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Characterization of the probabilistic traveling salesman problem
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We show that stochastic annealing can be successfully applied to gain new results on the probabilistic
traveling salesman problem. The probabilistic “traveling salesman” must decide arpeari order in which
to visit n cities (randomly distributed over a unit squateeforelearning that some cities can be omitted. We
find the optimized average length of the pruned tour foII@(/Epmne() =/np(0.872-0.10%) f(np), wherep
is the probability of a city needing to be visited, afthp) —1 asnp—. The average length of treepriori
tour (before omitting any cities is found to follow E(Lg prioni) = n/pB(p), where B(p)=1/[1.25
—0.821In(p)] is measured for 0.05p<0.6. Scaling arguments and indirect measurements suggeg(tbat
tends towards a constant fpr<0.03. Our stochastic annealing algorithm is based on limited sampling of the
pruned tour lengths, exploiting the sampling error to provide the analog of thermal fluctuations in simulated
(therma) annealing. The method has general application to the optimization of functions whose cost to evalu-
ate rises with the precision required.
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[. INTRODUCTION whereG is some monotonic function of and « is a param-
eter. G is not known directly, but can only be estimated.
Many real systems present problems of stochastic optimiTheir technique to solve this problem is called stochastic
zation. These include communications networks, protein deapproximation, and a number of variants of this scheme have
sign[1], and oil field model$2], in all of which uncertainty  since been developdd —7].
plays a central role. We will consider the case where the For function minimization where the function must be
outcomeg(x,w) depends not only on parametersto be  estimated and may have multiple minima, the term stochastic
chosen, but also on unknowas We can only average with  gptimization is used. This term has sometimes been used for
respect to these unknowns, aiming to find the “solution”  certain heuristic algorithms applied to normal optimization
which optimizes the average outcome. Thus we seek 1o findohlems, but here it is used exclusively to describe the op-
x e X which minimizes timization of a function which must be estimated.
In this paper our focus is on heuristic approaches to the
E(X):f g(X,0)f(w)do, ) solution of stochastic optimization problems, since these are
the appropriate tool for the solution of NP-complete prob-
lems, such as thePTSB [8]. A number of heuristics already
exist to tackle stochastic optimization problerf8—13.
Many of these are developments from simulated annealing
T14-17, which has itself been shown8] to solve stochas-

tic optimization problems with probability 1, provide}{x)

whereX is the solution space of the problem af{) is the

probability distribution of the uncertain variables.
Stochastic optimization was born out of an idea by Rob

bins and Monrd 3]. They considered solving the problem of

finding can be estimated with precision greater tia(t~ ) for time
G(X)=a, ) stept, wher(_a ?’>1; A number of guthor$1§—17,;9 ha_ve
used a modified simulated annealing algorithm in which the
acceptance probability is modified to take some account of
*Email address: Neill.Bowler@physics.org; the precision of the estimates g{x), and in these cases
URL: http://uk.geocities.com/neill_bowler there are a number of convergence resll&17. Ceperley
"Email address: tmf20@cam.ac.uk: and Dewing 20] have developed a penalty method for simu-
URL: http://www.tcm.phy.cam.ac.uktmf20/ lated annealing which permits exact simulation of a thermal
*Email address: r.c.ball@warwick.ac.uk; system, where the errors of the estimationggk) are as-
URL: http://www.phys.warwick.ac.uk/theory/ sumed to be Gaussian.
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FIG. 1. Typical near optimad priori PTSP tours witm= 300 for p=0.5 (left) andp=0.1 (right), respectively.

Stochastic annealind.] is a more general approach which \/FA,u

allows the simulation of thermal equilibrium even if the dis- 1—erf(

tribution of errors in the estimation @f(x) is not known. In In M) = —‘/EU

this technique the noise present in the estimates is positively Pe_a \/FAM

exploited as mimicking thermal noise in a slow cooling, as 1+erf N

opposed to being regarded as something whose influence

should be minimized from the outset. It is a simplification of 4—m 3

this method which we use to approximately solve the PTSP. == BeAu— g (BeAp)y= ()
We estimateg(x) by takingr repeated, statistically inde-

pendent, measurementsg(ix, »), each of which we call an Where

instance. All moves for which one estimateased orr in-

stancegfor a new state is more favorable than an equivalent :ﬁ 6)

estimate for the old are accepted. This simple procedure does N Jmo

not exactly simulate a thermal system, where the acceptance

probabilities should obey identifies the equivalent effective temperature. The small co-

efficient (=0.02) of the cubic term in Eq5) makes this a
rather good approximation to true thermal selection.
Increasing the sample sizeneans that we are more strin-
gent about not accepting moves that are unfavorable, equiva-
lent to lowering the temperature, which is quantified by Eq.
(6) for the Gaussian case. As with standard simulated anneal-
_ ing [21-23, the question of precisely what cooling schedule
where B=1/kgT and Au is the exact difference img(x) to use remains something of an art.
between state# and B. However, if we assume that our

estimate OfA/.L is Gaussian distributed arOUerX) with 1I. PROBABILISTIC TRAVELING SALESMAN PROBLEM
standard deviation/+r, wherer is the number of instances

used for each estimate, then it follows that the acceptance We adopt the PTSP as a good test bed amongst stochastic
probability is[1] optimization problems, in much the same way as the travel-

ing salesman problefTSP has been considered a standard
amongst deterministic optimization problems. The PTSP

P —
e e )
PBHA

1 JrA falls into the class of NP-complete problef®3, and the TSP
P == 1_erf<_'“ _ (4) s a subset of the PTSP.
2 V20 The original traveling salesman problem is to find the

shortest tour around cities, in which each city is visited

once. For small numbers of cities this is an easy task, but the
The approximation to a thermal acceptance rule is then quitproblem is NP complete: it is believed for largehat there
good since is no algorithm which can solve the problem in a time poly-
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L12 - - To005 not need to be visited are skipped to leave a “pruned tour.”
; =01 The order in which the cities are to be visited is preserved
11+ 1% it ! 52014 et ] when pruning superfluous cities. The objective is to choose
Hi % I % g:g:g N an a priori tour which minimizes the average length of the
108 f ﬁ % I i £ . pruned tour. It is clear from Fig. 1 that near optinagpriori
BB % { % % } } } } % tours may appear very different for different valuespof
p%ﬁ? 1.06 E { % . In our terminology, the average pruned tour length is av-
=il E { % eraged over all possible instances of which cities require to
1.04 { %ﬂ ﬁ % ] be visited. This was given by Jaillet 827,29
{ n-2
= ' Conned= 2, P(1=p)ILE, ®
Yo 50 100 150 200 where
np
n
FIG. 2. The expected prgn_ed tour Iength_ divided by the expected L@ = E d(, 14 (j + D modn) (9)
reoptimized tour length. This indicates the improvement one would =1

expect from reoptimization. ) ) ) )

is the sum of the distances between each city anddts (
nomial inn. Consideration of the traveling salesman problem“Lzl)th following city on thea priori tour, and the factors
began with Beardwooet al. [24]. They showed that in the P“(1—p)? in the preceding equation simply give the prob-
limit of large numbers of cities which are randomly distrib- ability that any particular span skippirgcities occurs in the

uted on a unit square, the optimal tour lengthsp follows pruned tour. Jaillet's closed form expression for the average
[25] pruned tour length renders the PTSP to some extent acces-

sible as a standair(dut still NP completgoptimization prob-
lem, and provides some check on the PTSP results by sto-
chastic optimization methods.

It has been conjecturd®] that, in the limit of largen, the
PTSP strategy is as good as constructing a TSP tour on the
cities requiring a visit, the reoptimization strategy. This
would mean that

E(Lrsp) = BrspVn+ arsp, (7)

where B1gp and argp are constants. Here and beldw(L)
denotes the quantity averaged, after optimization, with re-
spect to different city positions, randomly placed on a unit
square. Numerical simulatiof26] gives Brgp=0.7211(3)

and atsp=0.604(5) as estimates wher=50. Significant E(L, )
divergence from this behavior is found fa<10, but nu- lim (ﬂ> = Brsp, (10)
merical estimates can be found quicksee Table)l n—o \/ﬁ)

The probabilistic traveling salesman problem, introduced _
by Jaillet[27,28, is an extension of the traveling salesmanwhere E(Lyned is the average pruned tour length further
problem to optimization in the face of unknown data.averaged over city positions after optimization, which we
Whereas all of the cities in the TSP must be visited once, irwill refer to as the expected pruned tour length. Figure 2
the PTSP each city only needs to be visited with some probshows the expected pruned tour length divided by the ex-
ability p. One first decides upon the order in which the citiespected reoptimized tour length. Since this quantity is tending
are to be visited, the & priori” tour. Subsequently, it is towards a value significantly greater than 1 for 1 it dem-
revealed which cities need to be visited, and those which donstrates that the PTSP strategy can be worse than the reop-

timization strategy. Jaillef27] and Bertsimas and Howell
TABLE |. The average length of the near-optimal TSP tours for[29] have also shown that there is a limit to how much worse

a small number of cities. it can be, with
Number Number Average al -1 _ E(fprunec)
of citiesn of instanced tour length lim | ——— = Bpruned P), (13)
n—sos Vynp

2 100000 1.043 0.002

3 100000 1.564 0.002 where

4 5000 1.889 0.006

5 5000 2.123 0.006 . Brsp

6 5000 2311 0.005 Arse=Bpruned P)<Min 0'9212’\/5 ) ' (12

7 5000 2.472 0.005

8 5000 2.616 0.005 One attempt to solve the PTSP using an exact method was
9 5000 2.740 0.005 taken by Laporteet al. [30] who introduced the use of inte-

10 5000 2.862 0.005 ger linear stochastic programming. This study was severely

limited in the size of problem attempted and the stochastic

036703-3



BOWLER, FINK, AND BALL PHYSICAL REVIEW E 68, 036703 (2003

programming algorithm failed to solve the PTSP on certaimprevious computational resultf29,26, we estimateC
occasions. Thus the accuracy of any statistics generated us-1.33, which is worse than we achieve using stochastic an-

ing th|S metho.d are dubiOUS. o nea”ng. HenceE(fTr) is given by
Three studies have used heuristics to solve the PTSP s
[31-33. None of these studies used global search heuristics, T
E(L,)=0(ynp), (17)

and all were very restricted in the problem size attempted
due to computational cost. The evaluation of a move for tth .

: . . hich leads to
PTSP using Eq8) involves the computation dd(n?) terms

compared toO(1) computations to evaluate a move in the E(f )
TSP. Thus, to solve a 100-city problem for the PTSP would _TsF _ 1 . (18)
take O(10000) times longer than it would to solve a 100- E(Lang Jnp

city problem for the TSP. It should be noted, however, that it

is only possible to make this comparison due to the relativeso for large enouginp the angular sorting is not optimal.
simplicity of the PTSP. For many more stochastic optimiza- From inspection of near-optimal PTSP tours such as Fig.
tion problems, standard optimization techniques are simplyl, we propose that the tour behaves differently on different

not applicable. length scales; the tour being TSP-like at larger length scales,
but resembling a locally directed sorting at smaller length

. FORM OF THE OPTIMAL TOUR scales. A locally directed sorting sorts cities according to

AND SCALING ARGUMENTS their distance in a particular direction. We may construct

such a tour and use scaling arguments to analyze both the

Optimala priori PTSP tours for smaf, as exemplified in pruned anda priori lengths of the optimal tour. Consider
Fig. 1 for p=0.1, resemble an “angular sorting"—where dividing a unit square into a series of “blobs,” each blob
cities are visited in an order given by their angle with respectontaining 1p cities so that on average one city within each
to the center of the square. Bertsini@4] proposed that an plob requires a visit. The number of such blobs is given by
angular sorting is optimal gs— 0, but we can show this to
be false by comparison to a space-filling curve algorithm N=np, (19
which is generally superior as— . Such an algorithm was
introduced by Bartholdi and Blatzm#84] using a technique and for these to approximately cover the unit square their
based on a Sierpinski curve. typical linear dimensiorf must obey

For the angular sort withp>1 only cities that are sepa- )
rated by a small angle will contribute significantly to E). NE™~1. (20)

For two cities which are separated by a large angle the prObé'nce a oruned tour will visit each blob once on average. we
ability that they are adjacent on the pruned tdue., no : pru ur will visi verage, w

cities between them require a vjsils vanishingly small. can estimate the expected pruned tour length to be

Thus for ann-city tour chosen by angular sorting we may

approximate Eq(9) by E(Lpruned ~N&~/np, (22)

L@~ n (13 which we will see below is verified numerically. We can
ang —oTh similarly estimate the priori tour length to ben times the

whereL, is some fraction of the side of a unit square, sincedistance between two cities in the same blob. Thus, the ex-
cities which are sorted with respect to angle will be unsorted€cteda priori tour length is
with respect to radial distance. This leads to

n
o n-2 E(La priori)~n§~ \/%r (22)
E(Lang ~Lonp* 2, (1-p)*% (14
a which is more difficult to confirm numerically.

Fornp>1, we find that the angular sorting yields
IV. COMPUTATIONAL RESULTS FOR THE PTSP

E(Lang)_’l-on p. (15 . . .
We have investigated near optimal PTSP tours for a range
By contrast it has been shoy@9] that of different numbers of cities, and various valuespofwWe
. used stochastic annealing with effective temperatures in the
E(LTSf) range 1B8;=0.07—-0.01, corresponding to sample sizes in
———=C, (16)  the ranger =2—500. Between 10 and 80 different random
E(L reop? city configurations were optimized (80 configurations of 30

. . — .. cities, 40 configurations of 60 cities, 20 configurations of 90
with probability 1, whereE(LTsf) is the expected length of a cities, and 10 configurations for=120 cities.

tour generated by a heuristic based on a space-filling curve Figure 3 shows a master curve for the expected pruned

approach of Bartholdi and BlatzmdB84] and E(Lgeop) is  tour length divided byBunedP)Vnp as a function ofnp.
the expected length for the reoptimization strategy. Usindrhe shift factors3,,ned p) have been chosen to give the best
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FIG. 3. The master curve for the pruned tour length divided by  FIG. 5. Reciprocal shift factors foa priori tours (diamond$
Bpruned P) VNp. The data follows a smooth curve for-30, and the  compared to estimates from 4-city toufsrosses /84 priori(P)
shift factors follow a linear relationship, suggesting that=n/2E(L? Ei:?’ori)- The 4-city tour data are optimized when each of
E(fp,uneg/\/n_p(OB?} 0.105)=f(np). Three points withn=30 the instances have 4 cities on the pruned tour. The direct measure-
lie significantly above the other data poifiere and also in Fig.)4 ~ ments do not appear to saturate within the accessible range of
showing breakdown of the master curve at small The crosses show matching behavior, with saturation at lamger

corresponding to inaccessible, suggesting thatE(L, priori)
fit of the data to a single curve. The shift factors vary only =B8ovV(n/p) for smallp.
slightly with changingp and appear to have a linear fit. This
means the expected pruned tour length is given by 1

B Ba priori(p): 1.25-0.821Inp)’ (29
E(Lprune& _ . . . .
m—f(np), (23)  which would tend to zero as—0 in conflict with our scal-
P P ing arguments. To resolve this dilemma we need to probe

very smallp.
for n>1, wherea=0.872+-0.002, b=0.105-0.005, and

f(np)— 1 for largenp. This indicates that the PTSP strategy
can be no more than 0.872/0.76T1=14%(*+1%) worse

than the reoptimization strategy. We are interested in finding whethg, ,/iri(p) tends
The master curve for tha priori tour length is shown in  towards a constant as—0. To do this using the above

Fig. 4. Our scaling arguments predict that the shift factorsapproach is difficult, since we need a large number of cities

Ba priori(P) should tend towards a constant for-0. How-  to produce reliable data for this regime. Extraction of this

V. THE LIMITING CASE p—0

ever, data are fit very well by the relation behavior may be achieved by comparing simulations for dif-
ferent values oh, but fixednp. We accomplish this by in-
12 o5 07 - - - - sisting that each instance has four cities on the pruned tour. 4
p=0.l —— c city tours are chosen since they are the smallest for which it
115 b 528;21 —— E 06 i matters in which order the cities are visited. This can be
g:g:g e 403 viewed as an efficient way to simulatapproximately the
! g 04 PTSP strategy witlp=4/n.
@E up 1 503 1 Since we are considering the PTSP at fixag, if
; C ? a Ba priori(P) tends towards énonzerg constant ap— 0 then
2| € 105 | % ﬁ% % 0.0702703 04705 06 0, we expectE(Lj orlo)/n to tend towards a constant a&s
= H% h% % g il B 1y —o0, Simulations in this regime were performed for 12
% I h ¥ —210, with 100 different random city configurations used
Ir for n<30, 20 configurations fon<90, and 10 configura-
tions for n=120. Figure 5 shows a linear-log plot of
0.95 . - - - - . - - n/2E(L? ‘;‘ﬁiyori) against Inf/4)=In(1/p). For smalln these

0 20 40 60 80 100 120 140 160 180
np

results reasonably match the direct measurements of
Ba priori(P), shown for comparison. However, for large

FIG. 4. The master curve for tleepriori tour length divided by 1(_)0 which is beyond the_range of 0;@5 pripri(p_) d?‘t& our
J(n/p) Ba oriori(P). The shift factors, inset, are expected to tend earlier proposal of scaling behavior is vindicated by
towards a constant fgp— 0. The slight, but significant, deviation E(L;1 g'ﬁ'ori)/n approaching a constant value. In summary we
from linear suggests that this might not be the case. have
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An a-priori tour. and proposed move We take one particular instance and
P i Prop estimate length change from that I 1

FIG. 6. When estimating the expected length change due to ¢ 2 —

move, we randomly generate instances. Only the cities that are - | 1

nearest to the move are needed to calculate the change in the prunc % ' 0,:)2 ' 0.04 ' O‘IO(, ' o‘i)s ' 0.1
tour length. or'2 152
. _n FIG. 7. The expected pruned tour length for annealings when
r!LrTLE(La priori) = \[B'Ba priori(P), (25) and 1T = \r/¢ are increased monotonically. The sharp drop in the
pruned tour length is seen when omlys controlled, demonstrating
that this “freezes in” imperfections in the tour. The system was
where P y

annealed at each value of the temperature and valuéanf50 000
Monte Carlo steps witln=300 andp=0.1.

1
Busron(p)| _ 125-0.821(p) for p>0.03 26 VIl. CONCLUSION
=Bo for p<0.03. We have shown that earlier incompatible ideas about the

form of PTSP, tours especially at small[31,8,34, are re-
solved by a new crossover scaling interpretation. At larger
length scales the tour appears TSP-like, but resembles a

We applied stochastic annealing to the PTSP using a comecally directed sorting at smaller scales. The crossover
bination of the 2-opt and 1-shift move s¢5] established between these two regimes corresponds to a group of cities
for the TSP. Both move sets are applied todhgriori tourin ~ for which on average one city in this group requires a visit.
the same way as they are applied for the TSP. The expectédur computational results for the pruned tour length are
pruned tour length change for the move is estimated by avsummarized by Eq(23) and clearly support the crossover
eraging the change in the tour length for a number of in-scaling.
stances. For a given instance it is not necessary to decide Computationally thea priori tour length is more subtle
whether every city is present, but only the set of cities closesthan the pruned tour length, although it does ultimately con-
to the move which determine the change in the pruned touform to expectations from crossover scaling. We introduced
length(see Fig. 6. For the PTSP, the location of the nearest4-city tours to probe the behavior @f priori tour length
cities on the pruned tour to the move is determined from alown to very smalp. As summarized by Eq25), we find a
Poisson distribution. wide preasymptotic regime until recovering the expected

When using stochastic optimization, the only variablecrossover scaling only fop<<0.03. Understanding these
over which we have control is the sample s{dee number anomalies in the priori tour length, and confirming them
of instancep r, whereas the effective temperatumlﬁ analytically, is left as a future challenge.
also entails the standard deviationof the pruned length We have shown stochastic annealing to be a robust and
change over instances. As shown in Fig. 7, annealingffective stochastic optimization technique, taking the PTSP
by controllingr alone exhibits a relatively sharp transition as a representative difficult stochastic optimization problem.
in the expected pruned tour length. The rapid transitiorin this case it enabled us to obtain representative results out
appears to “freeze in” limitations in the tours fourjdnalo-  to unprecedented problem sizes, which in turn supported a
gous to defects in a physical low temperature phaBy  whole new view of how the tours behave. Of relevance to
comparison we obtain a much smoother change whiefr wider applications of stochastic optimization, we have seen
is controlled. that smoother annealing can be obtained by directly control-

The sharpness of the transition under control rbys ling the effective temperature/\/F [1] rather than simply
caused by the fact that may vary from move to move, and the bare depth of samplingalone.
is on average lower when the expected pruned tour length is
less. The jump in the pruned tour length is accompanied by a
jump in o and hence the temperature. We suggest that quite
generally controllings/\t gives a better cooling schedule N.E.B. would like to thank BP Amoco and EPSRC for
than focusing omr alone. financial support during this research.

VI. NOTES ON ALGORITHM IMPLEMENTATION
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