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Linear dynamics of double-porosity dual-permeability materials.
I. Governing equations and acoustic attenuation

Steven R. Pride*
Géosciences Rennes, Universite´ de Rennes 1, 35042 Rennes Cedex, France

James G. Berryman†
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~Received 14 December 2002; published 9 September 2003!

The equations governing the linear acoustics of composites with two isotropic porous constituents are
derived from first principles using volume-averaging arguments. The theory is designed for modeling acoustic
propagation through heterogeneous porous structures. The only restriction placed on the geometry of the two
porous phases is that the overall composite remains isotropic. The theory determines the macroscopic fluid
response in each porous phase in addition to the combined bulk response of the grains and fluid in the
composite. The complex frequency-dependent macroscopic compressibility laws that are obtained allow for
fluid transfer between the porous constituents. Such mesoscopic fluid transport between constituents within
each averaging volume provides a distinct attenuation mechanism from the losses associated with the net Darcy
flux within individual constituents as is quantified in the examples.
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I. INTRODUCTION

Most natural porous materials such as rocks and s
ments in the earth have heterogeneity in the poro
continuum properties at nearly all scales greater than g
scales~i.e., scales>1 mm). Seismic wavelengths used f
oil and gas exploration purposes are typically in the ran
from 1 to 100 m. Seismic forward modeling is therefo
performed by discretizing the earth into elements that h
linear dimensions ranging from tens of centimeters to ten
meters and typically only the average response in such
ments is measured and modeled. When seismic waves s
an averaging element containing mesoscopic heterogen
~heterogeneity at scales greater than grain sizes but less
wavelengths!, pore fluids in different porosity types respon
with different changes in their fluid pressures. An intern
equilibration then takes place with fluid flowing from th
more compliant high-pressure regions to the relatively s
low-pressure regions. Such mesoscopic flow attenuates
nificant amounts of wave energy. For purposes of attenua
unwanted noise, one could, for example, design sou
absorbing materials containing mesoscopic heterogeneity
pable of reducing vibrations within a given frequency ban

However, no general theory has yet been developed
wave propagation through materials containing mesosc
heterogeneity. Our approach here is to make the idealiza
that the mesoscopic structure can be meaningfully reduce
a mixture of just two porous continua. We make such
‘‘double-porosity’’ idealization so that analytical results ma
be obtained for the nature of the differential equations a
coefficients controlling the macroscopic response. No res
tions are placed on the mesoscopic geometry of the two
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1063-651X/2003/68~3!/036603~10!/$20.00 68 0366
i-
s-
in

e

e
of
le-
ess
ity
an

l

ff
ig-
g

d-
a-
.
or
ic

on
to

a

d
c-
o-

rosity constituents other than the composite as a whol
assumed to be isotropic.

This is the first of two papers dedicated to obtaining t
macroscopic governing equations for such double-poro
dual-permeability composite materials. In this first pap
~Paper I!, the governing equations are derived and t
sources of acoustic attenuation in such materials are clari
An essential part of the analysis is to model properly
frequency dependence of the internal mesoscopic flow
tween the two constituents. Thus, in the second paper~Paper
II !, the fluid transport laws governing the wave-induced flu
flow will be developed in greater detail. The Biot theory
porous-media acoustics@1,2# ignores all wave-induced flow
at mesoscopic scales. It is well known that Biot’s theory
not capable of simultaneously explaining both the veloc
and attenuation data measured on porous rocks@3#. The
theory presented in these two papers provides one me
for doing so.

Double-porosity models were originally developed f
modeling the fluid flow during pumping of earth reservoir
Early models of Barenblatt and Zheltov@4# and Warren and
Root @5# assumed the pumping did not affect the state of
geological material; however, for the continued pumping
interest to the oil and gas industry, it is necessary to acco
for the pore-space reduction. Thus, more sophisticated m
els were developed@6–28# allowing for the coupling be-
tween rock deformation and fluid flow. At very slow rates
applied-stress variation, the fluid pressure has enough tim
equilibrate internally between the two porous phases
such double-porosity models must then reduce to the u
single-porosity mechanics established by Biot@1,2#.

In addition to such double-porosity modeling, there h
been considerable work focusing on flow between the lay
of a plane-stratified material due to compressional wa
propagating normal to the layering@29–32#. The present
study seeks to model the flow for arbitrary mesoscopic
ometry, albeit under the restriction to only two porous pha
©2003 The American Physical Society03-1
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mixed together in each averaging volume.
In Sec. II, the porous-continuum laws that control the

cal response of each isotropic porous material are state
Sec. III, the general form of the macroscopic constitut
equations are obtained from the macroscopic statemen
the energy balance. The local laws are then integrated
an averaging element of the composite in the sections
follow. In Sec. IV, the macroscopic statement of the cons
vation of linear momentum is obtained while in Sec. V, t
detailed nature of the coefficients in the macroscopic co
pressibility laws are obtained and in Sec. VII, the mac
scopic shear constitutive law is discussed. In Sec. VIII,
summarize the entire set of macroscopic laws, and in Sec
reduce the double-porosity theory to an effective sing
porosity Biot theory. Finally, we give examples of th
P-wave attenuation and then summarize our conclusions.
per II @33# analyzes the fluid transport laws governing t
wave-induced fluid flow.

II. GOVERNING EQUATIONS FOR THE LOCAL
RESPONSE

Within each macroscopic averaging volumeV, we as-
sume there is a welded composite~i.e., material points ini-
tially in contact remain in contact! of two isotropic porous
materials. To produce useful results, such averaging reg
must have linear dimensionsH smaller than the wavelength
l of the applied stress field but larger than a characteri
dimension a of the phases within the composite. The
length relations are schematically depicted in Fig. 1. In
present study, a single fluid is assumed to saturate both
rous phases, but with minor modifications the same form
ism applies to partial and patchy saturation as well. We n
define the boundary-value problem controlling such local
sponse inV.

Using an indexi to denote the two phases (i 51 or 2!, the
differential equations controlling the local response in ea
material are taken to be Biot’s equations@1,2#, written in the
form

FIG. 1. ~Color online! The length scale relationsl.H.a
where l is the wavelength of the acoustic pulse,H is the linear
dimension of the averaging volumeV being employed, anda is a
characteristic dimension of the mesoscopic-scale heterogen
Both phases 1 and 2 are taken to be isotropic porous continua
03660
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F “•u̇i

“•Qi
G52

1

Ki
F 1 2a i

2a i a i /Bi
GF ṗci

ṗf i
G , ~1!

Qi52
ki

h
~“pf i1r f üi2r fg!, ~2!

“•ti
D2“pci5rüi1r fQ̇i2rg, ~3!

ti
D5Gi S“ui1“ui

T2
2

3
“•ui I D . ~4!

The response fields here are themselves volume aver
taken over a scale larger than the grain sizes but smaller
the mesoscopic extenta of either phase. The response fiel
are the following:ui , the average displacement of the fram
work of grains;Qi , the local Darcy filtration velocity;pf i ,
the fluid pressure;pci , the confining pressure acting on th
porous continuum~total average pressure!; andt i

D , the de-
viatoric ~or shear! stress tensor acting on the porous co
tinuum. In the linear theory being developed here, the ov
dots on these fields denote a partial time derivative. T
accelerationg represents gravity in the case of a consolid
tion problem; however, in the present context of waves, i
taken as the proxy for a concentrated seismic source. In
Darcy law @Eq. ~2!#, h is the fluid viscosity and the perme
ability ki is a linear time-convolution operator defined so th
a term such aski“pf i implies

ki“pf i[
1

2pE0

`

dt8E
2`

`

dve2 ivt8ki~v!“pf i~r ,t2t8!,

~5!

where the complex ‘‘dynamic’’ permeability of each pha
ki(v) has been explicitly and properly modeled in Ref.@34#
to allow for the development of viscous boundary layers
the pores of phasei. In the bulk-force balance@Eq. ~3!#, r is
the bulk density~volume average of solid and fluid within
V), while r f is just the fluid density.

In Eq. ~1!, Ki is the drained bulk modulus of phasei, Bi is
Skempton’s coefficient@35# of phasei ~fluid-pressure change
divided by confining-pressure change for a sealed samp!,
anda i is the Biot-Willis coefficient@36# of phasei defined as

a i5~12Ki /Ki
u!/Bi , ~6!

where Ki
u is Gassmann’s@37# undrained bulk modulus

~confining-pressure change divided by sample dilatation fo
sealed sample!. In the present work, no restrictions to singl
mineral isotropic grains will be made. Finally, in the devi
toric constitutive law@Eq. ~4!#, Gi is the shear modulus o
the framework of grains. All of these material properties a
taken to be uniform throughout their respective phases.

We finally state the boundary conditions to be specified
the surface]V surrounding the averaging volume. Either
n•t or u̇ and either ofpf or n•Q must be specified at eac
point of ]V if a unique local response is to be obtain
@38–40#. Here, n is the outward normal to the averaging

ity.
3-2



fo
io

s

ra

iv

h
hu

in

w

e
c-
a

en

ti

n
o

a
th

-

;

-
rtant
tial
to
nt,

of a
arily

n

se
e-
ro-

es

eir

i-
der
ized
erent
’’

to

ity
ider
n

.
s
gth
re
pic

e.
er a

la-

id-

ng
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volume external surface. The specific values we adopt
these boundary fields are presented in the following sect

Finally, the continuity conditions~at the welded contacts!
on the internal interface]V12 separating the two phase
within each averaging volume aren•t15n•t2 , pf 15pf 2 ,
u̇15u̇2, and n•q15n•q2. Such continuity conditions are
what couple the averaged response in phase 1 to the ave
response in phase 2.

III. MACROSCOPIC FORM OF THE CONSTITUTIVE
EQUATIONS

To determine the macroscopic form that the constitut
equations must take, we focus here on the rateĖ at which the
energy in an averaging volume is changing~as normalized
by the volumeV of the averaging region!. Such changes in
the energy density are entirely due to the rate at whic
wave is doing work on an averaging volume and are t
given by

Ė5
1

V (
i 51

2 E
]V i

@n•ti•u̇i2n•Qi pf i #dS, ~7!

where the exterior surface of the averaging volume is be
partitioned into phase 1 and phase 2 portions as]V5]V1

1]V2. In this section, we first expressĖ in terms of mac-
roscopic field variables and then use the result to write do
the form of the constitutive equations.

The boundary values on]V are the source terms for th
local response withinV and are directly related to the ma
roscopic forcing provided by a passing wave. The local p
ticle velocitiesu̇i have boundary values that may be writt
as

u̇i~x!5v1x•“v1du̇i~x! on ]V i , ~8!

wherex5r 82r represents distance to]V as measured from
the center pointr of each averaging volume, and wherev is
the average velocity of the solid phase throughout the en
averaging volume,

v5
1

V F E
V1

u̇1dV1E
V2

u̇2dVG ~9!

and is thus a constant vector on]V. The gradient of the
average is given in this case by~cf. Ref. @40#!

“v5
1

V F E
]V1

nu̇1dS1E
]V2

nu̇2dSG . ~10!

The first term of Eq.~8! represents a rigid-body translatio
induced by the wave, the second term represents the sm
wave-induced deformation, while the third termdu̇i repre-
sents any left over higher-order modes of ‘‘bumpiness’’ th
develop due to local heterogeneity. By substituting
boundary values of Eq.~8! into Eq. ~10!, it can be verified
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that the perturbationsdu̇i due to heterogeneity do not con
tribute to the macroscopic deformation rate“v ~i.e.,
*]V i

ndu̇idS50).

Formally, one can express the leftoverdu̇i using higher-
order modes~tensorial orders! of the macroscopic response
e.g., the next boundary term isdu̇i(x)5xx:“¹v/2 on ]V i ,
while additional terms would involve still higher-order gra
dients of the macroscopic response. Such terms are impo
only if there is simultaneously present an equivalent spa
distribution in stress so that non-negligible contributions
Eq. ~7! are made. For example, in a laboratory experime
where a uniform stress tensor is applied to the surface
heterogeneous sample, the heterogeneity will necess
produce the higher-order termsdu̇i(x) in addition to the
smooth responsex•“v; however, there will be no net strai
energy stored in such higher-order deformation, as Eq.~7!
makes clear.

Obtaining precise conditions for the neglect of the
higher-order work terms is rather involved, since they d
pend on details of the long range correlation of the hete
geneity~over scales necessarily larger than the sizeH of the
averaging volume!. Retaining such higher-order terms caus
gradients of strain~i.e., third- and higher-order tensors! to be
explicitly present in the macroscopic laws along with th
associated stress-moment tensors~also third- and higher-
order tensors!. However, if analysis is limited to macroscop
cally isotropic double-porosity composites, such higher-or
response exactly decouples from the smooth homogen
response of interest because these responses are of diff
tensorial order~a result known as ‘‘Pierre Curie’s principle
@41#!. The analysis of the present theory is thus restricted
such macroscopically isotropic composites.

For the fluid boundary conditions, the dual-permeabil
nature of the materials being studied requires us to cons
separately~and independently! the average fluid response i
both phases 1 and 2,

p̄f i5
1

Vi
E

V i

pf idV, ~11!

whereVi is the volume of phasei in the averaging volume
As a wave compresses each averaging volume, it changep̄f i
in each phase while simultaneously producing wavelen
scale~macroscopic! gradients in the averaged fluid pressu
“ p̄f i . These gradients along with the apparent macrosco
force termsr f(g2 v̇) produce a Darcy flow in each phas
Because such macroscopic forces themselves vary ov
wavelength, fluid accumulates~or depletes! in each phase of
each averaging volume. Allowing for these fluid accumu
tions is a key part of the present analysis.

The boundary conditions for such flows are the flu
pressure conditions

pf i~x!5 p̄f i1x•f i1dpf i~x! on ]V i , ~12!

where the vectorf i represents the macroscopic forces drivi
relative fluid-solid flow in each phase and is given by
3-3
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f i52“ p̄f1r f~g2 v̇!. ~13!

The perturbationsdpf i(x) are again due to the local heter
geneity and will again be neglected in Eq.~7! @i.e., contribu-
tions such asdpf i(x)5xx:“f i , and so on, correspond t
higher-order tensorial orders of the response that are de
pled from the smooth response being allowed for when
composite is isotropic#.

Thus, the closure conditions of our theory~i.e., those con-
ditions that permit a closed set of macroscopic equation
be obtained which are capable of uniquely determining
finite number of macroscopic response fields! are the bound-
ary conditions

du̇i~x!50 and dpf i~x!50 on ]V i . ~14!

Such perturbations from the smoothed response are
taken to be zero on the boundary of each averaging volu
They are necessarily nonzero throughout the interior ofV in
order to satisfy the local Biot equations there. As sta
above, these closure conditions lead to the proper gover
equations for the smoothed response whenever the ma
is macroscopically isotropic.

The boundary conditions of Eqs.~8!, ~12!, and ~14! are
now inserted into the surface integrals of Eq.~7! to obtain

VĖ5(
i 51

2 Fv•E
]V i

n•tidS1ė:E
]V i

n•tixdS2 p̄f iE
]V i

n•QidS

2“ p̄f i•E
]V i

n•QixdSG , ~15!

whereė5@“v1(“v)T#/2 is the macroscopic strain-rate te
sor. The four integrals of the local fields here are now id
tified as macroscopic field variables.

For an arbitrary local fieldc i in phasei, the definition of
the gradient of a volume-averaged field is~e.g., Ref.@40#!

“~v i c̄ i !5
1

VE]V i

nc idS, ~16!

wherev i5Vi /V is the volume fraction of phasei present in
an averaging volume. Thus, we find immediately that

“•~v i t̄i !5
1

VE]V i

n•tidS. ~17!

The identity“•(tix)5(“•ti)x1ti
T is now integrated over

V i and the divergence theorem applied to obtain

(
i 51

2
1

VE]V i

n•tixdS5 t̄ 1(
i 51

2
1

VEV i

~“•ti !xdV ~18!

5 t̄ @11O~H/l!#. ~19!

Here, the volume-average expression

t̄ 5v1t̄11v2t̄2 ~20!
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represents the average total stess tensor in each aver
volume, whileH is a characteristic dimension of the avera
ing volume, andl is the macroscopic wavelength. A funda
mental condition for the averaging is thatH/l!1. That the
volume integral in Eq.~18! is H/l times smaller than the
average stress tensor~and, therefore, negligible! follows be-
cause the only spatial variations of (“•ti)x that do not inte-
grate to zero over the volume are the wavelength-scale va
tions. The surface integrals over the internal surface]V12
that arise when the divergence theorem is applied have
actly vanished from Eq.~18! due to stress continuity on]V12
once the sum overi is performed~note that the total closed
surface around each phase is]V i1]V12).

Again from Eq.~16!, we have

“•~v iQ̄i !5
1

VE]V i

n•QidS, ~21!

while we introduce the definition of macroscopic fluid fluxqi
through each phase as

qi5
1

VE]V i

n•QixdS. ~22!

We now demonstrate that

lim
H/l→0

“•qi5“•~v iQ̄i !. ~23!

To do so, consider the definition of the directional derivati
of qi ,

ds•“qi~r !5qi~r1ds!2qi~r !, ~24!

valid asudsu→0. A normal projection of the integrand of Eq
~22! from the surface]V i(r1ds) to the surface]V i(r )
yields

ds•“qi~r !5
1

VE]V i (r )
ds•n~n Qi•n2n•“Qi•n x!dS

1O~ udsu2!. ~25!

Because the second term of the integrand is againO(H/l)
relative to the first~and, therefore, negligible!, we find that
since the direction of ds is arbitrary,

“qi5
1

VE]V i

nnQi•ndS@11O~H/l!#. ~26!

Taking the trace of this equation gives exactly Eq.~21!, thus
proving that“•qi5“•(v iQ̄i) wheneverH!l.

Last, we define the rateż int at which fluid volume is flow-
ing from phase 1 into phase 2~i.e., z int is the increment in
fluid content for fluid in phase 2 due to internal diffusio
across]V12),

ż int5
1

VE]V12

n•Q1dS, ~27!
3-4
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where the normaln is directed from phase 1 toward phase
Thus, “•q11 ż int is the total rate at which fluid is bein
depleted from phase 1, while“•q22 ż int is the rate at which
fluid is depleting from phase 2.

With all these definitions in hand, we finally can rewri
Eq. ~15! in the instructive form

Ė5v•~“• t̄ !1 1
2 @“v1~“v!T#: t̄ 2~“•q11 ż int!p̄f 1

2~“•q22 ż int! p̄f 21 ż int~ p̄f 12 p̄f 2!1q1•f11q2•f2 .

~28!

To exploit this result, the various contributions are group
and identified.

The first termv•(“• t̄ ) is the rate at which kinetic energ
is changing, since the conservation of linear momentum
quires“• t̄ to be equal to the total inertial acceleration~as
demonstrated in the following section!.

To consider the next terms, we first writet̄ in terms of
isotropic and deviatoric contributions:

t̄ 52 p̄cI1 t̄ D, ~29!

wherep̄c52tr$t̄ %/3 is the total confining pressure acting o
V. We further separate the deviatoric stress into elastic
viscous contributions

t̄ D5 t̄ e
D1 t̄ v

D . ~30!

As is discussed in Sec. VII, the sudden application of a sh
deformation can result in localized pressure gradients wi
V that then equilibrate. Such a transient viscoelastic effec
represented byt̄ v

D . The strain-rate tensor is also written
terms of isotropic and deviatoric contributions as

ė5 1
3“•v I1ėD, ~31!

ėD5
1

2 F“v1~“v!T2
2

3
“•vI G . ~32!

With these identifications, the rateṘ at which energy is being
reversibly stored as strain energy may be written as

Ṙ5 t̄ e
D :ėD2 p̄c“•v2 p̄f 1~“•q11 ż int!2 p̄f 2~“•q22 ż int!.

~33!

This statement allows us to deduce thatR has the functional
dependence

R5R~eD,“•u,“•w11z int ,“•w22z int!, ~34!

where the displacementsu andwi are defined fromv5u̇ and
qi5ẇi . Upon taking the total derivative of thisR and com-
paring to the derived statement of Eq.~33!, we have

t̄ e
D5

]R

]eD
, ~35!
03660
.

d

e-

d

ar
in
is

2 p̄c5
]R

]~“•u!
, ~36!

2 p̄f 15
]R

]~“•w11z int!
, ~37!

2 p̄f 25
]R

]~“•w22z int!
, ~38!

which are thus the state functions of the theory.
Since our treatment is limited to isotropic macroscop

laws, the various tensorial orders of the response are de
pled @41#. Thus, upon taking the time derivative of Eq
~35!–~38!, we obtain isotropic stress-strain relations for t
double-porosity composite in the form

ṫ̄ e
D5GF“v1~“v!T2

2

3
“•vI G , ~39!

F ṗ̄c

ṗ̄ f 1

ṗ̄ f 2

G52F c11 c12 c13

c12 c22 c23

c13 c23 c33

GF “•v

“•q11 ż int

“•q22 ż int

G . ~40!

The coefficients in these laws are the second partial der
tives of R with respect to the appropriate strain. For th
reason, we also have the Maxwell relationsci j 5cji . De-
tailed expressions for these coefficients in terms of the
derlying material properties are obtained in Sec. V.

We next denote

s5 ż int~ p̄f 12 p̄f 2!1q1•f11q2•f21 t̄ v
D :ėD ~41!

as the rate at which energy is being dissipated (s.0 and is
not the derivative of a thermodynamic potential!. Upon ap-
pealing to isotropic macroscopic media and the standard
gument of irreversible thermodynamics, we expect line
transport laws of the form

ż int5G~ p̄f 12 p̄f 2!, ~42!

Fq1

q2
G52

1

h Fk11 k12

k12 k22
GF“ p̄f 12r f~g2 v̇!

“ p̄f 22r f~g2 v̇!
G , ~43!

t̄ v
D5FF“v1~“v!T2

2

3
“•vI G . ~44!

All these transport coefficients can be understood as ti
convolution operators. The transport laws and coefficie
will be independently derived and analyzed in Paper II.

The above constitutive equations along with the mac
scopic statement of the conservation of linear momentum
be derived in the following section provide a closed set
equations for the determination ofv, q1, andq2.
3-5
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IV. THE TOTAL-FORCE BALANCE

The macroscopic statement of the conservation of lin
momentum is obtained by directly integrating Eq.~3! over
the averaging regionV. By combining Green’s theorem fo
“•ti along with Eq.~16! for the gradient of an average, w
obtain the so-called averaging theorem@40,42#

1

VEV
“•tidV5“•~v i t̄i !1

1

VE]V12

n•tidS,

which allows the total conservation of linear momentum
be expressed as

“• t̄ D2“ p̄c5r1v1ǖ11r2v2ǖ21r f~v1Q̇̄11v2Q̇̄2!

2~r1v11r2v2!g,

where we have defined the volume-averaged total stress
ables

t̄ D5v1t̄ 1
D1v2t̄ 2

D , ~45!

p̄c5v1p̄c11v2p̄c2 . ~46!

The terms involving the integral of stress over the inter
surface]V12 have vanished due to the continuity of stre
From the fact that flow is continuous across the interfa

]V12, we have thatv1Q̇̄11v2Q̇̄25q11q2 ~even if v i Q̇̄i
Þqi). Furthermore, if

r5v1r11v2r2 ~47!

is defined as the average density of the composite, then
mass-averaged accelerationv̇massis defined by

r v̇mass5r1v1ǖ11r2v2ǖ2 .

The difference between the mass-averaged acceleration
the volume-averaged accelerationv̇ is negligible in the linear
theory being developed. Thus, we obtain

“• t̄ D2“ p̄c5r v̇1r f q̇11r f q̇22rg ~48!

as our final statement of the conservation of linear mom
tum in the composite.

V. MACROSCOPIC COMPRESSIBILITY LAWS

We now obtain detailed expressions for the coefficie
appearing in the macroscopic compressibility laws@Eq.
~40!#. Upon averaging Eq.~1! over all of V, we obtain

v iF “•u̇i

“•Qi
G52

v i

Ki
F 1 2a i

2a i a i /Bi
GF ṗ̄ci

ṗ̄ f i

G , ~49!

where overbars again denote the average of a field thro
out the phase in which it is defined. From the averag
theorem, we have
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v1“•u̇15“•~v1u̇̄1!1
1

VE]V12

n•u̇1dS, ~50!

v2“•u̇25“•~v2u̇̄2!2
1

VE]V12

n•u̇1dS, ~51!

where continuity ofu̇i on ]V12 has been used. Upon addin

Eqs. ~50! and ~51! and using the definitionv[v1u̇̄11v2u̇̄2,
we obtain the exact statement

“•v52
v1

K1
ṗ̄c12

v2

K2
ṗ̄c21

v1a1

K1
ṗ̄ f 11

v2a2

K2
ṗ̄ f 2 ~52!

for the total rate of change of dilatation for the doubl
porosity composite.

Next, similar averages are taken over the Darcy-flow
cumulations to obtain

“•~v1Q̄1!5
v1a1

K1
ṗ̄c12

v1a1

K1B1
ṗ̄ f 12 ż int , ~53!

“•~v2Q̄2!5
v2a2

K2
ṗ̄c22

v2a2

K2B2
ṗ̄ f 21 ż int . ~54!

As seen previously, we can justify making the identificati
“•qi5“•(v iQ̄i). In all of Eqs.~52!–~54!, the dependence

of ṗ̄c1 and ṗ̄c2 on the macroscopic deformation variabl
must be obtained.

Upon making a formal Legendre transformation, a fr
energy may be obtained fromR that has as independent var
ables not the macroscopic dilatations but rather the pres
variablesp̄c , p̄f 1, and p̄f 2. Although the average confining
pressuresp̄ci cannot be written as partial derivatives of th
free energy with respect top̄c , p̄f 1, and p̄f 2, they neverthe-
less must depend on these independent variables. Thus,
taking the time derivative ofp̄ci5 p̄ci( p̄c ,p̄f 1 ,p̄f 2), we ob-
tain linear response laws of the form

ṗ̄c15Q1ṗ̄c1S11ṗ̄ f 11S12ṗ̄ f 2 , ~55!

ṗ̄c25Q2ṗ̄c1S21ṗ̄ f 11S22ṗ̄ f 2 , ~56!

where the six constantsQi and Si j must be found. Exact
expressions were obtained recently@28# for these constants
so only a sketch of the derivation is given here.

The demonstration amounts to inserting Eqs.~55! and
~56! into Eqs.~52!–~54! to obtain linear response laws of th
form found earlier@cf. Eq. ~40!#,

F “•v

“•q1

“•q2

G52F a11 a12 a13

a21 a22 a23

a31 a32 a33

GF ṗ̄c

ṗ̄ f 1

ṗ̄ f 2

G1F 0

2 ż int

ż int

G .

~57!
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The Maxwell relationsai j 5aji provide three equations fo
determining theQi and Si j . Upon inserting Eqs.~55! and

~56! into ṗ̄c5v1ṗ̄c11v2ṗ̄c2, one obtains 05(v1Q11v2Q2

21)ṗ̄c1(v1S111v2S21) ṗ̄ f 11(v1S121v2S22) ṗ̄ f 2, and since
each coefficient must vanish, three more equations are
tained. One then finds that

v1Q15
12K2 /K

12K2 /K1
, ~58!

v2Q25
12K1 /K

12K1 /K2
, ~59!

S115a1

12Q1

12K1 /K2
, ~60!

S225a2

12Q2

12K2 /K1
, ~61!

S1252a2

v2

v1

12Q2

12K2 /K1
, ~62!

S2152a1

v1

v2

12Q1

12K1 /K2
, ~63!

whereK is defined as the overall drained bulk modulus of t

two-phase composite@i.e., K[( ṗ̄c /“•v) ṗ̄ f 1 , ṗ̄ f 2
]. These re-

sults for the confining-pressure constants—which, imp
tantly, are independent of the fluid’s bulk modulus—allo
the ai j to be expressed as

a115
1

K
, ~64!

a225
v1a1

K1
S 1

B1
2

a1~12Q1!

12K1 /K2
D , ~65!

a335
v2a2

K2
S 1

B2
2

a2~12Q2!

12K2 /K1
D , ~66!

a1252
v1Q1

K1
a1 , ~67!

a1352
v2Q2

K2
a2 , ~68!

a2352
a1a2K1 /K2

~12K1 /K2!2 S 1

K
2

v1

K1
2

v2

K2
D . ~69!

All dependence of these constants on the geometry of e
phase and on the underlying shear moduliGi is implicitly
contained inK. All dependence on the fluid’s bulk modulu
is contained within the two Skempton’s coefficientsB1 and
B2 and is thus restricted toa22 anda33. The various experi-
ments needed to measure theai j had been the focus of a
earlier publication@21#.
03660
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We emphasize that in the long-time limit whereż int50
and, therefore,p̄f 15 p̄f 25 p̄f , the above double-porosity
laws reduce to the single-porosity laws (“•q5“•q1
1“•q2):

F“•v

“•qG52F a11 a121a13

a121a13 a2212a231a33
GF ṗ̄c

ṗ̄ f

G . ~70!

These single-porosity results with theai j as established
above are identical to the exact results of Berryman and M
ton @43,44#, who used different arguments.

VI. THE INTERNAL WAVE-INDUCED FLOW

From an attenuation perspective, the most important
is the one controlling the internal fluid transferż int @Eq. ~42!#.
In the frequency domain, this law may be written as

2 ivz int~v!5g~v!@ p̄f 1~v!2 p̄f 2~v!#. ~71!

The frequency dependence of the transport coefficientg(v)
is shown in Paper II to be

g~v!5goA12 i
v

vc
, ~72!

where the detailed nature of the relaxation frequencyvc and
low-frequency limitgo are derived in Paper II.

VII. THE SHEAR RESPONSE

Upon applying a shear to an averaging element, it is p
sible to create local changes of the confining pressure a
therefore, fluid pressure~see, for example, Ref.@45#!. An
illustration is given in Fig. 2, in which a pure shear stress
applied to an averaging element containing an isolated e
soidal inclusion of phase 2. Although there is no confinin
pressure change within the inclusion, there will be confinin
pressure changes to the surrounding matrix phase 1. T
lobes of enhanced and decreased fluid pressure will t
equilibrate. General models for such shear-induced me
copic fluid flow apparently do not exist in the literature.

Unlike the compressional problem, not all mesoscopic
ometries will result in shear-induced pressure gradients
local flow. For example, if the drained shear modulus is
same in both phases or for certain concentric geometrie
models involving thin planar joints, no such local fluid
pressure gradients will be created~except possibly in the
neighborhood of where the joints intersect, which is assum
to occupy negligible volume!. In general, the shear-induce
flow problem is more difficult than the compressional pro
lem treated in Paper II. Our approach here is simply to
knowledge that such local flow is possible, but not to mo
it. Such an involved analysis must be left to a future stud

It is important to recognize that at least for isotropic co
posites, the applied shear will not result in any net chang
the fluid pressure throughout either phase. As such, the m
3-7
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S. R. PRIDE AND J. G. BERRYMAN PHYSICAL REVIEW E68, 036603 ~2003!
roscopic shear law takes the form~expressed for convenienc
in the frequency domain!

2 iv t̄ D5@G~v!2 ivF~v!#F“v1~“v!T2
2

3
“•v I G ,

~73!

with G(v) and vF(v) both real functions that are Hilber
transforms of each other. The low-frequency limit ofG(v)
corresponds to the drained-shear modulus of the compo
while at high frequencies a larger unrelaxed shear mod
holds.

VIII. SUMMARY

The complete set of macroscopic equations governing
linear response of isotropic double-porosity composites w
an assumede2 ivt time dependence is given by

“• t̄ D2“ p̄c52 iv~rv1r fq11r fq2!2rg, ~74!

Fq1

q2
G52

1

h Fk11 k12

k12 k22
GF“ p̄f 12r f~ ivv1g!

“ p̄f 22r f~ ivv1g!
G , ~75!

1

iv F “•v

“•q1

“•q2

G5F a11 a12 a13

a12 a22 a23

a13 a23 a33

GF p̄c

p̄f 1

p̄f 2

G1F 0

z int

2z int

G ,

~76!

FIG. 2. A simple cartoon in which an ellipsoidal inclusion has
far-field shear stress suddenly applied to it resulting in the cha
teristic four-lobed zones of local fluid-pressure change that
subsequently equilibrate.
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g~v!

iv
~ p̄f 12 p̄f 2!, ~77!

2 iv t̄D5@G2 ivF#F“v1~“v!T2
2

3
“•vI G , ~78!

with g(v)5goA12 iv/vc. All the coefficients appearing in
these laws have been given definition earlier in the pa
with the exception of the real shear coefficientsG(v) and
F(v). For wave problems, the acceleration of gravity c
either be dropped from the description or used as a proxy
the seismic source. Berryman and Wang@3# have analyzed
the wave properties of equations having this general fo
@though withż int50 in Eq. ~76!# and have demonstrated th
existence of a second slow wave associated with the
sponse in phase 2.

IX. AN UP-SCALED BIOT THEORY

One important use of this double-porosity theory is f
constructing an effective, up-scaled, single-porosity the
that allows for the mesoscopic flow loss but that by its nat
does not require analysis of a second slow wave in the
ond porous phase.

A simple way to construct such an up-scaled ‘‘Bi
theory’’ is to assume that phase 2 is entirely embedd
within phase 1 so that it does not intersect the external
face of an averaging volume. In this case,“•q250 and it is
straightforward to eliminatep̄f 2 from the above equations
The macroscopic response of the composite is then c
trolled by equations having exactly the form of Eqs.~1!–~4!
but with an effective complex drained modulusKD(v), und-
rained modulusKU(v), and Skempton’s coefficientB(v)
given by

1

KD
5a112

a13
2

a332g/ iv
, ~79!

B5
2a12~a332g/ iv!1a13~a231g/ iv!

~a222g/ iv!~a332g/ iv!2~a231g/ iv!2
, ~80!

1

KU
5

1

KD
1BS a122

a13~a231g/ iv!

a332g/ iv D . ~81!

One then obtains the effective Biot-Willis constant using t
standard definitiona5(12KD /KU)/B. The effective fluid
permeability is defined by applying a single fluid-pressu
drop across a sample of the two-phase composite. Var
effective-medium approximations could be invoked; ho
ever, a simple harmonic mean 1/k5v1 /k11v2 /k2 is appro-
priate for the situation we are considering, where phase
being modeled as embedded entirely within phase 1.

X. EXAMPLES OF ACOUSTIC ATTENUATION

Some examples ofP-wave attenuation in a double
porosity composite are now given in which phase 2 is m
eled as a small sphere of radiusa2 embedded at the center o

c-
ll
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LINEAR DYNAMICS OF DOUBLE- . . . . I. . . . PHYSICAL REVIEW E 68, 036603 ~2003!
each sphere of composite having radiusR. We fix R53a2 in
all examples so thatv25(a2 /R)3'0.037 andv150.963.
The volume to internal surface ratioV/S present in the re-
laxation frequencyvc as defined in Paper II is given b
V/S5R3/(3a2

2)59 a2.
We take the composite’s drained modulus 1/a11 to be a

harmonic average of the two constituent drained moduli t
are in turn determined from the effective-medium formu
Ki5(12f i)Ks /(11cif i) where the parametersci may be
called ‘‘consolidation’’ parameters. We take the low
frequency fluid-pressure gradient length in phase 1@that is
present in the expression forgo and is defined in Eq.~37! of
Paper II# to beL15a2A99/28'1.9a2 whenR53a2.

The embedded phase 2 is assumed to represent s
pockets where the grains are less-well consolidated. Acc
ingly, we model it with numbers corresponding to a poo
consolidated sandstonef250.30, k2510212 m2, and c2
5200. For the matrix phase 1, we take the values appro
ate to a consolidated shaly sandstonef150.10, k1
510214 m2, andc1510. In the following examples, we as
sume that the composite’s shear modulus is given byG
5(12f)Gs /(11cdf), wheref5v1f11v2f2 and where
cd510. We take the permeability to be given by 1k
5v1 /k1.

In the first example given in Fig. 3, we fixa251 cm and
vary the fluid viscosity to show how the two peaks in t
attenuationQ21 vary ~note thatQ21 represents the fraction
of energy irreversibly lost to heat in each wave period!. The
peak to the left for each curve corresponds to the freque
when the mesoscopic structure just has time to equilibrat
one cycle while the peak to the right corresponds to the B
loss maximum, which occurs when the entire wavelength
fluid-pressure variation just equilibrates in a cycle. Note t
the effect of viscosity is to shift the peaks differently. Sin
the mesoscopic heterogeneity has some characteristic le
Lmeso'a2, it will equilibrate when the frequency is atf meso

FIG. 3. TheP-wave attenuation of a double-porosity compos
having properties discussed in the text. The three curves corres
to viscosities ofh51023 Pa s ~solid curve representing ambien
water!, 231024 Pa s ~dashed curve representing hot water!, and
531023 Pa s~dotted curve representing oil!.
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5D/Lmeso
2 and since the pore-pressure diffusivityD is in-

versely proportional to viscosity, the mesoscopic peaks s
downward with increasing viscosity. For the Biot loss, t
distanceLBiot over which the pressure equilibrates is t
wavelengthl, so thatLBiot5vp / f wherevp is the P-wave
velocity and thus, equilibration will just occur whenf Biot

5D f Biot
2 /vp

2 or in otherwords whenf Biot5vp
2/D, which has

just the opposite dependence on the fluid viscosity and
meability than does the mesoscopic flow.

In the second example given in Fig. 4, we keep t
porous-continuum properties the same~with ambient water
in the pores! but change the sizea2 of the embedded spher
while keeping the volume fractions the same (R53a2).

XI. CONCLUSIONS

To conclude this part of our analysis, we emphasize t
the so-called ‘‘Biot loss’’ is the pressure equilibration occu
ring between the peaks and troughs of a compressional w
when the porous material is taken to be uniform over
wavelength. When a compressional wave squeezes an
ment of material containing mesoscopic heterogeneity, th
is induced a heterogeneous fluid-pressure response within
element that then equilibrates. As has been demonstr
here using a double-porosity model of such mesoscopic
erogeneity, considerable low-frequency attenuation can
generated by this equilibration. The peak value ofQ21 in the
double-porosity mechanism is controlled principally by t
contrast of the drained bulk modulus between the two pha
and is independent of the permeability of the materia
However, the relaxation frequency at whichQ21 peaks is

nd
FIG. 4. TheP-wave attenuation of a double-porosity compos

when the radiusa2 of the spherical inclusion of phase 2 varies
fixed ratio R53a2 ~i.e., at constant volume fractionv253.7%).
The three curves correspond to three different values ofa2 as
shown. It is not possible to consider smaller spheres than 1
because the notion of a porous continuum requires at least a
tens of grains to be present in each phase.
3-9
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directly proportional to the permeabilityk1 of the host phase
1. Furthermore, at frequencies less than the relaxation
quency,Q21 increases in proportion tovh/k1. This is ex-
actly inverse to the dependence onh/k found in the Biot
wavelength-scale mechanism.

Three natural extensions of the present two-poro
theory include allowing for anisotropic composites, gener
izing to N-porosity composites, and introducing the prop
fluid-dependent shear response.
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