PHYSICAL REVIEW E 68, 036613 (2003
Solutions for vectorial beam coupling under ac field in cubic photorefractive crystals
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We develop a theory of vectorial wave coupling in cubic photorefractive crystals placed in an alternating ac
field to enhance the nonlinear response. It is proven in the general case that despite essential differences
between the diffusion and the ac nonlocal responses, the latter keeps the light interference fringes straight
during the interaction. This fundamental feature allows, under certain restrictions, to reduce the nonlinear
problem of vectorial coupling to the known linear problem of vectorial Bragg diffraction from a spatially
uniform grating, which admits an exact solution. As a result, the nonlinear vectorial problem can be effectively
solved for a number of practically important cases. These cases include nontrivial polarization effects and also
the high-contrast effects. The presence of conservation laws involving the polarization degrees of freedom is
shown. A number of particular cases relevant to experiments with BTO crystals are considered.
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[. INTRODUCTION nomena to the polarization degrees of freedom, and also to
the crystal cut, can definitely be regarded as a property useful
Photorefractivg PR) wave coupling has been the subject for applications. The presence of strong nonlinear phenom-
of many studieg1,2]. Usually, the strongest wave interac- ena, a high spatial symmetry of the optically isotropic me-
tions occur in PR ferroelectrics which are highly anisotropic.dium, and an apparent simplicity of formulation of the non-
Unfortunately, the nonlinear PR response of ferroelectrics idinear problems is a challenge for theorists in the field of
not sufficiently fast for optical applications. Many efforts photorefraction.
have been made to find faster photorefractive matefiafs. Despite numerous publications, theoretical description of
Nowadays, cubic crystals of the sillenite fam{BSO, BTO, the PR phenomena in cubic crystals remained till recently
and BGQ and also cubic semiconductai@dTe, GaAs, and very fragmental. A number of papers dealt with an analysis
InP) meet the speed requirements fully. of vectorial Bragg diffraction from a uniform grating of the
A common weak point of the above fast materials is theirspace-charge fielfl3—16. Most of these papers used vari-
insufficiently high nonlinear response. Two techniqds  ous approximations or numerical methods. The effects of
and ag¢ have been proposed to enhance this respfBige  weak two-wave coupling were considered in Réfis7—19
Both of these exploit applied electric fields. In the dc caseusing the thin-crystal approximation. The corresponding re-
the field is constant and the interacting light waves aresults are applicable to a very restricted amount of experimen-
slightly detuned in frequency. In the ac case, which is provertal data. Various aspects of the enhancement problem were
to be most useful for applications, an external electric fieldconsidered in Refs[3-5,20,21. The nonlinear optical ef-
oscillates in time and no frequency detuning is necessary tfects lay outside the main stream of these studies. Consider-
introduce between the light waves. The efficiency of the a@ble efforts have been made to describe the contributions to
technigque depends on the temporal profile of the ac field the PR response caused by the elasto-optic effect, see, e.g.,
The best enhancement occurs for a square-wave profile whdrefs.[22—25. A number of publications aimed at the analy-
the field changes its sign periodically. sis of strong nonlinear effects caused by the enhanced PR
Considerable progress in improving the photorefractiverespons€g9,26—28. These papers restricted themselves to
characteristics of the sillenites has been made during the lakirmulation of the initial equations for wave amplitudes
decadd6,7]. The fabrication of thin and long BSO and BTO (which include many model parameters and experimental
crystals has allowed to increase the amplitude of the ac fieldharacteristiosand some simulations of these equations. The
up to 50 kV/cm, to decrease the response time in cw experieorresponding numerical results give usually no insight into
ments to microseconds, and to demonstrate a variety dhe nonlinear phenomena under study.
strong nonlinear effects relevant to applications such as fast An important step in describing the vectorial coupling has
phase conjugation8], generation of surface light waves been made recently in Ref29,30. The authors have found
[9,10], time separated recording and readout proceskds an adequate theoretical scheme capable of combining the
and the liner detection of weak signdlk2]. general analytical methods with incorporation of the factual
The main problem, and the main characteristic feature, imata on the PR response. The analytical merits are based on
describing the PR wave phenomena in cubic crystals is ththe systematic use of the properties of spatial symmetry and
vectorial character of the optical coupling. In other words,the apparatus of Pauli matric€31]. This approach has al-
the energy and polarization changes cannot generally blewed to describe in a uniform manner a number of impor-
separated from each other. The sensitivity of the optical phetant vectorial effects: the above mentioned vectorial Bragg
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z,[110] x,[001] (0,— ik 0)a=iE}(vot+ v 0)a,. 2
1
d T Here k=(kx,,—p,x3) (p is the rotatory power and »
Z\A K =(»4,0,v3) are known r?al three-dimension@D) vectors,
vq is a known real scalatr=(o1,05,0,) the standard set of
0 dZ2 2x2 Pauli matrices, see Rdf31], and 51,2 are 2D vectors

@) v,[170] () with x andy componentgnote: the 3D quantities with 1,2,3
components are denoted by bold letiefithe vectork char-
FIG. 1. (@) Schematic of a two-wave coupling experimefit) acterizes the linear optical properties; its components

Orientation of the main 2D vectors about the crystal amess the ~ account for the changes of the optical permittivity induced
amplitude of theith wave (=1,2). by a uniform applied electric field via the linear electro-optic

effect and the componert,= — p accounts for the effect of

diffraction [15], the angular distribution of the light-induced ©Ptical activity (if it is present in the crystal The vectory
scattering in BTO and BSO crystdl29,30], and the linear and_the scalarg are res_p0n5|ble for_the anisotropic and iso-
detection of weak signals by means of polarization filteringtfOPic parts of diffraction, respectively. The fact that the
[32,33. c_omponentyzzo means that the light-induced space-charge
The purpose of this paper is to describe the progress madtéld does not produce any changes of the rotatory pgwer
in investigation(analytical and numericabf the character- Set(1).(2) can be considered as an extension of the known
istics of vectorial coupling in the ac case. Our findings canScalar Kogelnik theory to the vectorial case. One can check
be considered as an extension of the classical results ofat the Hermitian property of the- matrices ensures the
tained for the case of scalar beam couplifi?] to the vec- ~ conservation of the total wave intensity, i.e.,
torial case. The text is structured as follows: First, we for- R R
mulate the vectorial coupling equations and provide the lo=|ay|?+|ay)?=1. (3)
reader with the necessary information on the nonlinear ac
response. It is proven then in the general case that the lighthis is the integral of Eqs(1) and (2). In the case of a
fringes remain straight inside the crystal in spite of couplinguniform grating,Ey(z) = const, set(1),(2) admits nontrivial
effects and the structural differences between the vectoriadxact general solutions for the vectorial diffractid®,29.
and scalar equations. Further we introduce certain simplify- Throughout this paper we are dealing with cubic crystals
ing assumptions for the coupling coefficients and specify they e point groups 23 and3n; this is sufficient for all
conditions of their validity. Next we show that the nonlinear ;jsjye practical purposes. The first case is relevant to the
coupling problem can be reduced to the known linear probyjjenites (BSO, BTO, and BG® whereas the second one
lem of the vectorial Bragg diffraction by a renormalization of ¢4 responds to semiconductors GaAs, CdTe, InP, and others.
the propagation coordinate. With this renormalization perpe glectro-optic properties of the above cubic crystals are
formed the vectorial problem admits an exact solution in thgnhe same in symmetry. At the same time, crystals of the point

whole-contrast range. Thi§ procedu_re aIIc_)ws also to reveaéroup 23 are optically activéthe rotatory powep#0) in
the presence of conservation laws involving essentially the . —
ontrast to crystals belonging to th& group.

polarization degrees of freedom. Finally, we apply the exact e .
solutions obtained to a number of important particular cases. The coefficients«, ; and Yo.13 er_1ter|ng Egs(1) _and 2
can be calculated for any orientation of the applied figjd

and the grating vectoK about the crystal axes. Below we
restrict ourselves to the case when the propagationzisis

A. Vectorial diffraction equation directed along110], see Fig. b), and the applied fiel&,

Let two light waves 1 and 2 be coupled in a cubic PRis parallel to the grating vectdf; this covers most of the
crystal via diffraction from the light-induced grating of topical situations. Then the componerts; can be presented

Il. BASIC RELATIONS

space-charge field whose grating vedtiis the difference N the form

of the light wave vectors, see Fig(al. As soon as the light £,

absorption is neglected, the total intensity of the waves does _ ; __SH

not depend on the propagation coordinagamd we can nor- x1=SEgsing, 3 2 cos¢, @

malize the vectorial complex wave amplitudgsa, in such )

a way thatla;|?+|a,|?=1. We denote the amplitude of the Where{ is the angle betweeK and the[001] crystal axis,
light-induced space-charge field & ; it is generally a S=—mn3r4/\, Ny the nonperturbed refractive index,;
function of z. With this notation and within the conventional the only nonzero electro-optic constant, andthe wave-
paraxial approximation, the set of equations describing vedength. The sign ok, can be positive and negative in Egs.
torial Bragg diffraction from the grating can be presented in(4). The coefficients , 3 include generally not only electro-

the following general and compact forf29]: optic but also elasto-optic contributions, the latter can some-
L L times be of importance. If we neglect the elasto-optic contri-
(d,— ik o)a;=iEx(vgtv-o)a,, (1)  butions, then
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S . S ' 7
vo=5C0S{, V;=SSiN{, v3=—5COSL. (5) 0.6 Y
05+ /, e
| [
/
The data onvg;4({) with the elasto-optic contributions _ 04r /) 1
taken into account can be found in REZ9]. g, i J 1

Three particular cases are especially important for the ex- ¢ 03F 1
periment: S ol /

(1) The transversgT) geometry,K,E@[OOl], ie., ¢ “l / ]
=90°. Herex,=sE,,x3=0. The elasto-optic contributions o1l i i
renormalize here slightly the electro-optic constang, A
thereforevy=0, v;=s, andv3=0. 0.0 L L L L

(20 The longitudinal (L) optical configuration, 00 02 04 06 08 10
K,Eol[001], i.e., {=0. Herex;=0,k3=SEy/2. The elasto- Contrast m

optic contributions are absent here, hengg=s/2,v,=0,
andvy= —s/2.

(3 The diagonal (D) geometry, K,Eq|[111], ¢

=arctan(\/§):54.7°. Here k; = V2sEy, k3=—SEJ2{3.  HereQ=Q(K,|E,|) is a dimensionless factor considerably
The elasto-optic contributions tag,; are clearly pro- |arger than the one that has the meaning of the quality factor

nounced here, they can give up to 30% corrections to the,, 4 space-charge wave with the wave vedfof34] andf

values given by Eqs5). _ _ _ =f(m) is a function of the contrast of the light interference
There are a large number of optical configurations that are > oy
atternm=2|a,-a}|.

equivalent(for symmetry reasondo the above considered, patte .
d ( y y 0 Figure 2 shows a representative contrast dependence of

these configurations are listed in RE29]. )
Commenting on the above relations for the optical con—the productQmf(m), see Ref[39] for more details. In the

figurations, we mention first that the isotropic part of diffrac- :_ovy-contrast I":;'t' mﬁ m£%0'05<1’| \:cve ?]aveleh; this
tion is absent in theT geometry. This case is maximally 'Mit corresponds to the known result for the ac enhancement

different from the familiar scalar diffraction. Furthermore of the PR responsk,4]. Within the intervaim.=m<1 the

there is no case when the anisotropic part of diffraction isfgnction f(m) is decreasing which means decreasing effi-

absent or small as compared to the isotropic part. Hencé&lency of the ac enhancement. The critical value of the con-

- -2
strong polarization effects are expected in cubic PR crystald/@StMe, can roughly be estimated asQ . The frOdUCt
It is important for what follows that the vectorsandy M f(M) experiences saturation on the level-sQ "~ when

are parallel to each other in tHeand T geometries if the M—1, 1€, the value of the grating amplituig is saturated

. o — . on the level of|Ey|. Actually, the saturation oE,(m) for
optical activity is absenfcrystals of the 8m point group. . . .
In the sillenites(wherep+0) « is approximately parallel to m>me is payment for the steep linear growth Bk (m) in

=P pproxir y pa . the region of small contrast. The saturationEgf(m) is ac-
v whens|Eg|> p, which means suppression of optical activ-

. o A A : . companied by an efficient excitation of the higher spatial
ity by the applied field. This situation is typical of ac experi- . . . .
ments with BTO crystals, where p~6.5° mm harmonicsE,x ,Ezk, - . . . In ac experiments with the sille

_ Ry A ) nite crystals the quality factdp ranges typically from 4 to 6;
=11cm?, |s|=4x10 %V~ and the amplitudgE,| : !
ranges from 10 to 50 kV/cm. In tHe geometry, it is neces- the functionQm(Q,m) does not experience strong changes

. L here. We shall use, in what follows, the representative depen-
sary to be careful when using the approximatidgm because dence of Fig. 2 for modeling of vectorial coupling.
of noticeable elasto-optic contributions g 3.

The presence of the imaginary unin Eg. (6) means that
the fundamental grating of the space-charge field,

B. Nonlinear ac response Ex exp( IZ-F)+C_.C., is shifted by a quarter of a period with
o ) respect to the light intensity grating, i.e., the PR response is
To complete set1),(2), it is necessary to specify the PR gnjocal(gradientlike. This property is well known for the

nonlinear response, i.e., to express the grating ampliiide ac enhancement in the low-contrast limit; it has important
through the light amplitudes, ,. We assume that the grating consequences for wave coupling in the whole-contrast re-
formation occurs under the action of a quickly oscillating gion, 0<m<1.
square-wave shaped applied electric field of the amplitude
|Eo| which is much larger than the characteristic diffusion 1. ANALYSIS AND SIMPLIFICATION
field Ep. This ac method for enhancement of the PR re- OF VECTORIAL EQUATIONS
sponse is the most useful for applications. The necessary
relation for the grating amplitude can be represented in the First, using Eq(6) for Ex, we obtain from Eqs(1) and
form [1,34,37,38 (2) the closed set of equations fa »,

FIG. 2. The functionQmf(Q,m) for Q=6; the dashed line
shows the linear approximation.

Ex=—iQf|Eq|(a;-a}). (6) (8,— i ) a;=Q|Eo|f(m)(ay-a3)(vo+ v-d)ay, (7)
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This set of differential equations is alreadipear, it de-
8) scribes vectorial diffraction from a uniform grating and ad-
mits an exact general solution in the terms of the effective
where, as earliem=2|a,-a%|. coordinate¢. The nonlinear part of the problem is therefore

In the next step we prove that the light interferencereduced to determination of the functicf(z), which is
fringes experience neither bending nor tilting inside the crysmonotonically increasing starting from zerg(0)=0. As
tal despite the coupling effects. This is an important genersoon as the dependenog¢) is found from Eqs(10) and
alization of the property of beam coupling known for the (11), the function£(z) can be obtained by an integration
nonlocal response in the scalar case on the vectorial case. Wanalytical or numerical
note first that the light intensity pattern inside the crystal is

proportional to[ 1+m cosK-r+®)], whered=arg(@@, - a3) IV. EXACT SOLUTIONS

andKLlz. If ®(z)=const, the light fringes remain perpen- |t js not difficult to check, see also Refd5,29, that the
dicular to the input face. Multiplying the vectorial equations exact solution of Eqs(13) and (14) with the boundary con-
(7) and (8) scalarly bya} andaj , respectively, combining  ditions b, 0)=b5? , is
the obtained scalar relations, and using the Hermitian prop- ’ ’
erty of the ¢ matrices, we obtain the necessary equality b, =[cog vo£)cog vé) — (n- @)sin vé)sin( vé) |69
d,9,=0. This general property of the light fringes was
missed in Ref[29]. Being very simple, it simplifies greatly +[sin(voé)cog vé) + (n- &) cog voé)sin( ,,g)]BO,
the following considerations.

Since the phas®(z) =const, we can put it equal to zero (15
without any loss of generality. In other words, one can make ) . ) -0
the replacemeng, ,—a, , exp(*i®/2) to work then with b,= —[sin(ve§)cosvé) +(n- &)cogvog)sin(vE) by

new fully equivalent vectorial light amplitudes. Therefore, AL . >
o e e T +[cos vo¢)cog vé) — (n- &) sin( vof) sin(v€) 169,
1e2 = :
At this point, we need to make the main approximation of (16)
this paper, namelyd|v. The situations where it is justified o .
have been considered in the preceding section. Within thig"htere’_’_éﬂr IS :_he sca(l;w_cr}aract;ahnzmg Ithe f{,traeggth (t)f an-
approximation, the set of nonlinear equatidis(8) admits 1?0 ropic. ||frac ion an _':j” IS the rea Fm'E vec gr.
exact solutions while the polarization properties of beam wo spatial frequencieg, andv are pres%nt in 2q$:£5) an2
coupling remain far from trivial. (16). One can check furthermore thab(£)|“+|by(¢)]
To get rid of the linear terms in Eq¢7) and (8), we =1. _ _
perform the unitary transformation from , to the ampli- Using Egs. (15 and (16), we find the contrastm
tudesb , =2(b;-b%) as a function of,

(9,— ik 0)a,=—Q|Eo|f(m)(a} - a,) (vo+v- )ay,

51 —exdi(x- &)2]512_ 9) m=mg cog2vyé)cog2vE) — Wy sin(2vyé)coq 2vé)
This transformation does not change the scalar products; i ~FoC042108)SIN2v ) — Po SiN(2vo)SiN(2v¢),
particular, |a, 2)|?=|b;A2)]?> and ay(z)-a%(2) 17

=b4(2)-b3(2)=m(2)/2. It does not change also the input \herem =m(0) is the input value of the contrast akid,
values of the amplitude®), (0)=a, 5(0). After the unitary  F,, P, are the input values of the following real scalar char-

>

transformation we havéusing the propertye| ») acteristics of the vectorial coupling:
d,b1=+(Q|Eql/2)mf(m) (v + v &)b,, (10) W=|b|2—|b,2, F=(1|(n-o)|1)—(2|(n-a)|2),
9,0,=— (Q|Eq|/2mf(m)(vo+w-a)b;. (11 P=2Re(1/(n- )|2). (18)

Finally, we transfer from the propagation coordinate the

; . ' We have used here the conventional quantum-mechanic
variable¢ (an effective coordinaje

notation for the matrix elements, e.g{1|(n-o)|2)

z o =b¥ - (n- a)b,. As follows from Eqs(18), Wis the normal-

¢=(Q[Eo|/2) fo m(z')f[m(z’)]dZ’, (12 ized difference of the beam intensitiefs, characterizes the

polarization freedom degrees, aRddescribes a correlation

to obtain instead of Eq€10) and(11) of polarizations in beams 1 and 2. To make this assertion

A o more clear, we recall, see also Rgf35,36, that the real 3D

d:b1=+(vo+ v o)b,, (13)  vectorS={(i|e]i)/|b;|? (i=1,2) is the unit Stokes vector for

ith beam, its componentsS(), ;3 characterize the degree of

07§52= —(vot+v- &)51. (149 linear polarization and the compone& ), characterizes the
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degree of ellipticity. In what follows, we shall provide the From here we have
reader with particular examples of polarization characteriza-

tion.

The structure of Eq(17) makes us to expect that explicit

relations form, W, F, and P, which follow from Egs.(15)

W2(€) + P2(£)=W3+P2.
(25)

m2(&)+F2(&)=m2+F3,

and(16), form a closed set. It is not difficult to find out that One sees thanis coupled only withF, W only with P, and

W=mg sin(2vyé)cog2vé) +W, cog2vyé)cog 2vE)
—Fgsin(2vpé)sin(2vé) + Py cog 2vyé)sin(2vé),
(19
F=mgycog2vyé)sin(2vé) — Wy sin(2vpé)sin(2vE)
+Focoq2vpé)cog2vé) + Py sin(2vyé)cog 2vE),
(20)
P=—mgsin(2vy€)sin(2v€) — Wy cog 2vyé)sin(2vé)
—Fosin(2vpé)cog2vé) + Pycog2vyé)cog 2vE).
(21
From here one finds algebraically that the quantity

| p=m?+ W2+ F2+ P2 (22

remains constant across the crystal, ilg.is a new(in ad-
dition to 1) integral of set(1),(2). It involves the polariza-

tion degrees of freedom. One can show that, depending on

polarizations of the input beamk, ranges from 1 to 2. It is
worth mentioning that the unitary transformatié® does
not change the quantitié®, F, andP, defined by Eqs(18);

instead of the new amplitudeﬁslyz one can use the old am-

pIitudeséLz in these equations.
The ¢ dependences given by Ed47), (19)—(21) include

instead of the integral,=m?+W?+F2+P? we have two
integralsh3=m?+ F2 andg3=W?+ P2. It is interesting that
evolution of the light contrastn is affected by the input
value of the polarization characterisig. Depending orf,

the contrast can be increasing or decreasing functiog of
(andz) near the input face. A similar situation takes place for
the intensity differenc&V; the sign of the derivativedW/d¢
até=0, i.e., the direction of the energy transfer, is controlled
by the sign ofP,. For any input valuesy, Fy, Wy, andPg

the functions given by Eq$23) oscillate around zero.

Note thatF, is expressed by the input intensities of
the beams,|?,, and the input Stokes vectorS],, Fy
=19n-)—19(n-Y). If the input polarizations are the
same, S=5=S,, then Fy=Wy(n-S) and P,
=mp(n-S). Formy<1 the value of~, can be comparable
with one, which means a strong effect of the polarization
degrees on the spatial evolution of the contrast.

Let the input beams 1 and 2 be linearly polarized and
and ¢, be the corresponding input polarization angles mea-
sured from the[001] axis, see Fig. (b). Then the input
valuesmg,W,,Fq,Py can be expressed as follows:

my= \/1—W02 Ccosp_

Fo=cose, sing_+W,sing, cose_, (26)
Wo=19-13, Po=\1-Wgsing,, (27)

a great deal of information on the vectorial coupling. At thewhere . = ¢, * ¢,. Since the sum of the normalized inten-
first sight, these oscillating dependences look unusual for th§itiesl2+ 19=1,=1, we have three independent variable in-

nonlocal response which is distinguished by the oneyyi parameters, the normalized intensity differeiég and
directional energy transfe{?]. Mor_eover, the possibility for o polarization angles. The integralh% and gé are also
the contrasm to change sign, which formally follows from ¢4 tigns of these input parameters. The maximum values of

Eq. (17), seems to be confusing. As a matter of fact, this, 2
feature is beyond the field of applicability of the exact rela-
tions. It will be shown in the following section that this field

is restricted to the region of wherem=0; within this re-
gion the propagation coordinate= z(£) ranges from O toe.

Particular cases

Transverse configuratiortHere vo=0 and the relations
(17), (199—(21) acquire the following simplified fornfwith
the only spatial frequencyi2presenk

m=mgcog2v¢)—Fqysin(2vé),

F=mgsin(2vé) +Fycog2vé), (23
W=W, cog 2vé) + Py sin(2v¢),
P=—W,sin(2vé) + Py cog2vé). (24)

hg andgg, as functions of the angles, occureg@t,= 7/4 and
equal unity. The corresponding minimum values are 0 and
WZ; they take place ap;= @,= /2.

To illustrate the consequences of E¢@6) and (27), we
consider again the situation when the input intensities are the
same,W,=0, whereas the input polarizations are almost
perpendicular to each other, cps<l, my<<1l. Here we
haveh3=cog ¢, andg3=sir? ¢, . Hence, the maximum at-
tainable values o and|W| during two-wave coupling are
controlled by the sum of the input polarization angles.
They can, by will, be made small or large, see also the fol-
lowing section.

Longitudinal configuration.Here vo=v and we obtain
from Egs.(17) and(19) the following explicit relations fom
andW:

2m=my— Py+ (my+ Py)cog4vé) — (Wy+Fg)sin(4vé),
(28)
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1.0

Thus, we have qualitative different behavior wi{¢) and
W(¢) depending on the input polarization state.

The same input polarizations meeting the condition
(n- Q’Q) ==*1. This special choice means that the input vec-

torial amplitudesﬁ‘izE 622 are the eigenvectors of the inter-
action matrix, i.e., the vectorial diffraction does not affect the
polarization state. In other words, this case corresponds to
the scalar beam coupling. The necessary input Stokes vectors
correspond to the linear input polarizations. In particular, for
the T geometry the corresponding polarization anglesg@re
=+ /4, for theL configuration we have insteag=0 and

l2.

With our choice we have at the inptity=tW,, Py=
+£my. One can see from Eq&0) and(21) that these rela-
tions hold true during propagation, i.e., the variabieand
W are sufficient for a complete description. These variables
obey the relations

Contrast m

m=mgycog2(vo*tv)&]—Wysim2(voxv)é],
W=mgsin2(vo=v)é]+Wycod2(voxv)€]. (31

The only difference between the upper and lower signs in

Eqg. (32) is the value of the effective coupling constanf

- . - . - . +v. In any case we haver®+W?=1.

0 n2 n 3n/2 2n One more interesting particular case is the case of identi-
4G cal circular input polarizatiorfleft or right) where - S )

FIG. 3. Dependencesi(£) and W(¢) for the L configuration, — 0 @ndFo=Po=0. Only isotropic diffraction, which is
me=0.1, andW,=0. The curves 1, 2, 3, 4, and 5 are plotted for the characterized by the scalap, takes place here.
polarization anglesp, =0, 90°, 180°, 270°, and 302°, respec-
tively. The dots in(b) mark the limiting values ofW(¢) which V. TRANSITION FROM THE £ TO z REPRESENTATION
correspond to the conditiom(£)=0.

Normalized intensity difference W

The above exact solutions have been obtained in terms of
2W=Wy— F o+ (My+ Po)Sin(4vé) + (Wy+ Fo)cog 4vE). the_effective.coordinatg which i; coupled with the propa-
29 gation coordinate by Eq. (12). Since we know the depen-
dencem(¢), see Eqgs.(17), (23), and (28), we can write
Furthermore, one can find from EqR0) and(21) that the  down in the general case
polarization characteristid® andF are expressed linearly by

m andW. 2 é d¢’
z= E ’ %0 (32)
P-Po=m-my, F—Fo=W-W,. (30 QlEol Jo m(¢")f[m(¢")]
Again we have a strong effect of the polarization degrees of his integral can be calculated analytically or numerically
freedom on the coupling characteristics. for any particular case. A step by step exhaustion of special
To illustrate the polarization effects covered by E@8)—  cases is beyond the scope of this paper. Below we focus our

(30), we consider the case of equal input intensitidg,  attention on the most important features and consequences of

=0, and linear input polarizations. We can use here Egsthe {—z transition.

(26) and(27) to expressmg, Fq, andP, by the input polar- Consider first the low-contrast casey<m., where
ization anglese. . Figure 3 shows the dependence¢s)  f(m)=1, see Sec. IIB. For th& geometry, this condition
andW( &) for several values of . and a small input value of can be fulfilled for any propagation distance if the |nput pa-
the contrastmy=cose_=0.1. For 0< ¢, < /2 the contrast fameters are chosen in such a way thgt (mj+Fg)"?
decreases witl§ and turns to zero at a certain value of the =m¢. By settingf=1 in Eq. (32) and using Eq/(23) for
effective coordinat&. When ¢, is increasing, the function m(&), one can obtain the following explicit analytic expres-
m(&) experiences a maximum before turning to zero. Thengion forz(£):

within the interval 235%< ¢, =<305°, this function experi-

ences oscillationglikewise the intensity differenc&V(¢)] 7= 1 I
and remains positive for ang. The value of[ m(&)]max

reaches unity atp, =3m/2. For larger values ob, the ¢

dependence of the contrast ends up again with a zero valuethere

tan(vé..)

tanvé.— o)’ 33
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o
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=
>
o0
3% n/6} 1
a

0 n n n n 1 n n n n 1 n n n n 1 n n n n

-1.0 -0.5 0.0 0.5 1.0

Input parameter ¢

FIG. 4. The limiting valuev¢., vs the input parametey, for the
T configuration.

FIG. 6. The ration/m, vsI"yz for the T geometry; the curves 1,
o=hoQv|Eo|>0, 2, 3, 4, and 5 are pﬁ)ttedofoq0=1, g —0.9,)/—0.99, and
—0.999, respectively.
vé,=arctaf\(1—qg)/(1+qp)],
—o0; with v¢,, approachingr/2 the growth of¢(z) becomes
strongly slowed down in the regions of small and lamge
(wherem=hg).

Next, using Eq.(33), we express by the trigonometric

_ _ _ functions sin(2¢) and cos(2¢) entering Egs(23) and (24)
The incrementl’, characterizes the rate of spatial changesy, m E W andP

(in z) and &, is the limiting value of¢ that corresponds to

the first zero point of the functiom(»¢) and ranges from 0 ) mo Sinh(T"yz) +qg coth(T'yz) — g,
to 7/2v. The value ofvé., is uniquely expressed by the input Sin(2vé) = 1~ COth(T'92) + Qg SINM(T'g2)
parameterg,, see Fig. 4. The valuesé,.,= /2, 1, and O 0 0 0 0
correspond toF,=—hgy (Mmpy=0), Fo=0 (my=hg), and

Fo=hgy (my=0), respectively. The same input value of con- cog2vé)=
trast, my, corresponds generally to two different values of (34)
¢, this is caused by the fact that the system is not symmet-

ric to the beam interchange in the case of nonlocal PR rem the limit ['yz—o we have from here singZ.)=my/hy
sponse. and cos(2é&,.)=Fq/h,.

Figure 5 shows the dependeneé(z) for several repre- Now, using Eqs(23),(24), and(34), one can describe ana-
sentative values of¢... One sees that the effective coordi- |ytically the dependences af, F, W, andP on the propaga-
nate ¢ tends monotonously to its limiting valu&. whenz  tion coordinatez. We restrict ourselves to the functionx z)

andF(z),

and

qOZFO/hO'

1+ go[ sinh(I"pZ) + g coth(I"9z) — Qo]
coth(T'yz) +qqg sinh(T"yz)

w2 T T v T T T
3 . m 1

My COth(T'gz)+ Go SINMT o2)

/3 - F 140, tanhTg2) 5
2 | Fo 1+qgotaniToz) (35

vg

The input parameteq0=FO/\/F02+ mo2 entering the right-
/6 i ha}nd sides of the_se express@ons ranges ffo_lnto 1. Fi_gure
1 6 illustrates possible scenarios of the spatial behavior of the
1 light contrastm. For qy>0, the contrast monotonously de-
creases wittz tending to zero; if, additionallyny<<h, (i.e.,
Uo=1), thenm=myexp(~Iy2). In the case;<0, the func-
0 : 5 : ‘; : p : s tion m(z) experiences first a njaximu_l(!where m=h, and
Tz F=0) and then tends_tq zero; if, additionallpy<<hg, then
m=mg exp(y2) at the initial stage of growth.

FIG. 5. Dependenceé(z) for the T geometry. The curves 1, 2, Qualitatively, the above features are not surprising for the

3, and 4 are plotted foré,,=0.5, 1.0, 1.45, and 1.55, respectively. nonlocal response; the regime with an intermediate maxi-
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mum corresponds, e.g., to the energy transfer from the ini-
tially weakest to the strongest beam. Specific propertie% L0 gz T
(which are not available in the scalar cpaee here the pos- I g R

sibility to restrict the growth ofm from above and to affect 08 A

€rence

nsity di

int

Normalized

the rate and direction of the energy transfer by the polariza / / \ —2 |
To gain an impression about the expected rates of spatiaf 06 [
changes, we produce some numerical estimates relevant to ¢@
experiments with BTO crystals. By setting|s|
=4X10 4V~ |El=20kV/icm, and Q=6, we have ' /' 4
vQ|E,|~50 cmi . Despite the fact thaty<1, the product [ ]
0.2 |-+
[/
than unity. ¥ ]
We continue our analysis of the low-contrast case for the . . .
T configuration with specification of the valuesfW, and 0 2 4 6
P that take place foF yz>1 (§—¢£..). These limiting values Toz

tion degrees of freedom. [

0.4 ]
I'iz=hoQv|Ey|z can easily be made considerably larger
are

FIG. 7. The normalized intensity differend¥ vs I"yz for the
T-geometry and sip,=1; the lines 1, 2, 3, 4, and 5 correspond to
WoF o+ mpPy go=0, —0.7, 0.7,—0.99, and 0.99, respectively.

F.=yVmg+F3 W.,=

E |z=fm° . 37)
P ) Qmim VI me

PoF o— MW,
P:00 ovVvo

N =

mg+Fg

Figure 8 shows the coordinate dependence of the natim,
The limiting value of F coincides, indeed, with that pre- in a logarithmical scale for several values w ranging
scribed by Eqs(35) ' ' from 0.01(this belongs the low-contrast regioto unity. For
It is important that the inequalitiesi(2),|F(2)|<hy<1 m0=0.01_ we have a steep Iinea_r decrease which is described
do not impose severe restriction on the variation range o'Py. th? smglg-exponentlal functiom/mo = exp(~ Qv |Eq[2).
W(z) and P(z). To make this point clear, we consider the With increasingmy,, decrease oi(z)/m, becomes less and
case of equal input intensitiesV = 0) and,linear input po- less pronounced at the initial stage. As a result, the interval
larizations. The conditiomy=\/m2+F2<1 can be fulfilled Wherg the recorded index gra.ting remains a.pproximat.ely uni-
h | 'f 20 <1 (t)h' 0" "0 the. — /2 form increases remarkably with,. If we define the unifor-
:e(;e(oni;;;)c%r@i _ 77 IS :m:/azn? 6'2221/2_)77 C,or(fé— mity rangez, by the equalitym(z,) =my/2, then we can see
spondgci}rrgly e ﬁ;ve ﬁzgozcos? J:Dct)sz nd : thatz, becomes larger by a factor 6f7 whenmj is increas-
) O: (/288 (o 0

ing from 0.01 to 1. This result may have important conse-
=cose, /\/cod ¢, +co ¢_. On the other hand, we have guences for the effects relevant to the grating recording

here from Eqgs(26), (28), and (36), W,,= \/1—q023inq0+2
t\/l—qoz, P.=qqSing,=*qy Thus, the signs ofV., and 1
P, are controlled by the sign of sin, and the absolute
value|W..| (or |P.|) can approach unity. Figure 7 exhibits
the coordinate dependence of the normalized intensity differ-
ence. Forgy>0 we have a monotonous growth ¥f(z) up
to the value ofxll—qoz. Whenq, changes its sign, the func-
tion W(z) shows a maximum Wpa=1) and then ap-
proaches the same limiting value. The neargfis to —1, ~ 0.1}
the stronger is the shift of this maximum to the right. i
Now we extend our study on the whole-contrast range
making the main stress on the regiop=m=<1 where the
function f(m) experiences a strong saturation. The main ex-
pected advantage of this region is maintenance of high val-
ues of light contrastbecause of decreasing rate of energy
exchanggduring recording. Large values of, necessary for 00 = = T 0 25 30 35 a0
recording, mean identical input polarizations and comparable
intensities. We consider therefore the case where the input
polarization vectors are the eigenvectors of the interaction FIG. 8. Dependencen(z) for the scalar case in the whole-
matrix, see Eqs(31). Then, using Eq(32) and the notation contrast range; the curves 1-5 are plottedrfge=0.01, 0.1, 0.4,
v+=vy* v, we obtain form(z), 0.7, and 1.

(36)

VIE|z
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n/2

3r/2
4vE

2n

n 5r/2

FIG. 9. Dependence(¢) for the L configuration. The curves
1-5 correspond top, =301.8°, 304.0°, 304.6°, 304.8°, and

305.1°. Other input parameters are specified in the caption of'® plotted fore.,

Fig. 3.

[32,33. Moreover, strong coupling effects and recording of
guasiuniform gratings can coexist in one sample.

Finally, we consider th&—z transformation for the.
configuration. As we know, the contrast becomes in this
case a positive oscillating function gfwithin an interval of
the input polarization angles, see Figa3 This means in-
deed crossover to periodic dependencés) andW(z) and
to a qualitatively new dependenzgf). Figure 9 shows what
happens with the function(£) when the input polarization
angle ¢, increases from 301.8° to 305.1fransition from
periodic to nonperiodic states occurs @t =305°). For
¢, <305° the functionz(¢) is finite and single valued. It
shows a linear growth superimposed by strong periodic o
cillations. The average slope tends to infinity when is
approaching 305°. Atp, =305.1° the propagation coordi-
natez tends to infinity foré— &, ; the limiting valueé,, is, as
earlier, the first zero point of the function(¢).

The lines 1 and 2 in Fig. 10 correspond to the lines 4 an
5 in Fig. 3a) and exhibit the periodic behavior of the light
contrast. Nontrivial and strong periodic oscillationsnofz)
originate from harmonic oscillations afi(£). The oscillation
period for the curve 2 is considerably larger than that for th
curve 1. This is fully due to proximity of the curve 5 in Fig.
3(a) to zero. Withe ;. increasing, this curve touches the hori-
zontal; the period of oscillation becomes here infinitely long
and the periodic oscillations af(z) transform into a mo-
notonous decrease.

VI. SUMMARY

The main findings of this paper can be summarized as

follows:

(a) Vectorial two-wave coupling caused by the ac en-
hanced nonlinear response possesses different quantitati
properties in the regions of low @m=m.<1) and high

S

PHYSICAL REVIEW E68, 036613 (2003

Contrast m

12
V[E |z

16

20

24

28

FIG. 10. Dependencm(z) for the L geometry. Curves 1 and 2
=270° and 302°, respectively.

(m;=m=1) light contrasim. The narrow low-contrast range
is optimum for the spatial amplification of weak waves,
while the high-contrast region is preferable for recording of
refractive index gratings.

(b) The light interference fringes experience neither bend-
ing nor tilting during vectorial two-wave coupling under ac
field; this result is valid in the whole-contrast region irre-
spective of the input polarizations of the interacting waves.

(c) Owing to this property of the light fringes and under
certain assumptions on the coupling characteristagspli-

cable, e.g., to BTO crystals and crystals of thHgén% point
group, the nonlinear problem of vectorial coupling is re-
duced to a linear problem of vectorial Bragg diffraction; the
latter admits an exact solution.

(d) Analysis of the auxiliary linear problem has shown the
presence of an addition&lo the energy conservation law
integral of motion which involves the polarization degrees of
freedom; this analysis is not restricted to any particular con-

érast range.

(e) Consideration of particular cases relevant to experi-
ment has allowed to reveal the possibilities for further sim-
plifications of vectorial equations and predict a number of
new regimes with a strong influence of the input polariza-

Sions on the output energy and polarization characteristics.

We expect that the above findings will stimulate further ac
experiments on vectorial beam coupling in the sillenites. Fur-
thermore, the results obtained can be of importance for de-
velopment optimization of the novel technique for detection
of weak signald32,33 based on the ac-enhanced vectorial
beam coupling. From the fundamental point of view, the
above theory fills the gap in the studies of vectorial wave
coupling in cubic crystals.
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