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Solutions for vectorial beam coupling under ac field in cubic photorefractive crystals
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We develop a theory of vectorial wave coupling in cubic photorefractive crystals placed in an alternating ac
field to enhance the nonlinear response. It is proven in the general case that despite essential differences
between the diffusion and the ac nonlocal responses, the latter keeps the light interference fringes straight
during the interaction. This fundamental feature allows, under certain restrictions, to reduce the nonlinear
problem of vectorial coupling to the known linear problem of vectorial Bragg diffraction from a spatially
uniform grating, which admits an exact solution. As a result, the nonlinear vectorial problem can be effectively
solved for a number of practically important cases. These cases include nontrivial polarization effects and also
the high-contrast effects. The presence of conservation laws involving the polarization degrees of freedom is
shown. A number of particular cases relevant to experiments with BTO crystals are considered.

DOI: 10.1103/PhysRevE.68.036613 PACS number~s!: 42.70.Nq, 42.65.Hw
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I. INTRODUCTION

Photorefractive~PR! wave coupling has been the subje
of many studies@1,2#. Usually, the strongest wave intera
tions occur in PR ferroelectrics which are highly anisotrop
Unfortunately, the nonlinear PR response of ferroelectric
not sufficiently fast for optical applications. Many effor
have been made to find faster photorefractive materials@1,2#.
Nowadays, cubic crystals of the sillenite family~BSO, BTO,
and BGO! and also cubic semiconductors~CdTe, GaAs, and
InP! meet the speed requirements fully.

A common weak point of the above fast materials is th
insufficiently high nonlinear response. Two techniques~dc
and ac! have been proposed to enhance this response@3,4#.
Both of these exploit applied electric fields. In the dc ca
the field is constant and the interacting light waves
slightly detuned in frequency. In the ac case, which is pro
to be most useful for applications, an external electric fi
oscillates in time and no frequency detuning is necessar
introduce between the light waves. The efficiency of the
technique depends on the temporal profile of the ac field@5#.
The best enhancement occurs for a square-wave profile w
the field changes its sign periodically.

Considerable progress in improving the photorefract
characteristics of the sillenites has been made during the
decade@6,7#. The fabrication of thin and long BSO and BT
crystals has allowed to increase the amplitude of the ac fi
up to 50 kV/cm, to decrease the response time in cw exp
ments to microseconds, and to demonstrate a variety
strong nonlinear effects relevant to applications such as
phase conjugation@8#, generation of surface light wave
@9,10#, time separated recording and readout processes@11#,
and the liner detection of weak signals@12#.

The main problem, and the main characteristic feature
describing the PR wave phenomena in cubic crystals is
vectorial character of the optical coupling. In other word
the energy and polarization changes cannot generally
separated from each other. The sensitivity of the optical p
1063-651X/2003/68~3!/036613~10!/$20.00 68 0366
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nomena to the polarization degrees of freedom, and als
the crystal cut, can definitely be regarded as a property us
for applications. The presence of strong nonlinear pheno
ena, a high spatial symmetry of the optically isotropic m
dium, and an apparent simplicity of formulation of the no
linear problems is a challenge for theorists in the field
photorefraction.

Despite numerous publications, theoretical description
the PR phenomena in cubic crystals remained till recen
very fragmental. A number of papers dealt with an analy
of vectorial Bragg diffraction from a uniform grating of th
space-charge field@13–16#. Most of these papers used var
ous approximations or numerical methods. The effects
weak two-wave coupling were considered in Refs.@17–19#
using the thin-crystal approximation. The corresponding
sults are applicable to a very restricted amount of experim
tal data. Various aspects of the enhancement problem w
considered in Refs.@3–5,20,21#. The nonlinear optical ef-
fects lay outside the main stream of these studies. Cons
able efforts have been made to describe the contribution
the PR response caused by the elasto-optic effect, see,
Refs.@22–25#. A number of publications aimed at the anal
sis of strong nonlinear effects caused by the enhanced
response@9,26–28#. These papers restricted themselves
formulation of the initial equations for wave amplitude
~which include many model parameters and experime
characteristics! and some simulations of these equations. T
corresponding numerical results give usually no insight i
the nonlinear phenomena under study.

An important step in describing the vectorial coupling h
been made recently in Refs.@29,30#. The authors have found
an adequate theoretical scheme capable of combining
general analytical methods with incorporation of the fact
data on the PR response. The analytical merits are base
the systematic use of the properties of spatial symmetry
the apparatus of Pauli matrices@31#. This approach has al
lowed to describe in a uniform manner a number of imp
tant vectorial effects: the above mentioned vectorial Bra
©2003 The American Physical Society13-1
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diffraction @15#, the angular distribution of the light-induce
scattering in BTO and BSO crystals@29,30#, and the linear
detection of weak signals by means of polarization filter
@32,33#.

The purpose of this paper is to describe the progress m
in investigation~analytical and numerical! of the character-
istics of vectorial coupling in the ac case. Our findings c
be considered as an extension of the classical results
tained for the case of scalar beam coupling@1,2# to the vec-
torial case. The text is structured as follows: First, we f
mulate the vectorial coupling equations and provide
reader with the necessary information on the nonlinear
response. It is proven then in the general case that the
fringes remain straight inside the crystal in spite of coupl
effects and the structural differences between the vecto
and scalar equations. Further we introduce certain simp
ing assumptions for the coupling coefficients and specify
conditions of their validity. Next we show that the nonline
coupling problem can be reduced to the known linear pr
lem of the vectorial Bragg diffraction by a renormalization
the propagation coordinate. With this renormalization p
formed the vectorial problem admits an exact solution in
whole-contrast range. This procedure allows also to rev
the presence of conservation laws involving essentially
polarization degrees of freedom. Finally, we apply the ex
solutions obtained to a number of important particular cas

II. BASIC RELATIONS

A. Vectorial diffraction equation

Let two light waves 1 and 2 be coupled in a cubic P
crystal via diffraction from the light-induced grating o
space-charge field whose grating vectorKW is the difference
of the light wave vectors, see Fig. 1~a!. As soon as the light
absorption is neglected, the total intensity of the waves d
not depend on the propagation coordinatez and we can nor-
malize the vectorial complex wave amplitudesaW 1 ,aW 2 in such
a way thatuaW 1u21uaW 2u251. We denote the amplitude of th
light-induced space-charge field asEK ; it is generally a
function ofz. With this notation and within the conventiona
paraxial approximation, the set of equations describing v
torial Bragg diffraction from the grating can be presented
the following general and compact form@29#:

~]z2 i k•ŝ!aW 15 iEK~n01n•ŝ!aW 2 , ~1!

FIG. 1. ~a! Schematic of a two-wave coupling experiment.~b!

Orientation of the main 2D vectors about the crystal axes;aW i is the
amplitude of thei th wave (i 51,2).
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~]z2 i k•ŝ!aW 25 iEK* ~n01n•ŝ!aW 1 . ~2!

Here k5(k1 ,2r,k3) (r is the rotatory power! and n
5(n1,0,n3) are known real three-dimensional~3D! vectors,
n0 is a known real scalar,ŝ5(s1 ,s2 ,s2) the standard set o
232 Pauli matrices, see Ref.@31#, andaW 1,2 are 2D vectors
with x andy components~note: the 3D quantities with 1,2,3
components are denoted by bold letters!. The vectork char-
acterizes the linear optical properties; its componentsk1,3
account for the changes of the optical permittivity induc
by a uniform applied electric field via the linear electro-op
effect and the componentk252r accounts for the effect o
optical activity ~if it is present in the crystal!. The vectorn
and the scalarn0 are responsible for the anisotropic and is
tropic parts of diffraction, respectively. The fact that th
componentn250 means that the light-induced space-cha
field does not produce any changes of the rotatory power.
Set ~1!,~2! can be considered as an extension of the kno
scalar Kogelnik theory to the vectorial case. One can ch
that the Hermitian property of thes matrices ensures th
conservation of the total wave intensity, i.e.,

I 05uaW 1u21uaW 2u251. ~3!

This is the integral of Eqs.~1! and ~2!. In the case of a
uniform grating,EK(z)5const, set~1!,~2! admits nontrivial
exact general solutions for the vectorial diffraction@15,29#.

Throughout this paper we are dealing with cubic cryst
of the point groups 23 and 43̄m; this is sufficient for all
visible practical purposes. The first case is relevant to
sillenites ~BSO, BTO, and BGO! whereas the second on
corresponds to semiconductors GaAs, CdTe, InP, and oth
The electro-optic properties of the above cubic crystals
the same in symmetry. At the same time, crystals of the p
group 23 are optically active~the rotatory powerrÞ0) in
contrast to crystals belonging to the 43̄m group.

The coefficientsk1,3 and n0,1,3 entering Eqs.~1! and ~2!

can be calculated for any orientation of the applied fieldEW 0

and the grating vectorKW about the crystal axes. Below w
restrict ourselves to the case when the propagation axisz is
directed along@11̄0#, see Fig. 1~b!, and the applied fieldEW 0

is parallel to the grating vectorKW ; this covers most of the
topical situations. Then the componentsk1,3 can be presented
in the form

k15sE0 sinz, k352
sE0

2
cosz, ~4!

wherez is the angle betweenKW and the@001# crystal axis,
s52pn0

3r 41/l, n0 the nonperturbed refractive index,r 41

the only nonzero electro-optic constant, andl the wave-
length. The sign ofE0 can be positive and negative in Eq
~4!. The coefficientsn0,1,3 include generally not only electro
optic but also elasto-optic contributions, the latter can som
times be of importance. If we neglect the elasto-optic con
butions, then
3-2
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n05
s

2
cosz, n15s sinz, n352

s

2
cosz. ~5!

The data onn0,1,3(z) with the elasto-optic contribution
taken into account can be found in Ref.@29#.

Three particular cases are especially important for the
periment:

~1! The transverse~T! geometry,KW ,EW 0'@001#, i.e., z
590°. Herek15sE0 ,k350. The elasto-optic contribution
renormalize here slightly the electro-optic constantr 41,
thereforen050, n1.s, andn350.

~2! The longitudinal ~L! optical configuration,
KW ,EW 0i@001#, i.e., z50. Herek150,k35sE0/2. The elasto-
optic contributions are absent here, hencen05s/2,n150,
andn352s/2.

~3! The diagonal ~D! geometry, KW ,EW 0i@111#, z
5arctan(A2).54.7°. Herek15A2 sE0 , k352sE0/2A3.
The elasto-optic contributions ton0,1,3 are clearly pro-
nounced here, they can give up to 30% corrections to
values given by Eqs.~5!.

There are a large number of optical configurations that
equivalent~for symmetry reasons! to the above considered
these configurations are listed in Ref.@29#.

Commenting on the above relations for the optical co
figurations, we mention first that the isotropic part of diffra
tion is absent in theT geometry. This case is maximall
different from the familiar scalar diffraction. Furthermor
there is no case when the anisotropic part of diffraction
absent or small as compared to the isotropic part. He
strong polarization effects are expected in cubic PR cryst

It is important for what follows that the vectorsk andn
are parallel to each other in theL and T geometries if the
optical activity is absent~crystals of the 4̄3m point group!.
In the sillenites~whererÞ0) k is approximately parallel to
n whensuE0u@r, which means suppression of optical acti
ity by the applied field. This situation is typical of ac expe
ments with BTO crystals, where r.6.5° mm21

.1.1 cm21, usu.431024 V21, and the amplitudeuE0u
ranges from 10 to 50 kV/cm. In theD geometry, it is neces
sary to be careful when using the approximationkin because
of noticeable elasto-optic contributions ton1,3.

B. Nonlinear ac response

To complete set~1!,~2!, it is necessary to specify the P
nonlinear response, i.e., to express the grating amplitudeEK

through the light amplitudesaW 1,2. We assume that the gratin
formation occurs under the action of a quickly oscillati
square-wave shaped applied electric field of the amplit
uE0u which is much larger than the characteristic diffusi
field ED . This ac method for enhancement of the PR
sponse is the most useful for applications. The neces
relation for the grating amplitude can be represented in
form @1,34,37,38#

EK52 iQ f uE0u~aW 1•aW 2* !. ~6!
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Here Q5Q(K,uE0u) is a dimensionless factor considerab
larger than the one that has the meaning of the quality fa
for a space-charge wave with the wave vectorKW @34# and f
5 f (m) is a function of the contrast of the light interferenc
patternm52uaW 1•aW 2* u.

Figure 2 shows a representative contrast dependenc
the productQm f(m), see Ref.@39# for more details. In the
low-contrast limit, m&mc'0.05!1, we have f .1; this
limit corresponds to the known result for the ac enhancem
of the PR response@1,4#. Within the intervalmc&m,1 the
function f (m) is decreasing which means decreasing e
ciency of the ac enhancement. The critical value of the c
trast,mc , can roughly be estimated as'Q22. The product
m f(m) experiences saturation on the level of'Q21 when
m→1, i.e., the value of the grating amplitudeEK is saturated
on the level ofuE0u. Actually, the saturation ofEK(m) for
m.mc is payment for the steep linear growth ofEK(m) in
the region of small contrast. The saturation ofEK(m) is ac-
companied by an efficient excitation of the higher spa
harmonics,E2K ,E3K , . . . . In ac experiments with the sille
nite crystals the quality factorQ ranges typically from 4 to 6;
the functionQm f(Q,m) does not experience strong chang
here. We shall use, in what follows, the representative dep
dence of Fig. 2 for modeling of vectorial coupling.

The presence of the imaginary uniti in Eq. ~6! means that
the fundamental grating of the space-charge fie
EK exp(i KW •rW)1c.c., is shifted by a quarter of a period wit
respect to the light intensity grating, i.e., the PR respons
nonlocal~gradientlike!. This property is well known for the
ac enhancement in the low-contrast limit; it has importa
consequences for wave coupling in the whole-contrast
gion, 0,m,1.

III. ANALYSIS AND SIMPLIFICATION
OF VECTORIAL EQUATIONS

First, using Eq.~6! for EK , we obtain from Eqs.~1! and
~2! the closed set of equations foraW 1,2,

~]z2 i k•ŝ! aW 15QuE0u f ~m!~aW 1•aW 2* !~n01n•ŝ!aW 2 , ~7!

FIG. 2. The functionQm f(Q,m) for Q56; the dashed line
shows the linear approximation.
3-3
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~]z2 i k•ŝ!aW 252QuE0u f ~m!~aW 1* •aW 2!~n01n•ŝ!aW 1 ,
~8!

where, as earlier,m52uaW 1•aW 2* u.
In the next step we prove that the light interferen

fringes experience neither bending nor tilting inside the cr
tal despite the coupling effects. This is an important gen
alization of the property of beam coupling known for th
nonlocal response in the scalar case on the vectorial case
note first that the light intensity pattern inside the crysta
proportional to@11m cos(KW •rW1F)#, whereF5arg(aW 1•aW 2* )

and KW'z. If F(z)5const, the light fringes remain perpen
dicular to the input face. Multiplying the vectorial equatio
~7! and ~8! scalarly byaW 2* andaW 1* , respectively, combining
the obtained scalar relations, and using the Hermitian pr
erty of the s matrices, we obtain the necessary equa
]zFz50. This general property of the light fringes wa
missed in Ref.@29#. Being very simple, it simplifies greatly
the following considerations.

Since the phaseF(z)5const, we can put it equal to zer
without any loss of generality. In other words, one can ma
the replacementaW 1,2→aW 1,2 exp(6iF/2) to work then with
new fully equivalent vectorial light amplitudes. Therefor
from now on we setaW 1•aW 2* 5m/2.

At this point, we need to make the main approximation
this paper, namely,kin. The situations where it is justified
have been considered in the preceding section. Within
approximation, the set of nonlinear equations~7!,~8! admits
exact solutions while the polarization properties of be
coupling remain far from trivial.

To get rid of the linear terms in Eqs.~7! and ~8!, we
perform the unitary transformation fromaW 1,2 to the ampli-
tudesbW 1,2,

aW 1,25exp@ i ~k•ŝ!z#bW 1,2. ~9!

This transformation does not change the scalar products
particular, uaW 1,2(z)u25ubW 1,2(z)u2 and aW 1(z)•aW 2* (z)

5bW 1(z)•bW 2* (z)[m(z)/2. It does not change also the inp

values of the amplitudes,bW 1,2(0)5aW 1,2(0). After the unitary
transformation we have~using the propertyk in)

]z bW 151~QuE0u/2!m f~m!~n01n•ŝ!bW 2 , ~10!

]z bW 252 ~QuE0u/2!m f~m!~n01n•ŝ!bW 1 . ~11!

Finally, we transfer from the propagation coordinatez to the
variablej ~an effective coordinate!,

j5~QuE0u/2!E
0

z

m~z8! f @m~z8!#dz8, ~12!

to obtain instead of Eqs.~10! and ~11!

]jbW 151~n01n•ŝ!bW 2, ~13!

]jbW 252~n01n•ŝ!bW 1 . ~14!
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This set of differential equations is alreadylinear, it de-
scribes vectorial diffraction from a uniform grating and a
mits an exact general solution in the terms of the effect
coordinatej. The nonlinear part of the problem is therefo
reduced to determination of the functionj(z), which is
monotonically increasing starting from zero,j(0)50. As
soon as the dependencem(j) is found from Eqs.~10! and
~11!, the functionj(z) can be obtained by an integratio
~analytical or numerical!.

IV. EXACT SOLUTIONS

It is not difficult to check, see also Refs.@15,29#, that the
exact solution of Eqs.~13! and ~14! with the boundary con-
ditions bW 1,2(0)5bW 1,2

0 is

bW 15@cos~n0j!cos~nj!2~n•ŝ!sin~n0j!sin~nj!#bW 1
0

1@sin~n0j!cos~nj!1~n•ŝ!cos~n0j!sin~nj!#bW 2
0,

~15!

bW 252@sin~n0j!cos~nj!1~n•ŝ!cos~n0j!sin~nj!#bW 1
0

1@cos~n0j!cos~nj!2~n•ŝ!sin~n0j!sin~nj!#bW 2
0 ,

~16!

wheren5unu is the scalar characterizing the strength of a
isotropic diffraction andn5n/n is the real unit 3D vector.
Two spatial frequenciesn0 andn are present in Eqs.~15! and
~16!. One can check furthermore thatubW 1(j)u21ubW 1(j)u2
51.

Using Eqs. ~15! and ~16!, we find the contrastm
52(bW 1•bW 2* ) as a function ofj,

m5m0 cos~2n0j!cos~2nj!2W0 sin~2n0j!cos~2nj!

2F0 cos~2n0j!sin~2nj!2P0 sin~2n0j!sin~2nj!,

~17!

wherem05m(0) is the input value of the contrast andW0 ,
F0 ,P0 are the input values of the following real scalar cha
acteristics of the vectorial coupling:

W5ubW 1u22ubW 2u2, F5^1u~n•ŝ!u1&2^2u~n•ŝ!u2&,

P52 Re^1u~n•ŝ!u2&. ~18!

We have used here the conventional quantum-mech
notation for the matrix elements, e.g.,̂1u(n•ŝ)u2&
5bW 1* •(n•ŝ)bW 2. As follows from Eqs.~18!, W is the normal-
ized difference of the beam intensities,F characterizes the
polarization freedom degrees, andP describes a correlation
of polarizations in beams 1 and 2. To make this asser
more clear, we recall, see also Refs.@35,36#, that the real 3D
vectorSi5^ i uŝu i &/ubW i u2 ( i 51,2) is the unit Stokes vector fo
i th beam, its components (Si)1,3 characterize the degree o
linear polarization and the component (Si)2 characterizes the
3-4
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degree of ellipticity. In what follows, we shall provide th
reader with particular examples of polarization character
tion.

The structure of Eq.~17! makes us to expect that explic
relations form, W, F, and P, which follow from Eqs.~15!
and~16!, form a closed set. It is not difficult to find out tha

W5m0 sin~2n0j!cos~2nj!1W0 cos~2n0j!cos~2nj!

2F0 sin~2n0j!sin~2nj!1P0 cos~2n0j!sin~2nj!,

~19!

F5m0 cos~2n0j!sin~2nj!2W0 sin~2n0j!sin~2nj!

1F0 cos~2n0j!cos~2nj!1P0 sin~2n0j!cos~2nj!,

~20!

P52m0 sin~2n0j!sin~2nj!2W0 cos~2n0j!sin~2nj!

2F0 sin~2n0j!cos~2nj!1P0 cos~2n0j!cos~2nj!.

~21!

From here one finds algebraically that the quantity

I p5m21W21F21P2 ~22!

remains constant across the crystal, i.e.,I p is a new~in ad-
dition to I 0) integral of set~1!,~2!. It involves the polariza-
tion degrees of freedom. One can show that, depending
polarizations of the input beams,I p ranges from 1 to 2. It is
worth mentioning that the unitary transformation~9! does
not change the quantitiesW, F, andP, defined by Eqs.~18!;
instead of the new amplitudesbW 1,2 one can use the old am
plitudesaW 1,2 in these equations.

The j dependences given by Eqs.~17!, ~19!–~21! include
a great deal of information on the vectorial coupling. At t
first sight, these oscillating dependences look unusual for
nonlocal response which is distinguished by the o
directional energy transfer@2#. Moreover, the possibility for
the contrastm to change sign, which formally follows from
Eq. ~17!, seems to be confusing. As a matter of fact, t
feature is beyond the field of applicability of the exact re
tions. It will be shown in the following section that this fiel
is restricted to the region ofj wherem>0; within this re-
gion the propagation coordinatez5z(j) ranges from 0 tò .

Particular cases

Transverse configuration.Here n050 and the relations
~17!, ~19!–~21! acquire the following simplified form~with
the only spatial frequency 2n present!:

m5m0 cos~2nj!2F0 sin~2nj!,

F5m0 sin~2nj!1F0 cos~2nj!, ~23!

W5W0 cos~2nj!1P0 sin~2nj!,

P52W0 sin~2nj!1P0 cos~2nj!. ~24!
03661
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From here we have

m2~j!1F2~j!5m0
21F0

2 , W2~j!1P2~j!5W0
21P0

2 .
~25!

One sees thatm is coupled only withF, W only with P, and
instead of the integralI p5m21W21F21P2 we have two
integralsh0

25m21F2 andg0
25W21P2. It is interesting that

evolution of the light contrastm is affected by the input
value of the polarization characteristicF0. Depending onF0,
the contrast can be increasing or decreasing function oj
~andz) near the input face. A similar situation takes place
the intensity differenceW; the sign of the derivativedW/dj
at j50, i.e., the direction of the energy transfer, is controll
by the sign ofP0. For any input valuesm0 , F0 , W0, andP0
the functions given by Eqs.~23! oscillate around zero.

Note that F0 is expressed by the input intensities
the beams,I 1,2

0 , and the input Stokes vectorsS1,2
0 , F0

5I 1
0(n•S1

0)2I 2
0(n•S2

0). If the input polarizations are the
same, S1

05S2
05S0, then F05W0(n•S0) and P0

5m0(n•S0). For m0!1 the value ofF0 can be comparable
with one, which means a strong effect of the polarizati
degrees on the spatial evolution of the contrast.

Let the input beams 1 and 2 be linearly polarized andw1
andw2 be the corresponding input polarization angles m
sured from the@001# axis, see Fig. 1~b!. Then the input
valuesm0 ,W0 ,F0 ,P0 can be expressed as follows:

m05A12W0
2 cosw2 ,

F05cosw1 sinw21W0 sinw1 cosw2 , ~26!

W05I 1
02I 2

0 , P05A12W0
2 sinw1 , ~27!

wherew65w16w2. Since the sum of the normalized inten
sities I 1

01I 2
05I 051, we have three independent variable i

put parameters, the normalized intensity differenceW0, and
two polarization angles. The integralsh0

2 and g0
2 are also

functions of these input parameters. The maximum value
h0

2 andg0
2, as functions of the angles, occur atw1,25p/4 and

equal unity. The corresponding minimum values are 0 a
W0

2; they take place atw15w25p/2.
To illustrate the consequences of Eqs.~26! and ~27!, we

consider again the situation when the input intensities are
same,W050, whereas the input polarizations are almo
perpendicular to each other, cosw2!1, m0!1. Here we
haveh0

2.cos2 w1 andg0
2.sin2 w1 . Hence, the maximum at

tainable values ofm and uWu during two-wave coupling are
controlled by the sum of the input polarization anglesw1 .
They can, by will, be made small or large, see also the
lowing section.

Longitudinal configuration.Here n05n and we obtain
from Eqs.~17! and~19! the following explicit relations form
andW:

2m5m02P01~m01P0!cos~4nj!2~W01F0!sin~4nj!,

~28!
3-5
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2W5W02F01~m01P0!sin~4nj!1~W01F0!cos~4nj!.

~29!

Furthermore, one can find from Eqs.~20! and ~21! that the
polarization characteristicsP andF are expressed linearly b
m andW:

P2P05m2m0 , F2F05W2W0 . ~30!

Again we have a strong effect of the polarization degrees
freedom on the coupling characteristics.

To illustrate the polarization effects covered by Eqs.~28!–
~30!, we consider the case of equal input intensities,W0
50, and linear input polarizations. We can use here E
~26! and~27! to expressm0 , F0, andP0 by the input polar-
ization anglesw6 . Figure 3 shows the dependencesm(j)
andW(j) for several values ofw1 and a small input value o
the contrast,m05cosw250.1. For 0,w1&p/2 the contrast
decreases withj and turns to zero at a certain value of t
effective coordinatej. Whenw1 is increasing, the function
m(j) experiences a maximum before turning to zero. Th
within the interval 235°&w1&305°, this function experi-
ences oscillations@likewise the intensity differenceW(j)]
and remains positive for anyj. The value of@m(j)#max
reaches unity atw1.3p/2. For larger values ofw1 the j
dependence of the contrast ends up again with a zero va

FIG. 3. Dependencesm(j) and W(j) for the L configuration,
m050.1, andW050. The curves 1, 2, 3, 4, and 5 are plotted for t
polarization anglesw150, 90°, 180°, 270°, and 302°, respe
tively. The dots in~b! mark the limiting values ofW(j) which
correspond to the conditionm(j)50.
03661
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Thus, we have qualitative different behavior ofm(j) and
W(j) depending on the input polarization state.

The same input polarizations meeting the conditi
(n•S1,2

0 )561. This special choice means that the input ve

torial amplitudesaW 1,2
0 [bW 1,2

0 are the eigenvectors of the inte
action matrix, i.e., the vectorial diffraction does not affect t
polarization state. In other words, this case correspond
the scalar beam coupling. The necessary input Stokes ve
correspond to the linear input polarizations. In particular,
the T geometry the corresponding polarization angles arew
56p/4; for theL configuration we have insteadw50 and
p/2.

With our choice we have at the inputF056W0 , P05
6m0. One can see from Eqs.~20! and ~21! that these rela-
tions hold true during propagation, i.e., the variablesm and
W are sufficient for a complete description. These variab
obey the relations

m5m0 cos@2~n06n!j#2W0 sin@2~n06n!j#,

W5m0 sin@2~n06n!j#1W0 cos@2~n06n!j#. ~31!

The only difference between the upper and lower signs
Eq. ~31! is the value of the effective coupling constantn0
6n. In any case we havem21W251.

One more interesting particular case is the case of ide
cal circular input polarization~left or right! where (n•S1,2

0 )
50 and F05P050. Only isotropic diffraction, which is
characterized by the scalarn0, takes place here.

V. TRANSITION FROM THE j TO z REPRESENTATION

The above exact solutions have been obtained in term
the effective coordinatej which is coupled with the propa
gation coordinatez by Eq. ~12!. Since we know the depen
dencem(j), see Eqs.~17!, ~23!, and ~28!, we can write
down in the general case

z5
2

QuE0u E0

j dj8

m~j8! f @m~j8!#
. ~32!

This integral can be calculated analytically or numerica
for any particular case. A step by step exhaustion of spe
cases is beyond the scope of this paper. Below we focus
attention on the most important features and consequenc
the j→z transition.

Consider first the low-contrast case,m&mc , where
f (m).1, see Sec. II B. For theT geometry, this condition
can be fulfilled for any propagation distance if the input p
rameters are chosen in such a way thath05(m0

21F0
2)1/2

&mc . By setting f 51 in Eq. ~32! and using Eq.~23! for
m(j), one can obtain the following explicit analytic expre
sion for z(j):

z5
1

G0
lnF tan~nj`!

tan~nj`2nj!G , ~33!

where
3-6
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G05h0QnuE0u.0,

nj`5arctan@A~12q0!/~11q0!#,

and

q05F0 /h0.

The incrementG0 characterizes the rate of spatial chang
~in z) and j` is the limiting value ofj that corresponds to
the first zero point of the functionm(nj) and ranges from 0
to p/2n. The value ofnj` is uniquely expressed by the inpu
parameterq0, see Fig. 4. The valuesnj`5p/2, 1, and 0
correspond toF052h0 (m050), F050 (m05h0), and
F05h0 (m050), respectively. The same input value of co
trast, m0, corresponds generally to two different values
j` ; this is caused by the fact that the system is not symm
ric to the beam interchange in the case of nonlocal PR
sponse.

Figure 5 shows the dependencenj(z) for several repre-
sentative values ofnj` . One sees that the effective coord
natej tends monotonously to its limiting valuej` when z

FIG. 4. The limiting valuenj` vs the input parameterq0 for the
T configuration.

FIG. 5. Dependencenj(z) for theT geometry. The curves 1, 2
3, and 4 are plotted fornj`50.5, 1.0, 1.45, and 1.55, respectivel
03661
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→`; with nj` approachingp/2 the growth ofj(z) becomes
strongly slowed down in the regions of small and largez
~wherem.h0).

Next, using Eq.~33!, we express byz the trigonometric
functions sin(2nj) and cos(2nj) entering Eqs.~23! and ~24!
for m, F, W, andP,

sin~2nj!5
m0

h0

sinh~G0z!1q0 coth~G0z!2q0

coth~G0z!1q0 sinh~G0z!
,

cos~2nj!5
11q0@sinh~G0z!1q0 coth~G0z!2q0#

coth~G0z!1q0 sinh~G0z!
.

~34!

In the limit G0z→` we have from here sin(2nj`)5m0 /h0
and cos(2nj`)5F0 /h0.

Now, using Eqs.~23!,~24!, and~34!, one can describe ana
lytically the dependences ofm, F, W, andP on the propaga-
tion coordinatez. We restrict ourselves to the functionsm(z)
andF(z),

m

m0
5

1

coth~G0z!1q0 sinh~G0z!
,

F

F0
5

11q0
21 tanh~G0z!

11q0 tanh~G0z!
. ~35!

The input parameterq05F0 /AF0
21m0

2 entering the right-
hand sides of these expressions ranges from21 to 1. Figure
6 illustrates possible scenarios of the spatial behavior of
light contrastm. For q0.0, the contrast monotonously de
creases withz tending to zero; if, additionally,m0!h0 ~i.e.,
q0.1), thenm.m0 exp(2G0z). In the caseq0,0, the func-
tion m(z) experiences first a maximum~wherem5h0 and
F50) and then tends to zero; if, additionally,m0!h0, then
m.m0 exp(G0z) at the initial stage of growth.

Qualitatively, the above features are not surprising for
nonlocal response; the regime with an intermediate ma

FIG. 6. The ratiom/m0 vs G0z for theT geometry; the curves 1
2, 3, 4, and 5 are plotted forq051, 0, 20.9, 20.99, and
20.999, respectively.
3-7
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mum corresponds, e.g., to the energy transfer from the
tially weakest to the strongest beam. Specific proper
~which are not available in the scalar case! are here the pos
sibility to restrict the growth ofm from above and to affec
the rate and direction of the energy transfer by the polar
tion degrees of freedom.

To gain an impression about the expected rates of sp
changes, we produce some numerical estimates relevant
experiments with BTO crystals. By settingusu
5431024 V21, uE0u520 kV/cm, and Q56, we have
nQuE0u'50 cm21. Despite the fact thath0!1, the product
G0z5h0QnuE0uz can easily be made considerably larg
than unity.

We continue our analysis of the low-contrast case for
T configuration with specification of the values ofF, W, and
P that take place forG0z@1 (j→j`). These limiting values
are

F`5Am0
21F0

2, W`5
W0F01m0P0

Am0
21F0

2
,

P`5
P0F02m0W0

Am0
21F0

2
. ~36!

The limiting value of F coincides, indeed, with that pre
scribed by Eqs.~35!.

It is important that the inequalitiesm(z),uF(z)u<h0!1
do not impose severe restriction on the variation range
W(z) and P(z). To make this point clear, we consider th
case of equal input intensities (W050) and linear input po-
larizations. The conditionh0[Am0

21F0
2!1 can be fulfilled

here only for cos2 w6!1; this means eitherw1.p/2, w2
.0 (w1.p/2) or w1.p, w2.p/2 (w1.3p/2). Corre-
spondingly, we have h0

2.cos2 w11cos2 w2 and q0

5cosw1 /Acos2 w11cos2 w2. On the other hand, we hav
here from Eqs.~26!, ~28!, and ~36!, W`5A12q0

2 sinw1.
6A12q0

2, P`5q0 sinw1.6q0. Thus, the signs ofW` and
P` are controlled by the sign of sinw1 and the absolute
value uW`u ~or uP`u) can approach unity. Figure 7 exhibi
the coordinate dependence of the normalized intensity dif
ence. Forq0.0 we have a monotonous growth ofW(z) up
to the value ofA12q0

2. Whenq0 changes its sign, the func
tion W(z) shows a maximum (Wmax51) and then ap-
proaches the same limiting value. The nearerq0 is to 21,
the stronger is the shift of this maximum to the right.

Now we extend our study on the whole-contrast ran
making the main stress on the regionmc&m<1 where the
function f (m) experiences a strong saturation. The main
pected advantage of this region is maintenance of high
ues of light contrast~because of decreasing rate of ener
exchange! during recording. Large values ofm, necessary for
recording, mean identical input polarizations and compara
intensities. We consider therefore the case where the in
polarization vectors are the eigenvectors of the interac
matrix, see Eqs.~31!. Then, using Eq.~32! and the notation
n65n06n, we obtain form(z),
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n6uE0uz5E
m

m0 dm

Qm f~m!A12m2
. ~37!

Figure 8 shows the coordinate dependence of the ratiom/m0
in a logarithmical scale for several values ofm0 ranging
from 0.01~this belongs the low-contrast region! to unity. For
m050.01 we have a steep linear decrease which is descr
by the single-exponential functionm/m05exp(2Qn6uE0uz).
With increasingm0, decrease ofm(z)/m0 becomes less and
less pronounced at the initial stage. As a result, the inte
where the recorded index grating remains approximately u
form increases remarkably withm0. If we define the unifor-
mity rangezu by the equalitym(zu)5m0/2, then we can see
thatzu becomes larger by a factor of'7 whenm0 is increas-
ing from 0.01 to 1. This result may have important cons
quences for the effects relevant to the grating record

FIG. 7. The normalized intensity differenceW vs G0z for the
T-geometry and sinw1.1; the lines 1, 2, 3, 4, and 5 correspond
q050, 20.7, 0.7,20.99, and 0.99, respectively.

FIG. 8. Dependencem(z) for the scalar case in the whole
contrast range; the curves 1–5 are plotted form050.01, 0.1, 0.4,
0.7, and 1.
3-8



o

t

t
o

i-

n
t

th
.

ri-
ng

a

n
a

e
s,
of

nd-
c

e-
s.

er

-
he

he

of
on-

ri-
m-
of
a-
s.
ac
ur-
de-
on
ial
he
ve

haft

d

SOLUTIONS FOR VECTORIAL BEAM COUPLING UNDER . . . PHYSICAL REVIEW E68, 036613 ~2003!
@32,33#. Moreover, strong coupling effects and recording
quasiuniform gratings can coexist in one sample.

Finally, we consider thej→z transformation for theL
configuration. As we know, the contrastm becomes in this
case a positive oscillating function ofj within an interval of
the input polarization angles, see Fig. 3~a!. This means in-
deed crossover to periodic dependencesm(z) andW(z) and
to a qualitatively new dependencez(j). Figure 9 shows wha
happens with the functionz(j) when the input polarization
anglew1 increases from 301.8° to 305.1°~transition from
periodic to nonperiodic states occurs atw1.305°). For
w1,305° the functionz(j) is finite and single valued. I
shows a linear growth superimposed by strong periodic
cillations. The average slope tends to infinity whenw1 is
approaching 305°. Atw15305.1° the propagation coord
natez tends to infinity forj→j` ; the limiting valuej` is, as
earlier, the first zero point of the functionm(j).

The lines 1 and 2 in Fig. 10 correspond to the lines 4 a
5 in Fig. 3~a! and exhibit the periodic behavior of the ligh
contrast. Nontrivial and strong periodic oscillations ofm(z)
originate from harmonic oscillations ofm(j). The oscillation
period for the curve 2 is considerably larger than that for
curve 1. This is fully due to proximity of the curve 5 in Fig
3~a! to zero. Withw1 increasing, this curve touches the ho
zontal; the period of oscillation becomes here infinitely lo
and the periodic oscillations ofm(z) transform into a mo-
notonous decrease.

VI. SUMMARY

The main findings of this paper can be summarized
follows:

~a! Vectorial two-wave coupling caused by the ac e
hanced nonlinear response possesses different quantit
properties in the regions of low (0<m&mc!1) and high

FIG. 9. Dependencez(j) for the L configuration. The curves
1–5 correspond tow15301.8°, 304.0°, 304.6°, 304.8°, an
305.1°. Other input parameters are specified in the caption
Fig. 3.
03661
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(mc&m<1) light contrastm. The narrow low-contrast rang
is optimum for the spatial amplification of weak wave
while the high-contrast region is preferable for recording
refractive index gratings.

~b! The light interference fringes experience neither be
ing nor tilting during vectorial two-wave coupling under a
field; this result is valid in the whole-contrast region irr
spective of the input polarizations of the interacting wave

~c! Owing to this property of the light fringes and und
certain assumptions on the coupling characteristics~appli-
cable, e.g., to BTO crystals and crystals of the 43̄m point
group!, the nonlinear problem of vectorial coupling is re
duced to a linear problem of vectorial Bragg diffraction; t
latter admits an exact solution.

~d! Analysis of the auxiliary linear problem has shown t
presence of an additional~to the energy conservation law!
integral of motion which involves the polarization degrees
freedom; this analysis is not restricted to any particular c
trast range.

~e! Consideration of particular cases relevant to expe
ment has allowed to reveal the possibilities for further si
plifications of vectorial equations and predict a number
new regimes with a strong influence of the input polariz
tions on the output energy and polarization characteristic

We expect that the above findings will stimulate further
experiments on vectorial beam coupling in the sillenites. F
thermore, the results obtained can be of importance for
velopment optimization of the novel technique for detecti
of weak signals@32,33# based on the ac-enhanced vector
beam coupling. From the fundamental point of view, t
above theory fills the gap in the studies of vectorial wa
coupling in cubic crystals.
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FIG. 10. Dependencem(z) for the L geometry. Curves 1 and 2
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