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Quadratic solitons as nonlocal solitons
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We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new
physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an
effective saturable Kerr medium. The nonlocal analogy also allows for analytical solutions and the prediction
of bound states of quadratic solitons.
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[. INTRODUCTION and Zharov to find approximate bright quadratic soliton so-
lutions[7]. The formal equivalence of bright solitons in non-
Quadratic nonlineafor x{?)) materials have a strong and local liquid crystals and parametric solitons was also dis-
fast electronic nonlinearity, which makes them excellent macussed recently by Conti, Peccianti, and Assah8}.
terials for the study of nonlinear effects, such as solifdjs However, the nonlocal concept was not fully exploited in
The main properties of quadratic solitons are well kng@h ~ Refs.[7.8] to give a broad physical picture in the whole
and both (1 1)-dimensional[3] and (2+1)-dimensional '€gime of existence and dISCl:ISS, e.g., dark solitons and
[4] bright spatial solitons have been observed experimentally?0Und states of out-of-phase bright solitons. _ ,
Unlike conventional solitons, which form due to a self- e do that here and we go one step further in showing
induced refractive index change, the formation of quadratid’®W @ simple phase-sensnlve.non_lo(g?l model provides a bet-
solitons does not involve any change of the refractive indext®" description of the dynamics ig'®’ materials than the
Thus the underlying physics of quadratic solitons is oftenonlinear Schrdinger (NLS) equation obtained in the cas-
obscured by the mathematical model. Only recently Assant§ding limit. _
and Stegeman used the concepts of the cascading phase shift/é consider a fundamental way&Ww) and its second
and parametric gain to give an intuitive interpretation of ef-harmonic(SH) propagating along thedirection in a lossless
fects, such as self-focusing, defocusing, and soliton formaduadratic nonlinear medium under conditions for type |
tion in x® materials[5]. phase matthng. The normalized dynamical equations for the
Nevertheless certain features of quadratic solitons, such &OWly varying envelope&, 5(x,2) are then9]
formation of bound states, are still without a physical inter-
pretation. The nice simple phase-shift approach .of Assanto i9,E,+ d1a§E1+ EXE, exp(—i82)=0, 1)
and Stegemaf5] predicts, e.g., that two dark solitons and
two out-of-phase bright solitons will always repel and thus
can never form a bound state, whereas it is known that such id,E,+ d2(9§|52+ Ef exp(iBz)=0. (2)
bound states of quadratic solitons do ex&i
Here we use the analogy between parametric interaction ) ) )
and nonlocality and present a physically intuitive nonlocalln the spatial domaini;~2d,, d;>0, and the coordinate
theory, which is exact in predicting the profiles of stationary’epresents a transverse spatial direction. The tefi;
quadratic solitons and which provides a simple physical ex=dJ°E;j/dx* then represents beam diffraction. In the temporal
planation for their properties including formation of bound domaind; is arbitrary andx represents time. In this case
states. aiEj represents pulse dispersion. The paramgtisrthe nor-
The nonlocal analogy was applied recently by Shadrivovmalized phase mismatch ape- 1,2.
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ll. GENERAL NONLOCAL MODEL The cascading limi$3~1—0 is now seen to correspond to

Physical insight into the properties of Eqd) and (2) LZ%?;Z;IET&S;OR(S_V}VQ&? the response function be-

may be obtained from the cascading limit, in which the phase ™, . . .
; . 1 " - With the nonlocal analogy one can assign simple physi-
mismatch is large8™*—0. Writing E,=e, exp(Bz) and v intuiti . i hen th
assuming slow variation af,(x,7) gives the NLS equation cally intuitive pictures to several important cases. When the
2\ mismatch| 8| is large Eqs(4) and(5) reduce to the so-called
_ ) weakly nonlocal equation withr<1 [14]. Similarly the
i9,E+d05E1+ B YEL|?E;=0, (3)  nearly phase-matched limit whe~0 corresponds to the
strongly nonlocal limit withe>1, when Eqs.(4) and (5)

in which thelocal Kerr nonlinearity is due to the coupling to Pecome effectively linea15,16. _

the SH fielde,= E2/B. The SH is thus slaved to the FW and ~ For s=—1, R(k) has poles on the real axis and the re-
the widths of the SH and FW are fixed. The sign of thesponse function becomes oscillatory in nature with the
mismatchB determines whether the effective Kerr nonlinear- Cauchy principal value

ity is focusing or defocusing and thus the cascading limit _ 1

predicts that bright and dark quadratic solitons exist for R(x)=(20) " sin([x|/o). @

pd,>0 andpBd;<0, resp(_actwely. ) _In this case the propagation of solitons has a close analogy
~ However, even for stationary solutions the NLS equationyit the evolution of a particle in a nonlinear oscillatory
is inaccurate, since the terafE, is neglected. Thus it pre- potential. In fact, it is possible to show that the oscillatory
dicts, e.g., modulational stability of dark quadratic solitonsresponse function explains the fact that dark and bright qua-
for all values ofd,, whereas this is known to depend on the yratic solitons radiate linear waves fee — 1 [6].
value ofd, [6]. It further predicts that in higher dimensions Equations(4) and (5) show the important result that in
bright solitons are unstable and will either spread out or colxontrast to the conventional nonlocal NLS equation, describ-
Iapse[lo], w_herea; it is known that stable quadratic solliton:sing materials with a thermdlL8] or diffusion[19] type non-
e>((2|§t in all dimensions and that collapse cannot occur in th@inearity, liquid crystals[20], and photorefractive crystals
X system(1) and(2) [11,12. The stabilizing effect of the ' [21] the nonlocal response of thé? system depends on the
x'? nonlinearity is often described as being due to saturatioRguare of the FW, not its intensity. Thus the phase of the FW
of the effective Kerr nonlinearity5,11,13. We show below  enters into the picture and one cannot directly transfer the
that the nonlinearity is in fact nonlocal. known nonlocal stability results for plane waéds$,17 and

To obtain a more accurate model than that given by th%olitons[14,1@.
cascading limit we assume a slow variation of the SH field However, the simple nonlocal mode@l) and(5) is indeed
e,(x,2) in the propagation direction only. Thus, neglecting an improved model of quadratic nonlinear materials, as com-
only d,e,, we solve Eq.(2) exactly using Fourier transfor- pared with the even simpler NLS equation obtained in the
mation and the convolution theorem, treatii§ as a func-  cascading limit. Thus the nonlocal model correctly shows
tion. The SH is still expressed in terms of the FW, but nowthat the properties of quadratic solitons depends sensitively
the relation has the form of a convolution, leading to theon the parameted,. For symmetric response functions,

nonlocal equatiorfor the FW: R(x)=R(—x), the nonlocal model in arbitrary dimension
conserves both power and Hamiltonian and it is straightfor-
i9,E,+d,02E,+ B IN(E2)EX =0, (4)  ward to carry out the same analysis as for the conventional

nonlocal NLS equatiofl6] and show that the Hamiltonian

for the system(4) and(5) is also bounded from below. Thus

N _ 2 the nonlocal model(4) and (5) also correctly predicts that

N(ED)= f_mR(X ¢)Ei(£,2)dg, ®) collapse cannot occur in the®® system. Furthermore, for
stationary field€;(x,z) =E;(x) the nonlocal mode(4) and

) .
with E,— 8~ IN exp(82). Equations4) and(5) clearly show (5) represents an exact model fpt?) materials.

that the interaction between the FW and the SH is equivalent
to the propagation of a FW in a medium with a nonlocal lll. NONLOCAL QUADRATIC SOLITONS

nonlinearity. In the Fourier domaitdenoted with tildg the The properties of nonlocal solitons in terms of profiles
response functionR(x) is a Lorentzian R(k)=1/(1  thus directly apply to quadratic solitons. Consider stationary
+s0?k?), whereo=|d,/B|"? represents the degree of non- solutions to Egs(1) and(2) in the form

locality ands=sgn(d,8). Both Egs.(1) and(2) and(4) and

(5) are trivially extended to include more transverse dimen- Ei(X,2)=a;¢1(7)expirz), (8)
sions. ) )
Fors=+1, where they® system(1) and(2) has a fam- Ea(X,2) =a,¢,(7)expi2Nz+iBz), 9

|!y of br|g~ht (folr d1>.0.) and fjallrk(for d1<0? sol|to.n.solu- where the profileds;(7) is real, with r=x|Mdy|2 a2
tions[6], R(k) is positive definite and localized, giving =\2|d,/(2d,)|, anda,=\. This scaling reduces the num-
ber of free parameters to one and transforms Egsand(2)

R(x)=(20) "t exp(— x|/ o). (6) into the following systen6]:
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S1¢1— Pp1+ P1$»=0, (10
Sopy— adr+ $5/2=0, (11)
wheres;=sgn(\d;) = +1, a=(2+ f/\)|d;/d,|, and prime

denotes differentiation with respect to the argument. The
properties of solitons described by Eq40) and (11) are

FWHM(%%)

well known [6]. A family of bright (dark) solitons exist for 10 ; : . . o
s;=s;=+1 (s,=—s;=+1) and «>0. As discussed Solution parameter
above we do not consider the combinatiens =s;=—1,
for which solitons do not exist in the whole space. 124 500" 6510
Equation(11) has the formal solutiom,= yN(d)f), with ’ 5ol 1

y=1/(2«) and the nonlocal nonlinearit)(¢2) given by L% 92 '
Eq. (5). For sgné,a)=+1 the response function B(7) £ 62 397
=(20) ! exp(—|7lo), with the degree of nonlocalityr £ 2.67 s
=|a|~ Y2 Inserting the SH into Eq10) then gives thexact 0.31 Lal
nonlocalmodel for the FW in the(®) system(10) and (11): 000 /\1 O'o /\

o -30 -15 0 15 30 -6 -3 0 3 6

515&(751_ ¢1+ 7¢1f R(T_ g) ¢i(§)d§:0! (12) Transverse coordinate 7 Transverse coordinate T

FIG. 1. Top: Numerically found FWHM()%) of bright quadratic

where y is the strength of the nonlocal nonlinearity. Thus Slitons vsa (solid), and the weakly nonlocaldashed, strongly
x? solitons are equivalent to nonlocal solitons. gor:tloca.ll ;\?Ottedg a”rldfcasgadm?_l I|m|(<|:_ha|n-<(:ijasthe)dp:redlctulnns.l
In the weakly nonlocal case<1 (i.e., |@|>1) the re- ottom: Numerically found profilegsolid) and strongly nonloca

. . . left, «=0.01) and weakly nonlocafight, «=10) solutiongdots.
sponse functiorR(7) is much narrower than the FW inten- (left, ) y afight, o ) sdoty

sity ¢3. Taylor expansion o2 under the integral in Eq. 2T
(12) gives the weakly nonlocal modgl4] In Fig. 1 we show the full width at half maximum
, 2 (FWHM) of the FW intensityg? of bright quadratic solitons
S197¢1— p1+ ¥( 1+ 0°97¢1) 1 =0, (13 versus the phase-mismatch parameteiThe analytical so-

— .2\ .2 ) ) lutions obtained using the nonlocal analogy correctly capture
where ¢,=y(1+0°97)¢1. This model has exact bright the increase of the soliton width with decreasiag The

soliton solutions fors,=s;=+1 anda>0 [14]: nonlocal model elegantly explains this effect: Because of the
. — = convolution in the nonlinearity in Eq(12) representing a
*r=tanh “(p)+ 20 tan *(2op), (14 trapping potential or waveguide structure, this potential is

o ;2 2 2. .2 s ] always broader than the FW intensity profile itself, leading to
where p°=(aj—¢7)/(ajt4o°¢y), aj=2/y being the 5 \veaker confinement and larger width when the degree of
maximum intensity of the FW. Exact stationary black solitonnon|ocality increases. The profiles shown in Fig. 1 further
solutions exist fors,= —s; = +1 [14]. illustrate the excellent agreement of the numerical results

For |a|<1 the nonlocality is strongg>1, and we can and approximate nonlocal analytical solutions in both the
expand the response functié®(7) in Eq. (12). For bright  weakly (@>1) and the strongly¢<1) nonlocal limit.

solitons we then obtain the linear equation for the FW: The linear Eq(15) describing the strongly nonlocal limit
) further predicts the existence of multihump bright solitons.
S197¢1— 1+ YP1R(7) 1=0, (19  ChoosingP; as theNth zero of the derivative of the Bessel

o i ; 0’ (/3P )=
where ¢,=yP;R(7). In this eigenvalue problem the FW fgnctlon, 1-€., the.Nth root in the equatiod, (Vo°P;)=0,
power P,=[”_¢2(7)dr plays the role of the eigenvalue, 9ives solitons with an odd number of humpsN21), as

and bright solitons correspond to the fundamental mode offiscussed in Ref{7]. However, this does not exhaust all

the waveguide structure one can associate with the exponegoliton solutions supported by the moddl5). There also
tial response function. F@®,=s,=+1 anda>0, Eq.(15  €Xist antisymmetric solitons with an even number of inten-

has exact bright soliton solutions in the form of the Bessefity Peaks. If the poweP, is found as theNth zero of the
function of the first kind of order @ [22] Bessel function itself, and_not its derivative, i.e., as il
root in the equationl,;(\o*P;)=0 [so that ¢,(0)=0],
1(7)=A1J,5(02\2P,R(7)). (16)  then antisymmetric solitons with an even number of intensity
peaks () exist with the form
For the single-soliton ground-state solutiéy is found as

' = . — 2
the first zero of the derivativel,(\'o°P;)=0, which as- $1(7)=5,A1d55(0°V2P1R(7)), 17)
sures thaih(0)=0. The amplitudeA, is then found from  \heres = sgn(r). WhenPy, e.g., is fixed by the first zero of
the definition ofP,, giving Af% P./2—[Py/(7%0)]Y2 J,, then solution(17) is a two-peak antisymmetric soliton,
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FIG. 2. Numerically found bound state of two out-of-phase  FIG. 3. Left: Numerically found FWHM&?2) of dark solitons vs
bright solitons fora=0.001(solid) and the predicted strongly non- (solid), and the weakly nonlocaldashedl and cascading limit
local solution(17) (dashedt s,=s;=+1. (chain-dashexpredictions. Right: Numerically found profilédots

and weakly nonlocal solutiongsolid) for a«=10. ¢§(too)=2a,
which can be interpreted as a bound state of two out-of-phasg,(+«~)=1, ands,= —s;= +1.
fundamental solitons. In Fig. 2 we have shown the bound
state of two out-of-phase fundamental solitons predicted byirst modeof the waveguiddR(7) at the cutoff and as such its
Eqg. (17), and the corresponding numerically found solutionwidth is comparable with that of the waveguide. Hence the
for «a=0.001. We see again that the Strongly nonlocal mOdeéxpansion procedure |eading to Hq__g) is not a good ap-
provides an excellent prediction of this bound state quadratigroximation. This is reflected in the fact that the fixed back-
soliton solution. ground amplitudeA; does not satisfy the self-consistency

In fact, all higher order solitons can be thought of as 3relationQ,= [~ [A2— $3(7)]d7. Nevertheless the strongly
bound state of a number of individual solitons. Formation ofoniocal model is able to predict and physically explain the
such bound states follows naturally from the nonlocal chareyistence of multihump dark quadratic solitons found earlier
acter of the nonlinear interaction. Consider two out-of-phas%]_
solitons, for which the intensity in the overlapping region is ™ |, Fig. 3 we show the full width at half maximum of the
always zero. In local Kerr media the nonlinear change in the-y, intensity ¢>f of dark quadratic solitons versus the mis-
refractive index is decreased in the overlap region, as COMhatch parameter. The dark solitons have the constant

pared to the index change generated by a single soliton. ThEackground d2(+0)=2a, dy(+)=1. The analytical
W=")=ea, =)=+

leads to a mutual repulsion of the solitons. The nonlocality . : :
: X .~~~ “weakly nonlocal dark soliton solution exists far>2 and

tends to increase the nonlinear change of the refractive indeX . . .

. X . - . was taken from Ref[14]. Unlike bright solitons, whose

in the overlapping region, and for a sufficiently high degreeWidth is a monotonic function o, dark solitons are seen to

of nonlocality, the index change may even be higher tharrhave a minimum width aty— %'3 1

that for a soliton in isolation, despite the solitons being out o @092

phase. This creates an attractive force and leads to formation Figure 3 confirms _that forr>aq th? Weal_<ly nonlocal
of the bound state model correctly predicts how the soliton width decreases

The linear equation for dark solitons in the strongly non-'/hen the mismatch parameter decreases. This, as well as the
local limit (a<<1) has the form appearance of_the minimum in the soliton width, is again
elegantly explained by the nonlocal analogy: Because of the
51(9§¢1—¢1+ y[Af—QlR(T)]@:O, (18) convc_>|ution in t_he nonlinearit)_/ in Eq12) representing_ the_
trapping potential or waveguide structure, the contribution
where Q,=[”_[A2— ¢3(7)]d7 is the complementary Fw from the constant background tends to contract this potential.
power andg,= Y[Arf— Q,R(7)]. Fors,=—s,;=+1 anda This Ieads to a stronger conflnement and thus a smaller width
>0, Eq.(18) has exact dark soliton solutions in the form of °f the soliton. However, this is only true as long as the am-
the zeroth order Bessel function: plitude of the trapping potential is not affected by nonlocal-
ity, as in the weakly nonlocal regime. For a high degree of

= 5 \2aJn(0220R(7). 19 nonlocality (i.e., smaller value ofx) not only the width of
$1(7) ST\/_a o(7"N2Q:R(7)) (19 the trapping potential, but also its amplitude is affected. In

the first zeroJo(\/;3_Ql)=0, which givesQ1=5.8/;3 and of the potential, resulting in a weaker confinement and an

= . - increase of the soliton width. The profiles shown in Fig. 3
aszsures thad’l(o.)_o' The backg_round ar_nphtude IS flxed_at further illustrate the excellent agreement of the numerical
A7=2a. Choosing theNth root gives antisymmetric multi-

; : 2 . . : results and approximate nonlocal analytical solutions in the
hump dark solitons with B —1 dips in the intensity profile. PP y

) ; Lo . weakly nonlocal limita>1.
Choosing instead theNth zero of the derivative, i.e., y “

Jo(No*Q,)=0 gives symmetric multihump dark solitons
with 2N dips in the intensity profile.

In the strongly nonlocal limit the bright soliton is ttfien- In conclusion, we have used the analogy between para-
damental modef the waveguide structurB(7) and much  metric interaction in quadratic media and nonlocal Kerr-type
narrower than the waveguide. In contrast the dark soliton is aonlinearities to provide a physically intuitive theory for

IV. CONCLUSION
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guadratic solitons, which allows for a deeper physical insighthe strongly nonlocal limit has enabled us to find bound

into their properties and an exact description of their profilesstates of bright quadratic solitons and explain their formation

Quadratic solitons are characterized by a single solution paising the natural concept of the nonlocality-based attraction
rameter @, which is an effective mismatch parameter de-petween out-of-phase constituent solitons.

pending on both the real phase mismatch and the power. We Finally we have discussed how a simple phase-sensitive
have shown that the nonlocal theory provides a simple angionlocal model provides a better description of the dynamics
elegant explanation for how the soliton width depends on thgg compared to the standard NLS equation obtained in the

mismatcha. _ _ _cascading limit.
In particular the nonlocal analogy provides simple physi-

cal models in both the large mismatch limit>=1 and the
near cutoff limit|a|<1, corresponding to the regimes of
weak and strong nonlocality, respectively. Our results show
that the weakly nonlocal approximation gives an accurate The research was supported by the Danish Technical Re-
description of quadratic solitons in a relatively broad rangesearch CouncilGrant No. 26-00-0355and the Australian

of their existence domain. Also, the simple linear physics ofResearch Council.
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