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Quadratic solitons as nonlocal solitons
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We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new
physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an
effective saturable Kerr medium. The nonlocal analogy also allows for analytical solutions and the prediction
of bound states of quadratic solitons.
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I. INTRODUCTION

Quadratic nonlinear~or x (2)) materials have a strong an
fast electronic nonlinearity, which makes them excellent m
terials for the study of nonlinear effects, such as solitons@1#.
The main properties of quadratic solitons are well known@2#
and both (111)-dimensional@3# and (211)-dimensional
@4# bright spatial solitons have been observed experiment
Unlike conventional solitons, which form due to a se
induced refractive index change, the formation of quadra
solitons does not involve any change of the refractive ind
Thus the underlying physics of quadratic solitons is of
obscured by the mathematical model. Only recently Assa
and Stegeman used the concepts of the cascading phase
and parametric gain to give an intuitive interpretation of
fects, such as self-focusing, defocusing, and soliton form
tion in x (2) materials@5#.

Nevertheless certain features of quadratic solitons, suc
formation of bound states, are still without a physical int
pretation. The nice simple phase-shift approach of Assa
and Stegeman@5# predicts, e.g., that two dark solitons an
two out-of-phase bright solitons will always repel and th
can never form a bound state, whereas it is known that s
bound states of quadratic solitons do exist@6#.

Here we use the analogy between parametric interac
and nonlocality and present a physically intuitive nonlo
theory, which is exact in predicting the profiles of stationa
quadratic solitons and which provides a simple physical
planation for their properties including formation of boun
states.

The nonlocal analogy was applied recently by Shadriv
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and Zharov to find approximate bright quadratic soliton s
lutions @7#. The formal equivalence of bright solitons in non
local liquid crystals and parametric solitons was also d
cussed recently by Conti, Peccianti, and Assanto@8#.
However, the nonlocal concept was not fully exploited
Refs. @7,8# to give a broad physical picture in the who
regime of existence and discuss, e.g., dark solitons
bound states of out-of-phase bright solitons.

We do that here and we go one step further in show
how a simple phase-sensitive nonlocal model provides a
ter description of the dynamics inx (2) materials than the
nonlinear Schro¨dinger ~NLS! equation obtained in the cas
cading limit.

We consider a fundamental wave~FW! and its second
harmonic~SH! propagating along thez direction in a lossless
quadratic nonlinear medium under conditions for type
phase matching. The normalized dynamical equations for
slowly varying envelopesE1,2(x,z) are then@9#

i ]zE11d1]x
2E11E1* E2 exp~2 ibz!50, ~1!

i ]zE21d2]x
2E21E1

2 exp~ ibz!50. ~2!

In the spatial domaind1'2d2 , dj.0, and the coordinatex
represents a transverse spatial direction. The term]x

2Ej

5]2Ej /]x2 then represents beam diffraction. In the tempo
domain dj is arbitrary andx represents time. In this cas
]x

2Ej represents pulse dispersion. The parameterb is the nor-
malized phase mismatch andj 51,2.
©2003 The American Physical Society14-1
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II. GENERAL NONLOCAL MODEL

Physical insight into the properties of Eqs.~1! and ~2!
may be obtained from the cascading limit, in which the ph
mismatch is large,b21→0. Writing E25e2 exp(ibz) and
assuming slow variation ofe2(x,z) gives the NLS equation

i ]zE11d1]x
2E11b21uE1u2E150, ~3!

in which thelocal Kerr nonlinearity is due to the coupling t
the SH fielde25E1

2/b. The SH is thus slaved to the FW an
the widths of the SH and FW are fixed. The sign of t
mismatchb determines whether the effective Kerr nonlinea
ity is focusing or defocusing and thus the cascading li
predicts that bright and dark quadratic solitons exist
bd1.0 andbd1,0, respectively.

However, even for stationary solutions the NLS equat
is inaccurate, since the term]x

2E2 is neglected. Thus it pre
dicts, e.g., modulational stability of dark quadratic solito
for all values ofd2, whereas this is known to depend on t
value ofd2 @6#. It further predicts that in higher dimension
bright solitons are unstable and will either spread out or c
lapse@10#, whereas it is known that stable quadratic solito
exist in all dimensions and that collapse cannot occur in
x (2) system~1! and ~2! @11,12#. The stabilizing effect of the
x (2) nonlinearity is often described as being due to satura
of the effective Kerr nonlinearity@5,11,13#. We show below
that the nonlinearity is in fact nonlocal.

To obtain a more accurate model than that given by
cascading limit we assume a slow variation of the SH fi
e2(x,z) in the propagation direction only. Thus, neglecti
only ]ze2, we solve Eq.~2! exactly using Fourier transfor
mation and the convolution theorem, treatingE1

2 as a func-
tion. The SH is still expressed in terms of the FW, but n
the relation has the form of a convolution, leading to t
nonlocal equationfor the FW:

i ]zE11d1]x
2E11b21N~E1

2!E1* 50, ~4!

N~E1
2!5E

2`

`

R~x2j!E1
2~j,z!dj, ~5!

with E25b21N exp(ibz). Equations~4! and~5! clearly show
that the interaction between the FW and the SH is equiva
to the propagation of a FW in a medium with a nonloc
nonlinearity. In the Fourier domain~denoted with tilde! the
response function R(x) is a Lorentzian R̃(k)51/(1
1ss2k2), wheres5ud2 /bu1/2 represents the degree of no
locality ands5sgn(d2b). Both Eqs.~1! and~2! and~4! and
~5! are trivially extended to include more transverse dim
sions.

For s511, where thex (2) system~1! and~2! has a fam-
ily of bright ~for d1.0) and dark~for d1,0) soliton solu-
tions @6#, R̃(k) is positive definite and localized, giving

R~x!5~2s!21 exp~2uxu/s!. ~6!
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The cascading limitb21→0 is now seen to correspond t
the local limit s→0, in which the response function be
comes ad function,R(x)→d(x).

With the nonlocal analogy one can assign simple phy
cally intuitive pictures to several important cases. When
mismatchubu is large Eqs.~4! and~5! reduce to the so-called
weakly nonlocal equation withs!1 @14#. Similarly the
nearly phase-matched limit whenb'0 corresponds to the
strongly nonlocal limit withs@1, when Eqs.~4! and ~5!
become effectively linear@15,16#.

For s521, R̃(k) has poles on the real axis and the r
sponse function becomes oscillatory in nature with
Cauchy principal value

R~x!5~2s!21 sin~ uxu/s!. ~7!

In this case the propagation of solitons has a close ana
with the evolution of a particle in a nonlinear oscillato
potential. In fact, it is possible to show that the oscillato
response function explains the fact that dark and bright q
dratic solitons radiate linear waves fors521 @6#.

Equations~4! and ~5! show the important result that in
contrast to the conventional nonlocal NLS equation, desc
ing materials with a thermal@18# or diffusion @19# type non-
linearity, liquid crystals@20#, and photorefractive crystal
@21#, the nonlocal response of thex (2) system depends on th
square of the FW, not its intensity. Thus the phase of the
enters into the picture and one cannot directly transfer
known nonlocal stability results for plane waves@15,17# and
solitons@14,16#.

However, the simple nonlocal model~4! and~5! is indeed
an improved model of quadratic nonlinear materials, as co
pared with the even simpler NLS equation obtained in
cascading limit. Thus the nonlocal model correctly sho
that the properties of quadratic solitons depends sensiti
on the parameterd2. For symmetric response function
R(x)5R(2x), the nonlocal model in arbitrary dimensio
conserves both power and Hamiltonian and it is straightf
ward to carry out the same analysis as for the conventio
nonlocal NLS equation@16# and show that the Hamiltonian
for the system~4! and~5! is also bounded from below. Thu
the nonlocal model~4! and ~5! also correctly predicts tha
collapse cannot occur in thex (2) system. Furthermore, fo
stationary fieldsE1(x,z)5E1(x) the nonlocal model~4! and
~5! represents an exact model forx (2) materials.

III. NONLOCAL QUADRATIC SOLITONS

The properties of nonlocal solitons in terms of profil
thus directly apply to quadratic solitons. Consider station
solutions to Eqs.~1! and ~2! in the form

E1~x,z!5a1f1~t!exp~ ilz!, ~8!

E2~x,z!5a2f2~t!exp~ i2lz1 ibz!, ~9!

where the profilef j (t) is real, with t5xul/d1u1/2, a1
2

5l2ud2 /(2d1)u, anda25l. This scaling reduces the num
ber of free parameters to one and transforms Eqs.~1! and~2!
into the following system@6#:
4-2
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s1f192f11f1f250, ~10!

s2f292af21f1
2/250, ~11!

wheresj5sgn(ldj )561, a5(21b/l)ud1 /d2u, and prime
denotes differentiation with respect to the argument. T
properties of solitons described by Eqs.~10! and ~11! are
well known @6#. A family of bright ~dark! solitons exist for
s25s1511 (s252s1511) and a.0. As discussed
above we do not consider the combinationss256s1521,
for which solitons do not exist in the wholea space.

Equation~11! has the formal solutionf25gN(f1
2), with

g51/(2a) and the nonlocal nonlinearityN(f1
2) given by

Eq. ~5!. For sgn(s2a)511 the response function isR(t)
5(2s̄)21 exp(2utu/s̄), with the degree of nonlocalitys̄
5uau21/2. Inserting the SH into Eq.~10! then gives theexact
nonlocalmodel for the FW in thex (2) system~10! and~11!:

s1]t
2f12f11gf1E

2`

`

R~t2j!f1
2~j!dj50, ~12!

where g is the strength of the nonlocal nonlinearity. Th
x (2) solitons are equivalent to nonlocal solitons.

In the weakly nonlocal cases̄!1 ~i.e., uau@1) the re-
sponse functionR(t) is much narrower than the FW inten
sity f1

2. Taylor expansion off1
2 under the integral in Eq

~12! gives the weakly nonlocal model@14#

s1]t
2f12f11g~f1

21s̄2]t
2f1

2!f150, ~13!

where f25g(11s̄2]t
2)f1

2 . This model has exact brigh
soliton solutions fors25s1511 anda.0 @14#:

6t5tanh21~r!12s̄ tan21~2s̄r!, ~14!

where r25(a1
22f1

2)/(a1
214s̄2f1

2), a1
252/g being the

maximum intensity of the FW. Exact stationary black solit
solutions exist fors252s1511 @14#.

For uau!1 the nonlocality is strong,s̄@1, and we can
expand the response functionR(t) in Eq. ~12!. For bright
solitons we then obtain the linear equation for the FW:

s1]t
2f12f11gP1R~t!f150, ~15!

where f25gP1R(t). In this eigenvalue problem the FW
power P15*2`

` f1
2(t)dt plays the role of the eigenvalue

and bright solitons correspond to the fundamental mode
the waveguide structure one can associate with the expo
tial response function. Fors25s1511 anda.0, Eq. ~15!
has exact bright soliton solutions in the form of the Bes
function of the first kind of order 2s̄ @22#

f1~t!5A1J2s̄„s̄
2A2P1R~t!…. ~16!

For the single-soliton ground-state solutionP1 is found as

the first zero of the derivative,J2s̄
8 „As̄3P1…50, which as-

sures thatf18(0)50. The amplitudeA1 is then found from

the definition ofP1, giving A1
2'P1/22@P1 /(p2s̄)#1/2.
03661
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In Fig. 1 we show the full width at half maximum
~FWHM! of the FW intensityf1

2 of bright quadratic solitons
versus the phase-mismatch parametera. The analytical so-
lutions obtained using the nonlocal analogy correctly capt
the increase of the soliton width with decreasinga. The
nonlocal model elegantly explains this effect: Because of
convolution in the nonlinearity in Eq.~12! representing a
trapping potential or waveguide structure, this potential
always broader than the FW intensity profile itself, leading
its weaker confinement and larger width when the degree
nonlocality increases. The profiles shown in Fig. 1 furth
illustrate the excellent agreement of the numerical res
and approximate nonlocal analytical solutions in both
weakly (a@1) and the strongly (a!1) nonlocal limit.

The linear Eq.~15! describing the strongly nonlocal limi
further predicts the existence of multihump bright soliton
ChoosingP1 as theNth zero of the derivative of the Besse

function, i.e., theNth root in the equationJ2s̄
8 „As̄3P1…50,

gives solitons with an odd number of humps (2N21), as
discussed in Ref.@7#. However, this does not exhaust a
soliton solutions supported by the model~15!. There also
exist antisymmetric solitons with an even number of inte
sity peaks. If the powerP1 is found as theNth zero of the
Bessel function itself, and not its derivative, i.e., as theNth

root in the equationJ2s̄„As̄3P1…50 @so that f1(0)50],
then antisymmetric solitons with an even number of intens
peaks (2N) exist with the form

f1~t!5stA1J2s̄„s̄
2A2P1R~t!…, ~17!

wherest5sgn(t). WhenP1, e.g., is fixed by the first zero o
J2s̄ then solution~17! is a two-peak antisymmetric soliton

FIG. 1. Top: Numerically found FWHM(f1
2) of bright quadratic

solitons vsa ~solid!, and the weakly nonlocal~dashed!, strongly
nonlocal ~dotted!, and cascading limit~chain-dashed! predictions.
Bottom: Numerically found profiles~solid! and strongly nonlocal
~left, a50.01) and weakly nonlocal~right, a510) solutions~dots!.
s25s1511.
4-3
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which can be interpreted as a bound state of two out-of-ph
fundamental solitons. In Fig. 2 we have shown the bou
state of two out-of-phase fundamental solitons predicted
Eq. ~17!, and the corresponding numerically found soluti
for a50.001. We see again that the strongly nonlocal mo
provides an excellent prediction of this bound state quadr
soliton solution.

In fact, all higher order solitons can be thought of as
bound state of a number of individual solitons. Formation
such bound states follows naturally from the nonlocal ch
acter of the nonlinear interaction. Consider two out-of-ph
solitons, for which the intensity in the overlapping region
always zero. In local Kerr media the nonlinear change in
refractive index is decreased in the overlap region, as c
pared to the index change generated by a single soliton.
leads to a mutual repulsion of the solitons. The nonloca
tends to increase the nonlinear change of the refractive in
in the overlapping region, and for a sufficiently high degr
of nonlocality, the index change may even be higher th
that for a soliton in isolation, despite the solitons being ou
phase. This creates an attractive force and leads to forma
of the bound state.

The linear equation for dark solitons in the strongly no
local limit (a!1) has the form

s1]t
2f12f11g@A1

22Q1R~t!#f150, ~18!

where Q15*2`
` @A1

22f1
2(t)#dt is the complementary FW

power andf25g@A1
22Q1R(t)#. For s252s1511 anda

.0, Eq.~18! has exact dark soliton solutions in the form
the zeroth order Bessel function:

f1~t!5stA2aJ0„s̄
2A2Q1R~t!…. ~19!

For the fundamental single-soliton solutionQ1 is found as

the first zeroJ0„As̄3Q1…50, which givesQ155.8/s̄3 and
assures thatf1(0)50. The background amplitude is fixed
A1

252a. Choosing theNth root gives antisymmetric multi
hump dark solitons with 2N21 dips in the intensity profile.
Choosing instead theNth zero of the derivative, i.e.

J08„As̄3Q1…50 gives symmetric multihump dark soliton
with 2N dips in the intensity profile.

In the strongly nonlocal limit the bright soliton is thefun-
damental modeof the waveguide structureR(t) and much
narrower than the waveguide. In contrast the dark soliton

FIG. 2. Numerically found bound state of two out-of-pha
bright solitons fora50.001~solid! and the predicted strongly non
local solution~17! ~dashed!; s25s1511.
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first modeof the waveguideR(t) at the cutoff and as such it
width is comparable with that of the waveguide. Hence
expansion procedure leading to Eq.~18! is not a good ap-
proximation. This is reflected in the fact that the fixed bac
ground amplitudeA1 does not satisfy the self-consistenc
relationQ15*2`

` @A1
22f1

2(t)#dt. Nevertheless the strongl
nonlocal model is able to predict and physically explain t
existence of multihump dark quadratic solitons found ear
@6#.

In Fig. 3 we show the full width at half maximum of th
FW intensityf1

2 of dark quadratic solitons versus the mi
match parametera. The dark solitons have the consta
background f1

2(6`)52a, f2(6`)51. The analytical
weakly nonlocal dark soliton solution exists fora.2 and
was taken from Ref.@14#. Unlike bright solitons, whose
width is a monotonic function ofa, dark solitons are seen t
have a minimum width ata5a0'3.1.

Figure 3 confirms that fora.a0 the weakly nonlocal
model correctly predicts how the soliton width decreas
when the mismatch parameter decreases. This, as well a
appearance of the minimum in the soliton width, is aga
elegantly explained by the nonlocal analogy: Because of
convolution in the nonlinearity in Eq.~12! representing the
trapping potential or waveguide structure, the contribut
from the constant background tends to contract this poten
This leads to a stronger confinement and thus a smaller w
of the soliton. However, this is only true as long as the a
plitude of the trapping potential is not affected by nonloc
ity, as in the weakly nonlocal regime. For a high degree
nonlocality ~i.e., smaller value ofa) not only the width of
the trapping potential, but also its amplitude is affected.
this regime the nonlocality leads to a drop in the amplitu
of the potential, resulting in a weaker confinement and
increase of the soliton width. The profiles shown in Fig.
further illustrate the excellent agreement of the numeri
results and approximate nonlocal analytical solutions in
weakly nonlocal limita@1.

IV. CONCLUSION

In conclusion, we have used the analogy between p
metric interaction in quadratic media and nonlocal Kerr-ty
nonlinearities to provide a physically intuitive theory fo

FIG. 3. Left: Numerically found FWHM(f1
2) of dark solitons vs

a ~solid!, and the weakly nonlocal~dashed! and cascading limit
~chain-dashed! predictions. Right: Numerically found profiles~dots!
and weakly nonlocal solutions~solid! for a510. f1

2(6`)52a,
f2(6`)51, ands252s1511.
4-4
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quadratic solitons, which allows for a deeper physical insi
into their properties and an exact description of their profil
Quadratic solitons are characterized by a single solution
rametera, which is an effective mismatch parameter d
pending on both the real phase mismatch and the power
have shown that the nonlocal theory provides a simple
elegant explanation for how the soliton width depends on
mismatcha.

In particular the nonlocal analogy provides simple phy
cal models in both the large mismatch limita@1 and the
near cutoff limit uau!1, corresponding to the regimes o
weak and strong nonlocality, respectively. Our results sh
that the weakly nonlocal approximation gives an accur
description of quadratic solitons in a relatively broad ran
of their existence domain. Also, the simple linear physics
To

y-
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y

hy
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the strongly nonlocal limit has enabled us to find bou
states of bright quadratic solitons and explain their format
using the natural concept of the nonlocality-based attrac
between out-of-phase constituent solitons.

Finally we have discussed how a simple phase-sens
nonlocal model provides a better description of the dynam
as compared to the standard NLS equation obtained in
cascading limit.

ACKNOWLEDGMENTS

The research was supported by the Danish Technical
search Council~Grant No. 26-00-0355! and the Australian
Research Council.
ys.

ys.

ys.

D
-

.

i,
@1# For a recent review see G. Stegeman, D.J. Hagan, and L.
ner,28, 1691~1996!.

@2# For a recent review see A.V. Buryak, P. Di Trapani, D.V. Skr
abin, and S. Trillo, Phys. Rep.370, 63 ~2002!.

@3# R. Schiek, Y. Baek, and G.I. Stegeman, Phys. Rev. E53, 1138
~1996!.

@4# W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. Van Stryland, G
Stegeman, L. Torner, and C.R. Menyuk, Phys. Rev. Lett.74,
5036 ~1995!.

@5# G. Assanto and G.I. Stegeman, Opt. Express10, 388 ~2002!.
@6# A.V. Buryak and Yu.S. Kivshar, Phys. Lett. A197, 407~1995!.
@7# I.V. Shadrivov and A.A. Zharov, J. Opt. Soc. Am. B19, 596

~2002!.
@8# C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett.91,

073901~2003!.
@9# C.R. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. Am. B11,

2434 ~1994!; O. Bang,ibid. 14, 51 ~1997!.
@10# For a recent review see Yu.S. Kivshar and D.E. Pelinovs

Phys. Rep.331, 117 ~2000!.
@11# L. Bergé, V.K. Mezentsev, J.J. Rasmussen, and J. Wyller, Ph

Rev. A52, R28 ~1995!.
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