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Linear dynamics of double-porosity dual-permeability materials.
I. Governing equations and acoustic attenuation
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The equations governing the linear acoustics of composites with two isotropic porous constituents are
derived from first principles using volume-averaging arguments. The theory is designed for modeling acoustic
propagation through heterogeneous porous structures. The only restriction placed on the geometry of the two
porous phases is that the overall composite remains isotropic. The theory determines the macroscopic fluid
response in each porous phase in addition to the combined bulk response of the grains and fluid in the
composite. The complex frequency-dependent macroscopic compressibility laws that are obtained allow for
fluid transfer between the porous constituents. Such mesoscopic fluid transport between constituents within
each averaging volume provides a distinct attenuation mechanism from the losses associated with the net Darcy
flux within individual constituents as is quantified in the examples.
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I. INTRODUCTION rosity constituents other than the composite as a whole is
assumed to be isotropic.

Most natural porous materials such as rocks and sedi- This is the first of two papers dedicated to obtaining the
ments in the earth have heterogeneity in the porousmacroscopic governing equations for such double-porosity
continuum properties at nearly all scales greater than graiflual-permeability composite materials. In this first paper
scales(i.e., scales=1 mm). Seismic wavelengths used for (Paper ), the governing equations are derived and the
oil and gas exploration purposes are typically in the rang&0OUurces of_acoustic attenuation in s_uch materials are clarified.
from 1 to 100 m. Seismic forward modeling is therefore AN essential part of the analysis is to model properly the
performed by discretizing the earth into elements that hav&®duency dependence of the internal mesoscopic flow be-
linear dimensions ranging from tens of centimeters to tens ofVe€n the two constituents. Thus, in the second pepaper
meters and typically only the average response in such el D, the' fluid transport 'a.WS goveming the Wave—_lnduced fluid
ments is measured and modeled. When seismic waves streé%w will be developed in greater detail. The Biot theory of

an averaging element containing mesoscopic heterogeneigfrous'med'a.1 aCOUSt'({i'Z.] ignores all Wave-m_du’ced ﬂOW_
mesoscopic scales. It is well known that Biot’s theory is

(heterogeneity at sca.les Qre‘?“er than 9“”“?‘ sizes but less thﬁgt capable of simultaneously explaining both the velocity
wavelengthy pore fluids in different porosity types respond and attenuation data measured on porous rd@s The

With' .diffe.rent changes in their flgid pressures. An internalﬂ1e0ry presented in these two papers provides one method
equilibration then takes place with fluid flowing from the o, doing so.
more compliant high-pressure regions_to the relatively stiff Double-porosity models were originally developed for
low-pressure regions. Such mesoscopic flow attenuates Sighodeling the fluid flow during pumping of earth reservoirs.
nificant amounts of wave energy. For purposes of attenuatingany models of Barenblatt and Zhelt®4] and Warren and
unwanted noise, one could, for example, design soundRoot[5] assumed the pumping did not affect the state of the
absorbing materials containing mesoscopic heterogeneity cgeological material; however, for the continued pumping of
pable of reducing vibrations within a given frequency band.interest to the oil and gas industry, it is necessary to account
However, no general theory has yet been developed fofor the pore-space reduction. Thus, more sophisticated mod-
wave propagation through materials containing mesoscopiels were develope6—28 allowing for the coupling be-
heterogeneity. Our approach here is to make the idealizatiotwveen rock deformation and fluid flow. At very slow rates of
that the mesoscopic structure can be meaningfully reduced tapplied-stress variation, the fluid pressure has enough time to
a mixture of just two porous continua. We make such aequilibrate internally between the two porous phases and
“double-porosity” idealization so that analytical results may such double-porosity models must then reduce to the usual
be obtained for the nature of the differential equations angingle-porosity mechanics established by Bib?].
coefficients controlling the macroscopic response. No restric- In addition to such double-porosity modeling, there has
tions are placed on the mesoscopic geometry of the two pdseen considerable work focusing on flow between the layers
of a plane-stratified material due to compressional waves
propagating normal to the layering@9-32. The present
*Email address: spride@univ-rennes1.fr study seeks to model the flow for arbitrary mesoscopic ge-
"Email address: berryman1@Iinl.gov ometry, albeit under the restriction to only two porous phases
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taken over a scale larger than the grain sizes but smaller than

FIG. 1. (Color onlineg The length scale relatons>H>a  the mesoscopic exteatof either phase. The response fields
where \ is the wavelength of the acoustic puldg,is the linear  are the followinguy;, the average displacement of the frame-
dimension of the averaging volun{¢ being employed, andis a  work of grains;Q;, the local Darcy filtration velocitypy;,
characteristic dimension of the mesoscopic-scale heterogeneityhe fluid pressurep.;, the confining pressure acting on the
Both phases 1 and 2 are taken to be isotropic porous continua. porous continuungtotal average pressyreand 1.iD , the de-
) , ) viatoric (or sheay stress tensor acting on the porous con-
mixed together in each averaging volume. tinuum. In the linear theory being developed here, the over-

In Sec. II, the porous-continuum laws that control the 10-415 o these fields denote a partial time derivative. The

cal response of each isotropic porous materia_ll are St?‘te_d- %celeratiorg represents gravity in the case of a consolida-
Sec. lll, the general form of the macroscopic constitutive;

equations are obtained from the macroscopic statement @

follow. In Sec. IV, the macroscopic statement of the conser- P
vation of linear momentum is ogtained while in Sec. V, thea term such ak; V py; implies

detailed nature of the coefficients in the macroscopic com- 1 (= o -

pressibility laws are obtained and in Sec. VII, the macro- kinﬁEZ—f dt’f dwe UK (w)Vpsi(r,t—t’),
scopic shear constitutive law is discussed. In Sec. VIII, we mJo -

summarize the entire set of macroscopic laws, and in Sec. IX ®)

reduce the double-porosity theory to an effective single- p . o
porosity Biot theory. Finally, we give examples of the where the complex “dynamic” permeability of each phase

) ) ) k;(w) has been explicitly and properly modeled in R&f4]
P-wave attenuation and then summarize our conclusions. P% allow for the development of viscous boundary layers in

\?vzrvg-igw?ac?aréa]lﬁjzigsfléw fluid transport laws governing thethe pores of phase In the bulk-force balancfEqg. (3)], p is
' the bulk density(volume average of solid and fluid within

Q), while p; is just the fluid density.

In Eq. (1), K; is the drained bulk modulus of phasé; is
Skempton’s coefficiert35] of phasd (fluid-pressure change

Within each macroscopic averaging Vo|um we as- divided by Confining-pressure Change for a sealed Sample
sume there is a welded Compos(te_, material points ini- andai is the Biot-Willis CoeffiCienl[36] of phan defined as
tially in contact remain in contacbf two isotropic porous y
materials. To produce useful results, such averaging regions a;=(1-Kj/K{)/Bi, (6)
must have linear dimensiom$ smaller than the wavelengths . )
\ of the applied stress field but larger than a characteristivhere Ki' is Gassmann's[37] undrained bulk modulus
length relations are schematically depicted in Fig. 1. In thes€aled sampjeln the present work, no restrictions to single-
present study, a single fluid is assumed to saturate both p&dineral isotropic grains will be made. Finally, in the devia-
rous phases, but with minor modifications the same formaltoric constitutive law[Eq. (4)], G; is the shear modulus of
ism applies to partial and patchy saturation as well. We nowhe framework of grains. All of these material properties are
define the boundary-value problem controlling such local refaken to be uniform throughout their respective phases.
sponse in). We finally state the boundary conditions to be specified on

Using an inde to denote the two phases<1 or 2, the  the surfacei() surrounding the averaging volume. Either of
differential equations controlling the local response in eac- 7 or u and either ofp; or n-Q must be specified at each
material are taken to be Biot's equatidris2], written in the  point of 9Q if a unique local response is to be obtained
form [38—40. Here,n is the outward normal to the averaging-

II. GOVERNING EQUATIONS FOR THE LOCAL
RESPONSE
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volume external _surface. The specif!c values we adopt_fO{hat the perturbationsu;, due to heterogeneity do not con-
these boundary fields are presented in the following sectioniyute to the macroscopic deformation rafv (i.e.
Finally, the continuity conditiongat the welded contadts [0 noudS=0) ’
a9, ido=Y).

on the internal interfacel(},, separating the two phases )
within each averaging volume are ==n-7, Ps1=7Ps2, Formally, one can express the leftov@y; using higher-
U;=U,, and n-g;=n-g,. Such continuity conditions are Order modestensorial ordersof the macroscopic response;
what couple the averaged response in phase 1 to the averaged., the next boundary term &u;(x) =xx:VVv/2 on d();,

response in phase 2. while additional terms would involve still higher-order gra-
dients of the macroscopic response. Such terms are important
Il MACROSCOPIC FORM OF THE CONSTITUTIVE o_nIyllf there_ is simultaneously present an equwallent. spatial
EQUATIONS distribution in stress so that non-negligible contributions to

Eq. (7) are made. For example, in a laboratory experiment,
To determine the macroscopic form that the constitutivewhere a uniform stress tensor is applied to the surface of a

equations must take, we focus here on the Eage which the ~ heterogeneous sample, the heterogeneity will necessarily
energy in an averaging volume is changif@p normalized produce the higher-order termsu;(x) in addition to the
by the volumeV of the averaging region Such changes in smooth response- Vv; however, there will be no net strain
the energy density are entirely due to the rate at which &nergy stored in such higher-order deformation, as (£p.
wave is doing work on an averaging volume and are thusnakes clear.
given by Obtaining precise conditions for the neglect of these
higher-order work terms is rather involved, since they de-
1 2 ) pend on details of the long range correlation of the hetero-
E= v Z f [n-7-u—n-Qips1dS, (7)  geneity(over scales necessarily larger than the $izef the
=1 S averaging volume Retaining such higher-order terms causes
) . ) . gradients of straifii.e., third- and higher-order tenspte be
where the exterior surface of the averaging volume is beingyjicitly present in the macroscopic laws along with their
partitioned into phase 1 and phase 2 portiong/@s=d();  aggociated stress-moment tenséatso third- and higher-
+3€,. In this section, we first expreds in terms of mac-  order tensors However, if analysis is limited to macroscopi-
roscopic field variables and then use the result to write dowmeally isotropic double-porosity composites, such higher-order
the form of the constitutive equations. response exactly decouples from the smooth homogenized
The boundary values o#() are the source terms for the response of interest because these responses are of different
local response withif) and are directly related to the mac- tensorial ordeKa result known as “Pierre Curie’s principle”
roscopic forcing provided by a passing wave. The local parf41]). The analysis of the present theory is thus restricted to
ticle velocitiesu; have boundary values that may be written Such macroscopically isotropic composites.
as For the fluid boundary conditions, the dual-permeability
nature of the materials being studied requires us to consider
) — ) " , separatelyand independentjythe average fluid response in
Ui(x)=v+x-Vv+48ui(x) on dQ;, (8 both phases 1 and 2,

wherex=r'—r represents distance &§) as measured from 1
the center point of each averaging volume, and wherés Hﬂ:—f prdV, (11
the average velocity of the solid phase throughout the entire Vil
averaging volume,
whereV; is the volume of phaskin the averaging volume.
1 . . As a wave compresses each averaging volume, it chgnges
v= V[L udV+ fﬂ udV (9)  in each phase while simultaneously producing wavelength
! 2 scale(macroscopig gradients in the averaged fluid pressure

and is thus a constant vector @f). The gradient of the Vpsi . These gradients along with the apparent macroscopic
average is given in this case kgf. Ref.[40]) force termsp(g—v) produce a Darcy flow in each phase.
Because such macroscopic forces themselves vary over a
wavelength, fluid accumulatder depletesin each phase of
f nuldSJrf nu,d$|. (10 each averaging volume. Allowing for these fluid accumula-
a0y 0, tions is a key part of the present analysis.

The boundary conditions for such flows are the fluid-
The first term of Eq(8) represents a rigid-body translation pressure conditions
induced by the wave, the second term represents the smooth
wave-induced deformation, while the third terfu; repre- P1i(X)=psi+X-fi+8psi(x) on 94, (12
sents any left over higher-order modes of “bumpiness” that
develop due to local heterogeneity. By substituting thewhere the vectof; represents the macroscopic forces driving
boundary values of Eq8) into Eq. (10), it can be verified relative fluid-solid flow in each phase and is given by

V_l
v
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fi:_VEf +pi(g—V). (13) represents the average total stess tensor in each averaging
volume, whileH is a characteristic dimension of the averag-

The perturbations$p;;(x) are again due to the local hetero- ing volume, and\ is the macroscopic wavelength. A funda-
geneity and will again be neglected in E@) [i.e., contribu- mental condition for the averaging is thdf\ <1. That the
tions such asdp;;(x)=xx:Vf,, and so on, correspond to Vvolume integral in Eq(18) is H/\ times smaller than the
higher-order tensorial orders of the response that are deco@verage stress tens@nd, therefore, negligibJefollows be-
pled from the smooth response being allowed for when th&ause the only spatial variations & ( 7)x that do not inte-
composite is isotropic grate to zero over the volume are the wavelength-scale varia-

Thus, the closure conditions of our thedig., those con- tions. The surface integrals over the internal surfath,
ditions that permit a closed set of macroscopic equations téhat arise when the divergence theorem is applied have ex-
be obtained which are capable of uniquely determining actly vanished from E¢(18) due to stress continuity af(};,
finite number of macroscopic response figldee the bound- once the sum overis performed(note that the total closed
ary conditions surface around each phase’@;+ 9€) ).

_ Again from Eq.(16), we have
Sui(x)=0 and d&p;(x)=0 on 4Q;. (14

Such perturbations from the smoothed response are only V'(“iQi):VLﬂ_n'Qids’ (21)

taken to be zero on the boundary of each averaging volume. '

They are necessarily nonzero throughout the interid2af  while we introduce the definition of macroscopic fluid flgx

order to satisfy the local Biot equations there. As statedhrough each phase as

above, these closure conditions lead to the proper governing

equations for the smoothed response whenever the material

is macroscopically isotropic. qi:VJm_n'QiXdS (22)
The boundary conditions of Eq$8), (12), and (14) are '

now inserted into the surface integrals of Eg). to obtain We now demonstrate that

lim V-q=V-(0;Q). (23)

2
VE=, v-j n~a-idS+é:J n-ride—Eif n-Q,ds .
=1 99 a0, 9,

_ To do so, consider the definition of the directional derivative
_foi' fag.n.QiXdS , (15) of gi,

. ds-Vqi(r)=q(r+ds)—q;(r), 24
wheree=[Vv+(Vv)T]/2 is the macroscopic strain-rate ten- ai(n) =Gl )~ a(r) 24
sor. The four integrals of the local fields here are now idenyajid as|ds—0. A normal projection of the integrand of Eq.

tified as macroscopic field variables. o (22) from the surfacedQ;(r+ds) to the surfacedQ;(r)
For an arbitrary local field); in phase, the definition of yields

the gradient of a volume-averaged field(ésg., Ref.[40])

1
1 ds- Va(r)=— ds- .n-n-VQ.-nx)dS
V(Uilﬁi):vJ’m_nlﬂidS (16) s vaidn) V.Lﬂi(r) $N(NQi-n=n-VQ:-nx)
| +0(|ds?). (25)

wherev;=V;/V is the volume fraction of phadepresent in . _ _
an averaging volume. Thus, we find immediately that Because the second term of the integrand is agHiH/\)
relative to the firstand, therefore, negligiblewe find that

— 1 since the direction of glis arbitrary,
V-(vin)=y| n-7dS 17
Vs, 1
\% -=—J nnQ;-ndg 1+ O(H/N)]. 26
The identity V- (7,x)= (V- 7)x+ 7 is now integrated over 9=y o0, Qi-nds (H/\)] (2

Q; and the divergence theorem applied to obtain . . ) )
Taking the trace of this equation gives exactly E2fl), thus
proving thatV-q;=V - (v;Q;) wheneverH<A\.

Last, we define the ratgfqm at which fluid volume is flow-
ing from phase 1 into phase (e., ¢y is the increment in
=?[1+O(H/)\)]. (19) fluid content for fluid in phase 2 due to internal diffusion

acrossi o),

2 2

1 — 1
> —f n-mxdS=7+ >, —f (V-m)xdV (18
=1 VlJag, Vg,

=1

Here, the volume-average expression

' —if d 2
gint_v ﬁﬂlzn.Ql S! ( 7)

?:Ul?l"‘ Uz?z (20)
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where the normanh is directed from phase 1 toward phase 2. _ IR
Thus, V-q;+ ¢ is the total rate at which fluid is being _pc:(;(v.u)’ (36)
depleted from phase 1, whiR-q,— ¢ is the rate at which
fluid is depleting from phase 2. _ IR

With all these definitions in hand, we finally can rewrite - pflzm, (37)
Eq. (15) in the instructive form LSt

E=v:(V-7)+ 3 [VV+ (VW) 17~ (Y-t + Em) P L S (39)

(V- Wa= Liny)

— (VU= Lind Prat LindPra— Pr2) + Q1 F1+ a0
(29) which are thus the state functions of the theory.
Since our treatment is limited to isotropic macroscopic

To exploit this result, the various contributions are groupedaws, the various tensorial orders of the response are decou-

and identified. pled [41]. Thus, upon taking the time derivative of Egs.
The first termv- (V - 7) is the rate at which kinetic energy (35-(38), we obtain isotropic stress-strain relations for the

is changing, since the conservation of linear momentum redouble-porosity composite in the form

quiresV - 7 to be equal to the total inertial acceleratitas _ 2
demonstrated in the following sectipn ?E=G Vv+(Vv)T— §V~vl , (39)

To consider the next terms, we first writein terms of
isotropic and deviatoric contributions:

Pc Ci1 Ci2 Ci3 Vv
Efl =—| C1p Coo Cy3 \E Q1+ gint . (40)

Ciz C23 C3al| V-0~ Cint

T=—pcl+7°, (29

wherep.= —tr{ 7}/3 is the total confining pressure acting on L
Q. We further separate the deviatoric stress into elastic and Pso
viscous contributions
o The coefficients in these laws are the second partial deriva-
P=70+70. (300 tives of R with respect to the appropriate strain. For this
o ] o reason, we also have the Maxwell relatiojg=c;; . De-
As is discussed in Sec. VII, the sudden application of a sheagijled expressions for these coefficients in terms of the un-
deformation can result in |0ca|ized pressure gradients W|th|raer|y|ng materia' properties are Obtained in Sec. V.
Q that then equilibrate. Such a transient viscoelastic effectis \\e next denote

represented by? . The strain-rate tensor is also written in

terms of isotropic and deviatoric contributions as 0={im(Pri—Pr2) +ap-F+qp-fot 72 P (41)
e=3V-vi+e, 31 as the rate at which energy is being dissipated-Q and is
not the derivative of a thermodynamic potentidlpon ap-

éDZE Vv+(Vv)T— zV~vI _ (32) pealing to igotropic_macroscopic medi.a and the standgrd ar-

2 3 gument of irreversible thermodynamics, we expect linear

. transport laws of the form
With these identifications, the raeat which energy is being

reversibly stored as strain energy may be written as Zintzp(ﬁfl_az), (42)
R=7g :€—pV V= pi3(V - Ayt Lind —Pra( V- Go = Lino)- — -
Q1 1| k11 Kio|| VPi1i—pi(g—V)
(33 =—— _ L (43
4z K2 K22]| Vpso—pi(g—V)
This statement allows us to deduce tRabas the functional
dependence 2
TP=F| Vv+(Vv) - 3V (44)
R=R(®,V U,V Wy + {int, V- Wo— iny), (34

All these transport coefficients can be understood as time-
convolution operators. The transport laws and coefficients
will be independently derived and analyzed in Paper Il

The above constitutive equations along with the macro-
JR scopic statement of the conservation of linear momentum to
—b_"" be derived in the following section provide a closed set of
Te : (39 : 9 >

9eP equations for the determination of q,, andqg,.

where the displacementsandw; are defined fronv=u and

g;=Ww; . Upon taking the total derivative of thR and com-
paring to the derived statement of E§3), we have
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IV. THE TOTAL-FORCE BALANCE

; = 1 .
. . . v,V-u;=V-(vqu +—J n-u,dS 50
The macroscopic statement of the conservation of linear ! ! (V1) Vg, ! (59

momentum is obtained by directly integrating Eg) over
the averaging regiof). By combining Green’s theorem for . -~ 1 .

V- 7 along with Eq.(16) for the gradient of an average, we U2V'u2:v'(”2u2)_VLQ n-u,ds, (5D
obtain the so-called averaging theoré40,42] 1

1 1 where continuity ofu; on 9Q 4, has been used. Upon addmg
V] QV‘ ’fidVZV'(Ui’fi)*‘vJ(m n-7ds, Egs. (50) and (51) and using the definition=u ;u; + v U,
12 we obtain the exact statement

which allows the total conservation of linear momentum to

Uq— Vo V10—
be expressed as V.v=— Klpcl K2p02+ K, 1|0f1+ sz (52

V':D—VE:Plv1a_1+P202a_2+Pf(0161+0262)
¢ for the total rate of change of dilatation for the double-

—(p1v1tp2v2)0, porosity composite.

Next, similar averages are taken over the Darcy-flow ac-
where we have defined the volume-averaged total stress vatiymulations to obtain

ables

D — V10— V10—
’T 1:‘3 + 02:5) y (45) V : (U lQl) K pCl K B pfl gmt ’ (53)

Pe=v1Pe1tV2Pecz- (46) Dplpr.  Upltpe

V- (0,Q: + 54
The terms involving the integral of stress over the internal (v2Q2) = K, P27 KB, K8, Piet (64

surfaced(},, have vanished due to the continuity of stress.
From the fact that flow is continuous across the interfacé®S seen previously, we can justify making the identification

901, we have thatle1+v2Q2—ql+q2 (even if v, Q. \& 9i= V. (v Q). In all of Egs.(52)—(54), the dependence

#0;). Furthermore, if of pcl and pcz on the macroscopic deformation variables
must be obtained.
p=v1p11V2p2 (47) Upon making a formal Legendre transformation, a free

defined h q £ th h energy may be obtained froRithat has as independent vari-
is defined as the average density of the composite, then thg,eq 1ot the  macroscopic dilatations but rather the pressure

mass-averaged acceleratiogassis defined by varlablespc, Ps1, andps,. Although the average confining
pressuresﬁci cannot be written as partial derivatives of the
free energy with respect ., ps;, andps,, they neverthe-

The difference between the mass-averaged acceleration al$s must depend on these independent variables. Thus, upon

the volume-averaged acceleratiois negligible in the linear taking the time derivative ope;=pei(Pc.Pr1.Pr2), We ob-
theory being developed. Thus, we obtain tain linear response laws of the form

PVmasé= P1U U1+ povoUs.

V?D_VE::PV"'PfCh"'PfCIz_Pg (48) HC:L:Q].EC—'— Sllafl—’— SlZEfZ! (55)
as our final statement of the conservation of linear momen- - . — .
tum in the composite. Pe2= Q2P+ S2uPr1+ SpaPr2, (56)

where the six constant®; and S; must be found. Exact
expressions were obtained recerj8] for these constants,
We now obtain detailed expressions for the coefficientsso only a sketch of the derivation is given here.

V. MACROSCOPIC COMPRESSIBILITY LAWS

appearing in the macroscopic compressibility laj&g. The demonstration amounts to inserting E¢s5) and
(40)]. Upon averaging Eq.1) over all of (), we obtain (56) into Egs.(52)—(54) to obtain linear response laws of the
form found earliefcf. Eq. (40)],
V-u vi[ 1 —a | Pa —
B vV-Q " K- /B P , 9 Vv app @, ags|| Pe 0
fi . '
I V.gqi|=—|axn ax azxs pi | T —Lint | -
where overbars again denote the average of a field through- | v.g, az as assl| — Zi
out the phase in which it is defined. From the averaging Pi2
theorem, we have (57)
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The Maxwell relationsa;; =a;; provide three equations for  We emphasize that in the long-time limit wheig=0
determining theQ; and S;; . Upon inserting Eqs(55) and 5 therefore,p;,=pr,=p;, the above double-porosity
(56) into pc=v1Pc1+v2Pco, ONE obtains € (v1Q1+v,Q; laws reduce to the single-porosity lawsvV{q=V-q;
—1)pct (v1S11+v2S,) Pr1+ (v1S12+v2S52) Pr2, @nd since +V-q):

each coefficient must vanish, three more equations are ob-

tained. One then finds that V.v a apt+ass ac
= . (70
1-Ky/K - V.q apptagg axpt2axtag o
U1Q1——1_K2/K1, (58

These single-porosity results with the; as established
1-Ky/K above are identical to the exact results of Berryman and Mil-

v2Q2= 1-K /Ky’ (59 ton [43,44], who used different arguments.
S.=a 1-Q (60) VI. THE INTERNAL WAVE-INDUCED FLOW
1= 17 e 0
1=Ki/K, From an attenuation perspective, the most important law
1-Q, is the one controlling the internal fluid transtgy, [Eq. (42)].
Spo= T (61)  In the frequency domain, this law may be written as
1-K,/K,
v, 1-Q —i0n(@)=y(@)[pr(0)—pr(0)]. (7D
Slzz_azv_—l—K K. (62
! 21 The frequency dependence of the transport coefficj¢ni)
v, 1-0Q is shown in Paper Il to be
Su= T (63 ”
=y, \/1—i—, 72
whereK is defined as the overall drained bulk modulus of the N@)=7 ' e (72)

two-phase compositfi.e., K=(p./V-Vv),. . ]. These re-
sults for the confining-pressure constants—which, impor
tantly, are independent of the fluid’s bulk modulus—allow
the a;; to be expressed as

where the detailed nature of the relaxation frequesagynd
low-frequency limity, are derived in Paper II.

VII. THE SHEAR RESPONSE

1 . . .
=i, (64) Upon applying a shear to an averaging element, it is pos-

sible to create local changes of the confining pressure and,
therefore, fluid pressurésee, for example, Ref45]). An
azz:vlcq(i_ a’l(l_Ql)) (65) illustration is given in Fig. 2, in which a pure shear stress is
Ky 1B 1-K;/Ky )’ applied to an averaging element containing an isolated ellip-
soidal inclusion of phase 2. Although there is no confining-

g l2% 1 2(1-Qp) (66 Pressure change within the inclusion, there will be confining-
B¥TK, |B, 1-K,/Ky ) pressure changes to the surrounding matrix phase 1. These
lobes of enhanced and decreased fluid pressure will then
v1Qq equilibrate. General models for such shear-induced mesos-

app=— K_lal’ (67) copic fluid flow apparently do not exist in the literature.

Unlike the compressional problem, not all mesoscopic ge-

v,Q, ometries will result in sh_ear-induc_ed pressure gradien_ts and

a;z=— ——ay, (68  local flow. For example, if the drained shear modulus is the

Kz same in both phases or for certain concentric geometries or

models involving thin planar joints, no such local fluid-
_ Ky /Ky (i_ﬁ_ﬁ) (69  Pressure gradients will be creatéexcept possibly in the

2 (1=K /K2 neighborhood of where the joints intersect, which is assumed

to occupy negligible volume In general, the shear-induced

All dependence of these constants on the geometry of eadtow problem is more difficult than the compressional prob-
phase and on the underlying shear modsgyiis implicitly lem treated in Paper Il. Our approach here is simply to ac-
contained inK. All dependence on the fluid’s bulk modulus knowledge that such local flow is possible, but not to model

is contained within the two Skempton’s coefficiets and  it. Such an involved analysis must be left to a future study.

B, and is thus restricted ta,, andags. The various experi- It is important to recognize that at least for isotropic com-
ments needed to measure thg had been the focus of an posites, the applied shear will not result in any net change in
earlier publication21]. the fluid pressure throughout either phase. As such, the mac-
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—t Lint=— r() (Pr1—Pr2), (77)

i

+T

—iwP=[G—iwF] Vv+(Vv)T—§V-vI . (79

with y(w) = y,v1—iw/w.. All the coefficients appearing in
these laws have been given definition earlier in the paper
with the exception of the real shear coefficie@§w) and

F(w). For wave problems, the acceleration of gravity can
3 - # either be dropped from the description or used as a proxy for
ot _ +T the seismic source. Berryman and Wdi8d have analyzed
the wave properties of equations having this general form
- phase 1 [though with{,,=0 in Eq.(76)] and have demonstrated the

existence of a second slow wave associated with the re-
sponse in phase 2.

IX. AN UP-SCALED BIOT THEORY

One important use of this double-porosity theory is for
— constructing an effective, up-scaled, single-porosity theory
that allows for the mesoscopic flow loss but that by its nature

FIG. 2. Asimple cartoon in which an ellipsoidal inclusion has a does not require analysis of a second slow wave in the sec-
far-field shear stress suddenly applied to it resulting in the characypg porous phase.

teristic four-lobed zones of local fluid-pressure change that will
subsequently equilibrate.

roscopic shear law takes the fofexpressed for convenience
in the frequency domajn

A simple way to construct such an up-scaled “Biot
theory” is to assume that phase 2 is entirely embedded
within phase 1 so that it does not intersect the external sur-
face of an averaging volume. In this ca¥,q,=0 and it is

straightforward to eliminatqgfz from the above equations.
The macroscopic response of the composite is then con-

_iw;D:[G(w)_in(w)] Vv+(Vv)T— EV_\” trolled by equations having exactly the form of E¢l)—(4)
3 1

but with an effective complex drained modulkig (), und-

73 rained modulusK(w), and Skempton’s coefficierB(w)

given by
with G(w) and wF(w) both real functions that are Hilbert 1 32{3
transforms of each other. The low-frequency limitG&fw) K—=311—m7 (79
corresponds to the drained-shear modulus of the composite b 8
while at high frequencies a larger unrelaxed shear modulus . .
holds. _ —a(ags ylio) taamst ylie) (80)
(85— ¥liw)(ags— ¥liw) — (agst yliw)*
VIll. SUMMARY .
1 1 alg( a23+ ’}//| (l))
The complete set of macroscopic equations governing the Ky Ko +B| a- A ylio (81
linear response of isotropic double-porosity composites with
an assumee '“! time dependence is given by One then obtains the effective Biot-Willis constant using the

standard definitiore=(1—Kp/Ky)/B. The effective fluid

V.0~ Vp.=—iw(pv+pia,+psdy) —pg, (74)  Permeability is defined by applying a single fluid-pressure

{ql}__i'
a2 7{

1 V.v
—|V-q|=
)

V.q,

drop across a sample of the two-phase composite. Various

— _ effective-medium approximations could be invoked; how-
Vps1i—pi(iov+g)

K K12 75 evera simple harmonic meark¥ v, /k,+v,/k, is appro-
K12 K22)| Vpsp— pe(iwv+Q) ' pri_ate for the situation we are cor)siderir_lg,_ where phase 2 is
being modeled as embedded entirely within phase 1.
811 812 || Pe 0 X. EXAMPLES OF ACOUSTIC ATTENUATION
ap, a, a +| & o
12 S22 23| Pt it | Some examples ofP-wave attenuation in a double-

La13 @z as3l| p,, — Lint porosity composite are now given in which phase 2 is mod-

(76) eled as a small sphere of radiasembedded at the center of
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FIG. 3. TheP-wave attenuation of a double-porosity composite  FIG. 4. TheP-wave attenuation of a double-porosity composite
having properties discussed in the text. The three curves corresponchen the radius, of the spherical inclusion of phase 2 varies at
to viscosities of»=10"% Pas(solid curve representing ambient fixed ratio R=3a, (i.e., at constant volume fractiom,=3.7%).
watep, 2x 10 * Pas(dashed curve representing hot wateand ~ The three curves correspond to three different valuesa,ofas
5% 10 2 Pa s(dotted curve representing il shown. It is not possible to consider smaller spheres than 1 mm
because the notion of a porous continuum requires at least a few
tens of grains to be present in each phase.

each sphere of composite having radiudNVe fix R=3a, in

all examples so thab,=(a,/R)*~0.037 andv,=0.963.

The volume to internal surface rat/S present in the re-  _ /| 2

| ion f P ) C meso @and since the pore-pressure diffusiviy is in-
axat|on3 reqzuencywc as defined in Paper Il is given by versely proportional to viscosity, the mesoscopic peaks shift
V/S=R®/(3a3)=9 a,.

. . downward with increasing viscosity. For the Biot loss, the

We take the composite’s drained modulua,i/to be a distancelgj,; over which the pressure equilibrates is the
harmonic average of the two constituent drained moduli th%avelengtﬁ;\t 5o thatle=v - /f wherev. is the P-wave
are in turn determined from the effective-medium formula . ' Biot™ ¥ p . P
Ki=(1— ¢)K</(1+Ci ) where the parameters may be veloc2|ty agld thus, equilibration will just 2occur V\./hefrgﬂot
called “consolidation” parameters. We take the low- —Df8io/vp OF in otherwords wherigiq=v/D, which has
frequency fluid-pressure gradient length in phasghat is just the_z opposite dependence on t_he fluid viscosity and per-
present in the expression fgg, and is defined in Eq37) of ~ Meability than does the mesoscopic flow.
Paper 1] to beLl=a2\/M8a1.9a2 whenR=3a,. In the sgcond examplg given in F_lg. 4, we keep the

The embedded phase 2 is assumed to represent smRProus-continuum properties the saifvdth ambient water
pockets where the grains are less-well consolidated. Accord? the pores but change the siza, of the embedded sphere
ingly, we model it with numbers corresponding to a poorly While keeping the volume fractions the sanie<(3a,).
consolidated sandstoné,=0.30, k,=10"'?m?, and c,
=200. For the matrix phase 1, we take the values appropri-
ate to a consolidated shaly sandstorfg=0.10, k;

=10 m?, andc,=10. In the following examples, we as- XI. CONCLUSIONS
sume that the composite’s shear modulus is givenGy , ) )
=(1— ¢)Gg/(1+Cydp), Whered=v,¢,+v,d, and where To conclude this part of our analysis, we emphasize that

cy=10. We take the permeability to be given byk1/ the so-called “Biot loss” is the pressure equilibratioln occur-
=v,/K;. ring between the peaks and troughs of a compressional wave

In the first example given in Fig. 3, we fa,=1 cmand When the porous material is taken to be uniform over the

vary the fluid viscosity to show how the two peaks in thewavelength. When a compressional wave squeezes an ele-
attenuationQ ~* vary (note thatQ ! represents the fraction ment of material containing mesoscopic heterogeneity, there
of energy irreversibly lost to heat in each wave peyidthe is induced a heterogeneous fluid-pressure response within the
peak to the left for each curve corresponds to the frequencglement that then equilibrates. As has been demonstrated
when the mesoscopic structure just has time to equilibrate ihere using a double-porosity model of such mesoscopic het-
one cycle while the peak to the right corresponds to the Bioterogeneity, considerable low-frequency attenuation can be
loss maximum, which occurs when the entire wavelength ofyenerated by this equilibration. The peak valu&of! in the
fluid-pressure variation just equilibrates in a cycle. Note thatdouble-porosity mechanism is controlled principally by the
the effect of viscosity is to shift the peaks differently. Sincecontrast of the drained bulk modulus between the two phases
the mesoscopic heterogeneity has some characteristic lengiimd is independent of the permeability of the materials.
L mess™=ay, it will equilibrate when the frequency is 4., However, the relaxation frequency at whi@i ! peaks is
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