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Theory of the lattice Boltzmann method: Acoustic and thermal properties
in two and three dimensions
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The focus of the present work is to provide an analysis for the acoustic and thermal properties of the
energy-conserving lattice Boltzmann models, and a solution to the numerical defects and instability associated
with these models in two and three dimensions. We discover that a spurious algebraic coupling between the
shear and energy modes of the linearized evolution operator is a defect universal to the energy-conserving
Boltzmann models in two and three dimensions. This spurious mode coupling is highly anisotropic and may
occur at small values of wave numberk along certain directions, and it is a direct consequence of the following
key features of the lattice Boltzmann equation:~1! its simple spatial-temporal dynamics,~2! the linearity of the
relaxation modeling for collision operator, and~3! the energy-conservation constraint. To eliminate the spuri-
ous mode coupling, we propose a hybrid thermal lattice Boltzmann equation~HTLBE! in which the mass and
momentum conservation equations are solved by using the multiple-relaxation-time model due to d’Humie`res,
whereas the diffusion-advection equation for the temperature is solved separately by using finite-difference
technique~or other means!. Through the Chapman-Enskog analysis we show that the hydrodynamic equations
derived from the proposed HTLBE model include the equivalent effect ofg5CP /CV in both the speed and
attenuation of sound. Appropriate coupling between the energy and velocity field is introduced to attain correct
acoustics in the model. The numerical stability of the HTLBE scheme is analyzed by solving the dispersion
equation of the linearized collision operator. We find that the numerical stability of the lattice Boltzmann
scheme improves drastically once the spurious mode coupling is removed. It is shown that the HTLBE scheme
is far superior to the existing thermal LBE schemes in terms of numerical stability, flexibility, and possible
generalization for complex fluids. We also present the simulation results of the convective flow in a rectangular
cavity with different temperatures on two opposite vertical walls and under the influence of gravity. Our
numerical results agree well with the pseudospectral result.
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I. INTRODUCTION

In spite of its success in solving various challenging flo
problems involving athermal~or isothermal! fluids, the lat-
tice Boltzmann equation~LBE! has not been able to hand
realistic thermal~and fully compressible! fluids with satisfac-
tion. Even though there has been a continuous endeavo
this area for obvious reasons@1–36#, the prospect of apply-
ing the lattice Boltzmann method to thermo-hydrodynam
is not yet entirely clear. From a practical point of view, t
application of the thermal lattice Boltzmann equati
~TLBE! is hampered by numerical instabilities when the
cal velocity of the flow increases. Even though the equati
for mass, momentum, and energy-conservation laws ca
derived from some existing LBE models, the numerical s
bility of the existing TLBE models is often confined to suc
a narrow region in the parameter space of the transport
efficients and to such small velocities that the LBE simu
tions are limited to flows of relatively small Reynolds num
bers. This poses a severe limitation on TLBE schemes
realistic applications of computational fluid dynamics~CFD!.
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†Present address: National Institute of Aerospace, 144 Rese
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To appreciate what has been accomplished so far an
place the present work in perspective, we begin with a c
cise review of existing work on thermal and compressi
lattice Boltzmann schemes. We classify the existing TLB
models into three categories. The first category, which is a
the simplest approach, is that of passive scalar@2–6#. In this
approach, the temperature is treated as a passive sc
which is advected by the flow velocity but does not affect t
flow fields ~density and velocity!. The flow fields and the
passive-scalar temperature are represented by two sets o
tribution functions: one simulates the Navier-Stokes eq
tion, and the other simulates the advection-diffusion equa
satisfied by the passive scalar driven by the flow@2–5#. Nu-
merically, this is not very efficient because there is no ne
to use a full set of distribution functions to simulate a pass
scalar, even though this numerical inefficiency can be
proved somewhat by using some redundant degree of f
dom in some LBE models@6#. The limitation of this ap-
proach is obvious, and we shall have no further discussio
it.

The second category of the TLBE models includes va
ous shock capturing schemes based on the lattice Boltzm
method to treat fully compressible Euler@7–9# or Navier-
Stokes@10–15# equations. The existing LBE Euler schem
are constructed in several ways. The first approach use
interpolated advection such that the viscous term can be
celed out in the leading order of the Taylor expansion for

rch
;
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distribution function@8#. The second one solves the discre
velocity model of the Boltzmann equation by a finit
difference scheme@9#. It should be noted that the equilibrium
distribution functions in all these LBE Euler schemes a
polynomials of hydrodynamic variables: density, veloci
and internal energy~or temperature!, and therefore the Mach
number cannot be too large. There are also several L
models for the compressible thermal Navier-Stokes eq
tions @10–15#. In order to allow large speeds, the advecti
step is adapted to the local flow velocity@37#, thus it is no
longer a simple process of hopping from one grid point to
next, and interpolations have to be used. Interpolation
introduce undesirable numerical artifacts which can aff
small scale details, and thus its effects in the LBE meth
need to be considered more carefully. The equilibrium can
a polynomial@10# or other more complicated algebraic fun
tions @11#, or a Kroneckerd function that helps to increas
the Mach number@12–14#. ~This approach is, in fact, relate
to the beam scheme@38,39#.! Another approach is to use
large set of discrete velocities with a set of distribution fun
tions of Maxwellian form for particle number density an
another for particle energy density@15#. This scheme effec-
tively doubles the number of discrete velocities and is i
plicit @15#. It is important to note that the numerical analys
for the LBE shock capturing schemes is yet to be done—
numerical accuracy of these schemes remains by and l
unknown. It is not clear what benefit these schemes can o
especially when there are other more mature shock captu
schemes based on kinetic theory~cf. Refs.@40,41# and refer-
ences therein!. We shall not further discuss the LBE mode
in the second category because it is beyond the scope o
present work.

The third category of the TLBE models corresponds
their athermal counterparts with energy-conservation c
straint and possibly other modifications. To the best of
knowledge, most energy-conserving TLBE models in t
third category are characterized by low~or moderate at best!
Mach number and Boussinesq approximations. The ess
of Boussinesq approximation is that the density variat
only appears in the forcing term~the buoyancy force!, and all
the transport coefficients~viscosities and heat conductivity!
and the sound speed are~almost! independent of tempera
ture. There has been a number of proposals to make
energy-conserving lattice Boltzmann equation capable
simulating thermohydrodynamics.

~1! To increase the number of velocities@16,18#, and to
include higher-order nonlinear terms~in flow velocity! in the
equilibrium distribution functions@19#.

~2! To use equilibrium distribution functions dependin
on variable temperature@7,16,17#.

~3! To implement an advection with finite-differenc
schemes, such as the Lax-Wendroff scheme, to improve
merical stability by increasing numerical dissipatio
@20,21#.

~4! To use two sets of distribution functions for partic
number density, and energy density, which effectiv
doubles the number of discrete velocities@22–25#. This is
based on a linearization of temperature dependence of
distribution functions and the fact that the Gaussian qua
03670
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tures associated with the LBE models can preserve the
ergy and heat flux exactly@42–44#.

~5! To use a velocity set of better symmetry, which do
not naturally coincide with a lattice structure in physic
space@27–31#. Interpolations in physical space must be us
in this case, and these schemes@27–31# are no longer
conservative—interpolations destroy local conservat
laws. Often the symmetry of the spatial interpolations us
in these schemes differs from that of the discrete velocity
thus the anisotropic nature of these interpolations can dic
the isotropic property of these schemes regardless the s
metry of the discrete velocity set. In addition, interpolatio
can increase numerical dissipation, particularly on sm
scales comparable to the size of grid spacing~cf. Appendix G
and Ref.@45#!.

~6! To use energy-dependent discrete velocities@32#. In
this case, interpolations in velocity space must be applie
addition to spatial interpolations. Specifically, because
directions of discrete velocities are fixed, the interpolatio
must consider energy variations. This may exacerbate
merical dissipation and other artifacts due to spatial inter
lations, and the scheme@32# is no longer conservative. Thes
numerical artifacts can be much more severe than in the
with spatial interpolations only@46#, and are particularly
strong in small scales comparable to the size of grid spac
~cf. Appendix G!.

~7! To use a hybrid scheme in which the flow simulatio
is decoupled from the solution of the temperature equat
Specifically, the flow simulation is accomplished by usi
the lattice Boltzmann equation, while the temperature eq
tion is solved by using finite-difference schemes@33,34# or
other means@35#.

In spite of all the effort, the success of the thermal latt
Boltzmann equation is still rather limited in the sense tha
is not yet as competitive as the athermal lattice Boltzma
equation, and it cannot perform as well as traditional C
methods in many aspects. As it has been noticed previou
the main difficulty the thermal lattice Boltzmann equatio
faces is the numerical instability. Although there are so
discussions of the numerical instability in the TLBE schem
@1,18,20,28,36#, so far the true nature of the numerical inst
bility is still not well understood.

It is the aim of this work to first present a systema
analysis of the defects and numerical instability of the TLB
schemes, and then to propose an approach to eliminate t
defects and to improve the numerical stability. The scope
this work is limited to the TLBE schemes for low~or possi-
bly moderate! Mach number flows. The hydrodynamic sy
tem considered here has correct mass and momentum
servation equations and correct acoustics. However, we
not include nonlinear dissipation terms in the temperat
equation for two reasons. First, these terms are not impor
for acoustics~which is the focus of the present work!, and
second, they are, in fact, negligible for nearly incompressi
fluids @35,47#. Our analysis begins with a comparative ana
sis of athermal and thermal lattice Boltzmann equations.
find that a very severe defect of the energy-conserving lat
Boltzmann models is the spurious algebraic coupling
tween the viscous mode and the energy mode of the lin
6-2
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THEORY OF THE LATTICE BOLTZMANN METHOD: . . . PHYSICAL REVIEW E 68, 036706 ~2003!
ized evolution operator of the system~cf. Appendix B!.
The location in k-space where this spurious couplin

takes place is highly anisotropic and can occur at a v
small value ofk or on a continuous range ofk along certain
directions, and it depends on the Prandtl number Pr. Also,
energy-conserving TLBE models are prone to numerical
stabilities, which can be instigated by fluctuations of a wid
ranged scale. In contrast, for the athermal LBE model
similar coupling occurs only when the wave numberk is near
p, making the athermal LBE models only sensitive to t
small scale fluctuations. Hence the athermal LBE models
be extremely stable if small scale fluctuations are caref
dealt with@45#. We also observe that the spurious mode c
pling between the energy and shear modes cannot be
moved by increasing the number of discrete velocities—i
intrinsic to the simplicity of the spatial-temporal evolution
the lattice Boltzmann equation. To overcome this difficul
we propose a hybrid lattice Boltzmann equation in which
mass and momentum conservation laws are solved by
usual athermal lattice Boltzmann equation, while t
advection-diffusion equation satisfied by the temperatur
solved separately by finite-difference technique~or by other
means!. In this approach the energy-conservation law is
coupled from the mass and momentum conservation la
and therefore the spurious mode coupling is removed
addition to the improvement of numerical stability, the pr
posed hybrid TLBE~HTLBE! method is numerically effi-
cient because it uses less degrees of freedom than en
conserving TLBE models.

Since in the present work we adopt the strategy of a
brid lattice Boltzmann method which has been advoca
previously @33,34#, it is imperative to point out the differ-
ences between the method proposed in the present work
the existing one. First and foremost, we use the multip
relaxation-time~MRT! collision model due to d’Humie`res
@1,45,49,50# and abandon the popular single-relaxation-tim
model due to Bhatnagar, Gross, and Krook~BGK! @51#, i.e.,
the lattice BGK model. We shall demonstrate that the latt
BGK model ~LBGK! is intrinsically inferior to the MRT
model, and it is largely responsible for numerical instabilit
observed in the TLBE simulations. Second, because of
MRT model, appropriate coupling between the temperat
mass, and momentum can be easily accomplished, and th
not possible for the lattice BGK models. Specifically, t
ratio of specific heats (g5CP /CV) in the proposed schem
is an adjustable parameter, as opposed to a fixed consta
the previous ones@33,34#. We do not explicitly use the
Boussinesq approximation, and thus are able to cons
temperature-dependent transport coefficients and othe
fects. Third, the finite-difference stencils used for the te
perature equation in the present work are uniquely de
mined by the dispersion equation analysis to optimize
linear stability of the system. And fourth, we avoid usin
interpolations in the proposed TLBE scheme. Because
finite-difference stencils used for the temperature equa
have the same symmetries as the underlying discrete velo
set in the model, the isotropy determined by the discr
velocity set remains intact. With the above new features,
03670
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proposed TLBE scheme can significantly enhance the
merical stability.

The remaining part of the paper is organized as follow
Section II reviews the athermal lattice Boltzmann mod
without the energy-conservation constraint. These models
studied within the MRT-LBE framework~or the moment
method! @1,45,49,50#. Through the analysis of the linearize
dispersion equation@45#, constraints on various paramete
in the equilibria of nonconserved moments are obtained. S
tion III studies the lattice Boltzmann models with the energ
conservation constraint. The analysis of the linearized dis
sion equation is applied to the energy-conserving latt
Boltzmann models. Transport coefficients and the sou
speed are determined for various models in two and th
dimensions. Based on the linear analysis, we conclude t
due to a spurious mode coupling and numerical instabili
which can be instigated by fluctuations of wide-rang
scales, the energy-conserving lattice Boltzmann mod
~BGK or MRT models! are not suitable for numerical simu
lations. It is shown that the spurious mode coupling can
be removed by increasing the number of discrete velocit
Based on analysis presented in Sec. III, Sec. IV propos
hybrid TLBE scheme that uses the athermal lattice Bo
mann equation for the mass and momentum conserva
laws, and solves the diffusion-advection equation for
temperature by using finite difference~or other techniques!.
The dispersion equation analysis is applied to the HTL
schemes in two and three dimensions to ensure the~linear!
stability. We observe that once the spurious coupling is
moved, the numerical stability improves drastically. Sect
V presents simulations of the convective flow in a thre
dimensional rectangular cavity with two opposite vertic
walls at different temperatures by using the 13-veloc
HTLBE model. Critical Nusselt number obtained by usin
the HTLBE scheme agrees well with the pseudospectral
sult. Finally, Sec. VI concludes the paper. Several append
provide technical details referred to in the text. Appendix
outlines the construction of the transformation matrix by u
ing the D2Q9~2-dimensional 9-velocity! model as an ex-
ample. Appendix B gives a concise discussion on the dis
sion equation analysis within LBE framework. Appendix
provides the finite-difference stencils for the gradient and
Laplacian operators for the D2Q9 model. Appendixes D
provide the transformation matrices and the stencils for
gradient and the Laplacian operators for the D3Q13, D3Q
and D3Q19 models in three dimensions, respectively.
nally, Appendix G studies the two-dimensional~2D! nine-
velocity ‘‘octagonal’’ LBGK model@27–31# through the dis-
persion equation analysis and discusses the effects du
interpolations.

II. BRIEF REVIEW OF ATHERMAL LATTICE
BOLTZMANN EQUATION

A. Multiple-relaxation-time lattice Boltzmann equation

There are three discretizations involved in the latt
Boltzmann equation: velocity space, physical space, and t
discretizations, i.e., phase space and time discretizati
Moreover, these three discretizations are coupled togethe
6-3



o
nd
w

is

se
f

gl
or

or
e

ua

-

o-
ts
he

ed
n

ion:
s

cal
,

r

s-
g
mi-
ties

its
ter
ax-

nd
e
le

e
ors

del
and
uc-

of
ad-
r of
nd
ties
ide

am-
he
und

om,
ct
m-
te

e-

P. LALLEMAND AND L.-S. LUO PHYSICAL REVIEW E 68, 036706 ~2003!
that the lattice Boltzmann equation has a very simple tw
step spatial-temporal evolution consisting of collision a
advection. The simplicity of the LBE dynamics has a dra
back in terms of the numerical instability.

We consider the lattice Boltzmann equation as a fully d
crete dynamical system evolving on aD-dimensional dis-
crete lattice based on a set ofB5(b11) discrete velocities,

$ci u i 50, . . . ,b%,

according to a set of rules which enforces the local con
vation laws. With the discrete velocity set given, a set oB
real numbers on each lattice pointr j and at a discrete time
tn ,

$ f i~r j ,tn!u i 50, . . . ,b%,

is used to represent the discretized analog of the sin
particle distribution function of a real gas. A column vect
in phase space is denoted by a ‘‘ket’’ vector,

u f ~r j ,tn!&5„f 0~r j ,tn!, f 1~r j ,tn!, . . . ,f b~r j ,tn!…T,

whereT is the transpose operator. Without losing any inf
mation,B (5b11) number of distribution functions can b
linearly mapped to an equal number of moments,

$mi~r j ,tn!u i 51,2, . . . ,~b11!%,

i.e., the spaceF5RB spanned byu f & can be linearly mapped
into another spaceM5RB spanned by

um~r j ,tn!&5„m1~r j ,tn!,m2~r j ,tn!, . . . ,mb11~r j ,tn!…T,

by an invertible linear mappingM such that

um&5Mu f &, u f &5M21um&.

In the setting of the generalized lattice Boltzmann eq
tion or the moment method, as proposed by Ref.@1# and
advocated by others@45,49,50#, the lattice Boltzmann equa
tion can be written as

u f ~r j1ci ,tn11!&5u f ~r j ,tn!&2M21S@ um~r j ,tn!&

2um(eq)~r j ,tn!&], ~1!

where elements of the diagonal matrixS are relaxation rates
$si u i 51,2, . . . ,(b11)%, i.e.,

S5diag~s1 ,s2 , . . . ,sb11!,

and um(eq)& is the equilibrium-moment vector, the comp
nents of which are the equilibria of the momen
@1,45,49,50#. Therefore, the collision step is executed in t
03670
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spaceM of moments, while the advection step is perform
in the spaceF of distribution functions so that the relaxatio
rates for different nonconserved modes can be adjusted.

There are three elements in the above evolution equat
the linear mappingM, the equilibrium values of the moment
$mi

(eq)u i 51,2, . . . ,(b11)%, and the relaxation matrixS. The
equilibria of the moments should depend only on the lo
values of the conserved moments~mass density, momentum
and energy for TLBE models!. The values of the relaxation
rates$si u i 51,2, . . . ,(b11)% in S are determined by a linea
analysis@45#.

For a given velocity set on symmetric lattices, the tran
formation matrixM can be easily constructed by applyin
the Gram-Schmidt orthogonalization procedure to mono
als of Cartesian components of the discrete veloci
$cix

mciy
n um,n>0% in two dimensions~and $cix

l ciy
mciz

n u l ,m,n
>0% in three dimensions! @1,45,49,50#. Appendix A dis-
cusses the construction of the transformation matrixM on
symmetric 2D square lattices and 3D cubic lattices.~For
asymmetric lattices, see Ref.@52#.!

We note that the LBGK model is a special case of
MRT counterpart: by choosing a special set of parame
values in the equilibria of the moments and one single rel
ation ratesi51/t, the MRT LBE model reduces to the BGK
model@45#. In the MRT setting, all modes are orthogonal a
can be controlled individually. This therefore allows th
MRT model to include the maximum number of adjustab
parameters. The dispersion equation analysis~von Neumann
analysis!, as briefly discussed in Appendix B, can provid
insights into hydrodynamic and nonhydrodynamic behavi
and the~linear! numerical stability of the underlying lattice
Boltzmann model, and in turn determines thelinearly opti-
mal values of the adjustable parameters in the MRT mo
@45#. Because of the equivalence between the moment
discrete velocity representations, it is obvious that introd
ing more and more velocities means including moments
higher and higher orders, and therefore more and more
justable parameters. We assume that a minimum numbe
discrete velocity is required by the underlying physics, a
the choice of the velocity set affects the numerical proper
of the model. The dispersion equation analysis can prov
an understanding of the influence of the adjustable par
eters on the ability of the model to simulate fluid flows—t
parameters appear in the transport coefficients, the so
speed, and Galilean-invariance factor as functions ofk. We
observe that beyond a certain number of degrees of freed
adding higher order terms in the equilibria will not affe
hydrodynamic behavior, even though this may help to i
prove stability and Galilean invariance. We will demonstra
this point through examples in what follows.

B. 13-velocity model on a 2D square lattice

We use a thirteen-velocity model with four speeds~0, 1,
A2, and 2! on a two-dimensional square lattice~D2Q13S
model! as an example. The labeling of the velocities is d
picted in Fig. 1. The transformation matrixM for this model
is
6-4
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^ru

^ j xu

^ j yu

^eu

^pxxu

^pxyu

^«u

^hu
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^qxu
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0 1 0 21 0 1 21 21 1 2 0 22 0

0 0 1 0 21 1 1 21 21 0 2 0 22

228 215 215 215 215 22 22 22 22 24 24 24 24

0 1 21 1 21 0 0 0 0 4 24 4 24

0 0 0 0 0 1 21 1 21 0 0 0 0

140 22 22 22 22 267 267 267 267 34 34 34 34

212 8 8 8 8 26 26 26 26 1 1 1 1

0 24 4 24 4 0 0 0 1 21 1 21 0

0 22 0 2 0 21 1 1 21 2 0 22 0

0 4 0 24 0 23 3 3 23 1 0 21 0

©
. ~2!
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The row vectors inM ~from top to bottom! correspond to the
following moments: the mass densityr ~zeroth-order mo-
ment!, and x and y components of momentum,j x and j y
~first-order moment!, the energye ~second-order moment!,
the components of the stress tensorpxx5( j x

22 j y
2) and pxy

5 j x j y ~second-order moment!, energy square«}e2 ~fourth-
order moment!, energy cubich}e3 ~sixth-order moment!, a
fourth-order momentpxx}epxx , x component of heat flux
qx}e jx ~third-order moment!, x component of the flux of
energy squarehx}eqx ~fifth-order moment!, y component of
heat fluxqy}e jy ~third-order moment!, andy component of
the flux of energy squarehy}eqy ~fifth-order moment!. Note
that the row vectors are not arranged according to the
cending order of the corresponding moments, but the or
ing plays absolutely no role in the analysis.

The equilibria of the nonconserved moments, up to s
ond order inj, are given by@45,53#

m4
(eq)5e(eq)5a2r1b2 j• j, ~3a!

m5
(eq)5pxx

(eq)5 j x
22 j y

2 , ~3b!

FIG. 1. Discrete velocities of the D2Q13S model. The first n
velocities are identical to those for the D2Q9S model.
03670
s-
r-

c-

m6
(eq)5pxy

(eq)5 j x j y , ~3c!

m7
(eq)5« (eq)5a3r, ~3d!

m8
(eq)5h(eq)5a4r, ~3e!

m9
(eq)5pxx

(eq)50, ~3f!

m10,12
(eq) 5qx,y

(eq)5c1 j x,y , ~3g!

m11,13
(eq) 5hx,y

(eq)5c2 j x,y . ~3h!

Among the adjustable parameters in equilibria,a2 , b2, and
c1 are the most important ones. It should be noted that
above equilibria do not include nonlinear terms in terms
momentumj and heat fluxq that are not essential for acou
tic and hydrodynamic behavior of the system. Howev
these nonlinear terms can help to improve Galilean inv
ance of the system by reducing the flow velocity depende
of the viscosity@54#.

The first-order~in k) solution of the dispersion equatio
~cf. Appendix B! gives the sound speed

cs
25

1

26
~a2128!. ~4!

The Galilean invariance constraint requires that

b2513. ~5!

The second-order solution of the dispersion equat
yields the attenuation rates of the hydrodynamic modes. I
ropy of a model is optimized by setting the prefactors
angular dependent terms in attenuation rates to zero. T
terms depend on the adjustable parameters in the mo
hence constraints on these parameters can be obtaine
particular, the isotropy of the transverse mode of the line
ized collision operator~cf. Appendix B! requires that
6-5
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TABLE I. The sound speedcs , the proportional factorA between relaxation ratessxx andsxy as defined
in Eq. ~7!, and the value of parameterc1 , c1* , such thatA(c1* )51, for 2D athermal models on square lattic

Model cs
2.0 A.0 c1*

D2Q9S
1

6
~41a2!

~12c1!

2~21c1!

21

D2Q13S
1

26
~281a2!

~85149c1!

2~1027c1!
2

65

63

D2Q17S
1

34
~601a2!

~527247c1!

2~10541101c1!
2

527

83

D2Q21S
1

14
~321a2!

~487551697c1!

2~169151149c1!
2

4975

133

D2Q25S
1

50
~1681a2!

~37522131c1!

~150081667c1!
2

268

19

D2Q29S
1

2
~81a2!

~3522301407c1!

~39004011583c1!
2

18905

588

D2Q33S
1

22
~1201a2!

~135702259c1!

~5428011409c1!
2

6785
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S 1

s6
2

1

2D5
~85149c1!

2~1027c1! S 1

s5
2

1

2D , ~6a!

c250. ~6b!

Therefore,s65s5 when c15265/63. In general, the isot
ropy constraint for the transverse mode always leads
relationship betweensxx andsxy ~respectively, the relaxation
rates for stressespxx andpxy),

S 1

sxy
2

1

2D5AS 1

sxx
2

1

2D , ~7!

whereA depends on adjustable parameters~such asc1) in
the equilibria. Note that the isotropy of the shear viscos
leads to the relationship betweensxx and sxy such that in
generalsxxÞsxy . This constraint cannot be recovered fro
the simple BGK approximation in whichsi51/t.

With the equilibria of the nonconserved moments giv
by Eq. ~3!, the transport coefficients of the D2Q13S mod
are

n5
1

70
~85149c1!S 1

s5
2

1

2D , ~8a!

z5
1

26
~11113c12a2!S 1

s4
2

1

2D . ~8b!

In particular, whenc15c1* 5265/63 ~i.e., s65s5),

n5
31

63S 1

s5
2

1

2D , ~9a!

z5S 62

63
2cs

2D S 1

s4
2

1

2D . ~9b!
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The positivity of the bulk viscosityz gives the upper bound
for the sound speed:

cs
2,

1

2
~31c1!, ~10!

where Eq.~4! has been substituted. In particular, whenc1
5265/63~i.e., whens65s5), the upper bound of the soun
speed iscs

2,62/63.
It should be noted that the sound speed in athermal L

model is a free parameter and that Eq.~3a! can be rewritten
as

m4
(eq)52~13cs

2214!r113j• j. ~11!

In practice, the numerical value of sound speed is determi
by the linear stability analysis@45#. Specifically, the linearly
optimal value of the sound speed can be obtained num
cally by minimizing the dependence of the eigenvalues of
dispersion equation ink space with respect to a mean flo
velocity. We also note that other parameters@a3 and a4 in
Eqs. ~3!# in the equilibria of nonconserved momen
$mi

(eq)u i 5(D12), . . . ,(b11)% have little effect on the large
scale hydrodynamic~small wave numberk) behavior of the
system, they do, however, play a role at small scales~large
wave numberk). In particular, they affect the numerical sta
bility of the model. Therefore, their values should be ca
fully chosen via linear stability analysis, similar to the wa
the value ofcs ~or equivalentlya2) is determined@45#.

For various 2D athermal LBE models, we provide
Table I the sound speedcs as a function of the parametera2,
the proportionality factorA betweensxx andsxy @as defined
in Eq. ~7!#, and the valuec1* of c1, such thatA(c1* )51, and
hencesxy5sxx . Table I includes models up to 33 velocitie
These models only include the velocities along axial a
6-6
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TABLE II. b2 , An, andAz in 2D athermal models on square lattice.

Model b2 An.0 Az.0

D2Q9S 3 1
6 (12c1) 1

6 (11c12a2)5
1
6 (51c126cs

2)
D2Q13S 13 1

70(85149c1) 1
26(11113c12a2)5

1
2 (31c122cs

2)
D2Q17S 17 1

930(527247c1) 1
102(109117c123a2)5

1
6 (171c126cs

2)
D2Q21S 7 1

23880(487551697c1) 1
168(19717c1212a2)5

1
24(831c1224cs

2)
D2Q25S 25 1

3216(37522131c1) 1
150(371125c123a2)5

1
6 (351c126cs

2)
D2Q29S 1 1

115420(3522301407c1) 1
58(1411c1229a2)5

1
58(3731c12116cs

2)
D2Q33S 11 1

6900(135702259c1) 1
66(289111c123a2)5

1
6 (591c126cs

2)
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diagonal directions. However, our analysis also shows
the results remain qualitatively the same when velocity s
other than along the axial and diagonal directions, such
(61,62) and (62,61), are considered. For instance, i
creasing the number of velocity cannot change the dep
dence ofcs on a2, as given by Eq.~4!, but the numerical
constants in Eq.~4! depend on the velocity set. As the num
ber of velocities and the maximum~particle! speed increase
so does the upper bound of the sound speed, and henc
valid range ofa2 within which cs.0 widens. The similar
observation can be made on parameterc1. These observa
tions are summarized in Table I.

In general, we can write the viscosities as the followin

n5AnS 1

sxx
2

1

2D , ~12a!

z5AzS 1

se
2

1

2D , ~12b!

wheresxx and se are the relaxation rates forpxx}( j x
22 j y

2)
and e} j• j, respectively. Table II provides the value of th
parameterb2 in m4

(eq)5e(eq) @cf. Eq. ~3a!#, An andAz for the
2D athermal models in Table I. The important observation
note here is that once the collision and advection rules
chosen, the large scale hydrodynamic properties of the L
model does not change as the number of discrete veloc
increases.

III. ENERGY-CONSERVING LBE MODELS

In order to simulate thermohydrodynamics, the ene
conservation must be satisfied. Therefore, in addition to
mass density and momentum, there is one more slo
evolving mode that is related to the temperature of real
ids. The energy conservation immediately makes the par
etersa2 andb2 become fixed constants@cf. Eq. ~3a!#, con-
sequently the sound speedcs @which depends ona2 for
athermal models, cf. Eq.~4!# cannot be adjusted by the sam
parameter~s! in the equilibria of the moments as in the athe
mal models, but it depends on other parameter~s! in the equi-
libria. As will be shown below, the kinetic equivalence of th
isothermal sound speed depends only on the discrete vel
set for the model, that is, once the velocity set is given,
isothermal sound speed is a fixed constant, unless additi
degrees of freedom reminiscent of the internal energy in m
03670
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lecular gases is introduced. However, the equivalent a
batic sound speedcs can be tuned with some parameters
the model~other thana2 andb2), and thus one can define a
equivalent ratio of specific heatsg5CP /CV.

A. The acoustic properties

The equilibria of the nonconserved moments for the
ergy conserving LBE models differ from their atherm
counterparts. Besides, the energy-modeum4& becomes a con-
served mode, the equilibrium of the modeum7&5u«& has to
be redefined. For the energy-conserving D2Q13S model

m7
(eq)5« (eq)5a3r1b3e. ~13!

Moreover, in order to achieve Galilean invariance for t
sound and energy modes, we have to include nonlinear c
tributions to the equilibria of nonconserved moments. In p
ticular, we have

q(eq)5~c11h1r1k1e!j, ~14!

whereq5(qx ,qy)5(m10,m12) corresponds to the heat flux
and j5( j x , j y)5(m2 ,m3) is the momentum. The equilibria
of nonconserved moments other thanm85h}e3, m105qx ,
andm125qy remain the same as in Eq.~3!. It turns out that
the parametera3 in m7

(eq) is proportional toc1. Specifically,
for the energy-conserving D2Q13S model, we have the
lowing results obtained via the linear analysis:

a35
1078

13
c1 , ~15a!

h15
17

13
2c1 , ~15b!

k15
2

13
. ~15c!

With the equilibria given above, the sound speed of
model is

cs5Agcs0 , ~16a!

cs05A14/13, ~16b!
6-7
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g5
13

28
~31c1!. ~16c!

The quantitycs0 is the isothermal sound speed of the mod
andg is the ratio of specific heats (5CP /CV), and thuscs is
the adiabatic sound speed. It should be stressed that the
thermal~athermal! sound speedcs0 does not depend on th
adjustable parameters in the model:

cs0
2 5

dp0

dr
5

eK

r
5

1

2B (
i

ci•ci , ~17!

whereB is the total number of the discrete velocities~includ-
ing the zero velocity!, andp0 andeK are the static pressur
and the specific kinetic energy. Equation~17! for cs0 is iden-
tical to the results forcs in Table I with a250. Obviously
the isothermal sound speedcs0 is fixed once the velocity se
is chosen. Changing the relative populations of particles w
different speeds~in order to mimic the effect of the tempera
ture of Maxwell’s distribution in a real gas! has no effect on
sound, which is a dynamic effect. One would probably ne
to use more complicated relaxation equations for the m
ments to be able to modify the speed of sound. Note, h
ever, that one could add some internal degrees of freedo
allow changes in the speed of sound, as exists in molec
gases. A simple LGA model was studied along this direct
@55#.

The immediate ramification of Eq.~17! is that, with the
polynomial equilibria and relaxation-type collision operato
the sound speedcs in the energy-conserving LBE model ca
not have the correct temperature dependence. It is not c
how to construct nonpolynomial equilibria while still insis
ing on Galilean invariance within the LBE framework a
sumed here. This is an intrinsic defect in the ener
conserving LBE models with~linear! relaxational collision.
We note that the models on the triangular lattice seem
have a temperature-dependent sound speed@16,56#. This is
due to the fact that with the triangular lattice, the conditi
sxx5sxy alone guarantees the isotropy~of the viscosity! in-
dependent of the parameterc1. The sound speed in thes
models @16,56# is cs

25g(c1)cs0
2 , where g(c1) is a linear

function of c1. Effectively, the degree of freedom render
by the parameterc1 is used to mimic the temperature effe
by directly relatingc1 to e ~or T). Nevertheless, the isothe
mal sound speedcs0 remains independent of the temperatu
in these models.

The isotropy of the shear mode and that of the heat
require, respectively, that

S 1

s6
2

1

2D5
~85149c1!

2~1027c1! S 1

s5
2

1

2D , ~18a!

s125s10. ~18b!

The coupling betweens5 and s6 is identical to that for the
athermal D2Q13S model@cf. Eq. ~6a!#. Note that the sound
speedcs is a function ofc1 ~the parameter inq(eq)5c1 j) for
the energy-conserving model, as opposed to a function oa2
for the athermal model@cf. Eq. ~4! and Table I#. Thus the
03670
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parameterc1 affects both the sound speedcs and the relax-
ation rates6 simultaneously for energy-conserving mode
In other words, for the athermal models, the coupling b
tween ‘‘energy’’ modee ~which is not a conserved quantity!
and density moder controls the acoustics, whereas in th
energy-conserving models, it is the coupling between
heat fluxq and the momentumj that renders the same effec

B. Transport coefficients

With the energy conservation, the model now has fo
hydrodynamic modes: two relax~energy and shear modes!
and two propagate~sound!. In the large scale limit, the at
tenuation rates of these modes are proportional tok2 and are
given below,

g'5nk2, ~19a!

g65
1

2 S n1
~g21!

g
k D k2, ~19b!

gT5
k

g
k2, ~19c!

where the transport coefficients of the energy-conserv
D2Q13S model are

n5
~85149c1!

70 S 1

s5
2

1

2D , ~20a!

k5
2~130126b3277c1!

143~31c1! S 1

s10
2

1

2D . ~20b!

As expected from what is known in real gases, the therm
diffusivity of the model,k @5l/(rCV)#, is determined by
the relaxation ratess105s12 for the nonconserved momen
corresponding to the heat flux@q5(qx ,qy)#, and is also re-
lated to the coupling parametersc1 andb3 in the equilibrium
of the fourth-order momentm75«}e2 @cf. Eq. ~13!#. The
above formulas thus recover the results for a real gas.
can, in principle, adjust the parametersc1 andb3. It should
also be noted that in the energy-conserving D2Q13S mo
there is no bulk viscosity.

In addition to the D2Q13S model, we also study a num
of energy-conserving models with more discrete velocities
two dimensions. Our results are summarized in Tables III–
Table III provides the parameter values fora3 , h1, andk1.
Table IV gives the results for the sound speedcs , the ratio of
specific heatsg, and the proportionality factorA relating
relaxation ratessxx and sxy , as defined in Eq.~7!. Table V
shows the viscosityn and the thermal diffusivityk in terms
of An and Ak , whereAn is defined in Eq.~12a! and Ak is
similarly defined as the following:

k5AkS 1

sq
2

1

2D , ~21!

wheresq denotes the relaxation rate for the heat fluxq. Fi-
nally, we observe that in addition to its effect on the therm
6-8
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diffusivity k, as seen in Eq.~20b! and Table V, parameterb3
produces no other observable effects. Therefore, for all p
tical purposesb3 can be set to zero.

C. Spurious mode coupling and numerical instability

As previously indicated, the analysis of the linearized d
persion equation~B1! yields the constraints on the adjustab
parameters in the equilibria of nonconserved moments (a3 ,
b3 , h1, and k1) as well as the relationships between t
relaxation rates. The eigenvalues of the linearized evolu
operator gives thek dependence of the transport coefficien
n(k) @z(k)# and k(k), and the sound speedcs(k). Such
analysis usually sheds light on the stability of the mo
under consideration. As an example, we numerically ana
the energy-conserving D2Q13S model with the following p
rameter values:c1520.415 38, b350, s551.957 61, and

TABLE III. Coefficients for Galilean invariance for 2D TLBE
models on square lattice.

Model a3 h1 k1

D2Q13S
1078

13
c1

17

13
2c1

2

13

D2Q17S
1090

17
c1

71

17
2c1

6

17

D2Q21S
788

7
c1

187

7
2c1

24

7

D2Q25S
72716

25
c1

133

25
2c1

6

25

D2Q29S 188c1 912c1
58

D2Q33S
5780

11
c1

71

11
2c1

6

11
03670
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s1051.937 73. Henceforth we haveg51.2, the shear viscos
ity n50.01, the thermal diffusivityk50.016, and Prandt
number Pr50.71 (Pr5gn/k). We choosek along two direc-
tions:u50 andu5p/8 (22.5°),u being the polar angle ofk
~with respect tox axis!. Figure 2 showsg'(k)/n, g6(k)/n,
andgh(k)/n, wheren is given by Eq.~20a!. For the case of
u5p/8 (22.5°), g'(k) and gh(k) coalesce at aboutk5kc
'0.048, which is a branch point. There is another bran
point at about (p2kc), due to the symmetry of the operato
L. The critical valuekc at which the first branch point locate
is approximately proportional tonAu12Pr21u. Between the
two branch points@kc , p2kc#, the corresponding eigenva
uesz'(k) and zT(k) coalesce and become complex con
gate to each other, and the corresponding modes bec
oscillatory. This coupling between the energy and sh
modes takes place at a very small value of wave numbe
k5kc , and continues to a point neark5p2kc . It is inter-
esting to note that the spurious coupling between the ene
and shear modes ismathematicallysimilar to that in the
Rayleigh-Bénard convection with a gravity

g5
a

n
sin~4u!, ~22!

wherea is a complicated algebraic function ofg, k, n, and
relaxation ratesse and s« , and depends strongly ong and
weakly on other parameters, andu is the polar angle ofk.
We find that the energy-conserving LBE models are prone
numerical instabilities which may be instigated by fluctu
tions of wide-ranged scales. Obviously, this undesirable c
pling among the hydrodynamic modes is due to the sm
number of degrees of freedom and simple spatial-temp
dynamics of the lattice Boltzmann equation. In contrast,
coupling among the modes in the athermal models occ
only at a point neark5p ~cf. Fig. 1 in Ref.@45#!. The ather-
mal models are much more stable and are only prone
TABLE IV. The sound speedcs , the ratio of specific heatsg, andA defined in Eq.~7! for 2D TLBE
models on square lattice.

Model cs
2.0 g A.0

D2Q13S
1

2
~31c1!

14

13
cs

2 ~49cs
2231!

~31214cs
2!

D2Q17S
1

6
~171c1!

17

30
cs

2 ~221247cs
2!

~202cs
22221!

D2Q21S
1

24
~831c1!

7

16
cs

2 ~697cs
22379!

~298cs
21379!

D2Q25S
1

6
~351c1!

25

84
cs

2 ~27792262cs
2!

~1334cs
222779!

D2Q29S
1

58
~3731c1!

1

4
cs

2 ~814cs
216911!

~691123166cs
2!

D2Q33S

1

6
~591c1!

11

60
cs

2 ~96172518cs
2!

~2818cs
229617!
6-9
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TABLE V. Transport coefficients for 2D TLBE models on square lattice.

Model An.0 Ak.0

D2Q13S
1

70
~85149c1!

1

154
~130126b3277c1!

D2Q17S
1

930
~527247c1!

1

654
~10541102b32109c1!

D2Q21S
1

23880
~487551697c1!

1

4728
~6965156b32197c1!

D2Q25S
1

3216
~37522131c1!

1

15582
~536001150b322597c1!

D2Q29S
1

115420
~3522301407c1!

1

2726
~796012b3247c1!

D2Q33S
1

6900
~135702259c1!

1

1734
~10120166b32289c1!
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instabilities due to small scale fluctuations. It must
stressed that this coupling between the viscous and en
modes is common to all the energy-conserving LBE mod
that we have studied. The fact that it depends very little
the relaxational properties of higher order moments convi
us to believe that it cannot be eliminated by increasing
number of discrete velocities. However, we observe that

FIG. 2. Attenuation rates for the hydrodynamic modes of
D2Q13S model. The rates for the viscous and thermal modes
are given byg' and gh, are normalized by the shear viscosityn.
The rate for the sound modesg6 is normalized by its value atk
50, i.e., g6(0)5@n1(g21)k/g#/2, g51.2, n50.01, and Pr
5gn/k50.71. ~a! The polar angle of the wave vectork, u50°. All
the hydrodynamic modes are decoupled and have weakk depen-
dence along this direction.~b! u522.5°. The viscous modeg' and
the energy modegh are coupled at aboutk50.048 and show strong
k-dependent behavior.
03670
gy
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terpolations can smear the mode-mode coalescence and
explains, in part, the reason why the TLBE schemes w
interpolations@12–14,20,21,27–31# tend to be more stable
numerically.

IV. HYBRID TLBE MODELS

As indicated previously, the spurious mode coupling a
numerical instability in the energy-conserving LBE mode
cannot be overcome by increasing the number of disc
velocities or including higher order terms in the equilibri
However, the athermal LBE models do not have such pr
lems. Therefore, we come to the conclusion that at pres
time the best approach to formulate a TLBE model is to tr
the energy-conservation equation separately from the m
and momentum conservation equations. Similar treatm
was previously advocated to address the issue of nume
efficiency @33,34#. This means that the lattice Boltzman
equation is used to simulate the mass and momentum
servation laws, and a finite-difference scheme~or other
means! is used to solve the diffusion-advection equation
the temperature, with appropriate couplings between
equations.

A. 9-velocity model in two dimensions

We now illustrate the hybrid TLBE model using th
D2Q9S model. The moment corresponding to the ene
m45e, is not a conserved moment, and its equilibrium
coupled to the temperatureT ~which is to be simulated by
means other than the lattice Boltzmann equation!. The cou-
pling between the energy modem45e and the temperatureT
is chosen as

m4
(eq)5e(eq)56S cs0

2 2
2

3D r1~22g!j• j16q1T, ~23!

whereq1 is a coupling coefficient to be determined later. T
isothermal sound speedcs0 is an adjustable constant dete
mined by the positivity of the bulk viscosity@cf. Eq. ~29b!#

e
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and other stability criteria, and the ratio of specific heats (g)
is an adjustable parameter in the model. The temperatuT
evolves according to the standard diffusion-advection eq
tion,

] tT1u•“T5kDT1q2~g21!cs0
2
“•u, ~24!

where k is the thermal diffusivity as in Eq.~20b! and the
coupling coefficientq2 is to be determined later. It should b
noted that the densityr does not appear in Eq.~24! for the
following reason. In general, the lattice Boltzmann equat
considers density variations while it intends to solve
nearly incompressible~or weakly compressible! Navier-
Stokes equations. Theoretically speaking, the density va
tions should be so small that they can be neglected ex
where they play a dominant role~e.g., in acoustics!. The
nonlinear terms are small corrections in the low Mach nu
ber limit, and therefore the density can be treated as a c
stant in the nonlinear terms. This rationale allows us to
r5r051 in the nonlinear terms, anddr5(r2r0) in those
terms linear inr. This practice helps to reduce the effects
round-off errors in simulations@50,57#. It also permits us to
replace the velocityu in Eq. ~24! by the momentumj
5( j x , j y) obtained from the LBE model.

It is important to note that Eq.~24! of T does not have the
nonlinear terms related to (“• j)2 and (] iuj1] jui)

2, as in
the energy equation for compressible fluids~e.g., Refs.
@58,59#!. The reasons we neglect these terms are that
restrict our focus here on the acoustics of the LBE syst
which is essentially of linear nature, and these nonlin
terms are, in fact, negligible for incompressible fluids. Ho
ever, the framework set used here does allow us to incl
these nonlinear terms, which are to be considered in
future work.

The advection-convection equation~24! for the tempera-
ture T is solved by the following finite-difference equation

T~r j ,t11!2T~r j ,t !52 j•“* T1kD* T

1q2~g21!cs0
2
“* • j, ~25!

where operators with superscript * are the correspond
finite-difference operators@cf. Appendix C#. The stencil used
for the finite-difference operators must have the same s
metries as those of the discrete velocity set of the model,
it is a nine-point stencil for the D2Q9S model. It should
emphasized that the use of the stencil defined by the disc
velocity set does help to improve the numerical stability
the scheme. In contrast, the use of the simple five-point c
tral difference stencil, in fact, leads to severe numerical
stability. We should also point out that the stencils whi
have the same symmetries of the discrete velocity set are
unique, although the lattice Boltzmann equation uniquely
fines a specific set of weighted stencils@60,61#. We have not
studied the influence due to the different stencils on the
bility and the nonhydrodynamic behavior~in k4 or higher
order! of the model.
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In the setting of the HTLBE method, there are~911!
degrees of freedom at each lattice site. The linear analys
the dispersion equation gives the sound speed of the m
as

cs
25@11~g21!q1q2#cs0

2 . ~26!

In order to havecs
25gcs0

2 as in the real monoatomic gase
and a correct coupling between the momentumj and the
temperatureT @in Eq. ~30!#, we must have

q15q251. ~27!

Note that the sound speed of Eq.~26! is independent of the
temperature in this model, indicating an inherent deficien
of the lattice Boltzmann equation.

There are four hydrodynamic modes in the system: o
transverse mode~shear mode! and three longitudinal mode
~two acoustic modes and one energy mode!. Again, the isot-
ropy of the transverse mode demands that the relaxation r
s5 and s6, corresponding, respectively, to the diagonal a
off-diagonal components of the stress tensor, must satis
relationship similar to Eq.~7! with the coefficientA given in
Table I. The attenuation coefficients for the four hydrod
namic modes are similar to those in Eqs.~19!, exceptg6 for
the acoustic modes. The previous analysis needs to
slightly modified to include the discrete effects due to t
finite-difference equation~25! for T. This leads to a correc
tion for the attenuation rate of sound waves as the followi

g65
1

2 Fn1z1
~g21!

g S k2
1

2
gcs0

2 D G . ~28!

The correctiongcs0
2 /2 is similar to the ‘‘propagation’’ contri-

bution to the viscosity first found by He´non in the context of
the lattice gases automata@62#. The transport coefficientsn
and z in this model are identical to the previous results f
athermal models given in Eq.~12! and Table II. Specifically,
with c1521 and thuss65s5, the viscosities of the mode
are

n5
1

3 S 1

s6
2

1

2D , ~29a!

z5S 2

3
2gcs0

2 D S 1

s4
2

1

2D . ~29b!

The Chapman-Enskog analysis for the system consis
of the lattice Boltzmann equation~1! and the finite-difference
equation~25! for T leads to the following set of hydrody
namic equations:

] tr1“• j50, ~30a!

] t j1 j•“ j52cs0
2
“r1nD j1z““• j1q1“T, ~30b!

] tT1g j•“T5kDT1q2~g21!cs0
2
“• j, ~30c!

where q15q251. Because the constantg appears in the
advection term in Eq.~30c!, this equation must be rescale
6-11
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Effectively, this reducesk by a factorg, i.e., keff5k/g. In
the HTLBE scheme,k is an independent parameter.

The results for the transport coefficients of the HTLB
model are similar to that of the athermal LBE model. That
the isothermal sound speedcs0 is an adjustable parameter
the model and there is also a nonzero bulk viscosityz. The
linear stability analysis shows that, so long asg is not too far
away from 1, the HTLBE model is as stable as the ather
model, i.e., the finite-difference equation forT does not have
much effect on the stability of the model, provided that t
appropriate finite-difference stencils are used. Further an
sis shows that there is no spurious coupling between
energy and shear modes that exists in the energy-conse
models, as shown in Fig. 2. It should be pointed out that
present approach of hybrid schemes can be easily and e
tively extended to other situations. In particular, a seco
scalar equation solved by finite-difference technique can
added to simulate double diffusions.

B. Models in three dimensions

1. 13-velocity model

We now proceed to consider the HTLBE models in thr
dimensions. For the LBE part we use the simplest mo
with just 13 velocities~D3Q13! @49#. The transformation ma
trix M of the model is given in Appendix D. The equilibria o
the nonconserved moments are chosen as follows:

m5
(eq)5e(eq)5

39

2 S cs0
2 2

8

13D r1
39

4 S 5

3
2g D j• j1

39

2
q1T,

~31a!

m6
(eq)53pxx

(eq)52 j x
22 j y

22 j z
253 j x

22 j• j, ~31b!

m7
(eq)5pww

(eq)5 j y
22 j z

2 , ~31c!

m8
(eq)5pxy

(eq)5 j x j y , ~31d!

m9
(eq)5pyz

(eq)5 j y j z , ~31e!

m10
(eq)5pzx

(eq)5 j z j x , ~31f!

m11,12,13
(eq) 5wx,y,z

(eq) 50. ~31g!

And temperatureT is solved by the scheme given by E
~25!, with the stencil defined by the 13-velocity set~cf. Ap-
pendix D!.

There are five hydrodynamic modes in the model: t
transverse modes and three longitudinal ones. Among
three longitudinal modes, two acoustic modes propagate
the adiabatic speed of soundcs5Agcs0, and one energy
mode relaxes~or diffuses!. The isotropy constraints on th
attenuation rates lead to
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s75s6 , ~32a!

S 1

s8
2

1

2D5
1

2 S 1

s6
2

1

2D , ~32b!

s105s95s8 . ~32c!

The isotropy of the model is evident because the attenua
rates~proportional tok2) for these modes are independent
the direction ofk:

g'5nk2, ~33a!

gh5
k

g
k2, ~33b!

g65
1

2 F4

3
n1z1

~g21!

g S k2
1

2
gcs0

2 D Gk2, ~33c!

as expected for a real gas. Note that the above formula
g6 includes the correction due to the second-order disc
effect ~Hénon correction!, similar to the 2D result of Eq.
~28!. The transport coefficientsn and z in this model are
given by Eq.~12! and Table II. Specifically, withc150,

n5
1

2 S 1

s6
2

1

2D , ~34a!

z5S 2

3
2gcs0

2 D S 1

s5
2

1

2D . ~34b!

The Chapman-Enskog analysis for the HTLBE system
that the conserved moments@r and j[( j x , j y , j z)] and T
evolve according to the following equations, similar to Eq
~30! in two dimensions:

] tr1“• j50 ~35a!

] t j1 j•“ j52cs0
2
“r1nD j1S 1

3
n1z D““• j1q1“T,

~35b!

] tT1g j•“T5kDT1q2~g21!cs0
2
“• j. ~35c!

Again, we must setq15q251 in order to havecs
25gcs0

2 , as
before.

The linear stability analysis shows that it is necessary
use the stencils that have the same symmetries of the dis
velocity set in the finite-difference equation~25! for T. Using
a simpler seven-point central difference stencil would gen
ate severe numerical instability. With the stencil genera
from the discrete velocity set, the stability of the hybr
TLBE system is almost the same as the stability of the lat
Boltzmann equation alone. That is, the finite-difference eq
tion for T with appropriate stencils has little effect on th
stability. Because the stencil generated by the discrete ve
ity set naturally preserves the parity of the model,x5( i 1 j
1k)(mod 2) at a site (i , j ,k), which is conserved in the
model@49#, one can save one-half of the system size in sim
6-12



rit
in

es

-

y-

s

-
e

di
ts

in

s

a-
on
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lations by considering only the sites with even or odd pa
@49#. This is a unique feature of the 13-velocity model
three dimensions.

2. 15-velocity model

The 15-velocity model in three-dimensional cubic lattic
has three particle speeds: 0, 1, andA3. The corresponding
moments are arranged in the following order:

~r,e,e, j x ,qx , j y ,qy , j z ,qz ,3pxx ,pww ,pxy ,pyz ,pzx ,cxyz!,

and the transformation matrixM with the corresponding or
der of the row vectors is given in Appendix E.

The equilibria are given by

m2
(eq)5e(eq)53S cs0

2 2
2

3D r1
3

2 S 5

3
2g D j• j13T,

~36a!

m3
(eq)5« (eq)5a3r, ~36b!

m5,7,9
(eq) 5qx,y,z

(eq) 5c1 j x,y,z , ~36c!

m15
(eq)5cxyz

(eq)50, ~36d!

wherea3521 is a constant that plays no role in hydrod
namics. The equilibria of (3pxx ,pww ,pxy ,pyz ,pzx)
5(m10,m11,m12,m13,m14) are identical to that in Eq.~31!.

The relaxation rates$si u i 51, 2, . . . ,15% satisfy the fol-
lowing constraints due to isotropy criteria:

s115s10 for pww and pxx , ~37a!

s145s135s12 for pzx , pyz, and pxy , ~37b!

S 1

s12
2

1

2D5
~12c1!

2~41c1! S 1

s10
2

1

2D , ~37c!

s55s75s9 for q5~qx ,qy ,qz!. ~37d!

The transport coefficients of the model are

n5
~12c1!

10 S 1

sxx
2

1

2D , ~38a!

z5
~1312c1215gcs0

2 !

15 S 1

se
2

1

2D , ~38b!

wheresxx (5s10) and se (5s2) denote the relaxation rate
for momentspxx ande, respectively.

The temperatureT evolves according to the finite
difference equation~25!, with the stencils generated by th
15-velocity set~cf. Appendix E!. The resulting hydrody-
namic equations are given by Eq.~35! with q15q251.

3. 19-velocity model

The particle speed in the 19-velocity model in three
mensions are 0, 1, andA2. The corresponding 19 momen
are arranged according to the following order@50#:
03670
y

-

~r,e,«, j x ,qx , j y ,qy , j z ,qz ,3pxx ,3pxx ,pww ,

pww ,pxy ,pyz ,pxz ,wx ,wy ,wz).

The transformation matrixM is given in Appendix F.
The equilibrium quantities are given by

m2
(eq)5e(eq)557S cs0

2 2
10

19D r1
57

2 S 5

3
2g D j• j157T,

~39a!

m3
(eq)5« (eq)5a3r, ~39b!

m1153pxx
(eq)50, m135pww

(eq)50, ~39c!

where a353 is a constant that has no relevant role
hydrodynamics. The equilibria of (3pxx ,pww ,pxy ,
pyz ,pzx)5(m10,m12,m14,m15,m16) and (wx ,wx ,wz)
5(m17,m18,m19) are identical to that in Eq.~31!, and the
equilibria of q5(qx ,qy ,qz)5(m5 ,m7 ,m9) are identical to
that in Eq.~36!.

The relaxation rates$si u i 51,2, . . . ,19% must satisfy the
following constraints for the sake of isotropy:

s125s10 for pww and pxx , ~40a!

s165s155s14 for pzx ,pyz, and pxy , ~40b!

S 1

s14
2

1

2D5
~62c1!

2~41c1! S 1

s10
2

1

2D , ~40c!

s55s75s9 for q5~qx ,qy ,qz!. ~40d!

The viscosities of the model are

n5
~62c1!

20 S 1

sxx
2

1

2D , ~41a!

z5
~91c1215gcs0

2 !

15 S 1

se
2

1

2D , ~41b!

wheresxx (5s10) and se (5s2) denote the relaxation rate
for momentspxx ande, respectively.

C. Summary of the hybrid thermal lattice Boltzmann equation

The hybrid thermal lattice Boltzmann model is summ
rized as follows. The evolution equations for the distributi
functions and the temperature are

u f ~r j1ci ,tn11!&5u f ~r j ,tn!&2M21S@ um~r j ,tn!&

2um(eq)~r j ,tn!&], ~42a!

T~r j ,t11!2T~r j ,t !52 j•“* T1kD* T1q2~g21!

3cs0
2
“* • j. ~42b!

The coupling of the temperatureT to the fluid momentumj is
explicit in the above equation forT. The coupling of the fluid
momentumj to the temperatureT is accomplished in the
6-13
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equilibrium of the second-order momente ~related to en-
ergy!. The equilibria ofe and the fourth-order moment«
~related to energy square! are

e(eq)5a2r1b2 j• j1q1T, ~43a!

« (eq)5a3r, ~43b!

where botha25a2(cs0
2 ) andb25b2(g) are determined by

the first-order solution of the linearized dispersion equati
The coefficienta2 depends on the~isothermal! sound speed
cs0 that is an adjustable parameter in the model, while
coefficientb2 affects the Galilean invariance and depends
the adjustable parameterg. And the value of the paramete
a3 is determined so that in the equation forT the term linear
in the density gradient“r vanishes. The other two coeffi
cients in the model,q1 andq2, are determined by the linea
analysis and the Chapman-Enskog analysis so that the hy
dynamic equations derived from the model are

] tr1“• j50, ~44a!

] t j1 j•“ j52cs0
2
“r1nD j1z8““• j1“T, ~44b!

] tT1g j•“T5kDT1~g21!cs0
2
“• j, ~44c!

wherez85z in two dimensions andz85z1n/3 in three di-
mensions, with the adiabatic sound speed

cs
25gcs0

2 .

The viscositiesn andz are controlled by the relaxation rate
sxx andse , respectively, andk andg are adjustable param
eters in the model.

We note that, becauseT could be solved by more accura
numerical techniques other than the second-order finite
ference of Eq.~42b!, the equilibrium ofe given by Eq.~43a!
would have to be modified in order to consider nonunif
mity of T over one cell~spatial derivatives ofT).

The lattice Boltzmann equation can include exter
fields, such as gravity. For a forcingF, one can simply add it
to the momentum, byj1Fdt→ j (dt51). It is understood
that, in order to conserve mass up to the second order in
Chapman-Enskog analysis, the net effect of the forcing te
is that the resultant momentum is equal toj1Fdt/2 @63,64#.
Therefore it is preferable to execute the forcing term in t
steps, adding one-half of the forcing before relaxation a
one-half after, and to use the momentum added with one-
of the forcing before relaxation~collision! as the measured
field for output @65#. This can be concisely illustrated a
follows:

Step 1: Advection of$ f i%,

Step 2: Compute moments$mi% of $ f i%,

Step 3: j85 j1
1

2
F,

Step 4: Relaxations of the moments~collision!,
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Step 5: j95 j81
1

2
F,

Step 6: Compute$ f i% from the moments$mi%,

wherej8 is used as the measured field for output.
Several basic tests have been conducted to verify

properties of the hybrid TLBE model. In a system with un
form flow velocity and periodic boundary conditions, tran
verse modes~shear waves! and longitudinal modes~sound
waves and energy mode! are found to have correct attenu
tion rates and advection/propagation velocity in the lo
wavelength limit ofk→0, as predicted by the linear analysi
To ensure accurate tests for longitudinal modes, one mus
the initial conditions which are prepared to have pure aco
tic or thermal character to excite only these modes.

V. SIMULATIONS

We use the 13-velocity HTLBE model in 3D to simula
the Rayleigh-Be´nard convective flows in the cubic cavit
with two opposite vertical walls at different temperature
The geometry of the cavity is depicted in Fig. 3. The box s
is Nx3Ny3Nz , whereNx5Ny550 is fixed throughout the
simulations whileNz varies from 6 to 80. For the lattice
Boltzmann part, the bounce-back boundary conditions
applied for six walls. As for the temperature, two oppos
vertical walls located atx51/2 and x5Nx11/255011/2
~because of the bounce-back boundary conditions! are main-
tained with constant temperatures2T0 and 1T0, respec-
tively, as shown in Fig. 3. And the other four walls are ad
batic, i.e.,] n̂T50 at these walls, wheren̂ is the unit vector
out-normal to a wall. The gravitation is pointing downwa
(2 ŷ direction!. The Rayleigh number Ra is defined as

Ra5
2T0gbgL3

nkeff
5Pr•Gr, ~45!

whereg is the gravitational acceleration,b (52]T ln rup) is
the coefficient of thermal expansion,L5Nx550 in the simu-
lations, and Gr52T0gbgL3/n3 is the Grashof number. Two
effective Nusselt numbers are defined for the flow. The
fective local Nusselt number Nuw is defined by the tempera
ture gradient at the wall maintained at a constant temp
ture:

Nuw5
1

2T0Lz
(
y,z

]xTux51/2, ~46!

where Lz5Nz in the lattice units. The effective~volume!
averaged Nusselt number Nuv is defined as

Nuv5
1

2T0keffLLz
(
x,y,z

uxT21, ~47!

where keff5k/g. In the simulations, we use the followin
parameters:g51.2, n50.06, Pr50.71 ~for air!, and T0
6-14
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THEORY OF THE LATTICE BOLTZMANN METHOD: . . . PHYSICAL REVIEW E 68, 036706 ~2003!
51, all in lattice units. Bear in mind that we can reduce t
system size by half by using the 13-velocity model beca
of the parity conservation of the model.

We use two values of the effective Rayleigh number
5105 and 106 ~corresponding togb'2.02831023 and
2.02831022, respectively!, and compute the two effectiv
Nusselt numbers Nuw and Nuv , as defined above. AsLz
→`, the flow becomes quasi-two-dimensional. The two
fective Nusselt numbers obtained are Nuw54.27 and Nuv
58.31, compared to 4.337 and 8.640 obtained by an a
rate pseudospectral method@66#. Figure 4 shows the effec
tive Nusselt numbers Nuw and Nuv , respectively, normalized
by 4.337 and 8.640 for Ra5105 and 106, as functions of the
length of the cavity (Lz). The difference between the prese
results and that of Ref.@66# is partially due to the fact tha
the lattice Boltzmann equation simulates weakly compre
ible fluids, whereas the pseudospectral method used in
@66# solves the incompressible Navier-Stokes equations
fact, for Ra5106, the magnitude of the mean velocity in th
cavity is about 0.081, which is not negligible compared
the speed of sound (cs50.456) for the model~the mean
Mach number Ma'0.18). A detailed convergence study
the numerical scheme is presented elsewhere@67#.

VI. CONCLUSION

In this paper we propose to solve the thermohydro
namic equations by using a hybrid lattice Boltzma
scheme: the usual lattice Boltzmann equation is used to s
the mass and momentum conservation equations, whi
finite-difference method is used to solve the diffusio
advection equation satisfied by the temperature, with ap
priate couplings between the two systems. A number of
brid models in both two and three dimensions are analy
and compared with the energy-conserving TLBE mode
The rationale behind our proposal is based on the analys
the existing energy-conserving TLBE models that suffer s
severe numerical instabilities that their applicabilities a
much limited. We have identified that a main defect in t
existing energy-conserving TLBE models is the coupling

FIG. 3. Geometry of rectangular cavity. Two shaded oppo
vertical walls are maintained with constant temperatures2T0 and
1T0, respectively. The temperature boundary conditions on o
four ~transparent! walls are] n̂T50—the adiabatic boundary cond
tions.
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tween the energy and shear modes of the linearized L
evolution operator. This coupling is nonphysical and inher
to all the existing energy-conserving TLBE models. Th
spurious coupling is forbidden in a continuum model b
cause it violates rotational symmetry~isotropy!, but occurs in
a discrete model that is inherently anisotropic beyond cer
order in k. The hybrid thermal lattice Boltzmann metho
eliminates this unphysical coupling and significantly im
proves the numerical stability. The hybrid TLBE model
almost as stable as the athermal lattice Boltzmann equa
without the temperature equation, provided that the appro
ate finite-difference stencils with the same symmetry as
discrete velocities are used.

Similar to our previous work@45#, we analyze the effects
of interpolations. In general, second- or higher-order spa
interpolations applied to the distribution functions do not
fect the values of the transport coefficients, the isotropy,
Galilean invariance of the LBE system at thek50 limit;
therefore they do not affect the large scale hydrodynam
However, interpolations do introduce significant numeric
viscosities, especially in small scales comparable to the
tice spacing. The numerical viscosities dissipate small sc
fluctuations, and therefore improve the numerical stabil
Second, the interpolations used in the LBE schemes usu
have a symmetry different from~often much less than! that
of the discrete velocity set, therefore they alter the ove
symmetry properties~the isotropy and Galilean invariance!
of the LBE scheme. Again, this effect is especially severe
small scales. And finally, interpolations destroy the local co
servation laws. Therefore, interpolations should be used w
care.

The present work differs from the existing ones in seve
aspects. First, we advocate the multiple-relaxation-ti
~MRT! model as opposed to the simple BGK approximati
which is in part responsible for numerical instabilities in t
existing LBE models. Besides the improvement of the n
merical stability, the Prandtl number is adjustable for t
MRT models, while the Prandtl number is fixed to unity f

e

er

FIG. 4. Effective Nusselt number Nu as a function of the cav
lengthLz5Nz . The solid and dashed curves correspond to the v
ume measurement Nuv and the local measurement at wall, Nuw ,
respectively. The relative differences (Nu* 2Nu)/Nu* are plotted
for Nu* 54.337 at Ra5105 and Nu* 58.640 at Ra5106 obtained
by using a pseudospectral method@66#.
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P. LALLEMAND AND L.-S. LUO PHYSICAL REVIEW E 68, 036706 ~2003!
the BGK models. Second, we have provided a system
analysis of the proposed HTLBE model, and a compara
study to the energy-conserving TLBE models. The therm
and acoustic properties of various models are analyze
detail. The analysis immediately offers insight into the sho
comings of the existing TLBE models. We conclude th
many existing models gain numerical stability by using
terpolations at the expense of isotropy and relatively l
numerical viscosities. Finally, the HTLBE model studie
here does not use Boussinesq approximation explicitly. It
be extended to situations where Boussinesq approxima
does not apply by including nonlinear terms related to co
pressible effects and using temperature-dependent tran
coefficients. It should also be noted that the propo
HTLBE scheme is only applicable for low/moderate Ma
number flows. This is an inherent limitation due to the LB
models with polynomial equilibria, and the MRT models a
not exceptions in this regard.

It must be cautioned that our proposal to use the hyb
method is not the final solution of the approach based on
thermal lattice Boltzmann equation. This approach sign
cantly deviates from the orthodox lattice Boltzmann meth
ology based on the kinetic theory, and it only provides
compromised solution. The difficulty encountered in the l
tice Boltzmann equation is that we have not been able
come up with an effective way to mimic temperature ‘‘st
tistically’’ based on kinetic theory and still be as efficient
the macroscopic approach. The reason that the lattice B
mann equation is much more successful in handling the m
and momentum conservation laws is that one does not n
to deal with any quantity which is statistical in nature, su
as the temperature. Several issues remain to be addre
First, the factorg in the advection term of theT equation is
undesirable. However, the effect of this only amounts to
rescaling ofk to keff5k/g, as shown in the analysis an
simulations. Second, the isothermal sound speed is inde
dent of the temperatureT. The validity of the linear analysis
suggests that the relaxation type of the collision model in
lattice Boltzmann equation may not have sufficient nonl
earity to mimic the thermal phenomena and needs se
modifications. And third, we have not considered the non
ear dissipation terms in the temperature equation. Howe
within the HTLBE framework, including these nonlinea
terms, is in principle, as easy as considering a more com
cated dynamics forT for more complex situations, and this
indeed one of the useful features of hybrid models. Th
open questions are left for future work.

Based on the framework in the present work, the meth
ology of the hybrid lattice Boltzmann scheme can be read
extended to other systems, such as fluids of multiple com
nents with different diffusion coefficients~cf. Ref. @69# and
references therein!, and non-Newtonian fluids@70,71#.
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APPENDIX A: CONSTRUCTION OF TRANSFORMATION
MATRIX ON 2D SQUARE LATTICES

OR 3D CUBIC LATTICES

The construction of the transformation matrixM is very
closely related to the definition of moments used in kine
theory of gases~e.g., Ref.@68#!. The main difference is due
to the absence of a weight factor in the LBE method sim
to the Maxwellian equilibrium in the evaluation of an ave
age~i.e., a weighted norm!. In addition, degeneracies of mo
ments arise due to the small number of geometrically sy
metrically collocated discrete velocities used in the LB
method. For example, for a model with only unit speed~the
D2Q6, D2Q7, or models with the single-speed ‘‘octagona
velocity set!, moments of (cix

2 1ciy
2 )m are all equal form

>1, leading to the absence of these moments which exis
real gases. This can produce anisotropic behavior of
model.

The considerations to uniquely determine the orthogo
basis vectors spanning the transformation matrixM are the
following. First, it is coordinate system dependent. The c
ordinates used here are that of Cartesian coordinates (x,y) in
2D and (x,y,z) in 3D. And some or all of the unit-spee
velocities are always aligned with the coordinate axes. S
ond, the normalization of the vectors is arbitrary, and
normalization used here is that the components of the vec
are minimal integers to simplify algebraic manipulation
And third, symmetry properties of the moments are fu
exploited, as discussed in the following. This simplifies de
vations and leads naturally to moments with a clear phys
significance, which are particularly suited for the purpose
modeling the dynamics of an isotropic fluid.

For square lattices in two dimensions, the construction
the transformation matrixM can be greatly simplified by
observing that for symmetry reasons nonzero velocities$ci
Þ0% are usually added in groups of four velocities of equ
speed, i.e., the axial velocities of integer speeds, and/or
diagonal velocities of speeds in multiples ofA2. Both the
axial and diagonal velocities contribute to the density mo
^ru equally, but one nontrivial moment of a group of fou
axial velocities only contributes to mode^pxxu}^( j x

22 j y
2)u,

whereas that of four equal-speed diagonal velocities o
contributes to modêpxyu}^ j x j yu, and these two modes ar
linearly independent. Thus, the transformation matrixM can
be constructed from the subspaces of the zero velocity,
group of axial velocities, and the group of diagonal velo
ties. Specifically, for the D2Q9S model the two subspace
axial and diagonal velocities are

M(a)5S ^ru

^ j xu

^ j yu D 5S 1 1 1 1

1 0 21 0

0 1 0 21D , ~A1a!
^pxxu 1 21 1 21
6-16
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M(d)5S ^ru

^ j xu

^ j yu

^pxyu
D 5S 1 1 1 1

1 21 21 1

1 1 21 21

1 21 1 21

D . ~A1b!

We further note that, under the elementary transform
tions of a square on the plane,

x→2x, ~A2a!

y→2y, ~A2b!

~x,y!→~y,x!, ~A2c!

the row vectors inM(a) andM(d) have the following behav-
ior: ^ru ’s behave as a scalar,^ j xu ’s and ^ j yu ’s behave as a
vector component, and̂pxxu ’s and^pxyu ’s behave as compo
nents of a second-rank tensor. These orthogonal 434 sub-
spaces provide the building blocks of the transformation m
trix M for the model with axial and diagonal velocities, an
when constructingM, only the modes with the same symm
try can be coupled to each other. When there are more
one speed in either groups of axial and/or diagonal velo
ties, we may first determine the number of moments of e
symmetry, in order to partition the Gram-Schmidt process
independent subprocesses. For instance, consider a
velocity model on square lattice~D2Q13S!, there are four
scalar moments forr, three vector moments forj x and three
for j y , two second-rank tensor moments forpxx , and only
one forpxy . Orthogonalization should be carried out succ
sively for groups of four̂ ru ’s, three^ j xu ’s, three^ j yu ’s, two
^pxxu ’s, and onê pxyu. Similar considerations based on sym
metry are also applied in the construction of the equilibria
the moments, because couplings can only be allowed
those quantities in each velocity class~group! which behave
exactly the same under the 2D transformations defined
Eqs~A2!. To be more explicit, the moments can be related
some elementary polynomials defined on a 2D lattice. T
is, for the zero velocity, it is 1. For four equal-speed ax
velocities, they are 1,x, y, and (x22y2). And for four equal-
speed diagonal velocities, they are 1,x, y, andxy. By apply-
ing the Gram-Schmidt procedure to the elementary poly
mials and their appropriate combinations, we immediat
obtain the orthogonal polynomials~Table VI!. By consider-
ing up to fourth- and sixth-order polynomials, we obtain t
orthogonal polynomials for the D2Q9S and D2Q13S mod
respectively. Obviously, the orthogonal polynomials for t
D2Q13S model include those for the D2Q9S model.~Note
that in Table VI,x andy are used instead ofcix andciy .)

We now apply the same symmetry consideration to m
els on 3D cubic lattices. On a basic cubic lattice, we cons
four groups of velocities classified by their speeds: 0~the
center of the cube!, 1 ~six surfaces!, A2 ~12 edges!, andA3
~eight corners!. The zero velocity can only describe a scal
i.e., 1—the zeroth order moment. The six velocities of sp
1 can describe a scalar, a vector, and part of second-
03670
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tensor. Similarly, the 12 velocities of speedA2 can describe
a scalar, a vector, a second-rank tensor, and part of a th
rank tensor, whereas the eight velocities of speedA3 can
describe a scalar, a vector, part of a second-rank tensor,
part of a third rank tensor. The elementary polynomials c
responding to each velocity group are given in Table V
The D3Q13 model uses the velocities of 0 andA2 speeds,
the D3Q15 model uses the velocities of 0, 1, andA3 speeds,
the D3Q19 model uses the velocities of 0, 1, andA2 speeds,
and the D3Q27 model uses all the 27 velocities of 0, 1,A2,
andA3 speeds. Starting with these elementary polynomi
the transformation matrices for the 3D models can be ea
obtained via the Gram-Schmidt procedure. To reproduce
rect incompressible hydrodynamic equations in 3D, o
needs the five components of a symmetric traceless sec
rank tensor~the stress!. It thus becomes obvious why th
minimal model in 3D is D3Q13, and that D3Q15 or D3Q1
would also work, as indicated by the polynomials shown
Table VII.

APPENDIX B: LINEAR ANALYSIS AND HYDRODYNAMIC
BEHAVIOR OF ATHERMAL LBE

For athermal lattice Boltzmann models with (b11) ve-
locities on a lattice ofN nodes inD dimensions, there are
(D11) local conserved modes, and thus (b2D)5(b11)
2(D11) local ~nonconserved! ‘‘slave’’ modes. The local
slave modes evolve with time scales of the order of 1/si , i
5(D12), . . . , (b11) (si is the relaxation rate!. The col-
lision enforces the local conservation laws, while the adv
tion preserves the global conservation laws when there
no boundaries. Although the conserved modes are
changed by the collision, they are nevertheless affected
the ‘‘slave’’ modes, because the fluxes of some of the c
served modes are related to these nonconserved quan
Emerging from the evolution of collision and advection a
the long-time and large-scale hydrodynamic behavior wh
can be described by a set of partial differential equations~the
Navier-Stokes equations!. The Navier-Stokes equations~or
the long-time and large-scale hydrodynamic behavior! can be
derived from such a system via the Chapman-Enskog an
sis, or equivalently, via the mode analysis of the dispers
equation~von Neumann analysis! @45#.

TABLE VI. The orthogonal polynomials obtained from the e
ementary polynomials of$1,x,y,xy,(x22y2)% via the Gram-
Schmidt procedure for the D2Q9S and D2Q13S models. The
thogonal polynomials for the D2Q13S model must also inclu
those for the D2Q9S model.

D2Q9S D2Q13S

Scalars 1, (x21y2), (x21y2)2 (x21y2)3

Vectors x, x(x21y2) x(x21y2)2

y, y(x21y2) y(x21y2)2

Tensors (x22y2)
xy

(x22y2)(x21y2)
6-17
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TABLE VII. Twenty-seven discrete velocities and the corresponding elementary polynomials on
cubic lattice.

Speed Polynomial Rank

0 1 0

1 0

1 x, y, z 1

4x22(x21y21z2), (y22z2) 2

1 0

x, y, z 1

A2 4x22(x21y21z2), (y22z2), xy, yz, zx 2

x(y22z2), y(z22x2), z(x22y2) 3

1 0

x, y, z 1

A3 xy, yz, zx 2

xyz 3
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We can linearize the evolution equation~1! around the
state with a constant velocityV to obtain a linearized equa
tion for the fluctuationsd f in Fourier space@45#:

ud f ~k,t11!&5Lud f ~k,t !&, ~B1a!

L5A21@ I1M21CM#, ~B1b!

where I is the identity matrix,C is the linearized collision
operator, andA is the propagation operator that is a diagon
matrix in the space ofu f &:

A5diag~e2 ik•c0,e2 ik•c1, . . . ,e2 ik•cb!.

For the LBE schemes with interpolations and/or extrapo
tions, A is no longer a diagonal matrix, its band structu
depends on the interpolation/extrapolation stencils~cf. Ref.
@45#!. The solution of the eigenvalue problem of the line
ized evolution operator,

Luw&5zuw&, ~B2!

yields the generalized hydrodynamics of the model, i.e.,
k dependence of the transport coefficients, the sound sp
and the Galilean-invariance factorg @45,72#. Note that the
instability corresponds to the positivity of the real part
ln z, which usually appears at fairly large values ofk when
the mean velocity of the flow increases.

Usually, the eigenvalue equation~B2! of L ~the dispersion
equation! does not have analytic solutions. But it can
solved perturbatively ink @45,72#. For athermal lattice Boltz-
mann models in two dimensions, which only need to sati
mass and momentum conservation laws, there are only t
hydrodynamic modes: one transverse mode~the vorticity!
m' and two longitudinal modes~sound waves! m6 . These
hydrodynamic modes are the three-fold degenerated ei
modes ofL with a unity eigenvalue atk50 @45,72#. For a
03670
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two-dimensional system with a uniform velocityV and a
small density fluctuation of wave-vectork, and subjected to
periodic boundary conditions, linear analysis of the disp
sion equation yields the following results to the first order
V and second order ink @45,72#:

m'~k,t !5exp~2 ik•Vt2nk2t !m'~0!, ~B3a!

m6~k,t !5expS 2 i ~k•V6kcs!t2
1

2
~n1z!k2t Dm6~0!,

~B3b!

where m'(0) and m6(0) are initial amplitudes of these
modes,n and z are, respectively, the shear and bulk kin
matic viscosities, andcs is the sound speed of the model. Th
terms linear inV in the above results are due to the nonline
advection, and they can be viewed as the manifestation
Galilean invarianceof the model.

Besides the underlying lattice structure, the sound sp
and the transport coefficients depend on the equilib
$mi

(eq)% and the relaxation rates$si%. It is important to make
certain that the sound speedcs and transport coefficientsn
and z are independent of the orientation of wave vectork
with respect to the underlying lattice structure, that is,
model has to be isotropic. The Galilean invariance and is
ropy of the LBE model are attained by carefully choosi
parameters in the model via a linear analysis@45#. When
solving the dispersion equation~B2! perturbatively in power
of k, the first-order and the second-order solutions lead to
sound speedcs and Galilean factorg, and the attenuation
coefficients~which are combinations of the transport coef
cients!, respectively, as functions of relaxation rates$si% and
other adjustable parameters in the equilibria$mi

(eq)%. This
analysis is systematically used to determine the optimal
ues of the parameters.
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APPENDIX C: STENCILS OF D2Q9S MODEL

The stencils for the gradient“ and the Laplacian opera
torsD for the D2Q9S model are constructed as follows. T
following B (5b11) number of polynomials:

w051, ~C1a!

w15x, w25y, ~C1b!

w35~x22y2!, w45xy, w55~x21y2!, ~C1c!

w65x~x21y2!, w75y~x21y2!, ~C1d!

w85~x21y2!2, ~C1e!

are used to expand a functionf (x,y) in two-dimensional
space,

f ~x,y!5(
i 50

b

aiw i . ~C2!

The coefficients$ai u i 50,1, . . . ,b% are determined byB val-
ues off (x,y) at the point (x,y) and other points in its vicin-
03670
e

ity defined by the discrete velocity set on the lattice spa
Specifically, these points are (0,0), (61,0), (0,61), and
(61,61) for the D2Q9S model. The derivatives off (x,y)
are obtained from Eq.~C2! by taking differentiations with
respect to appropriate variables. The finite-difference ope
tors obtained this way for the D2Q9S model are

]x* f ~ i , j !5 f ~ i 11,j !2 f ~ i 21,j !2
1

4
@ f ~ i 11,j 11!

2 f ~ i 21,j 11!1 f ~ i 11,j 21!2 f ~ i 21,j 21!#,

]y* f ~ i , j !5 f ~ i , j 11!2 f ~ i , j 21!2
1

4
@ f ~ i 11,j 11!

2 f ~ i 11,j 21!1 f ~ i 21,j 11!2 f ~ i 21,j 21!#,

D* f ~ i , j !52@ f ~ i 11,j !1 f ~ i 21,j !1 f ~ i , j 11!1 f ~ i , j 21!#

2
1

2
@ f ~ i 11,j 11!1 f ~ i 21,j 11!1 f ~ i 21,j 21!

1 f ~ i 11,j 21!#26 f ~ i , j !.
APPENDIX D: TRANSFORMATION MATRIX AND STENCILS FOR D3Q13 MODEL

The transformation matrixM for the 13-velocity model in 3D~D3Q13! @49# is

¨

^ru

^ j xu

^ j yu

^ j zu

^eu

^3pxxu

^pwwu

^pxyu

^pyzu

^pzxu

^wxu

^wyu

^wzu

©
5

¨

1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 21 1 21 0 0 0 0 1 1 21 21

0 1 1 21 21 1 21 1 21 0 0 0 0

0 0 0 0 0 1 1 21 21 1 21 1 21

212 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 22 22 22 22 1 1 1 1

0 1 1 1 1 0 0 0 0 21 21 21 21

0 1 21 21 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 21 21 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 21 21 1

0 1 21 1 21 0 0 0 0 21 21 1 1

0 21 21 1 1 1 21 1 21 0 0 0 0

0 0 0 0 0 21 21 1 1 1 21 1 21

©
. ~D1!
6-19
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The stencils for the gradient“ and the Laplacian opera
torsD are given as the following for the D3Q13 model. On
the ]x* and D* are given because]y* and ]z* can be easily
constructed based on]x* . The polynomials used to obtain th
finite-difference operators are

w051, ~D2a!

w15x, w25y, w35z, ~D2b!

w45~x21y21z2!, w55~2x22y22z2!,

w65~x22y2!, w75xy, w85yz, w95zx, ~D2c!

w105x~y22z2!, w115y~z22x2!, w125z~x22y2!.

~D2d!

The finite-difference operators are
03670
]x* f ~ i , j ,k!5
1

8
@ f ~ i 11,j 11,k!2 f ~ i 21,j 11,k!

1 f ~ i 11,j 21,k!2 f ~ i 21,j 21,k!

1 f ~ i 11,j ,k11!2 f ~ i 21,j ,k11!

1 f ~ i 11,j ,k21!2 f ~ i 21,j ,k21!#,

D* f ~ i , j ,k!5
1

4
@ f ~ i 11,j 11,k!1 f ~ i 21,j 11,k!

1 f ~ i 11,j 21,k!1 f ~ i 21,j 21,k!

1 f ~ i , j 11,k11!1 f ~ i , j 21,k11!

1 f ~ i , j 11,k21!1 f ~ i , j 21,k21!

1 f ~ i 11,j ,k11!1 f ~ i 21,j ,k11!

1 f ~ i 11,j ,k21!1 f ~ i 21,j ,k21!#

23 f ~ i , j ,k!.
APPENDIX E: TRANSFORMATION MATRIX AND STENCILS OF D3Q15 MODEL

The transformation matrixM for the 15-velocity model in 3D~D3Q15! is

¨

^ru

^eu

^eu

^ j xu

^qxu

^ j yu

^qyu

^ j zu

^qzu

^3pxxu

^pwwu

^pxyu

^pyzu

^pzxu

^cxyzu

©
5

¨

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22 21 21 21 21 21 21 1 1 1 1 1 1 1 1

16 24 24 24 24 24 24 1 1 1 1 1 1 1 1

0 1 21 0 0 0 0 1 21 1 21 1 21 1 21

0 24 4 0 0 0 0 1 21 1 21 1 21 1 21

0 0 0 1 21 0 0 1 1 21 21 1 1 21 21

0 0 0 24 4 0 0 1 1 21 21 1 1 21 21

0 0 0 0 0 1 21 1 1 1 1 21 21 21 21

0 0 0 0 0 24 4 1 1 1 1 21 21 21 21

0 2 2 21 21 21 21 0 0 0 0 0 0 0 0

0 0 0 1 1 21 21 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 21 21 1 1 21 21 1

0 0 0 0 0 0 0 1 1 21 21 21 21 1 1

0 0 0 0 0 0 0 1 21 1 21 21 1 21 1

0 0 0 0 0 0 0 1 21 21 1 21 1 1 21

©
.

The finite-difference operators are

]x* f ~ i , j ,k!5
3

4
@ f ~ i 11,j ,k!2 f ~ i 21,j ,k!#2

1

16
@ f ~ i 11,j 11,k11!2 f ~ i 21,j 11,k11!1 f ~ i 11,j 21,k11!

2 f ~ i 21,j 21,k11!1 f ~ i 11,j 11,k21!2 f ~ i 21,j 11,k21!1 f ~ i 11,j 21,k21!2 f ~ i 21,j 21,k21!#,

D* f ~ i , j ,k!5
3

2
@ f ~ i 11,j ,k!1 f ~ i 21,j ,k!1 f ~ i , j 11,k!1 f ~ i , j 21,k!1 f ~ i , j ,k11!1 f ~ i , j ,k21!#

2
1

8
@ f ~ i 11,j 11,k11!1 f ~ i 21,j 11,k11!1 f ~ i 11,j 21,k11!1 f ~ i 21,j 21,k11!1 f ~ i 11,j 11,k21!

1 f ~ i 21,j 11,k21!1 f ~ i 11,j 21,k21!1 f ~ i 21,j 21,k21!#28 f ~ i , j ,k!.
6-20



.

THEORY OF THE LATTICE BOLTZMANN METHOD: . . . PHYSICAL REVIEW E 68, 036706 ~2003!
APPENDIX F: TRANSFORMATION MATRIX OF D3Q19 MODEL

The transformation matrixM for the 19-velocity model in 3D~D3Q19! model is

¨

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

230 211 211 211 211 211 211 8 8 8 8 8 8 8 8 8 8 8 8

12 24 24 24 24 24 24 1 1 1 1 1 1 1 1 1 1 1 1

0 1 21 0 0 0 0 1 21 1 21 1 21 1 21 0 0 0 0

0 24 4 0 0 0 0 1 21 1 21 1 21 1 21 0 0 0 0

0 0 0 1 21 0 0 1 1 21 21 0 0 0 0 1 21 1 21

0 0 0 24 4 0 0 1 1 21 21 0 0 0 0 1 21 1 21

0 0 0 0 0 1 21 0 0 0 0 1 1 21 21 1 1 21 21

0 0 0 0 0 24 4 0 0 0 0 1 1 21 21 1 1 21 21

0 2 2 21 21 21 21 1 1 1 1 1 1 1 1 22 22 22 22

0 24 24 2 2 2 2 1 1 1 1 1 1 1 1 22 22 22 22

0 0 0 1 1 21 21 1 1 1 1 21 21 21 21 0 0 0 0

0 0 0 22 22 2 2 1 1 1 1 21 21 21 21 0 0 0 0

0 0 0 0 0 0 0 1 21 21 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 21 21 1

0 0 0 0 0 0 0 0 0 0 0 1 21 21 1 0 0 0 0

0 0 0 0 0 0 0 1 21 1 21 21 1 21 1 0 0 0 0

0 0 0 0 0 0 0 21 21 1 1 0 0 0 0 1 21 1 21

0 0 0 0 0 0 0 0 0 0 0 1 1 21 21 21 21 1 1

©

The row vector ofM is ordered aŝru, ^eu, ^«u, ^ j xu, ^qxu, ^ j yu, ^qyu, ^ j zu, ^qzu, ^3pxxu, ^3pxxu, ^pwwu, ^pwwu, ^pxyu, ^pyzu,
^pxzu, ^wxu, ^wyu, and ^wzu, where^3pxxu and ^pwwu are fourth-order moments, and^wxu, ^wyu, and ^wzu are third-order
moments@50#.

The finite-difference operators are

]x* f ~ i , j ,k!5 f ~ i 11,j ,k!2 f ~ i 21,j ,k!2
1

8
@ f ~ i 11,j 11,k!2 f ~ i 21,j 11,k!1 f ~ i 11,j 21,k!2 f ~ i 21,j 21,k!

1 f ~ i 11,j ,k11!2 f ~ i 21,j ,k11!1 f ~ i 11,j ,k21!2 f ~ i 21,j ,k21!#,

D* f ~ i , j ,k!52@ f ~ i 11,j ,k!1 f ~ i 21,j ,k!1 f ~ i , j 11,k!1 f ~ i , j 21,k!1 f ~ i , j ,k11!1 f ~ i , j ,k21!#

2
1

4
@ f ~ i 11,j 11,k!1 f ~ i 21,j 11,k!1 f ~ i 11,j 21,k!1 f ~ i 21,j 21,k!1 f ~ i , j 11,k11!

1 f ~ i , j 21,k11!1 f ~ i , j 11,k21!1 f ~ i , j 21,k21!1 f ~ i 11,j ,k11!1 f ~ i 21,j ,k11!

1 f ~ i 11,j ,k21!1 f ~ i 21,j ,k21!#29 f ~ i , j ,k!.
tz
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APPENDIX G: ANALYSIS OF THE 2D LBE MODEL
WITH AN OCTAGONAL VELOCITY SET

AND INTERPOLATIONS

This appendix provides an analysis for the lattice Bol
mann model with ‘‘octagonal’’ velocity sets@27–32#. For the
sake of simplicity, we restrict our analysis to the model w
nine velocities, i.e, one zero velocity and eight velocities
03670
-

f

unit speed. With the same notations as in Appendix A,
have

^ j xu5~0,1,Ã,0,2Ã,21,2Ã,0,Ã!r , ~G1a!

^ j yu5~0,0,Ã,1,Ã,0,2Ã,21,2Ã!r , ~G1b!
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whereÃ51/A2, and the labeling of the velocities is 0 fo
the zero velocityc0, andci ( i 51 –8) for nonzero velocities
starting with c1 along thex axis in the counterclockwise
order. The parameterr is introduced for the sake of genera
ity: when r 51 ~which is the athermal model using the v
locity set presented in Ref.@27#!, the velocities along the
axial directions, i.e.,c1,3,5,7, are advected from one grid poin
to another, while those along the diagonal directions, i
c2,4,6,8, need to be interpolated after advection.

We consider the second-order central interpolation to
the ‘‘propagation’’ rules,

f i~r j !5a2 f̃ i~r j2ei !1a0 f̃ i~r j ,tn!1a1 f̃ i~r j1ei !,
~G2!

where f̃ i denotes the postcollision value off i , ei denotes the
vector linkingr j to one of its neighboring lattice points alon
the direction of velocityci , and the interpolation coefficient
for the axial and diagonal directions are, respectively, giv
by

a25
1

2
~r 11!r , ~G3a!
03670
.,

et

n

a05~11r !~12r !, ~G3b!

a15
1

2
~r 21!r , ~G3c!

and

a25
1

4
~r 1A2!r , ~G4a!

a05
1

2
~A21r !~A22r !, ~G4b!

a15
1

4
~r 2A2!r . ~G4c!

It should be noted that the above interpolation is only used
an example, and could easily be replaced by others, as
instance, those used in Refs.@27–32#.

For the octagonal velocity set, the transformation mat
M is
1
^ru

^ j xu

^ j yu

^pxxu

^pxyu

^eu

^qxu

^qyu

^«u

2 51
1 1 1 1 1 1 1 1 1

0 1 Ã 0 2Ã 21 2Ã 0 Ã

0 0 Ã 1 Ã 0 2Ã 21 2Ã

0 1 0 21 0 1 0 21 0

0 0 1 0 21 0 1 0 21

28 1 1 1 1 1 1 1 1

0 1 2Ã 0 Ã 21 Ã 0 2Ã

0 0 2Ã 1 2Ã 0 Ã 21 Ã

0 1 21 1 21 1 21 1 21

2 , ~G5!
m.
whereÃ[1/A2. The diagonal relaxation matrix is

S5diag~0,0,0,sxx ,sxy ,se ,sq ,sq ,s«!, ~G6!

where we have set the relaxation rates forqx and qy to be
equal.

The equilibria of the nonconserved moments are

pxx
(eq)5

1

r
~ j x

22 j y
2!, ~G7a!

pxy
(eq)5

2

r
~ j x j y!, ~G7b!
e(eq)5a2r1
9

r
~ j x

21 j y
2!, ~G7c!

qx,y
(eq)5c1 j x,y , ~G7d!

« (eq)5a3r1g4~ j x
21 j y

2!. ~G7e!

For all practical purposes, we can seta35g450, as they
have no effect on the hydrodynamic behavior of the syste
In what follows, we shall seta350 and letg4 be a free
parameter.

The isotropy of the shear viscosity@45# requires that
6-22
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FIG. 5. Thek dependence of the normalize
viscosity, n(k)/n0, for two LBGK models, with
n050.001. ~a! The normal D2Q9 LBGK model
on a 2D square lattice without interpolation an
with t50.503. ~b! The octagonal LBGK model
with r 51 andt50.504.
2

he
he
ns
ri-

e

S 1

sxy
2

1

2D5S 11c1

12c1
D S 1

sxx
2

1

2D . ~G8!

Obviously, for the BGK models@27–32# to satisfy this con-
dition, we must setc150. The sound speed is

cs5
2r

3
A11

a2

8
~G9!

and the shear and bulk viscosities are, respectively, given
03670
by

n5
r

4
~11c1!S 1

sxx
2

1

2D , ~G10!

z5
r 2

2
~12us!S 1

se
2

1

2D , ~G11!

where us52cs
2/r 25(81a2)/9. For the LBGK model,c1

50 andsxx5se51/t. The above results are obtained by t
~linear! dispersion equation analysis and verified by t
~nonlinear! Chapman-Enskog analysis plus some simulatio
in which one analyzes the relaxation of a flow with a pe
odic shear wave as initial condition.

The equilibrium distribution functions obtained from th
equilibria of the moments are~assuminga350)
f i
(eq)55

~12us!r2
1

r
j• j, i 50

1

8 S usr12~ci• j!1
1

r
$4~ci• j!22~22g4!j• j% D , i 51,3,5,7

1

8 S usr12~ci• j!1
1

r
$4~ci• j!22g4 j• j% D , i 52,4,6,8.

~G12!
to
tial
e

When r 51, cs51/2 (a2527/2), and g451, the above
equilibria reduce to that of the LBGK model,

f i
(eq)5wir$114ci•u18~ci•u!222u2%, ~G13a!

wi5H 1/2, i 50,

1/16, iÞ0,
~G13b!
which are derived from the Maxwellian@42,43#.
The analysis of the dispersion equation~cf. Appendix B

and Ref.@45#! shows the non-hydrodynamic effects due
the discreteness of the LBE system, i.e., the small spa
scale behaviors of the system. Here we shall only show thk
dependence of the shear viscosityn. Figure 5 shows the
n(k)/n0 along three directions:u50, p/8 (22.5°), andp/4
(45°), whereu is the polar angle ofk, andn0 is the viscosity
d
,

FIG. 6. Thek dependence of the normalize
viscosity,n(k)/n0, for the octagonal BGK model
with n050.001 and rÞ1. ~a! r 50.9 and t
'0.504 94.~b! r 51.1 andt'0.50331.
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at k50 as given by Eq.~G10!. Figures 5~a! and 5~b! illus-
trate the behavior ofn(k)/n0 for the usual D2Q9 LBGK
model on a 2D square lattice and the 2D nine-velocity
tagonal model with interpolations along diagonal directio
(r 51), respectively. Clearly, the use of octagonal veloc
set does not improve the isotropy. To the contrary, the
tagonal model displays a much larger@O(102)# anisotropic
effect in n(k)/n0 than its counterpart on a 2D square lattic
Because the octagonal model has much larger numerical
cosities, it is much less sensitive to disturbances of sm
scales, thus much more stable numerically. In particu
since the value ofn(k)/n0 for the octagonal model reache
its maximum atk5p along the lattice lines (u50), the
model is not sensitive to the spurious staggered mode~i.e.,
the checkerboard pattern of wavelength 2!. We also compute
n(k)/n0 for the octagonal LBGK model withrÞ1 or r
ÞA2, i.e., with interpolations applied to all eight direction
Figures 6~a! and 6~b! show the behavior ofn(k)/n0 for the
2D nine-velocity octagonal model with interpolations a
plied to all eight directions, and forr 50.9 andr 51.1, re-
spectively. Similar to the case ofr 51, the octagonal mode
displays large anisotropy when interpolations are applied
all eight directions (rÞ1 or rÞA2). It should be noted tha
Fig. 6~b! shows the case that the octagonal model has
come linearly unstable along the direction ofu5p/8 because
n(k) becomes negative in a wide range ofk. Based on these
results, we conclude that, when compared to the LB
model without interpolation, the octagonal LBGK model
much more anisotropic and has much larger numerical
cosities due to interpolations. Thus, the interpolations wh
are less symmetric than the velocity set can easily destroy
symmetry properties brought by the velocity set and, in tu
dictate the symmetry properties of the model as a wh
To fully retain the symmetry of the velocity set, the inte
polations with a comparable symmetry may have to
used ~with a compromise between anisotropy and no
hydrodynamical behavior!.

The limitation of the LBGK model becomes apparent
this analysis. First, the LBGK model has much narrow
stable ranges of adjustable parameters when compared t
MRT counterpart, as shown in Ref.@45#. For example, with
the MRT models one can properly maintain a suitable ra
between the bulk and shear viscosities to help stabilize
system by reducing undesirable acoustic effects. This is
ticularly useful when using poor initial conditions leading
In
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large acoustic disturbance. Second, it is not possible for
LBGK model to incorporate the stretching factorr into the
equilibriaa priori. It can be shown that the octagonal LBG
model would not be able to maintain the Galilean invarian
for rÞ1. And third, the LBGK models do not have the fle
ibility to optimize certain properties. In contrast, the MR
models have the freedom and capability to optimize cert
properties. As an example, Fig. 7 showsn(k)/n0 for the
MRT model with the octagonal velocity set. It is obvious th
the anisotropy ofn(k)/n0 at largek is much reduced.

Finally, we would like to mention that we have also an
lyzed a more elaborate LBGK model on a 2D octagonal
tice with three speeds~0, 1, and 2! and 17 velocities@27#.
Our observation can be summarized as follows. First,
addition of a second velocity set~of speed 2! does not im-
prove the isotropy of the system. And second, when
energy-conservation constraint is imposed, the model
plays exactly the same spurious coupling between the en
and shear modes, as shown in Sec. III C and Fig. 2. T
coupling strongly depends on the Prandtl number Pr. In p
ticular, the value ofkc at which the spurious coalescenc
occurs~cf. Sec. III C! decreases asuPr21u decreases. This
poses a severe limitation on the energy-conserving L
models because for many fluids of practical interest
Prandtl number is close to 1~e.g., Pr'0.71 for air!. We also
observe that the D2Q17 MRT model with octagonal velo
ties has sufficiently large stable ranges of the sound sp
cs , the viscosityn, and the thermal conductivityk. The
details of this analysis shall be published elsewhere.

FIG. 7. Thek dependence of the normalized viscosity,n(k)/n0,
for the octagonal MRT model, withn050.001. Other paramete
values arec150.4, a2526, a350, se51.60, sq51.84, r 50.6,
andsxx51.96875.
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