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Standard and embedded solitons in nematic optical fibers

R. F. Rodrguez!?* J. A. Reyes;? A. Espinosa-Ceno? J. Fujioka?? and B. A. Malomed
!Departamento de Bica Qumica, Universidad Nacional, Altmma de Mgico, Apartado Postal 20-364, 01000 Meo, D.F., Mexico
2Instituto de Fsica, Universidad Nacional, Almmma de Mgico, Apartado Postal 20-364, 01000 Meo, D.F., Mexico
SFacultad de Ciencias, UAEMEX, Toluca 50000, Estado deitte Mexico
4Departamento de Materia Condensada, Universidad Nacional, fama de Mgico, Apartado Postal 20-364,

01000 Meico, D.F., Mexico
SDepartment of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
(Received 19 November 2002; revised manuscript received 22 May 2003; published 11 Septemper 2003

A model for a non-Kerr cylindrical nematic fiber is presented. We use the multiple scales method to show the
possibility of constructing different kinds of wave packets of transverse magnetic modes propagating through
the fiber. This procedure allows us to generate different hierarchies of nonlinear partial differential equations
which describe the propagation of optical pulses along the fiber. We go beyond the usual weakly nonlinear limit
of a Kerr medium and derive a complex modified Korteweg—de Vries equé@ibhKdV) which governs the
dynamics for the amplitude of the wave packet. In this derivation the dispersion, self-focussing, and diffraction
in the nematic fiber are taken into account. It is shown that this CM KdV equation has two-parameter families
of bright and dark complex solitons. We show analytically that under certain conditions, the bright solitons are
actually double-embedded solitons. We explain why these solitons do not radiate at all, even though their wave
numbers are contained in the linear spectrum of the system. We &tudyerically and analyticallythe
stability of these solitons. Our results show that these embedded solitons are stable solutions, which is an
interesting property since in most systems the embedded solitons are weakly unstable solutions. Finally, we
close the paper by making comments on the advantages as well as the limitations of our approach, and on
further generalizations of the model and method presented.
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[. INTRODUCTION Passing continuous laser beams through nematic LCs re-
veals the existence of static spatial patterns in cylindrical
Theoretical studies on the existence of solitons in liquid[10] and planaf11] geometries. The basic physical mecha-
crystals (LCs) started in the late 1960s and early 1970snism which supports these time-independent patterns is the
[1-4], and experimental confirmations were reported subsepgjance between the nonlinear refractiself-focusing and

quently[5—8]. In the case of static solitons in LCs, the mo- gavia) diffraction in the nematic. However, when the propa-
Ieculay conflggratlons may be obtained from the Lagrang ation of wave packets, rather than continuous beams, is
equations derived from the Helmholtz free energy, wherea onsidered, a different situation occurs. The envelope of the

for propagating solitons the continuous change in these con- ; . . i
figurations makes it necessary to take into account the dam c_c?L\J/r?t 2:&5%28?;%5 a(?ileérSsigr?u:ggn&ifwgg?o;\aﬁ]efhg]tr?e;c.
ing of the molecular motion. For liquid-crystal waveguides, 9, disp ’

the nonlinearity necessary for the existence of solitons i tic [12715' This equation has soliton so!uﬂons whosg
provided by the coupling with the optical field. speed_, time, and length scales may be estlmate_d by using
Coupling of the dynamics of the velocity and director experimentally measured values of the_ correspondmg_pargm-
fields in LCs to external optical fields renders the relevan€ters[16]. However, the usual analysis of this situation is
dynamical equations highly nonlinear, which makes it postased on the assumption that the LC behaves as a Kerr me-
sible to have solitary waves of the director field with or with- dium and that, consequently, strong dispersion and weak
out involving the fluid motion. Furthermore, the strong cou-nonlinearity, at orde©(q?), with respect to the field ampli-
pling of the director to light makes any director wave moretude g, should be taken into account. As will be discussed
easily detectable by optical methods than it is in isotropicbelow, g measures the ratio of the electric-field energy den-
fluids, where only the flow field is observable. sity and the elastic-energy density of the nematic and it is,
Some nonlinear partial differential equatio®DES ap-  therefore, a measure of the coupling between the optical field
pearing in the liquid-crystal theory give rise to exact solitonand the fluid. However, although truncating the analysis at
solutions. These are the Korteweg-de VrislV), nonlinear  the O(g®) order may be a very reasonable assumption for
Schralinger (NLS), and the sine-Gordon equatiof. The  solid-state optical media, the soft nature of the LCs suggests
KdV equation describes a medium with weak nonlinearitythat the neglect of higher-order contributions may not neces-
and weak dispersion, whereas the NLS equation describesarily be a good assumption in this case.
situations where weak nonlinearity and strong dispersion Recently, the formation of spatial solitary waves in nem-
prevail, such as the propagation of signals in liquid-crystalatic LCs at the light-power level of a few milliwatts has
optical fibers. attracted a good deal of interd&f7—20. It has been experi-
mentally shown that the nonlinearity of these media can sup-
port solitons in LC line waveguidg®1,22.
*Corresponding author. Email address: zepeda@fisica.unam.mx The main purpose of the present work is to develop an
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An optical beam is launched into the guide and propagates
through the LC. If the field is strong enough to exceed the
orientation-transition threshold, the initial configuration is
changed by reorienting the director field. We assume that the
induced reorientation occurs only in the Z) plane, so that

ﬁ(r,z)=érsin 6+ézcose, 3

wheree, ande, are the unit vectors of the cylindric coordi-

nates.

. . . Although the incident beam is neither planar nor Gauss-
FIG. 1. Schematic representation of a laser beam propagating, he normal modes within the cavity are cylindrical plane

through. the nematic liquid-crystal cyllndrlcal guide. Transverse-Waves propagating along tlzeaxis. In previous works it has

magnetic(TM) modes are shown explicitly. been shown that only the TM modes, with honzero compo-

. . nentse,(r,z,t), E,(r,zt), andH y4(r,z,t) of the electromag-
approach that aIIo_vvs to generate PDES which desprlbe thl(’?etic; field, couple to the reorientation dynamics of the direc-
propagation of optical pulses in nematic LC waveguides be-

. > : tor field [14,12,24. As it can be shown thag,(r,z,t) and
yonq the weakly no.nllmear limit correspond|n4g to the KerrE (r,z,t) may be expressed in termsidf,(r,z,t), below we
medium. More specifically, we show that @(q*), and as- orZ1Iy,d,escribe the dynamics of the com,pc’méh(},(r 2)
suming that attenuation effects are small, the evolution of th(—:i_he relevant dynamical equations, which take inté) ’ac.count
amplitude of propagating transverse-magnétibl) modes retardation effects, are given by Ecﬁ’S) and(9) of Ref.[24]
is governed by an equation with a derivative nonlinearity, ' ' '

which is the complex modified KAVCM KdV) equation,  "amel:
U,— & Uge—  |u|2u,=0, 1) ﬁ+li(x‘9_‘9)_s'”‘9cos‘9
ar% xar\ ox X2
see Eq(31).
The paper is organized as follows. In Sec. Il we introduce cos 29 G t JH,
a model of a cylindrical nematic cell and set up basic - » (6’;‘[ dt’TJré’;‘f dt,a_g)

coupled equations for the orientational and optical fields. We
formulate an iterative procedure to expand these equations in

terms of the coupling parametgr which leads to a specific +sm 2‘9( —xE* ftdt’%h‘!; ftdt/aX_Hd’) =0,
hierarchy of PDEs. Then, in Sec. lll we derive dynamical X2 4 IX
equations governing the evolution of the amplitude of propa- @)
gating TM modes up to the ord@(qg*). Rescaling the equa-
tions, we show that the standard NLS equation is obtained at 7H 7H
orderO(q®), and that the equation correspondingQ¢q®) <_¢+ T -t
is indeed the CM KdV equatiofil). In Sec. IV, soliton so- a2 (92H¢ ) PG x>
lutions to this equation are studied. In particular, it is shown ? ?: _f dt e (F 1)
. . . . 1 1
that the equation has ordinary bright- and dark-soliton solu-
tions, and a continuous family @fmbedded solitongESs, 9? . € [, 0Hy
i.e., solitary waves which exist inside the system’s continu- + ot dt c e (t") —3”129(9—5
ous spectrum of linear wav¢23]. In Sec. V we discuss why L
the ESs can exist in Eq1) without emitting any radiation, ) 1 )
even though their wave numbers belong to the linear spec- +singcosf s - xHg |(t—t")
trum. In Sec. VI we study the stability of the ESs. We con- B
clude the paper in Sec. VII, which summarizes the results P 4t -2 (1) —sing Bﬂ
and compares them to previously published ones. We also ItIx qe”( )| —siné cos al
point out advantages and limitations of our approach, and 1 )
discuss possible ways to generalize it. +cosz0; 5XH¢, (t=t") ®)

Il. THE MODEL AND BASIC EQUATIONS ith
Wi
We consider a cylindrical waveguide with an isotropic

core of radius, dielectric constan¢;, and a quiescent nem- N 1 (., €8 A e o =
atic LC cladding of radius. The initial orientational state is (1D =" | dt" | dt"= fH(t —t)nn- VXH(r, ).
depicted in Fig. 1, where the director field obeys the follow- (6)
ing axial strong-anchoring boundary conditions,

. A A In these equations, we have used dimensionless variables,

n(r=a,z)=n(r=b,z)=e,. (2 =zla, x=rla, H,=H,l(ceEy), Ei=EYIE,, i=r,z,
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whereE, is the amplitude of the incident field. The speed of
light in vacuum isc=1/\uq€y , Whereug and eq are, re-

spectively, the magnetic permeability and electric permittiv-
ity of free space. The dielectric anisotropy of the nematic,

PHYSICAL REVIEW E68, 036606 (2003

a 2
qu(x,wo):Ji( N ("’%) —Bzaz) N 5ax

Xexp —ipal— yax) 9)

€.=¢€|— €, , is defined in terms of the dielectric constant for
directions parallel ¢) and perpendiculare( ) to the direc-  with y= \/GH[,leéL—(wO/C)Z]. Here J;(x) is the Bessel
tor. As mentioned in Sec. §°= eoEéaZ/K is the dimension- function of order 1, ang is the propagation constant, which
less ratio between the electric-field energy density and thenly takes allowed values calculated in R#4]. The terms
elastic-energy density of the nematic, whégés its elastic ~ proportional toU™, n=2,3, ... in Eq.(8) are contributions
constant in the equal constants approximation. Théss a  to the TM modes from the higher-order optical harmonics
measure of the coupling between the optical field and théhat are generated by the nonlinearities in B§g.and (4).
LC. We stress that, in writing Eqg4) and (5), the large Note, however, that the relation between the parameters
difference between the time scales of slow reorientation dyand\ is not unique. For instance, when the wave packet is
namics and rapid variations of the electromagnetic field wa¥ery narrow, this relation ia =q and up toO(q®), the ex-
explicitly taken into account, and as a consequence the timpansion leads to the standard NLS equation A¢E,T)
derivatives off were ignored. (which corresponds to the Kerr mediufi25,12,24. There-
When the coupling between the TM moHg(r,z,t) and fore the model may be generalized in various ways. Since
the reorientation fieldg(r,zt) is negligible @=0), the and\ are small parameters, we assume thatq® with
propagating modes are represented by quasiplanar wavesome positivea. Then a=1/2 represents a wider and
However, if the nonlinearities in Eq4) are taken into ac- =2 a narrower wave packet. Note that the presence of higher
count by considering finiteg, they cause space and time powers ofg implies that these higher-order contributions are
variations of the fieldH 4(r,z,t), due to generation of smaller than the dominant term in E@), which describes a
higher-order harmonics which feed back to the originalsmall-amplitude narrow wave packet.
modes. Inserting expressior(7) into Eq. (5) and expanding in
We assume that the interaction between the optical fielgpowers ofq, it is straightforward to rewrite Eq5) as
and the reorientation in the nematic is stronger than in the
weakly nonlinear limit(Kerr medium which corresponds to
g=1[12]. Furthermore, in all the analysis we neglect all the R ~ ~
backflow effects associated with the reorientation or causedhere the lineat. operator and nonlinear onds,andG, are
by external flowg13]. Thus, we solve the coupled equations defined, respectively, as
(4) and(5) by assuming the following coupled expansions of

L(B,0,X)H 4+ q*F(H4)+q*G(H ) =0, (10)

6 andH , in powers ofq: . 1 2
¢ NP g L= 5 —EJ_‘FXZEH €, ﬂa —(Ba)2
X"€, €| c
0= 0+ q?A(E, T)U(x,0)|26(x) )
J J
+YACE, U (X, @)[* 0@ (x) + - - -, ) +Xe, a—X+X2Q &—] : (11
X
. d . AU 4(x,0)|? du
Hy(X,2,0)=qUy X,0o+iA—=|A(E, T)+q2U@+q3u® _‘a #EON (1) (D (x)
o(X, ¢, 1) =0 4;( ot IAZ A, T)+0 q F Yo e i a| Uy 000 +3x60 00—
+q*U®+q°u®+ccHt -, (8) de(x)
+U¢XT A, (12
where c.c. stands for the complex conjugate.
The rationale behind this assumption is the following. As _ ea|A(§)U¢(x,w)|4A(g)
indicated in Eq(4), the lowest-order coupling betwe@rand G=- 2 [(XZ,BZ— DM (x)1?
GLE”

H, occurs at orden?, and it is therefore reasonable to ex-
pect that higher-order terms will also be evermirThe fields

6™ with n=0, 1, 2, ... arecontributions tod at ordern ,
which satisfy the same hard-anchoring homeotropic bound-

de@(x)
dx

doMx)

—ixBO@(x)+2x6M)(x) ix

|

ary conditions as were given above by H@), 6(x=1)

=@9(x=b/a)=0. As usual, the amplitud&(Z,T) in Egs. XU 4(x, )+ 1 X[ 01(x) 1>~ 6ix2B6)(x)
(7) and(8), which represents an envelope of a narrow wave

packet of widthh = (w — w)/ wg, Whose central frequency is i doW(x)] dU4(x, )

wo, is assumed to be a slowly varying function of the vari- +2x260M(x) ax ax

ablesE=\{ andT=\t. Here\ is a small parameter which
measures the dispersion of the wave packet. In Efjsand
(8), Uy(x,wq) is the well-known linear solution foH
which is given explicitly by[26]

U,(X,w)

2
+x7 0(1)(x)]2d;+—6ix2,80(2)(x) . (13
X

2
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Zero-order solutions for the orientation, with® =0, and 2

woa
first-order ones, which gives rise ®)(x), were found in Bee” P72 \/ec % - p%a’
Ref. [24] by inserting expressiond) and (8) into Egs.(4), 62 (x)= o~ 5 IR
(10) and solving the resulting equations. In this wa$)(x) 24x“ab(a+b)“(b—a) 7y e €]

turned out to be X {e@H 0 A x4+ Agx®+ Ax2+ Ax+ Ag]

+e (PFAY(B x+Bg) + P (Cyx*+ Cox®

Vel 22| -] et e Co a7)
|| -

(%= b?)er-¥ While this compact form fora(z)(x) is sufficient for our
discussion below, expressions for the coefficiefts A4,
Ay, Az, A4, By, B, Cy, Cq, Cy, Cs, andC, that appear
+(b?—x%a?) +e”@ Pa2(1—x?)}. (14 in Eq. (17) are given in the Appendix.
To conclude this section, it is relevant to stress that the
above derivation ignored dissipative loss in the LC medium.
To study the dynamics beyond the Kerr approximation,In fact, the physical condition for the applicability of this
we need to calculate the fourth-order terms in &, that is, ~assumption is that the propagation distance to be passed by
6 (x). To this end, we insert Eq$9) and (7) into Eq. (4) excitations(solitong is essentially smaller than a character-

and expand the result in powers @lp to the fourth order. istic dissipative-loss length. This condition can be readily
This leads to met in situations of physical relevance.

Baea‘Ji

oV (x) =

TE| EHX(aZ— b2)

IIl. THE ENVELOPE DYNAMICS

2
(4)(2 € € ©od — B%a? _q] ) We now aim to derive an equation for the envelope
c (1) g=(x) A(E,T) by dint of the same procedure that was used in Ref.
€xva > 0 (x) + : . .

5 o oo wod [12] for the weakly nonlinear case. To this end, we substitute
2mX°€ €| BTa°—€; e Eq. (8) into Eq.(10), and identify the Fourier variables
do@)(x d26®@)(x ; ; « 9 a9 a o« f

N dx( ) x 2( !0, (15 iBa=iBoa+q = +0* =+ Q> =+ q* o=,
dx =51 =2 £3 =}
(18)
After substitutingd™)(x) from Eq. (14), this equation takes —iw=—iwo+ qai, (19)
the form al
where the variable¥ ,,n=1,2,3,4, are related to the spatial
woa|? scales associated with upper harmonics contributions, that is,
2 7| —pg232|— Z=q"*E, . This substitution leads to an equation
BEiyaz [4X € € c ) B a GL] q n q
2.2 3,3/,2_ 12 a\? - d d d
2 GLGHX (a°—b?) Bzaz_el wi o=L i,80a+q“ _ +q2a _ +q3a _
C 5:41 (9:42 (9,:3
2 Jd J
wpd _ 4o H @
x 3 \/EC<T> - g%a’ |{(a®~b?)er( ™ Qg et At g
+ 2__ 2,72 + y(@a—b)a2/1 _ 2 A ~
(b"=x*a%) +e7* Hai(1-x%)} X H (.80 + G (H 4%, £,0)+ 0*G(H 4(x, £,1)).
62(x) de@(x)  d?6@(x) 20
+ — —X =0. (16

X dx dx? We now fix a=1, which means selection of the type of
the wave packet to be considered; choosiag?2 or «
=1/2 would imply, respectively, a narrower or wider packet

In spite of its apparent complexity, this linear differential of the TM modes than fow=1. In this case, we collect
equation for6®)(x) can be easily solved by imposing the contributions to the same power gf arriving at the follow-
planar strong-anchoring boundary conditions fyras ex- iIng expressions. Fay',

plained above. The solution can then be written in terms of .

the exponential-integral function, and if the resulting expres- L(i Boa, —iwg,X)U 4(X,wo) A=0, (21
sions are approximated by asymptotic expressions for this

function, we obtain for g,
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LUD={il(iBya, —iwe)—2 —+U L i
0% T g T TOTEGT
J
+L1U¢(9E A, (22
for g°,
c e | Yy au¢
LU P U¢ A— F(Ud)(x wo)A)
Jw
(23
and forg*,
3 2
@Y PUg Uy )
dwd  dw? o’ ¢
U, U, 9?U deM(x)
¢ ¢ ¢ (1) 2
+ PR S
Rel Fa * ax "dwax'? ) ax )|A| ’

where I:n, n=1,2, denotes the derivative oﬂ:(iﬁoa,

PHYSICAL REVIEW E68, 036606 (2003

1
nz 4Eaﬂa3\]l

4
/(ecwoz_IBZCZ)) e yb+2ya

—ae 3"+aer@ b4 perdah) _pe3ra

’7TEHb(a —b?)e, (—e 2P +e7273)

(29
— e wg(bal n, au, dg
=" 25 ), ('QUNE Yode
. 3Be, y 40U 4 dx6M(x) . 2B€, 600
X€E| €] Jw dx X€ €|
U, oU 9°U b/a
2 ¢ [ ¢ 2
*(Uo)) 250 Fa anwa’dL (Ug)7dx,
(30

The coefficientﬁz is related with the nonlinear diffraction
index n, through the expression,=Kn,/e,a%. Similarly,

we define a nonlinear diffraction index at the next order be-
yond the Kerr approximation kﬁgzwoKngeoaz; it is pro-

—iw) With respect to its first or second argument. Clearly,portional to the coefficient in front of the nonlinear term in

the same procedure can be carried outder1/2 or 2.

Eq. (28). Note that Eq(26) simply describes a wave packet

Note that Eq(21) is actually the usual dispersion relation in the linear medium, while E¢27) is the well-known NLS

L(',Boa,

first order ing. To simplify Eqgs.(22)—(24) we take the first
four derivatives of Eq(21) with respect taw. This leads to
a set of linear inhomogeneous equations W8P, the exis-

iwg) U 4(X,w0) =0, which confirms our approxi-
mation, sinceH ,(X,wo) already satisfies this equation to the

equation which gives rise to robust soliton pulses. The equa-
tions corresponding to the ordegd andq® are well known
ones, and they have also been derived and analyzed in Ref.
[24]. In the following section we focus on E¢28), which

was derived at orden®.

tence of solutions to which is secured by the so-called alter-

native Fredholm conditiofi27]. This condition is fulfilled if

I:U¢(x,w0)=0 and ifU 4(X,wo)—0 asx—. In our case,
this reads explicitly

R b/a ~
(LU(“),U¢>=J1 U,LuMdx=0, n=1,2,3,4. (25

By applying relation$25) to Egs.(22)—(24), substituting the
four first derivatives of Eq(21) into them, and collecting
terms in front of the same power gf we obtain the follow-
ing equations forA(Z,T) on each of the spatial scal&s,
2., B,, B3, B4, for the successive orders @

) aA d,B A o o6
O 9. et (26)
A d2/3 ’A
3 E qo? 7 +|,6’n2A|A| =0, (27
aA d3B oA aA
4. _ - _ 2 _—

Here, dimensionless coefficiems andn, are defined as
follows:

IV. DOUBLE EMBEDDED SOLITONS

Equation (28) may be rewritten in a rescaled form by
introducing the dimensionless variablea=A/A,, £
=5,1Zy,, andr=T/T,,, WhereZ,, and T, are space and
time scales, and\; is the initial amplitude of the optical
pulse[28]. In terms of these variables, E®8) becomes

(31)

where we have defined the dimensionless coefficierdsd
v as

1Zosd?
=g h @2
6713, do

y= ﬁnaAé?‘ (33
04

In what follows below, we will consider E¢31) in the form
of Eq. (1), i.e., with £ and 7 replaced byz andt.

Equation(31), or equivalently Eq(1), reduces to the real
modified Korteweg—de VriesM KdV) equation when we
restrictu(z,t) to be real, hence all the real solutions of the M
KdV equation, includingN-soliton ones, are also solutions of
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Eqg. (1). On the other hand, Eq1) also has complex solu-
tions which include, as will be discussed below, two-

parameter families of bright and dark complex solitons. Ac-

tually, the existence of these complex solutions of Eg.

PHYSICAL REVIEW E 68, 036606 (2003

of Eq. (1), Eq. (39) showing that this family only exists if
evy<0, i.e., exactly in the case opposite to that in which
bright solitons are found.

Out of the two families of the above soliton solutions

was pointed out by Ablowitz and Segur as early as 198Xbright and dark of Eq. (1), the bright family is the most

[29]. The precise form of the bright solitons in the particular
case where =67y was presented recently by Karpmenal.
[30].

In the general case the bright-soliton solutions to @gj.
may be found by substituting a straightforward trial function
in this equation,

az\ .
u(z,t)=A secrﬁ—) gi@ztro), (34)

This substitution shows that E¢34) is indeed a solution of
Eq. (1), provided that

6
A2w2=78, (35)
2 1 2
a=3er —g‘yA , (36)
q= EyAZr—sr3. (37)

Condition (35) implies that the bright soliton solutio(84)
only exists forey>0, which implies that, in the opposite

interesting one. In spite of their similarity to ordinary bright
solitons, the bright soliton solutions of E¢31) feature a
special property which distinguishes them from ordinary
solitary waves, namely, they ad®uble-embedded solitons
The concept of ESs was formulated, in a general form, in
Ref. [22]. It refers to solitary waves which do not emit ra-
diation, in spite of the fact that the soliton’s wave number
(spatial frequencyis embeddedn the system'’s linear spec-
trum. Still earlier, solitons of this type were found in particu-
lar modelg[17], for instance, in a generalized NLS equation
involving a quintic nonlinear terrhi31]. Recently, more sys-
tems supporting ESs have been foy8@-40. To the best

of our knowledge, the existence of ESs has not been reported
before in models of LC media.

So far, the embedded solitons were classified in two
groups, namely, those which obey NLS-like equatidos
systems there@fand those which are governed by KdV-like
equations. In the former case, an ES has its wave number
embeddedn the range of wave numbers permitted to linear
waves(as was already mentioned abovin the latter case,
the velocity of an ES is found in the range of phase velocities
of linear waves. There are, accordingly, two different ways to
decide whether a solitary-wave solution to a nonlinear PDE
system is embedded, viz., theave numberandvelocity cri-

case, the nonlinearity and linear dispersion cannot be in baferia. ) ) _ )
ance. Moreover, since we have five free parameters in Eq. !n Ref.[30] it was pointed out that Eq1) is a particular

(34) and only three condition35)—(37), these expressions case of a more general NLS-like equation possessing ESs.
define a two-parameter family of bright soliton solutions of FOr this reason, and also in view of the significance of Eg.
Eq. (1), so that the following pairs of the parameters can pd1) for physical applications, it is interesting to determine if

chosen arbitrarily: A,r), (w,r), (A,q), or (w,q). The fam-

the bright-soliton solutions of Ed1) may be ESs. It should

ily includes, as particular cases, the real one-soliton solution8€ noted that Eq(1) may be regarded as both a KdV-like

of the M KdV equation, which are obtained wher 0.
In a similar way, dark solitons of Eql) can be found by
substituting the trial function

- adz) ei(qdz+ rdt)_ (38)

t
u(z,t)=Ay tanl‘(

This substitution shows that thasatzsolves Eq.(1) if the
following conditions are satisfied:

6e
Adwi=—-—, (39)
Y
2 l 2
ad:38rd_§’yAd, (40)
Qg=YAIrg—ery, (42)

which are similar to condition&35)—(37) for the bright soli-
tons. As in the bright-solution case, conditiof39)—(41)
permit us to choose freely any of the following pairs of pa-
rameters: A,r), (w,r), (A,q), or (w,q). Thus, Eqs(38)—
(41) define a two-parameter family of dark-soliton solutions

03660

equation, due to its similarity to the M KdV onend an
NLS-like equation, because, in the context of wave propaga-
tion in LCs, Eq.(2) in its complex form plays a role similar

to that of the NLS equation, i.e., the one governing evolution
of a slowly varying envelope of a rapidly oscillating wave.
Therefore, it may be possible to appbpth criteria, wave
number and velocity ones, to decide if the soliton solutions
of Eq. (1) are ESs.

First, we apply the wave number criterion. To this end, we
must determine if the wave number of the soluti@d) is
contained within the range of the wave numbers allowed to
linear waves. To identify the intrinsic wave number of the
solution, we must transform it into the reference frame mov-
ing along the time axis with the reciprocal veloci#tysee Eq.
(34). The transformation adds a Doppler term to the soliton’s
internal spatial frequencfwvave number, making it equal to
g+ar. On the other hand, plane-wave solutions to the lin-
earized version of Eq1) in the same reference frame can be
sought for as

u(z,t)=expi[kz— w(t—az)], (42

which leads to the following dispersion relation:
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k(w)=ecw’—aw. (43 families, although examples of continuous families of ESs
are known too, for instance, in a fifth-order KdV equation
Since the range in which functid@3) takes its values covers [35]. It is also necessary to explain why Ed) has a two-
all the real numbers, including the soliton’s wave numfer parameter family of the ES solutions.
+ar, all the soliton solutions to Ed1), given by Eqs(34)— As we show below, the radiationless character of the ESs
(37), are classified as ESs as per the wave number criterion Eqg. (1) is the consequence of a special balance between
Now, we address the question whether these solitons atée linear and the nonlinear terms of this equation. To under-
also embedded according to the velocity criterion. As thestand how these terms interact, it will be helpful to separate
evolution variable in Eq(l) is the distance, rather than the their effects by considering the following linear driven equa-
time t, it is the reciprocal velocity which determines if the tion:
moving solutions are embedded according to the velocity
criterion. Thus, we should find out if the reciprocal velocity au  du ,9Ug
of_ the soliton(34), given b_y the parameted, is cc_mtained_ E_SF_ Y|l W:O- (47)
within the range of the reciprocal velocities permitted to lin-
ear waves. The dispersion relati¢fd) implies that the re-
ciprocal phase velocities of the linear wavasthe reference
frame moving along with the solitgrare given by

where the source is built of a solutio(z,t) to Eq.(1). Itis

clear that the same functian, is also a solution to Eq45).
We now define the double Fourier transformugf,t),

5=—a-|-8w2 (44) ~ 1 (= (= i

® ' u(k, )= ZJ J u(z,t)e =" Ydzdt (49

while the reciprocal velocity of the soliton proper is, obvi-

ously, zero in the same reference frame. Obviously, expre
sion (44) takes the value zero ie is positive, hence the

&and Fourier transform Ed47), to obtain

F(k, o)

soliton solutions given by Eq$34)—(37) are ESs according Tk, 0) =] (49)
to the velocity criterion provided thats >0. As these soli- ' —k+eswd’
tons are also embedded according to the wave number crite-
rion, we call themdouble-embeddedolitons. On the other where
hand, wherae <0, the soliton solutions of Eq1) are only
embedded with respect to the wave number criterion, but not ,9Ug
as per the velocity one, therefore in this case we apply the Fo(z,t) = y|ugl ot (50)
term single-embeddesdolitons.
is the source in Eq47).
V. RADIATION INHIBITION AND CONTINUITY To understand the mechanism of the cancellation of the
OF THE EMBEDDED SOLITONS emission of radiation, let us consider that
As in any other system with ESs, the fact that the solitons t—az\ .
do not emit radiation despite being embedded in the linear Uo(Z,t)=ASGCV6 )e'(qzm)- (5

spectrum should be explained. Since the wave nungper
+ar of the soliton solution(34) is contained in the linear |, this case, the calculation of the Fourier transformFgf
spectrum defined by the dispersion relatid8), a resonance 44 substitution in Eq50) yield a result

of the soliton is expected with the linear waves whose fre-

guencies satisfy the condition +7T
mwAsech-w(r+ ) 2 202 3
qtar=csw’—aw. (45) Tj(k w)= 2 _A ¥ _WA "
_ _ _ ’ —(r+w)a—q+ew® 3 3
Moreover, whenaes>0 the soliton’s reciprocal velocita
coincides with the reciprocal phase velocitiesof) of two Alyw WA yr?e  WPAZyw?
linear waves whose frequencies satisfy the condition + 6 2 + 6
a=cw?, (46) X S{[(r+w)a+q]—k}. (52)

consequently one could also expect the soliton to resonatbt first sight, this expression seems to imply that a resonance
with these waves. Different explanations for the absence ofvith the radiation waves should occur for frequencies at
resonant radiation in other systems which support ESs wenehich the denominator, which is a third-order polynomial in
proposed 34,41]. However, an explanation for the radiation- , vanishes, which is actually tantamount to Ep). More-

less character of the ESs in Ed) has not been presented. over, if q=r=0, the same argument shows that a resonance

Another unexpected property of the same ESs in(Egs  at the frequencies defined by E@6) should be expected.

the fact that they exist in a continuous family. In most casesPbserve, however, that the numerator on the right-hand side
ESs are isolated solutions; usually they do not appear inf Eq.(52) also contains a third-order polynomialan Con-
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VI. STABILITY OF THE EMBEDDED SOLITONS
0.88 -
A ] In this section we will study the stability of the bright-
0.84 | soliton solutions of Eq(1). As was explained in Sec. IV,
/ ] these solitons may be eithsingle embeddedr double em-
080 i bedded depending on the sign of the parameter combination
o I ] ae. In the following we will separately consider the cases of
< 0.76 i positive and negativae.
\ We begin by considering a single-embedded soliton of Eq.
o072 | i (1), settinge =1 andy=~6 [these values were chosen as they
I ] correspond to those at which the relateifota equation
0.68 T T T S [42], which is connected to Eq1) by the Galilean transform
0 10 20 30 40 50 [30], is an exactly integrable onet3]]. We start with the
z following values of the soliton parameters:

FIG. 2. Evolution of the amplitude of two perturbed single-
embedded solitons of Eq1l) (with e=1 and y=6). The upper A= \/E%O 790 (54)
curve corresponds to the initial conditio®9) with A,=0.815 s 8 '
>Ag, Wo=Wg, andro=rg, whereAg, wg, andrg are the values
(54)—(56). The lower curve corresponds to a similar initial condi- 8

Wy \/;

tion with Ag=0.765<A¢ [A(z) andz are dimensionless quantities (55)
sequently, if the two polynomials happen to coincide, they

will cancel each other, which also implies the cancellation of Is= 1724, (56)
the resonant generation of the radiation modes. Equating the

coefficients in front of powers ab in the two polynomials in a;=—1/2, (57
Eqg. (52), we obtain three equations which, after some ma-

nipulations, take thereciseforms of Eqs.(35)—(37). Thus, 11

these three equations are the necessary and sufficient condi- Js=——. (59
tions for the mutual cancellation of the two polynomials in 624

Eq. (52). This explains why the forcing termy(z,t) of the _ N
form (51) does not generate any radiation, provided that thelhese values satisfy conditio(35)—(37), and therefore they
parameterd\, a, w, g, andr satisfy Eqs(35)—(37). Further- ~ characterize an exact bright soliton of the fo(&#). Since
more, observe that the polynomial that appears in the nu@se <0, this soliton is a single-embedded ofne., it is em-
merator of the expressiof52) contains the nonlinear coeffi- Pedded solely according to the wave number criterion
cient y, while the polynomial in the denominator contains To test stability of this soliton, we consider an initial con-
the dispersion coefficient. Consequently, the cancellation dition of the form
between these two polynomials is a result of the balance
between the nonlinearity and dispersion in Eh. e t .

In the case of the full equatiofl), the same cancellation u(z=01)=A, sec W Eexpir ot), (59)
argument explains why an initial condition of the form

wherewy=wg andry=rg, butA, is slightly different from
As. If we give Ay a value 0.815, which is larger thdy, the
airt (53) numerical solution of Eq(l) shows that the pulse moves to
the right along the temporal axis with a reciprocal velocity
equal to—0.58 , which is slightly lower thamg, and the
pulse’s amplitude evolves as shown in the upper curve of
does not radiate at the frequencies defined by &f.and  Fig. 2. The observation that the reciprocal velocity of the
(47) if Aandw satisfy Eg.(36). On the other hand, ik and  perturbed pulse is lower tham is consistent with Eq(36),
w do not satisfy this condition, we expect the resonances twhich indicates thaa should decrease A is increased. Fig-
occur. In the following section, we will verify numerically ure 2 (the upper curveshows that the pulse’s amplitude
that this is indeed the case. stabilizes and approaches an equilibrium value closé to
To close this section, it is relevant to stress that the can=0.84. The temporal profile of the pulse at50 is dis-
cellation of the two polynomials in Eq52) imposes only played in Fig. 3. It shows a small-amplitude radiation wave
three conditions, while solutio34) involves five param- emitted by the trailing edge of the pulse. The frequency com-
eters. Therefore, the cancellation conditions do not uniquelyosition of this tiny radiation wave can be determined by
determine the soliton parameters, which explains why thealculating the Fourier transforigiT) of the radiation con-
soliton solution(34)—(37) involves two arbitrary parameters, tained in the interval 48t<168. The inset in Fig. 3 shows
thus defining a two-parameteontinuousfamily of the ESs.  the power spectrurfi.e., the square of the FT amplitudef

t
u(z=0t)=A secré—
w
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1.0 Anderson[44], which is one of the approximately analytical
methods used successfully in nonlinear opfié§—51], see
0.8} 7 also a recent revie\s2].
= In order to apply the variational technique, we start with
— 06} E””‘ T the ansatzof the ordinary form,
o S o002
O 04} . t—V(2) . )
N 0000 : - : u(z,t)=A(z)sec expli[Q(z) +R(z) t+P(z) t7}.
=1 FREQUENCY W(z)
= 02} J . (62
0.0 L Introducing this trial function in the Lagrangian density of
- - . Eq. (1),
-100 0 100 200
t L=i(uu* —ufu)+ie(u uf,—u*uy)

FIG. 3. Temporal profile(at z=50) of the perturbed single- iy
embedded soliton of Eq1) whose amplitudéas a function ok) is +?[u2u* uf —(u*)%u uy], (63
shown in the upper curve of Fig. 2. The spectrum of the radiation is

shown in the insety andt are dimensionless quantities and integrating over time, we calculate the averaggtc-

. I . . tive) Lagrangian
this radiation, which contains two peaks located at the fre-

guenciesy;=—0.10 andv,=0.12. These peaks are close to o
the resonant frequencies € +0.07) predicted by the reso- ﬁ—f _Ldt. (64)
nance condition

The following Euler-Lagrange equations can be easily de-
Os™+ asrszst_asw (60) rived from L:

[cf. Eq. (45)] and thepartial resonancecondition[40]

24:AR o 16
—8AWQ — —BsARW+ 5 yARW

—(Qs+ =sw’—aw. 61
(qS aSrS) Ew asw ( ) :fl(P,P’,R,), (65)
These radiation peaks imply that the perturbed pulse emits 5
radiation according to the way the soliton’s wave number is —4A2Q' + —4eA2R3+ f'yA“R
embedded in the spectrum of linear waves. 3

If we now consider an initial condition of forr69), with

Wo=Ws, Mo=rs, andAy,=0.765<A, the behavior of the =f(P,P", A"V W', R"), (66)
perturbed pulse is similar. In this case the amplitude evolves e
as shown in the lower curve of Fig. 2 where we can see that fa(P,P",A" V!, W',R") =0, (67)

the pulse’s amplitude approaches an equilibrium value close

to A=0.74. The reciprocal velocity of the perturbed pulse is A?W=AZ(0)W(0), (68)
—0.42, which is slightly higher thaag. This change is con- 2

sistent with Eq.(36), which indicates thaa should increase _ 12eA —128A2R2W+iyA4W

if Ais diminished. W 3

The two curves shown in Fig. 2 demonstrate that the
single-embedded soliton solutions of Ed) are stable. This
is an interesting result, since usually ESs display a weak 24e A2V
(nonlineay one-sided instabilityf 34]. In fact, the complete _
stability of the ESs in Eq(1) may be expected, due to the w
fact that in this case we are dealing with a continuous two- _ NERVIRTIE=Y
parameter family of the ESs, while in most other systems fs(P.PLATVIWLRY, (70

ESs are isolated solutions, which explains their nonlineafyhere the primes stand for tlzederivatives, and the expres-
instability. _ _ sions f,(P,P’,A’,V'\W',R’) are nonlinear functions of

_ Figure 2 also shows that if the amplitude of one of thetheir arguments. Their explicit forms are not given, as they
single-embedded solitons of E@.) is slightly increased, the il not be needed in what follows.

perturbed soliton stabilizes itself at an even higher ampli- \ve now resort to search for fixed points of E¢65)—

tude. On the contrary, if the soliton’s amplitude is slightly (70) which are stationary solutions of the form
decreased, the perturbed soliton stabilizes at a still lower

=f4(P,P A"V W' R"), (69)

8
— 24 AR’V W+ 3 YA VW

amplitude. This behavior can be better understood if we ana- A=W =R'=P'=P=0, (71
lyze the evolution of the perturbed solitons of Hd) by
means of the averaged variational technique introduced by Q'=const=q, (72
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25

We take, as the initial perturbed soliton, the one corre-
sponding to point 1 in Fig. 4. It has the same width as the
oal unperturbed soliton at point E, but a larger amplitude,

vs A;=0.815>0.790=A¢. (78
According to Eq.(77), the perturbed pulse must evolve slid-
ing along the thin curve passing through point 1. The thin
curve intersects the equilibrium bold curve at point 2, which
is therefore a fixed point. Within the framework of the varia-
tional approximation proper, the trajectory may perform
some oscillations in a vicinity of this fixed point; however, if
effective loss due to the emission of small amounts of radia-
tion by the perturbed solitofwhich was observed above in
‘ ‘ ‘ , ‘ ‘ ‘ ‘ ‘ direct simulationgis taken into regard, the trajectory will be
0.71 0.744 0.778 0.812 0.846 088 attracted to the fixed point, and will eventually end up being
A trapped at this point, thus implying the stabilization of the
_ _ soliton very close to point 2, which has the value of the
FIG. 4. The bold curve passing through the poikt amplitude 0.840.
:EAE'WE):(,O'?QO' 2.192) is the plot of Eq75) with ¢=1 and Similarly, starting at the initial condition corresponding to
1_06':?8‘312'2 Ilnedpjvsgngvt\?rou%? pg!ntl_l plots H8) hW'th . point 3, the soliton will slide along the thin line until it gets
(0)=0 e andW(0)=We . The thin line passing through o\ ot the stable fixed point 4. As the amplitude corre-
point 3 is also a plot of Eq(77), with A(0)=0.765<Ag and . . . s S
W(0)= W . sponding to point 4 is 0.74Q, the .or|g|n.of the s'gab|I|zat|on
process observed in direct simulations displayed in the lower
curve of Fig. 2 is now clear.

So far we considered relaxation of perturbed single-
embedded soliton. Now we proceed to the stability of
double-embedded ones. To this end, we sety=1, and
choose the soliton parameters

21

V' =consta. (73

When we insert these conditions into E¢85)—(70), we find
thatf,,=0 (for n=1, ... ,5) andconsequently, the following
relations are obtained

18 5
A2W2:_8 (74) Ad= 5%0790, (79)
y 1
. JE
a=3eR?— 5 yA?, (75) Wa="\/ 5" (80)
1 rq=1/4, (81)
q= EyAZR—sR?’, (76)
aq=1/12~0.08, (82
A2W= const= A%2(0)W(0). (77
qq=1/16. (83)

Equation(74) is the variational counterpart of E¢35), and

the expressions foa and g coincide exactly with those in These values satisfy conditio35)—(37), therefore they de-
Egs. (36) and (37). On the other hand, Eq77) applies not fine an exact bright soliton of the forg34). Sinceaye>0,
only to stationary solutions, but to general dynamical equathis soliton is a double-embedded one. We perturb it by tak-
tions as well, with variabléA(z) andW(z), as it expresses ing an initial condition of the form(59) with wo=wy, rg

the variational version of the exact conservation lavhich  =ry, andA;=0.815>A,.
is simply the energy conservation in the case of nonlinear The numerical solution of Eq.l) corresponding to this
optics[52]). initial condition shows that the perturbed pulse moves along

Equation(77) is plotted by thin curves, corresponding to the temporal axis with a reciprocal velocity equal to 0.07,
two different initial conditions, in Fig. 4. This figure also which is slightly lower tharay [this lower velocity is con-
shows plots(the bold curve of Eq. (74), corresponding to sistent with Eq(36)]. Simultaneously, the pulse’s amplitude
e=1 andy=6. This diagram helps to understand why the oscillates as shown in the upper curve of Fig. 5. This figure
soliton [characterized by the paramete(54)—(58) and again shows a trend of the perturbed pulse to stabilize. How-
marked by point E on the bold curve in Fig}, 4 perturbed ever, in this casdwith the double-embedded solitpithe
by increasing or decreasing its initial amplitude, stabilizesstabilization process is slower, and it is necessary to pass a
itself, as was observed in Fig. 2. greater distancélong thez axis) to observe the damping of
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0.92 Therefore, the latter peak is due to the fact that the soliton’s
wave numbermy+aqry is contained in the range of wave
numbers permitted to linear waves.

0.84 /\/\/—\ As the larger radiation peafthe one atv=—0.046) ex-

ists due to the fact that the soliton is embedded according to

0.80 | 1 the velocity criterion, one could assume that in this dase,

z when a double-embedded soliton is pertupbibe radiation
0.76 W emitted by the pulse is mainly due to the velocity embedding
072l | of the soliton. However, such a conclusion would be wrong.

The left radiation peak in Fig. 6 actually has a larger ampli-
0.68 - tude because the FT of the complete solution is slightly
0 50 100 150 200 shifted to the left(as a consequence of being positive,
2 and it is this shift which enhances the left radiation peak.
To verify the latter point, one can consider a slightly dif-
FIG. 5. Evolution of the amplitude of two perturbed double- ferent initial condition, characterized by the parameigs
embedded solitons of Eql) (with e=y=1). The upper curve =0.815, wy=wy=/48/5, andry=—ry=—1/4. As in this
corresponds to the initial conditiofp9) with A;=0.815>A4, Wy  caser is negative, the FT of the complete solution will be
=Wq, andro=rq [whereAq, wq, andr4 are given by Eqs(79-  shifted to the right, and this shift will enhance the right ra-
(81)], and the lower curve corresponds to a similar initial condition gjation peak. In the inset of Fig. 6 we show the spectrum of
with Ag=0.765<Aq [A(2) andz are dimensionless quantities the radiation emitted in this case by the perturbed double-
embedded solitofor z=100). As expected, in this case the
the amplitude oscillations. The upper curve of Fig. 5 showsadiation peak due to the wave number embedding of the
that the pulse’s amplitude eventually approaches an equilibsoliton (i.e., the right peakis much higher than the one
rium value close to 0.84. existing due to the velocity embeddirithe very small peak
The trailing edge of the perturbed double-embedded solion the lefy. We thus conclude that both embeddings, wave
ton emits a tiny radiation wave train whose frequency commumber and velocity, are important to explain the emission of
ponents can be determined by calculating the FT of the raradiation by perturbed double-embedded solitons.

diation contained in the interval 45=<109 (for z=200). If we now consider an initial pulse of forrf69) with w

The spectrum obtained in this way is shown in Fig. 6. In this=w, , ro=r,, andA,=0.765<A4, the numerical solution

figure two peaks are seen. The bigger one corresponds to tig Eq. (1) shows that the pulse’s amplitude again performs a

frequencyr=—0.046 (0= —0.289), which corresponds to damped oscillatory behavior, as shown in the lower curve of

the negative solution of Eq46), and therefore it is a conse- Fig. 5. In this case, the pulse’s amplitude approaches an equi-

guence of the resonance of the perturbed soliton with a lineamrium value close to 0.74.

wave whose phase velocity is equal to the soliton’s velocity.

On the other hand, the smaller radiation peak is located at

r=0.078 (@=0.490), which is very near to the only real

0.88 i

VII. CONCLUDING REMARKS

root (w=1/2) of the resonance condition In this work, using the multiple scales method, we have
derived a model for the propagation of a wave packet of TM
Qqtagrq=cw’—ayo. (84)  modes along a cylindrical liquid-crystal waveguide beyond

the usual weakly nonlinear limit of the Kerr medium. In this
case, the amplitude of the wave packet obeys a nonlinear
equation, Eq(1) or (31), which exhibits a derivative nonlin-
0.03 - 000 T earity. This complex modified KdV equation gives rise to the
two-parameter families of bright, Eq&34)—(37), and dark,
Egs.(38)-(41), solitons. The bright-soliton solutions of Eq.
ot (1) are ESqor sometimes double-embedded onés., they
o 1 do not emit any radiation, in spite of the fact that their wave
001+ ey numbers(and sometimes their velocities fotall into the
linear spectrum of the system. We have shown that the physi-
J L ] cal nature of the existence of the ESs inside the continuous
0.00 spectrum is the balance between the dispersion and nonlin-
Ty T T T T earity in Eq.(1). Moreover, it was concluded that these ESs
are completely stable solutions, while, in most previously
FREQUENCY considered models, they are weakly unstable. It was ob-
FIG. 6. Spectrunfobtained az=200) of the radiation emitted Served that perturbed single-embedded solitons relax to a
by the perturbed double-embedded soliton whose amplitadea new equilibrium state faster than double-embedded ones.
function of z) is shown in the upper curve of Fig. 5. The inset ~ The coupled expansions far and H, in powers ofq,
shows the spectrurfobtained atz=100) of the radiation emitted which were introduced in Sec. Il, can be extended to higher
when the sign of 4 is reversedi.e., whenr 4= — 1/4). orders. This leads to nonlinear equations with the quintic i.e.,

0.02

SPECTRUM

SPECTRUM
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0(g®), nonlinearity. Investigation of the corresponding this generalization were considered, at the level of the NLS
model is currently in progress. Also, as discussed in Sec. Illapproximation, i.e., at orded(q®), in Ref.[13].
up to the orde©(q*) considered here, the same procedure to
construct narrower¢=2) or wider (a=1/2) wave packets
of TM modes can also be carried out. ACKNOWLEDGMENTS
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APPENDIX
Expressions for the coefficienfsy, Ay, A,, Az, A4, By, B1, Cp, Cq, C,, C3, andC,, which appear in Eq17):

Ao(a,b;y,e )=4a%b(a+b)ye, , (A1)

Ai(a,b;B,7,,€,,€, ko) =a%{—24ab(a+b)[ B2e,— €, (ea+ €, ) uki]+ y[ 16a(3a—b)b?B2e,— 2(a%+ab+8b?)¢,
+16ab?(—3a+b)e, (e,+ €, ) uki]—ab(a+b)e, y?}, (A2)

Ax(a,b;B,7,1,€a,€, Ko)=—12ab(a+b)y[ — e, +4a*(BPea— €, (eat€,) k)], (A3)

As(a,b;B,v.u,€5,€, ko) =2a{24b(a+b)(B%e,— €, (e,+ €, ) ukd) + 2y 32a%b B%e,+ 8ab?B%e,+ 8b° B2e, +ae, — The,

—8b(4a%+ab+b?)e, (e,+ €, ) uk3]+ y?b(a+b)e, }, (A4)
As(a,b;B,7,1,€4,€, Ko) =16ab(a+b)y[ — BPeat €, (eat € ) k3], (A5)
Bo(a,b;y,e,)=—2ab(a—b)(a+b)?ye, , (AB)
Bi(a,b;B,7.14.€a,€. ko) =ab(a—b)(a+b)’[248%€,~ 24e, (e, + €, ) ukG+ %€, ], (A7)
Co(a,b;y,e,)=4ab’(a+b)ye, , (A8)

C1(a,b; 8,7, 10, €4,€, ,Ko) =b?{24ab(a+b)[ BPe,— €, (e,+ €, ) uk3]+ y[ — 16a’b(a— 3b) B%e,— 2(8a’+ 3ab+3b?)e,
+16a’b(a—3b)e, (e,+ €, ) uki+ab(a+b)ye,}, (A9)

Co(a,b; B, 7. 1.€a.€, ko) = —12ab(a+b)y{— e, +4b’[ B2e,~ €, (€a+ €, ) ukF]}, (A10)

Cs(a,b;B,y,,€,,€, ko) =b{24a(a+b)[ — BZe,+ €, (e,+ €, ) uk3]+2y[8a®B%e,+ 8a’bB%e, + 32ab’ B2, — ae,

+3be, —8a(a’+ab+4b?)e, (e,+ €, )uki]—a(a+b)e, y2, (A11)
C4(a1b;ﬂv Vil €q,€ 1k0) = 16ab(a+ b) ’)’[ _ﬁ26a+ EL(ea—i_ GL)/Lk(gJ] (AlZ)

An explicit form of 8®)(x) is
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2

Bee (0ra0y g2 \/Gc wga ~ p2a?
0'2(x) = 2.2 2 3.23 2
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az: 24baxB2e,— 480xB%ye,(b—ax)

+bxaj 8baxB%e,(3+2by—2xay)

2
} +ab(a—b)(a+ b)2e<b+a>7< —2ve,

6baxye, (b+xa)+ 16a*x(b+xa)

—8e,xaB?[3b+6b%y+xa(3+2xay)]— ye, [4(b—3xa)+xay(b+xa)]

—10x%a’ye, +4b? —6xapBe,+ 12x%a%B%ye,— ye,

+ 4bxa{ —6xapB%e,— 4x%a’B2ye,+ ve, 12— y*xae, 14
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