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Linear dynamics of double-porosity dual-permeability materials. Il. Fluid transport equations
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For the purpose of understanding the acoustic attenuation of double-porosity composites, the key macro-
scopic equations are those controlling the fluid transport. Two types of fluid transport are present in double-
porosity dual-permeability material§l) a scalar transport that occurs entirely within each averaging volume
and that accounts for the rate at which fluid is exchanged between porous phase 1 and porous phase 2 when
there is a difference in the average fluid pressure between the two phasé¢8) andector transport that
accounts for fluid flux across an averaging region when there are macroscopic fluid-pressure gradients present.
The scalar transport that occurs between the two phases can produce large amounts of wave-induced attenu-
ation. The scalar transport equation is derived using volume-averaging arguments and the frequency depen-
dence of the transport coefficient is obtained. The dual-permeability vector Darcy law that is obtained allows
for fluid flux across each phase individually and is shown to have a symmetric permeability matrix. The nature
of the cross coupling between the flow in each phase is also discussed.
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- INTROBUCTION 0= (©)(Pr—Pr2), (4)
This is the second of two papers dedicated to obtaining = ) ;2
macroscopic governing equations for double-porosity dual- —lwr =[GoieF] Vv (Vv) = 2V.vil. (9
permeability composite materials. In the first paffeaper ),
the governing equations were derived. The frequency depersee Paper | for the definition of the various fields. What
dence of the acoustic attenuation predicted from these equfieeds to be established further in the present paper is the
tions depends strongly on the internal mesoscopic flow bedetailed nature of transport coefficients in E®.and (4).
tween the constituents. Thus, in this pagBaper 1), the As demonstrated in Paper I, only two aspects of the mac-
fluid transport laws governing wave-induced fluid flow are f0SCOpIC fluid pressure response are driving fluid transport in
studied in greater detail. The Biot theory of porous-mediahis theory:(1) the difference between the average fluid pres-
acousticq1,2] ignores all wave-induced flow at mesoscopic sures in each phases; —ps, is responsible for the scalar
scales. It is well known that Biot's theory is not capable oftransport;, internal to€); and(2) the average drop in fluid
explaining the measured level of acoustic attenuation in popressure from one side of a constituent averaging region to
rous rocks3]. The theory developed in the present two pa-the otherVps, andVp;, is responsible for the vector trans-
pers provides one approach for doing so. portq; across(); . For the isotropic composites being treated
In Paper 1[4], it was established in particular that the here, there is no coupling between the tensorial orders of the
macroscopic governing equations controlling the linear reflow [5]. Due to the linearity of the physics, we choose to

sponse of isotropic double-porosity composites, when amesolve the fluid transport into a scalar part defined with

_(Ut . . R— J—
e ' time dependence is assumed, take the form ps;#0 and Vp;=0, for i=1,2, that defines the internal

_ _ transfer between the constituents, and into a vector part in

V72— Vpe=—iw(pv+pii+pida) — pg, (1) which p;=0 and Vp;#0 that defines the macroscopic
(Darcy) flow within each constituent. The sum of these two
contributions gives the total fluid transport withifand

, (2 acros$ each averaging volum@.

Section Il presents the analysis of the internal fluid trans-
port in the composite double-porosity medium. Section |

Vpii—pi(iov+g)

{Ch}__ 1[ k11 K12
Vpi—pi(iov+g)

a M| K12 K22

V.v [a;; a;p ais HC 0 presents the_macros_copic fl(_)w laws. Ou_r conclusions are

_ summarized in the final section. A technical appendix de-

o V-qu=|aw ax axg||pn|+| & |, B  scribesa specific model calculation used to motivate some of
V.do] Llaiz ap ass P —Lint the conclusions in Sec. Ill.

II. INTERNAL FLUID TRANSFER

*Email address: spride@univ-rennes1.fr In what follows, the internal fluid transfet, is shown to
"Email address: berryman1@linl.gov obey a transport law of the form
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) = R ) p.i acting as the source term in E®) need not be uniform
{int™= fo dt'T(t")[pra(t—t") —pra(t—t") ], (6)  throughout their respective regions. To determine phe
the following equations are therefore required:

as has already been anticipated from the statement of the

D_
energy-dissipation rate given in E42) of Paper I. The V7=V, (12
relaxation functionl’(t) can be expressed as 7-P:Gi[VupLVuiT—%V-uil], (13
1 (=~ :
F(t)zﬂf_ dw'y(w)e_'“’t, (7) pci:_Kiv'ui+aipfi! (14)

. ) ) subject to the boundary conditions
so that in the frequency domain this transport law takes the

form [Eq. (71) of Paper | n-(7°—peil)=—nAP on 4Q;, (15

— 0l ®)=y()[pi1(w)— pra(®)], 8 [u]=0

i.e., such internal transport occurs to the extent that the avand
erage fluid pressures in each phase are different.

We determine the transport coefficiepfw) by treating [N (70 =peil)]=0 on Q. (16)
the particular situation in which a sealed sample of the com-_ _ ) ) )
posite is immersed in a reservoir whose pressure may behis set of differential equatiori€gs.(9)—(16)] is what con-
controlled. Such an isolated sealed sample will have no néfols the local internal fluid transfer.
macroscopic fluid flux across either phasg=0), which is

equivalent to the desired macroscopic conditionsV(Ei

=0. The approach taken to determindw) is essentially In the limit asw— 0, the above fields may be developed
that of Johnsort al.[6]. The idea is to determine the nature as perturbation expansions i w,

of ¢y in the limit of both low and high frequencies and then

A. Low-frequency limit

_ (0 H 1 2
to connect the frequency dependence in these two limits by a pri=pf —iwpf+0(w?), 17
simple postulated function of frequency satisfying causality ©_i (1) 5
constraints. Johnsdi7] has also recently applied very simi- Pci=Pei’ ~iopg’+O(w%), (18

lar ideas to the problem of patchy saturation in porous media. ) b

Assuming that a sealed sample of the double-porosity 2nd equivalently for; andz;”. Note, however, that the total
composite is immersed in a fluid reservoir whose pressur€onfining pressured.=uvipci+v2Pc,=AP is independent
varies in time asAPe '“!, the local fluid pressurep;; in  of frequency.

each phasé=1,2 are determined from the following diffu-  The zero-order fluid pressure response is governed by
sion problem[obtained from Eqs(1)—(4) of Paper | with 2(0)
definitions of the various local fields as given there Vopii’=0, (19
k; a @ n-vp{”=0 on 4Q;, (20)
—V2ph+iw—mPpri=io P, ©) " I
U KiBi Ki O
[kin-Vpi’]=0

subject to the sealed-sample boundary condition q
an

n-Vp;=0 on 4Q;, (10
[psi]=0 on dQy,. (22)

and to the continuity conditions
This boundary-value problem has the unique soluiﬂxﬁ)‘ﬁ
[p1i]=0 =p{Y=B,AP (a uniform constant

To determineB,, (the zero-frequency or “single porosity”
Skempton’s coefficieri8] of the compositg the second and
third lines of Eq.(3) are added under sealed conditions
(V-q;=0) to obtain
The square brackets in the continuity conditions mean to — — —
evaluate the jump in the stated quantity across the interface. 0= (8121 813)Pct (8ot A23) Pr1t+ (823t 833) Pr2,
As in Paper |, the sample volume is being partitioned into (22)
phase 1 and phase 2 portiofis=Q,+ (), as is the external
surface of the sample) = 9(),+ d(),. The internal surface where a;; are given by Eqs(64)—(69) of Paper I. If the
separating the two phases are again denoted(by. perturbation expansions for the fluid pressures are introduced

In general, when the two phases have arbitrary geometrgnd if terms are grouped by common factors-ofw, one
and elastic properties, the local confining pressure changesbtains

and

[kin-foi]=O on (9912. (11)
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PR =B.=— _ Gutais (23)
AP~ T°  ayt2agtass
45 At ags
= . (24
5(1) azztazs

However, Eq.(24) will not be needed in what follows.

The leading-order correction to uniform fluid pressure is

thus governed by the Poisson problem

ki
—v2p<1>— (25

B
9 _2AP
pCI B|

subject to the previously stated no-flow conditiondd; and
continuity conditions ond(),,.
pressure that acts as the source term is given by

0= —K;V-u9+a;BAP. (26)
The displacement fields(®) are now scaled as
(O) |BO
u ()= — APs(r), (27
I

The zero-order confining

PHYSICAL REVIEW E 68, 036604 (2003

This integral is obtained by integrating E@®5) over all of
Q, and applying the divergence theorem

kl 1] aq
—=<| nvpids=—
nV a0 P Klvl

p O)——AP) (33

If Eq (55) of Paper | is used qu(O) along with the facts that
p.=AP and p{?=p{9=B,AP, the exact low-frequency
limit is obtained as
—iwlin=—i0[a;+By(az+ax JAP+0(w?). (34)
It has been verified algebraically that this result is unchanged
if throughout Eq.(33), the index 1 is replaced by 2 amdis
replaced by—n.
The next step needed in order to define the transport co-
efficient y(w) requires us to replace i wAP by ps;— Pso.
An average of Eq(17) gives
Pri—Pr2=—iw(pfy~ pi3) + O(w?). (35)
Because Eq925)—(31) governing the responséil) are lin-
ear inAP, we can define &P independent material prop-

where s are applied-pressure-independent displacemen?rtyYaS

fields satisfying the well-posed problem

wiVes+ 1+ 'lvv.5=0 in Q, (28
subject to the boundary conditions é6£);
T+ 2
Mmin- Vsi+Vs|—§V-sI +(1—«a;By)V-sn
=(1—a;By)n, (29

and to the two continuity conditions acrog€ ;,

2
,u,n~(Vs+V$T— 3Vsl|+(1-aiBo)V - sn+aiBon

=0, (30

5|=0. (31

A dimensionless shear modulys=(1—«;B,)G;/K; has

oy iy

Y= —Ap - (36)

Thus, in the transport law- i wip= ')/O[Efl_afz]"_o(wz)a
we can identify the low-frequency transport coefficient
:"mwﬂoV(“’) as

Yo=[a121+ Bo(aztaz) /Y. 37
However, for the theory to be useful, the material property
dependencies df need to be specified. To do so analytically
requires approximations to be invoked.

In practice, phase 2 is envisioned to be either small pock-
ets embedded within a larger body of phase 1 material or to
be in the form of thin through-going joints. In the idealiza-
tion that either the pockets can be modeled as ellipsoids or
that the joints are plangand have intersection volumes that
can be considered negligibleEqgs. (28)—(31) are solved ex-
actly by the deformation tensovs=1/3, with V.5=1,
which corresponds to uniform confining pressure throughout
both phases. Using this approximation, the equations govern-

been introduced. Such scaling of the dlsplacements results jAg p!") can be written as

|V-s5|~0(1), as isseen in Eqs(28) and (29).
Having established the;e results, we can now address the Ky 2 (1) B,
low-frequency behavior of;. As w—0, the definition of V Pt (1_5_1)K1AP in €y, (38)
L [EQ. (27) of Paper | along with the fact tha¥ p(o)— 0,
so that to leading order in—iw we have n-qi, ki _, (1)_k B B,
=iwkn-Vpin=iwkn-Vplin on 90, defines the V P2 =0 (1 B_z) KZAP in O, (39)
integral
k1 with the boundary conditions
—l0ln=v, o 12n vpidds+O(w?). (32 0 VD=0 on 40 . 40
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W Ky 0 phase 1 lies withim<r<R), we can determin@, by in-
n-Vpi; = Vpir’ on dQy,, (41)  tegrating the Laplace equation Green function over phase 1.
2 The Green functiony satisfyingV2¢=—8(r—r,) and the
Pﬁ)=p%) on 9015, (42) boundary conditions of/dr=0 onr=R and =0 onr

=a can be built up exactly from the infinite-space Green
where the right-hand sides of Eq&8) and (39) are now  functiony..=(4|r—r,|)~* using a standard cascade of im-
spatially uniform constants. ages of the source poimt,. Upon further averaging of the
To simplify further, we now use the fact that the perme-resulting®, throughout phase 1, we obtain to leading order
ability ratio k; /k, can be considered a small number in al-in a/R (only the first two images of the infinite sequence are
most any application where a dual-permeability model isretained to this ordey
likely to be necessary. In thie; /k,—0 limit, the phase 2

response!y(r) =p!3 becomes a spatial constant. The phase LZZERZ 1— ’ EJFO(as/Rs) _ (50)
1 response can then be written as L4 6 R
ay This estimate oL, will be used in the numerical results of

—APD(r), (43

n B
oD = 1- g2

1 Bl

the final section. Note that all referenceRamay be elimi-
nated using the phase 2 volume fractiogp=(a/R)® or R
where the potentiadb,(r) has units of length squared and =av2‘1’3. In this case,

satisfies the purely geometric problem

L2=2a%, 291 Lv¥*+0(v,)]. 51
Vz(b]_:_l in Ql, (44) 17 14 2 3[ 6Y2 ( 2)] ( )
n-V&,;=0 on dQq, (45) B. High-frequency limit
If the applied confining pressure is changing at suffi-
®;=0 on ;. (46)  ciently high frequencies, the fluid pressure from the constitu-

ent with the higher average fluid pressure has time to invade
only a small distance into the lower-pressure phase. In the
limit w—oo, the fluid-pressure penetration can always be
modeled as a locally one-dimensional process in the vicinity
1 1 of &le.
Li= V. (DldV=V— Vb, - Vo, dVv. (47) To study this limit, we employ a set of curvilinear coor-
1704 1704 dinates &,y,z) having metrical coefficients,,hy,h, in
which the surface=0 defines the interfacé,, and where
x>0 corresponds locally to phase 1. We assume thak|as
=0 from either side, the metrical coefficients become inde-
Pendent ofx; i.e., sufficiently close tx=0, the curvilinear
coordinates become a set of “normal coordinates” in which
x/hy is a simple coordinate of linear distance even thoygh

In analogy to Johnson’s treatmelit] of patchy saturation,
since®; has units of length squared, a lendth is intro-
duced by defining

Multiplying both sides of Eq(44) with @, and then integrat-
ing easily demonstrates the equality of the integrals in Eq
(47). The lengthL, defines the average distance over which
the fluid-pressure gradient still exists in phase 1 in the fina
stages of equilibration. With these resulis,can be written

as and z remain curvilinear. Asw— oo, the solution of Eq(9)
v 1( ~ &) ﬂLZ . takes the form(cf. Ref.[7])
kl Bl K]_ 1 pfl(xayyz): p?i’t(X,y,Z)+C1(y,z)ei\lw7D1X/hX, (52)

to leading order irk, /k,. out

The same geometric approximati®h s =1 that yielded Pr2(X,Y,2) = Pra (X,Y,2) +Cy(y,2)e
Eq. (48) for Y, also requires the composite’s drained bulk o )
modulus to be the harmonic mearkKtH v, /K, +v,/K, in  Where the diffusivities; are defined as
which caseQ;=Q,=1. Because of this, the numerator in

—i V/WD_zx/hX, (53)

Yo=[aist Bo(as,ta,3) /Y can be further reduced allowing D. :ﬁ BiK; for i=12 (54)
v, to be expressed in the final form "y o =
v1k, and where the outer fluid-pressure fields that hold every-
Yo~ L2 (49 \where except in a vanishingly small neighborhad@, /@ of

the interfaced(},, are defined as the undrained response

The dependence on the mesoscopic geometry of the twlf =Bipei'- The constant<; and C, will be determined

phases enters throudh. presently from the continuity conditions or=0.
In the special case in which phase 2 is a small sphere of Upon introducingpf“=B;pg" and the scaled displace-
radiusr =a surrounded by a spherical shell of phase 1, saments u;"(r)= —(1—«;B;)APS’(r)/K; into Eq. (14), the

that the composite sphere has a total radius oR (i.e.,  outer confining pressures may be written as
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out__

Pei =APV.-5°,

(59

out__

pi'=B;APV-5".

(56)

The applied-force-independent displacemeditsatisfy

Vs 1+ 5 VY 5 =0, (57)
subject to the boundary condition @),
win-(Vs'+VsT—2V.s°1)+V-s'’n=n, (58
and to the continuity conditions of(),,
[u'n-(VS+VsT—3V.s1)+V-5n]=0, (59
ﬂ o0
Gl

The parameteiw;'=(1-«;B;)G;/K; is the dimensionless
shear coefficient appropriate at high frequencies. As at low
frequencies, even though each porous constituent is uniform

throughout the averaging volume, the local frame dilatation$

V-5 need not be uniform in general.

To determine the coefficient§,(y,z) and C,(y,z), we
employ the fluid-flow continuity conditions of E¢21) on
Q1

out

pfl 3/2 —
kihy e J—C (61)
[pS+C;]1=0. (62)

In the limit w—o, the terms proportional t@p{'/dx are
negligible so that

C]_ — kz / \/_ OUt Ut] (63)
T kgD, ki, T P2
Ky /
0 g e

C,=
2 kll\/_+k2/\/_[p
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volumes(but for large volumes it is expected that the two
values will convergg Thus, we us@®'=B;APV-s" to de-
fine the dimensionless material property

Ou{)s_ < pout>s
“Lout_

Pf1 —

(66)

~out

P>

S 0, (B1V S B,V -5;)dS
Vi'fqBiV-s/dV-V; ' o BV -s5dV

(67)

With this definition, we again obtain the transport law

—iwln= y(w)[pfl pfz] of interest but now with an
asymptotic frequency dependence given by

i%2Jw (ky/\D1)(ko/\Dy) s,
M ky/\Di+ko/\D; V

asw—. Thus, the fluid volumé;,,; exchanged between the
two phases tends to zero as/d/ in the limit asw— .

For those special cases considered earlier in which the
Drains v - s~ are uniform throughout the composite.g.,
whenG =G, or for certain conformally layered composites
including rectangular networks of thin jointsve find that
#=1, and thatd also approaches unity in general when the
volume becomes very large.

Y(w)~ (68)

C. Full model for y(w)

To connect the low- and high-frequency behavior of
v(w), we use the simple function

LW
¥(@)=yo\ 1 =i,

(69)
Cc

where the relaxation frequeney, is defined as

VD1 VDo| V %* 70
PNk, "k /SO

BK; [V [k1B,Kay |2

77 1 70 14 1B2Roa; . (71)
kia; \'S 6 koB1Kya;

where the outer pressure fields are being evaluated along Equations(69) and (71), along with Eq.(49) for y,, are the

=0. Using the definition of;,, [Eq. (27) of Paper ] then
gives that asp— o,

. i%2\w (ky/\Dy)(ko/\D5)
PR
T P ka/ VD,

S
Xv[<p?g[>s_<p?gl>s]1 (65)

results of interest here. As required for a causal response, any
zeros or singularities of eithey(w) or 1/y(w) must lie in
the lower half of the complex plane when there is an as-
sumede ™' time dependence; i.e., bot(w) and 1A(w)
must be analytic everywhere in the upper-halfplane in-
cluding the entire realv axis. The above model foy(w)
satisfies these important constraints since the only singularity
is a branch point atv=—iw.. Finally, since the inverse
transform ofy(w) must be the real functioh'(t), we must

where () denotes an average over the interface reglorhavey(w)* = y(— w*), which is also seen to be satisfied by

dQ,,, and whereSis the total area of(), contained within
the averaging region of volumé.

formula (69).
In practice, the square-root term in E1) can be ne-

There is no reason, in general, why the surface averagglected relative to unity in any situation where a double-

p“Y. must be equal to the volume averag®" for small

porosity theory is likely to be necessafigoth k; /k, and
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K,/K; are small. We will normally assume that~1 as  pressure gradients are created by compression of the frame-

well, with vy, given by Eq.(49). work of grains on time scales dictated by the compressional-
wave speed. So long as the wavelengths of the compres-
1. MACROSCOPIC FLOW LAWS sional wave remain Iarge relative t, the identification of
Eq. (74) remains valid(i.e., the macroscopic fluid pressure
A. Problem statement gradients are created essentially instantaneously relative to

We imagine an averaging volume in the form of a circularthe time 1&). Other than for the overall pressure drap;
disk with sealed boundary conditions on the outer circumferacross each phase associated with the wavelength-scale
ential face and fluid-pressure boundary conditions applied teariations of the fluid pressure, our modeling &f; has al-
the two flat faces. The axis of this disk is defined as theready accounted for all aspects of the heterogeneous fluid
z direction so that the two flat faces reside &t —H pressure response in the composite. Thus, the local Darcy
andz=H. flow induced by the wave may properly be taken to be sole-
We consider two applied forcing states, the sum of whichnoidal (V-Q;=0) in the present section.
gives the total flux. In the first state, denoted with a super- However, if laboratory measurements are performed by
script a, a pressure drop is applied across phase 1, whilapplying time harmonic pressures to fluid reservoirs that

maintaining no pressure drop across phase 2: connect to the faces= = H, then to use the present descrip-
tion for interpreting the measurements, the timé4§2/D;
a APy, z=H a 0, z=H required to establish the macroscopic pressure gradient
Pr(r)= —AP;, z=-H, Pra(r)= 0, z=—H [where D; is the fluid-pressure diffusivity defined in Eqg.

(72)  (54)] must be much smaller thanm2w. If 2H is taken to be
the smallest length that contains within it the pertinent me-
In the second state, denoted with a superstxiftte pressure  soscopic variation of the two constituents, then the maximum
drop is applied to phase 2: applied frequency that can be treated i,,,=D; /(87H?).
The governing equations that complement the above

pP.(r)= 0, z=H pb,(r)= AP, z=H boundary conditions on the external surface are thus
" 0, z=—H, "7 —AP,, z=—H. _
(73) VZpiP=0in Q, (76)
In writing these conditions, we have tak@tﬁ'l"’fo. As is pi’=pf> on 0y, (77
fairly straightforward to demonstratée.g., Ref.[9]), the
boundary conditions of Eq$72) and (73) are equivalent to n-Vpfy=en-Vpf® on a0y, (78

the presence of uniform force densities in each phase of the

form (AP, ,/H)z. The frame of reference for the relative where e(w) =Ky (w)/kz(w) is the ratio of the intrinsic per-
flow is the framework of grains that, in the presence Ofmeabllltles. The frequency dependence in the intrinsic per-

, R o o meabilities is again that due to the development of viscous

waves, is accelerating &s Thus, in |dent_|fy|ng the pressure boundary layers in the pores proper model having been

dropsAP;, the uniform inertial forcep;(v—g) must be in-  given previously by Johnsoet al.[6]). The elliptic problem

cluded to give presented by Eq$76)—(78) exhibits no frequency relaxation
other than whatever is contained withiw).

(74) Our averaging disk has a total volume 8 2AH. The

definition of the macroscopic flum[f"'b [Eq. (22) of Paper |

that corresponds to the above problem is then

AP, . — .

H - [Vpsitpi(v=0)].
As per the treatment of Pride and Flekk[®8], the identifi-

cation in Eq.(74) is independent of both the average fluid b k, z
pressure in each phags; and the presence of volume- 92 :_;ﬂ
fraction gradient&/v; . The only requirement is that the vol-

ume fractions; be well approximated by the area fractions (79
determined on the two flat faces

f E-Vp?’zde-i—f 2~Vp?‘2bds},
z=+H z=—H

ab k2€ 2
Ai(z=+H)+Ai(z=—H di == — 5a
_A )2A (z=—H) 75 7 2A

f E-Vp?’ldeJrf 2~Vp?’1bd8}.
z=+H z=—H

(80)

Uj

whereA is the area of one of the two flat faces and where
Ai(z= £H) is the area of each flat face that is occupied by
phasei. See Pride and Flekkol®] for a discussion of the
conditions required for Eq.75) to be a good approximation.

From the linearity of the physics as well as the assumed
isotropy of the double-porosity composite, we can immedi-
ately write the macroscopic Darcy law as

Further comment is in order when the applied pressure q P+ P
drops are changing in time as '“!. For the problem of o ; é 81)
linear wave propagation through the composite, the fluid 4z 0210z
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here entirely contained ia(w), as defined after Eq78)], it
. (82 is assumed that in practice,is a small number. The need to

Vps+pi(v—g)
VE2+ pi(V—0) use a double-porosity theory is apparent precisely when
a small number.

In terms of our above statement of the boundary-value prob- \ye are now able to develop the fluid pressures as
lem, the four permeability coefficients are defined by

—1| k11 K12

n

K21 K22

5 0@ 5 b pfi=[f+emi+O0(e*)]AP1/H, (89
K11 _ |- K12 _ |z-q]
n APy/H' 7 AP,/H’ phi=[¢P+emP+O0(e?)]AP,/H, (90)
- - i i : a,b
K21 |z- g Koo |Z- | where the applied-force-independent potentigld and =

. AP /R’ 7— APLH (83 have units of length, and are dependent only on the mesos-
1 2

copic geometry of the two porous constituents. Because the
local Darcy flow in phase 1 goes 5= —€k,Vp;, /7, the

B. Reciprocity leading-order flow ire is independent of the potentiai$"® .
Using all of these results, the reciprocity conditiap, ~ The leading-order potentials are all solutions of Laplace’s
= Kk, Will now be proven. We first form the products equation in their respective phases and from E¢€)—(78)
. X satisfy the following boundary conditions:
pra[VZpfa] and pfy[V2piil, (84) 0 H
A
both of which vanish from Eq(76). Equivalent expressions n-Ve5=0 on 4Qy,, qu:ro 7= —H-
(replace 1 with 2 hold for phase 2. Taking the difference of ' '
these expressions gives . 0 . { H, 7= H
=0 on dQq,, =
V-[pf,Vpf—pHVphl=0, (85) a1 122 P17 _H, z=—H;
which upon integrating ovef),, dividing by V=2AH, and H, z=H
appealing to the divergence theorem and the boundary con- n-Vgo2=0 on dQ,, gog:[ _ )
ditions of Egs.(72) and(73) yields —H, z=-H;
APy 1 5 gnb 5 gnb ab_ ab ap_ |0 Z=H
?ﬂ“;+Hz-foldS+JZ_Hz-fo1dS n-Vay"=n-Vei~ on 90, @5 = 0. z=—H:
2 b Vpi—pfVpb1dS 86 b_ b p_|0 2=H
Sy len-[pfl Pr1— PV P11l (86) =¢h on Iy, o= 0 - —H (91)

Using Eg. (80) for the definition of the macroscopic flux

; L . Since ¢3 satisfies homogeneous boundary conditions, it has
along with the above definition of;, allows us to write 2 9 y

the unique solution thap3=0 everywhere, and this is why
E ¢1=¢5=0 0ndQy,.
Kip=— Vj n. [p']?lv p3 —p4V p?l]ds Thus, using these potentials in the definitions of E@9),

Q12 (80), and(83), it is a straightforward excercigategrate, use
(87)  the divergence theorem, appeal to the boundary condjtions
to write the;; in the following forms to leading order:

AP]_APZ n
TR

Identical manipulations for phase 2 gives

_ a y,a

AP1AP, 7 :EJ P [pV b VB 1S Kk11/Ko= &(V ¢1- V1), (92)

H2 k2 2t \% (2P} f2 f2 12 2 . K12/k2:€<V(P?'V(P2>, (93)
(88)

K2olko=(V ©3- V@) + (VD5 VD), (94)

If these two equations are subtracted and the continuity con-
ditions of Eqs(77) and(78) employed, one indeed finds that where the brackets indicate a volume average over the entire

K12= K1 Such a simple proof of the reciprocity Is not fo_rth- averaging volume. These averages are dimensionless order-
coming if the volume-averaged flow fieldsQ; are used in  unity functions of the mesoscopic geometry of the constitu-

place of the mean fluxes . ents. In the second term af,, the potentiatb} is a solution
to Laplace’s equation in phase 2 satisfyi@@=0 on dQ 4,
C. Permeability matrix and @g= +H onz=-+H.

In order to obtain a model for the;; that has separable  Even for the simple “plane-parallel-joint” geometry de-
contributions from the mesoscopic geometry of the constituPicted in Fig. 1 for the case of forcing-stag the dimen-
ents and from the underlying material properfiedich are  sionless fieldV ¢{ is not just the unit vectoz. Indeed, rather
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FIG. 1. An idealized unsealed double-porosity sample has the
same average fluid pressure in both phases, but there is a macro-

scopic pressure gradient in the vertical directioacross phase 1 FIG. 2. A plot of the normalized fluid pressupefor the geom-
driving a flow in phase 1the large arrowswhile we impose the etry depicted in Fig. 1 in whickl=1, a=4, andH=2. The inter-
boundary condition that no pressure gradient can develop acroggce d€);, between the two phases is locatedxat0 (and atx
phase 2. Nonetheless, there is induced in phase 2 secondary loca#), while the planex=—1 is at the midpoint of the joint phase
flow including flow across the internal surfag€ ,, as indicated by ~ and the planex=2 is at the midpoint of the matrix phase. The
the small arrows. The analytically determined fluid pressure distripermeability ratioe has been taken to be 0.1. The pressure gradient
bution for this situation is shown in Fig. 2. has a singularity in the direction at the pointsX=0,z=0) and
x=0z=2H=4).

nontrivial flow develops as indicated qualitatively by the ar—( ' )
rows. Because there is a macroscopic pressure gradien
across phase 1 and none across phase 2, there are flu
pressure variations in thedirection that drive flow laterally
either into or out of phase 2 as shown. The only trivial po-
tential in this geometry iSpg, which does correspond to
\% (p|23= Z.

To understand this flow better, we solve in the Appendix
the asymptoti¢leading order ire) flow problem correspond-
ing to forcing stateq, i.e., we determine the pressure fields

there F; are the formation factors of each phase defined
using the Neumann potentials as

R =(Vyi- Vi)

and

p2 = o2 and pd,=ex that contribute to the leading-order 1IF,=(V ¢5-V ¢b) (96)

Darcy flow. The results are plotted in Fig. 2. We see indeed

that there is considerable cross flow between the phases )

(which averages to zero throughout the entire sample so th&d Where the parametegg are defined as

Lim=0 always. At the entrance of the sampléaken asz

=4 in the figure, we see that fluid is flowing out of phase 2 X11=(V 8¢5V 50¢3), (97)

while at the exit ¢=0), fluid is flowing into phase 2;

i.e., such flow is in the opposite direction to the average

phase-1 flow. —x12=(V 37 Vi), (98)
The permeability matrix is finally written in a slightly

different form. The phase-1 potentiaf, that satisfies Di- X20=(V 8¢b-V ). (99)

richlet conditions ondQ),,, is rewritten ase]= ¢3+ 5¢3,
where ¢} satisfies the Neumann condition V#$=0 on
Q4 and y§=*tH onz==H and where the difference po-
tential o7 therefore satisfiese$= — 5 on 9Q 4, and 5¢f
=0 onz=*=H. Similarly, the phase-2 potentiétg satisfy-
ing Dirichlet conditions ond€);, is rewritten as®5= -

+ 8¢b so that the difference potential satisfi&ss= — 5 on
94, and 5<p2= 0 onz= *=H. Using these potentials in Egs.
(92—(94), the permeability matrix takes the form

E(l/F1+X11)

—€X12

—€X12

95
1/F2+ €EX22 ’ ( )

Kij =Kz

One of the principal reasons for writing the permeability ma-
trix in this form is that in any plane-parallel joint model, the
two Neumann potentials are equal along the internal inter-
face, i.e.,zpi‘:<p2 on 4 4,. Using this fact, it is straightfor-
ward to use the boundary conditions &£, along with
Egs. (97)—(99) to show that x;;= x12=x2o=x for such
models.

Flow in plane-parallel joint models thus has the interest-
ing property that the total flowq; +q, is unaffected by the
cross-coupling coefficient y. However, the energy-
dissipation rater due to the Darcy flow,
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e(1/Fi+x) 2ex _— _— pi=(ei+en)AP,/H,
o= Tfol Vpii— 7 —Vpiu-Vpg, e .
a___a
(1/F2+6X) pf2 €7T2AP1/H,
———"Vp Vpra, (100 b b, b
pi1=(@1+em)AP,/H,
is seen to be affected by when Vp;;# Vps,. In other- pr2=(z+em3) AP, /H.

words, the extra influx and outflux of fluid, as seen in Figs. 1
and 2, at the entrance and exit facedissipating energy
even if it is not contributing to the total flow.

Using the results from the Appendix for flow in the two-
dimensional2D) geometry of Fig. 1, and taking a square of
material in which H=a+2d, we find Eq.(95 with 1/F;
=Uj and W|th)(11 X12= X22— (2/77)2? 1tanhhm)1)/n uUn-
fortunately, this series is logarithmically divergent, which .
can be seen in the limih—o, where it becomes the har-
monic seriesX,1/n, which is well known to diverge. This
divergence is entirely due to those points where the interng
surfaced(), and the two flat faceg=+H meet(e.g., the
pointsx=0, z=0 andx=0, z=4 in Fig. 2. At such points,
there is a discontinuous jump in the fluid-pressure boundary "
conditions, resulting in locally divergent flow. This non- (x,2)= 2 A, sin| X mnX
physical artifact can be removed by requiring the potentials 21
on the boundaries to vary smoothly at those points where the ) )
internal surface intersects the flat faces. The smoothing dis- X{Slnf[ mn(z+H)/a]+sin{ 7n(z—H)/a]}
tance can be made arbitarily small relative to the joint thick- sinff wn2H/a] '
nessd but, so long as it remains finite, the permeability ma-
trix retains the form of Eq.(95 and has a finitey.  satisfying the required Dirichlet conditions &t=0 and x
Elaboration of this rather involved demonstration is left to=a. The constant#\, are selected so that the nonhomoge-

Since the pressure gradient in phase 1 gets multiplied by
another factor ok when determining the flow we need only
determine the four potentiale?, 73, ¢°, and 75 if our
interest is to understand the pressure field giving rise to the
leading-order flow. These potentials are all solutions of
Laplace’s equation and satisfy the boundary conditions given
in Eq. (91). Phase 1 is taken to lie betweer<@<a and
phase 2 between 2d<x=<0.

The solution of the Laplace equation in 2D is the sum of
roducts of the form sinax,cosbx]X[sinhczcoshdz]. For
example,¢$ has a solution of the form

the interested reader. neous conditions at=+H are satisfied and this is done in

the usual manner by exploiting the completeness relation for
IV. CONCLUSIONS the sine basis functions. We findf. Morse and Feshbach
[10], p. 708.
The main result of the present paper is the frequency and

material-property dependencies of the internal transport co- 4H = 1 X

efficient y(w), as expressed in Eq§69)—(71). The coeffi- oi=— Z —sin| —

cient y(w) controls the mesoscopic fluid-pressure equilibra- 7 nood N a

tion between the two porous constituent phases. We have {S|nr[7rn(z+ H)/a]+ sinH mn(z— H)/a]}

also established that the dual-permeability Darcy law is sym- Sinf{ wn2H/a]

metric. The cross coupling in the Darcy law was shown to be
due to the existence of local fluid-pressure gradients that (A1)
drive flow from one porous phase to the other.

The other potentials are similarly found to be
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APPENDIX: 2D FLOW THROUGH A PLANAR SLAB n=
GEOMETRY {sini wn(a—x)/H]+sin{ wnx/H]}
We now obtain the fluid pressure distribution for the x sinH 7rna/H] (A9
simple 2D flow geometry presented in Fig. 1. The pressures
are obtained to leading order &=k, /k, as and
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b —2H i (—=1)"  [mnz\1—cosimna/H) JO dxﬁﬂg__fo dang—fadxan?——
L ni=1 N sin H sinf 7rna/H ] —2d 0Z —2d 0z 0 Jz X
(A6)
><{cosrﬁrrn(er 2d)/H]+costh mnx/H]} (Ad)
sinf{ mn2d/H] ' where the parametey is defined as
These potentials are those contributing to the pressure distri-
bution in Fig. 2. 4H = 1 ma
The quantities needed for estimating the permeabilities X=— E ﬁtanl'(m (A7)
n=1

are the integrals of thederivatives of these potentials on the
external surface. One finds that

This series is logarithmically divergent for reasons discussed

a
Jadx%=a+x, (A5) in thg text, bu.t finite results.are _obtained by introducing a
0 Jz physically motivated smoothing distance.
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