial and diagonal velocities, and The D3Q13 model uses the velocities of 0 a(i@l speeds,
when constructing, only the modes with the same symme- the D3Q15 model uses the velocities of 0, 1, afIspeeds,

try can be coupled to each other. When there are more thae D3Q19 model uses the velocities of 0, 1, afispeeds,
one speed in either groups of axial and/or diagonal velociand the D3Q27 model uses all the 27 velocities of 02,

ties, we may first determine the number of moments of eacland /3 speeds. Starting with these elementary polynomials,
symmetry, in order to partition the Gram-Schmidt process irthe transformation matrices for the 3D models can be easily
independent subprocesses. For instance, consider a I1@btained via the Gram-Schmidt procedure. To reproduce cor-
velocity model on square lattic€2Q13S, there are four rect incompressible hydrodynamic equations in 3D, one
scalar moments fop, three vector moments fgr, and three  needs the five components of a symmetric traceless second-
for j,, two second-rank tensor moments fay,, and only  rank tensor(the stresps It thus becomes obvious why the
one forp,, . Orthogonalization should be carried out succes-minimal model in 3D is D3Q13, and that D3Q15 or D3Q19
sively for groups of fourp|’s, three(j,|’s, three(j,|'s, two  would also work, as indicated by the polynomials shown in
(Px«'s, and one(py,|. Similar considerations based on sym- Table VII.

metry are also applied in the construction of the equilibria of

the moments, because couplings can only be allowed fOf 00\ )y . | INEAR ANALYSIS AND HYDRODYNAMIC

those quantities in each velocity clagsoup which behave BEHAVIOR OF ATHERMAL LBE

exactly the same under the 2D transformations defined by

Eqgs(A2). To be more explicit, the moments can be related to  For athermal lattice Boltzmann models with£1) ve-
some elementary polynomials defined on a 2D lattice. Thalocities on a lattice oN nodes inD dimensions, there are

is, for the zero velocity, it is 1. For four equal-speed axial(D+1) local conserved modes, and thus—D)=(b+1)

velocities, they are 1, y, and x*>—y?). And for four equal- —(D+1) local (nonconserved “slave” modes. The local
speed diagonal velocities, they arexly, andxy. By apply-  slave modes evolve with time scales of the order f ,1i
ing the Gram-Schmidt procedure to the elementary polyno=(D+2), ..., (b+1) (s; is the relaxation raje The col-

mials and their appropriate combinations, we immediatelylision enforces the local conservation laws, while the advec-
obtain the orthogonal polynomialable VI). By consider-  tion preserves the global conservation laws when there are
ing up to fourth- and sixth-order polynomials, we obtain theno boundaries. Although the conserved modes are not
orthogonal polynomials for the D2Q9S and D2Q13S modelschanged by the collision, they are nevertheless affected by
respectively. Obviously, the orthogonal polynomials for thethe “slave” modes, because the fluxes of some of the con-
D2Q13S model include those for the D2Q9S modBlote  served modes are related to these nonconserved quantities.
that in Table VI,x andy are used instead afy andc;y .) Emerging from the evolution of collision and advection are
We now apply the same symmetry consideration to modthe long-time and large-scale hydrodynamic behavior which
els on 3D cubic lattices. On a basic cubic lattice, we considetan be described by a set of partial differential equatitims
four groups of velocities classified by their speeds(tfite  Navier-Stokes equationsThe Navier-Stokes equatiorisr
center of the cube 1 (six surfaces 2 (12 edges and\3  the long-time and large-scale hydrodynamic behaian be
(eight corners The zero velocity can only describe a scalar,derived from such a system via the Chapman-Enskog analy-
i.e., 1—the zeroth order moment. The six velocities of speedis, or equivalently, via the mode analysis of the dispersion
1 can describe a scalar, a vector, and part of second-raréquation(von Neumann analysi$45].
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TABLE VII. Twenty-seven discrete velocities and the corresponding elementary polynomials on a 3D

cubic lattice.

Speed Polynomial Rank

0 1 0

1 0

1 XY, Z 1

4x2— (x2+y2+7%), (y?>—2) 2

1 0

XY, Z 1

V2 4x2— (X°+y2+7%), (y>=29), Xy, yz, ZX 2

x(y?=27%), y(22—x?), z(x*~y?) 3

1 0

X, ¥z 1

J3 XY, Yz, zX 2

Xyz 3

We can linearize the evolution equati¢h) around the two-dimensional system with a uniform velociyy and a
state with a constant velocity to obtain a linearized equa- small density fluctuation of wave-vectr and subjected to

tion for the fluctuations5f in Fourier spacé¢45]: periodic boundary conditions, linear analysis of the disper-
sion equation yields the following results to the first order in
|6f(k,t+1)y=L|sf(k,t)), (Bl1a) V and second order ik [45,72:
L=A"[I+M"'CMm], (B1b) m, (kt)=exp(—ik-Vt—pk?)m, (0),  (B3a)

wherel is the identity matrix,C is the linearized collision

operator, and\ is the propagation operator that is a diagonal ) 1 5
matrix in the space offf): m.. (k,t) =exp —i(k-VEkegt— 5 (v+ Okt m..(0),
(B3b)
A=diage k% e ke eTikoy

For the LBE schemes with interpolations and/or extrapola—Where m, (0) andm..(0) are initial amplitudes of these

. . . o modes,v and { are, respectively, the shear and bulk kine-
tions, A is no longer a diagonal matrix, its band structure - """ o .

. ; : : matic viscosities, and, is the sound speed of the model. The
depends on the interpolation/extrapolation sten@fs Ref.

[45]). The solution of the eigenvalue problem of the Iinear_terms linear inV in the above results are due to the nonlinear
ized .evolution operator 9 P advection, and they can be viewed as the manifestation of

Galilean invarianceof the model.
L) =2e), (B2) Besides the underlying lattice structure, the sound speed
and the transport coefficients depend on the equilibria
yields the generalized hydrodynamics of the model, i.e., thém®®?} and the relaxation rates;}. It is important to make
k dependence of the transport coefficients, the sound speeggrtain that the sound speed and transport coefficients
and the Galilean-invariance factgr[45,72. Note that the and{ are independent of the orientation of wave vedtor
instability corresponds to the positivity of the real part of with respect to the underlying lattice structure, that is, the
Inz, which usually appears at fairly large valueskofvhen =~ model has to be isotropic. The Galilean invariance and isot-
the mean velocity of the flow increases. ropy of the LBE model are attained by carefully choosing
Usually, the eigenvalue equati¢B2) of L (the dispersion parameters in the model via a linear analy§]. When
equation does not have analytic solutions. But it can besolving the dispersion equati@B2) perturbatively in power
solved perturbatively itk [45,72). For athermal lattice Boltz- of k, the first-order and the second-order solutions lead to the
mann models in two dimensions, which only need to satisfysound speeas and Galilean factog, and the attenuation
mass and momentum conservation laws, there are only threefficients(which are combinations of the transport coeffi-
hydrodynamic modes: one transverse mdthe vorticityy  cient9, respectively, as functions of relaxation rafeg and
m, and two longitudinal modeésound wavesm... These other adjustable parameters in the equilibﬁfai(eq)}. This
hydrodynamic modes are the three-fold degenerated eigeanalysis is systematically used to determine the optimal val-
modes ofL with a unity eigenvalue ak=0 [45,72. For a  ues of the parameters.
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APPENDIX C: STENCILS OF D2Q9S MODEL ity defined by the discrete velocity set on the lattice space.
The stencils for the gradie™® and the Laplacian opera- Specifically, these points are (0,0)-2¢,0), (0:=1), and

+1,+1) for the D2Q9S model. The derivatives tfx,y)
torsA'for the_DZQQS model are construc.ted'as follows. Theare obtained from EQ(C2) by taking differentiations with
following B (=b+1) number of polynomials:

respect to appropriate variables. The finite-difference opera-

eo=1, (C19 tors obtained this way for the D2Q9S model are

P1=X,  @2=Y, (Clb 1
&:f(i,j)=f(i+1,j)—f(i—1,j)— Z[f(i-f-l,j +1)

P3=(X*=Y%), @s=Xy, ¢s=(X*+y?), (Clo ) ) ) ) ) .
—f(i—-1,j+1)+f(i+1,j—1)—f(i—-1j—-1)],

@6:X(X2+y2)1 @7:y(xz+y2)1 (Cld)
1
pg=(X*+Yy?)?, (Cle (9§f(i,j)=f(i,j+1)—f(i,j—1)—Z[f(i+1,j+1)
are used to expand a functidi{x,y) in two-dimensional —f(i+1,j—-1)+f(i—1,j+1)—f(i—1j—-1)],
space,
b A (i) =2[f(I+1))+f(i—1)+f(i,j+1)+f(i,j—1)]
fxy)=2, aigi. (C2)

—%[f(i%—l,j+1)+f(i—1,j+1)+f(i—1,j—1)

The coefficient{a;|i=0,1, . .. b} are determined b val-
ues off(x,y) at the point &,y) and other points in its vicin- +f(i+1j—21)]-6f(i,j).

APPENDIX D: TRANSFORMATION MATRIX AND STENCILS FOR D3Q13 MODEL

The transformation matri¥ for the 13-velocity model in 3BD3Q13 [49] is

(pl 1 1 1 1 1 1 1 1 1 1 1 1
(ixl o 1 -1 1 -1 0o 0 0 0 1 1 -1 -1

Gyl o 1 1 -1 -1 1 -1 1 -1 0 0 0 O

(4 o o o o O 1 1-1 -1 1 -1 1 -1

(€| -12 1 1 1 1 1 1 1 1 1 1 1 1
(3P o 1 1 1 1 -2 -2 -2 -2 1 1 1 1

(Pl | = o 1 1 1 1 o0 ©o0o ©0 0-1 -1 -1 -1]. (D1)
(Pxyl o 1 -1 -1 1 0 0 0 0 0O 0 0 O

(py2 o o o 0O O 1-1 -1 1 0 0 0 0O

(P2o o o o o O O O o o0 1-1 -1 1

(¢y] o 1 -1 1 -1 0 0 O 0 -1 -1 1 1

(¢, 0o -1 -1 1 1 1 -1 1 -1 0 0 0 O

(¢4l o o 0 O Oo0-1 -1 1 1 1 -1 1 -1
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The stencils for the gradie® and the Laplacian opera-
torsA are given as the following for the D3Q13 model. Only
the 9 andA* are given becausg andg; can be easily
constructed based orf . The polynomials used to obtain the
finite-difference operators are

vo=1, (D2a)

P1=X, @2=Y, @3=Z, (D2b)
Pa=(X>+y*+7%), @s=(2*—y?—7%),

e6=(X"=Y%), @7=XY, 8=YZ, ®9=2% (D20

P1=2(X*—Y?).

(D2d)

P10=X(Y2—2%), @u=y(Z2—x?),

The finite-difference operators are

PHYSICAL REVIEW E 68, 036706 (2003

1
ZA (10 =5+ 1]+ 100~ (i~ 1j+1k)

R+ 1j— 1K) —f(i—1,j—1Kk)
+(i+1j,k+1)—f(i—1,j,k+1)
+(i+1j,k—1)—f(i—1j,k—1)],

1
A*F(0j, k0 =Z[F+ 1+ 1))+ (i~ 1 +1K)

FE(i+1j—1K) +f(i—1j—1K)
(0, +1k+ 1)+ F(i,j—1k+1)
(0, +1k—1)+f(i,j—1k—1)
i+ 1, k+1)+f(i—1,j,k+1)
i+, k—1)+f(i—1,j,k—1)]
—3f(i,j k).

APPENDIX E: TRANSFORMATION MATRIX AND STENCILS OF D3Q15 MODEL

The transformation matri for the 15-velocity model in 3BD3Q15 is

(ol 1 1 1 1 1 1 1
(el -2 -1 -1 -1 -1 -1 -1
(e 16 —4 -4 -4 —4 —4 —4
(i 0o 1 -1 0 0 0 0
(0 0O -4 4 0 0 0 ©
(| 0O 0 0 1-1 0 0
(| 0O 0 0 -4 4 0 0
Gll=l o o o o o 1 -1
(a 0 0 0 0 0 -4 4
(3p,] 0 2 2 -1 -1 -1 -1
(Pul o 0o 0 1 1-1 -1
(Py o 0 0 0 0 0 O
(pyd 0o 0 0 0 0 0 O
(P 0 0 0 0 0 0 O
(Vg 0o 0 0 0 0 0 O

The finite-difference operators are

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 1 -1 -1 1 1 -1 -1
1 1 1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 -1 -1 1 1 -1 -1 1
1 1-1 -1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 -1 1 1 -1

3 1
R0 = ZIH G+ L0 = f(i =1,k 1= 7l (i + L1+ 1kt 1) = (i =L+ Lk+ 1)+ (i + 1]~ Lk+1)

(= 1j—1k+ 1)+ f(i+1j+lk—1)—f(i—1j+1k—1)+f(i+1j—1k—1)—f(i—1j—1k—1)],

A*f(i,j,k)zg[f(i +1,j,k)+f(i—21j,K)+f(,j+1k)+f(i,j—1K)+f(i,j,k+1)+f(i,j,k=1)]

1
— gL+ LR D)+ f( =1+ Lk D+ (1)~ Lkt 1)+ (=1 =L+ )+ (i + 1+ 1k—1)

Ff(i—1j+1k—1)+f(i+1j—1k—1)+f(i—1j—

036706-20

1k—1)]—8f(i,j,k).



THEORY OF THE LATTICE BOLTZMANN METHOD:. . ..

PHYSICAL REVIEW E 68, 036706 (2003

APPENDIX F: TRANSFORMATION MATRIX OF D3Q19 MODEL

The transformation matrii for the 19-velocity model in 3BD3Q19 model is

1 1 1 1 1 1 1 1 1 1 1 1 1 1

-3 -11 -11 -11 -11 -11 -11 8 8 8 8 8 8
12 -4 -4 -4 -4 -4 -4 1 1 1 1 1 1
0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0
0 -4 4 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0
0 0 0 1 -1 0 0 1 1 -1 -1 0 0 0 0 1 -1 1 -1
0 0 0 -4 4 0 0 1 1 -1 -1 0 0 0 0 1 -1 1 -1
0 0 0 0 0 1 -1 0 0 0 0 1 1 -1 -1 1 1 -1 -1
0 0 0 0 0 -4 4 0 0 0 0 1 1 -1 -1 1 1 -1 -1
0 2 2 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -2 -2 -2 -2
0 -4 -4 2 2 2 2 1 1 1 1 1 1 1 1 -2 -2 -2 -2
0 0 0 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 0 0 0 0
0 0 o -2 =2 2 2 1 1 1 1 -1 -1 -1 -1 0 0 0 0
0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1
0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0
0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1 0 0 0 0
0 0 0 0 0 0 0 -1 -1 1 1 0 0 0 0 1 -1 1 -1
0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 -1 -1 1 1

The row vector oM is ordered a$p|, <e|1 <8|a <jx|a (ayl, <jy|a <qy|v <jz|a <QZ|1 <3pxx|a <377xx|! <pww|a <7Tww|v <pxy|v <pyz|v
(Pxd, (@xl, (@yl, and(e,|, where(3m,,| and(m,,| are fourth-order moments, ara,|, (¢,|, and(¢,| are third-order
momentg 50].

The finite-difference operators are

e f(i,j,k)=f(i+1j,k)—f(i—1j,k— %[f(i +1j+1K)—f(i—1,j+1k)+f(i+1j—-1k) —f(i—1j—1k)
+f(i+1,j,k+1)—f(i—1,j,k+1)+f(i+1,j,k-1)—f(i—1,j,k—1)],
A*f(i,j,k)=2[f(i+1,j,k)+f(i—1,j,k)+f(i,j+1k)+f(,j—1k)+F(,j,k+1)+1(i,j,k=1)]
- %[f(i +1j+1k)+f(i—1j+1k)+f(i+1,j—1K+f(i—21,j—1k +f(i,j+1k+1)

+f(i,j—1k+1)+f(i,j+1k—1)+f(i,j—1k—1)+f(i+1,j,k+1)+f(i—1j,k+1)
+f(i+21,j,k=1)+f(i—1j,k=21)]—9f(i,j,k).

APPENDIX G: ANALYSIS OF THE 2D LBE MODEL
WITH AN OCTAGONAL VELOCITY SET
AND INTERPOLATIONS

unit speed. With the same notations as in Appendix A, we
have

This appendix provides an analysis for the lattice Boltz- (ix=(01,0-w,-1,~w,0w)r, (Gla
mann model with “octagonal” velocity se{®7-32. For the
sake of simplicity, we restrict our analysis to the model with
nine velocities, i.e, one zero velocity and eight velocities of (jy|=(0,0w,1,0,~w,— 1,—w)r, (G1b
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wherew=1/,/2, and the labeling of the velocities is 0 for
the zero velocitycy, andc; (i=1-8) for nonzero velocities,
starting with ¢; along thex axis in the counterclockwise
order. The parameteris introduced for the sake of general-
ity: whenr=1 (which is the athermal model using the ve-
locity set presented in Ref27]), the velocities along the
axial directions, i.e.¢; 35 7, are advected from one grid point
to another, while those along the diagonal directions, i.e., 1
Cr468 Need to be interpolated after advection. a_ =—(r+2)r
We consider the second-order central interpolation to set 4
the “propagation” rules,

ap=(1+r)(1-r), (G3b)

1
a+=§(r—1)r, (G30

and

(G4a

1
fi(r=a_Ti(n—e)+agh(r t)+a.Fi(r+e), 8=5(V2+1(2-1), (G4b

(G2

wheref; denotes the postcollision value ff, g denotes the
vector linkingr; to one of its neighboring lattice points along
the direction of velocityc;, and the interpolation coefficients

ag%(r—ﬁ)n

(G4o

for the axial and diagonal directions are, respectively, givent should be noted that the above interpolation is only used as

by

an example, and could easily be replaced by others, as, for
instance, those used in Ref&7-32.

1 h . .
a =>(r+1r, (G3a _For the octagonal velocity set, the transformation matrix
2 M is
<p| 1 1 1 1 1 1 1 1
(il 0 1 w 0 —» -1 —w 0 w
(Jy| 00 (o] 1 @ 0 w -1 —w
(Pyl 0 1 0 -1 0 1 0 -1 0
(Pgyl | = 0 0 1 0 -1 0 1 0o —-1], (GH)
(€] -8 1 1 1 1 1 1 1 1
(Qy 0 1 —w 0 w -1 w 0 —w
(qy| 0 0 —w 1 —w 0 w —1 w
(g] 01 -1 1 -1 1 -1 1 -1
|
wherew=1/\2. The diagonal relaxation matrix is . 9 ,
V= azp+ —(jx+iy), (G709
S=diag(0,0,0Sx,Sxy :Se SqSq+Ss) (GO
(eq)_—
where we have set the relaxation rates dgrand gy to be Uiy = Calxy: (G7d
equal.
The equilibria of the nonconserved moments are P
| £ €= ap+ y,(j2+2). (679

( )__ _ .

X (lx Iy 9t (G73 For all practical purposes, we can sej=y,=0, as they
have no effect on the hydrodynamic behavior of the system.
In what follows, we shall setv3=0 and lety, be a free

The isotropy of the shear viscosifg5] requires that
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3001 (p) octagon '

[ (a) square

FIG. 5. Thek dependence of the normalized
viscosity, v(k)/vq, for two LBGK models, with
v9=0.001. (@) The normal D2Q9 LBGK model
on a 2D square lattice without interpolation and
with 7=0.503. (b) The octagonal LBGK model
with r=1 andr=0.504.

200

100

of 0
0 /2 m 0 /2 m
k k
1 1) [1+c\[1 1 r?
i N _ = v=—(1+¢Cy) ———), (G10
( Sxy 2) l-c; ( Sxx 2) . ©8) 4 ! Syx 2

_r2(1 0)(1 1) (G1y

Obviously, for the BGK model§27-32 to satisfy this con- £= 2 ¥lse 2/’
dition, we must set,=0. The sound speed is where 6,=2c2/r?=(8+ a,)/9. For the LBGK model,c,

=0 ands,,=s.=1/7. The above results are obtained by the

inean dispersion equation analysis and verified by the

o (linean di i [ lysi d ified by th
c=[1+ 22 (Gg  (nonlineay Chapman-Enskog analysis plus some simulations
° 3 8 in which one analyzes the relaxation of a flow with a peri-

odic shear wave as initial condition.
The equilibrium distribution functions obtained from the

and the shear and bulk viscosities are, respectively, given bgquilibria of the moments ar@ssuminga;=0)

r

i
(1=69p= i, =0
(eq) 1 . 1 N2 - .
fiT¥=q gl ospt2(c-D+ {4 D= (2=yai-iy |, 1=1357 (G12
. l . 2 .. .
| gl dp2(G- DT HAG D =l i} |, 122,468

Whenr=1, ¢cs=1/2 (ap=—7/2), andy,=1, the above which are derived from the Maxwellig2,43.
equilibria reduce to that of the LBGK model, The analysis of the dispersion equati@i. Appendix B
and Ref.[45]) shows the non-hydrodynamic effects due to
feD=w,p{1+4c-u+8(g-u)2—2u?}, (G133 the discreteness of the LBE system, i.e., the small spatial
scale behaviors of the system. Here we shall only shovk the
o dependence of the shear viscosity Figure 5 shows the
12, 1=0, v(k)/ vy along three directions?=0, #/8 (22.5°), andnr/4

w;= . G13 . : . .
" l1/16, i+#0, ( b (45°), whered is the polar angle dk, andv is the viscosity
200 7
100 (a)r—os N (b)r=1.1 I, \\
I
|
s - 100 ! FIG. 6. Thek dependence of the normalized
= 50l 7 “Ne=n/4] I . .
3 , 5 / viscosity, v(K)/ vy, for the octagonal BGK model,
. ! \ with v,=0.001 andr#1. (@ r=0.9 and 7
-~ - ponse e ~0.504 94.(b) r=1.1 and7~0.50331.
0 _1_’./-i—"" - 0
0 /2 7
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at k=0 as given by Eq(G10). Figures %a) and 5b) illus- 30 yrr ' oeo
trate the behavior ob(k)/v, for the usual D2Q9 LBGK
model on a 2D square lattice and the 2D nine-velocity oc-
tagonal model with interpolations along diagonal directions
(r=1), respectively. Clearly, the use of octagonal velocity
set does not improve the isotropy. To the contrary, the oc-
tagonal model displays a much larded(10%)] anisotropic
effect in v(k)/ v, than its counterpart on a 2D square lattice.
Because the octagonal model has much larger numerical vis- :
cosities, it is much less sensitive to disturbances of small 0 ”éz
scales, thus much more stable numerically. In particular,
since the value o¥(k)/v, for the octagonal model reaches  FIG. 7. Thek dependence of the normalized viscosit{k)/ v,
its maximum atk=# along the lattice lines {=0), the for the octagonal MRT model, with,=0.001. Other parameter
model is not sensitive to the spurious staggered modg  values arec;=0.4, a,=—6, a3=0, 5,=1.60, 5,=1.84,r=0.6,
the checkerboard pattern of wavelengih\®e also compute andsy,=1.96875.
v(k)/vy for the octagonal LBGK model withr#1 or r
#4/2, i.e., with interpolations applied to all eight directions. large acoustic disturbance. Second, it is not possible for the
Figures §a) and 6b) show the behavior of(k)/v, for the = LBGK model to incorporate the stretching factointo the
2D nine-velocity octagonal model with interpolations ap- equilibriaa priori. It can be shown that the octagonal LBGK
plied to all eight directions, and far=0.9 andr=1.1, re- model would not be able to maintain the Galilean invariance
spectively. Similar to the case of=1, the octagonal model forr#1. And third, the LBGK models do not have the flex-
displays large anisotropy when interpolations are applied tability to optimize certain properties. In contrast, the MRT
all eight directions (#1 orr#/2). It should be noted that models have the freedom and capability to optimize certain
Fig. 6(b) shows the case that the octagonal model has beproperties. As an example, Fig. 7 showék)/vy for the
come linearly unstable along the directiondsf /8 because MRT model with the octagonal velocity set. It is obvious that
v(K) becomes negative in a wide rangekoBased on these the anisotropy ofv(k)/ v, at largek is much reduced.
results, we conclude that, when compared to the LBGK Finally, we would like to mention that we have also ana-
model without interpolation, the octagonal LBGK model is lyzed a more elaborate LBGK model on a 2D octagonal lat-
much more anisotropic and has much larger numerical vistice with three speed®, 1, and 2 and 17 velocitieg27].
cosities due to interpolations. Thus, the interpolations whicHOur observation can be summarized as follows. First, the
are less symmetric than the velocity set can easily destroy thaddition of a second velocity s¢of speed 2 does not im-
symmetry properties brought by the velocity set and, in turnprove the isotropy of the system. And second, when the
dictate the symmetry properties of the model as a wholegnergy-conservation constraint is imposed, the model dis-
To fully retain the symmetry of the velocity set, the inter- plays exactly the same spurious coupling between the energy
polations with a comparable symmetry may have to beand shear modes, as shown in Sec. Il C and Fig. 2. This
used (with a compromise between anisotropy and non-coupling strongly depends on the Prandtl number Pr. In par-
hydrodynamical behavigr ticular, the value ofk, at which the spurious coalescence
The limitation of the LBGK model becomes apparent inoccurs(cf. Sec. Il O decreases a$r—1| decreases. This
this analysis. First, the LBGK model has much narrowerposes a severe limitation on the energy-conserving LBE
stable ranges of adjustable parameters when compared to thwdels because for many fluids of practical interest the
MRT counterpart, as shown in R¢#5]. For example, with  Prandtl number is close to(&.g., Pr=0.71 for aip. We also
the MRT models one can properly maintain a suitable ratiobserve that the D2Q17 MRT model with octagonal veloci-
between the bulk and shear viscosities to help stabilize thties has sufficiently large stable ranges of the sound speed
system by reducing undesirable acoustic effects. This is pags, the viscosityrv, and the thermal conductivity. The
ticularly useful when using poor initial conditions leading to details of this analysis shall be published elsewhere.
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