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Dynamical instabilities of quasistatic crack propagation under thermal stress
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We address the theory of quasistatic crack propagation in a strip of glass that is pulled from a hot oven
towards a cold bath. This problem had been carefully studied in a number of experiments that offer a wealth
of data to challenge the theory. We improve upon previous theoretical treatments in a number of ways. First,
we offer a technical improvement of the discussion of the instability towards the creation of a straight crack.
This improvement consists in employing Paajgproximants to solve the relevant Wiener-Hopf factorization
problem that is associated with this transition. Next we improve the discussion of the onset of oscillatory
instability towards an undulating crack. We offer a way of considering the problem as a sum of solutions of a
finite strip without a crack and an infinite medium with a crack. This allows us to present a closed form
solution of the stress intensity factors in the vicinity of the oscillatory instability. Most importantly we develop
a dynamicaldescription of the actual trajectory in the regime of oscillatory crack. This theory is based on the
dynamical law for crack propagation proposed by Hodgdon and Sethna. We show that this dynamical law
results in a solution of the actual crack trajectory in post-critical conditions; we can compute from first
principles the critical value of the control parameters, and the characteristics of the solution such as the
wavelength of the oscillations. We present detailed comparison with experimental measurements without any
free parameters. The comparison appears quite excellent. Finally we show that the dynamical law can be
translated to an equation for the amplitude of the oscillatory crack; this equation predicts correctly the scaling
exponents observed in experiments.
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[. INTRODUCTION Marder did not allow however a correct prediction of the
characteristics of oscillatory crack propagation. The next de-
In 1993 Yuse and Sano reported a simple experiment ogisive theoretical step was taken by Adda-Bedia and Pomeau
fracture in glasg1] that nevertheless has attracted great at{4]. These authors not only reproduced Marder's results
tention from the fracture community. The experiment examfor straight cracks, but also developed a successful criterion
ined a strip of glass pulled at constant veloaityfrom an  for the secondary instability to oscillatory cracks. They
oven into water, cf. Fig. 1. At small enough velocity nothing €mployed the universal form of the near-tip stress tensor
happens. A first critical velocity heralds the onset of afield, i.e.,
straight crack, whereas exceeding a second critical velocity
results in an oscillatory crack. Finally, at sufficiently high Ki o Ki
velocities the crack pattern exhibits multiple fractures and a;j (1, 0)= \/ﬁzij(e)+ J2mr
disorder. The reason for the high interest in this relatively
simple experiment is, of course, that it offers a challenge folere K, and K, are the “stress intensity factors” with re-
the theoretical description of fracture processes. Being esseBpect to the opening and shear modes, Wheféfg(sg) and
tially a "quasistatic” process, as the velocityis very much s li(g) are universal angular functions common to all con-

smaller than the Rayleigh speed, the fracture process here gg  ations and loading conditions. Adda-Bedia and Pomeau
free of many of the complications arising in truly dynamic

fracture[2]. Nevertheless, in the absence of a microscopic ¢yq Bath

31(0). (1)

Heater
theory of the “process zonethow materials actually break
even the dynamics of quasistatic crack propagation in brittle™ |, A
materials remains a debatable issue. Ty
The lack of dynamical theory for the cracking process ~™_ _ " L_» 2b
does not hinder the understanding of the onsestedight e
cracks in the above experiment. Indeed, already in the yea 1 y
following the original experimental observations, Marder set T - - T+AT
up the equations describing the effect of the temperature fiela h

on the elastic theory of the material, and presented a quali- F|G. 1. Schematic representation of the experiment: a thin glass
tative description of the onset of straight craf8 From the  piate is pulled at a velocity away from a heater into a cold bath.
quantitative point of view this treatment was lacking, in par-The control parameters are the temperature difference between the
ticular the fracture energy turned out to be strongly velocityoven and the wateA T, the pulling velocityv, the spatial separa-
dependent against physical intuition. The tools employed byion between the thermal baths and the width of the platel®
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invoked the well-known and extensively used “principle of mathematical advancd42] we use Padapproximants to
local symmetry”[6], which states that the path taken by a significantly improve the treatment. Since the results of this
crack in brittle homogeneous isotropic material is such thatmproved treatment are relied upon in our solution of the
the local stress field at the tip of the crack is of mode | type oscillatory instability, we present the theory for the straight
annullingK,, . The considerations in Ref4] led to the con-  crack in some detail. Section Ill introduces the main results
clusion that the appearance of a negati¢g for positive  of our study in the context of the secondary instability to
deviations from straight trajectorfpr positiveK,, for nega-  oscillatory cracks. Using the dynamical law Eg) we show
tive deviation$ was tantamount to the onset of the oscilla-that as one crosses the second critical value of the parameters
tory instability. Nevertheless, these authors did not offer ahe solution of the equations changes its nature. We solve the
careful quantitative comparison against the experimentgquation near the onset of the oscillatory instability and cal-
known at the time. Their prediction of the fracture energyculate the critical values of the control parameters, the wave-
and the wavelength of oscillations differed significantly from length of oscillations, and the material functibrAlthough
the experimental values. our criterion for the oscillatory instability is in agreement
In light of these results, we should explain at this pointwith Refs.[4,5] (which was based on the “principle of local
why do we feel that further theory is called for. First, we symmetry”), we can go considerably further in describing
point out that “principle of local symmetry” is hardly a dy- the actual dynamics in the oscillatory regime. In particular
namical theory. It can predict an instability, but taken liter-we present a quantitative comparison with the experiments.
ally would only agree with a fracture path that has sharpOur handling of the oscillatory instability includes also a
kinks. It cannot be employed to predict the actual trajectorytechnical improvement on the analysis of Réf]; the latter
of a slowly moving crack when the latter is not straight. needed a separate Wiener-Hopf problem for every order in
Second, since the theoretical works cited above there hawbe amplitude of the perturbation. In our calculation we de-
been additional experimental studies of this very same prolrive a new expression fdf;, to leading order in the ampli-
lem[7-10], offering a wealth of data to challenge the theory, tude of the oscillations, an expression that requires a solution
a challenge that had not been picked up by the theorist@f only one Wiener-Hopf problem. This simplification is
Last, but not least, we feel that we can improve on a numbeachieved by presenting a different way to decompose the
of technical issues tackled by previous authors; these will bstraight crack problem into a singular and a nonsingular part
spelled out in the sequel, hopefully gratifying the diligent and then using a classical result of Cotterell and Ri3. A
reader as we go along. crucial step in the calculation is the Wiener-Hopf factoriza-
From the conceptual point of view we offer a point of tion, for which we apply the method of solution based on
departure from previous treatments by adoptirdyaamical Padeapproximants12]. Employing the dynamical law of
description of the crack development. In this we follow crack-tip propagation we calculate the critical exponents for
Hodgdon and Sethnd 1] who have built upon the principle the transition and compare them with the experimental data.
of local symmetry, using standard theoretical methods, t&ection IV offers a summary and concluding remarks.
reach a dynamical law for crack propagation which is given

by Il. THE STRAIGHT CRACK
i i A. Preliminaries
g Uh By varying the experimental control parameters one var-

ies the amount of elastic energy stored in the glass plate. One
can choose various paths in parameter space; in this work we
—=—fK;n, 2) adopt the scheme of RdB], fixing the values oAT, h, and
Jt v. The growth state depends then on the plate’s widih 2
R R for small enough values of the width a seeded crack does not
wheret andn are the tangent and the normal to the crack tip,grow; for a width greater than a critical valle , a crack,
respectively, and >0 is a material function that we assume whose tip penetrates a lengthaway from the cold bath,
to be nearly independent ofandn in the quasistatic limit. moves at a velocity-v. This crack is stationary in the labo-
This law predicts alifferentiablecrack path such that, is  ratory frame of reference and is stable as long as the width is
reduced. We will demonstrate that this law of motion pro-smaller than another critical valugg.. Above this value the
vides us with predictions that are in excellent agreement witterack becomes unstable and exhibits an oscillatory lateral
the characteristics of the crack trajectory in the oscillatorymotion with a well-defined amplitude and wavelength, still
regime. We believe that this is the first context in which Egstraveling at a velocity-v. As the width is further increased
(2) are compared against a challenging set of experimentdhe propagation becomes less and less regular.
data; the comparison appears quite favorable. The no crack—straight crack propagation transition is well
In Sec. Il we discuss, facing the danger of being superfluunderstood and the agreement with the experimental data is
ous, the problem of the primary instability leading to afavorable[7]. In this case the propagation is pure mode | and
straight crack propagation once more. This instability hadhe transition is governed by the following Irwin relation:
been correctly treated in Refs8,4], but we offer a technical )
improvement in the handling of the Wiener-Hopf factoriza- ﬁzr 3)
tion problem that is the basis of the solution. Using recent E ’
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wherel is the fracture energy which is a material property 1 o _[ = dk . R
andE is Young's modulus. In this section we address again u,(k,00= ——| d “' —D(k)F* (ke " |ekx,
this problem and describe the formal solution. The merit of Fr(k)J = —2

our treatment will be in providing a detailed scheme for per- (11

forming the Wiener-Hopf factorization in a different way. . ] .
From this solution one can extrajgt] the mode | stress in-

B. The formulation of the problem tensity factor introduced in Ed1),

oo

Imagine the glass plate as in Fig. 1 with a straight crack _ K +
penetrating into the glass from the water side. We choose a Ki(AT.v,b,h)= _wﬁD"(k)F (k). (12
coordinate system such that 0 is at the crack tigmarking

the water level ax= — ¢, where( is the penetration depth of Note that if the fracture enerdy is known then the mode |
the straight crack The y coordinate spans the interval stress intensity factor characterizes completely the no crack—
[—b,b]. The condition for mechanical equilibrium under straight crack transitiork, is a positive quantity and is dif-
plane stress conditions caused by a nonuniform temperatuferent from zero, as a function df, only on a scale of the

field reads order ofb. To calculate this quantity we need first to solve
e 5 for the temperature field and second to provide a method for
VEVEX(Xy) = —EasVT(X), (4)  accomplishing the Wiener-Hopf factorization.
where a1 is the thermal expansion coefficient agdis the C. The temperature field

Airy potential which is related to the stress tensor by ) ) ) )
The nonuniform temperature field induces the stress field

5 5 5 in the elastic plate. In this section we solve for the tempera-
i _ox oo i (5)  ture field and study its properties. For simplicity, we set the
ax2’ Xy axay” zero of the coordinates system at the cooling front level to
avoid ¢ dependence which is unnecessary in the present con-

Using the symmetry of the problem we state the boundaryext. For later calculations we will use the aforementioned

conditions as follows: transformation to put back thé dependence.
In the frame of reference of the plate the temperature field
Tyy (X, £D) = 0y (X, £ D) = 0(X,0) =0, (6)  Obeys the heat equation
aT 5
oy(X,00=0 for x<0, uy(x,00=0 for x=0. (7) E:DV T (13

Fourier transforming Eq(4) in the x direction and focusing  with the boundary conditions
on the upper half plate one obtaif8 the following Wiener-

Hopf equation 14]: VT-n=0,
ayy(k,00= —F(k)uy(k,00+ D (k) (8) T(x=0)=T,
with T(Xx=h)=T+AT. (14)
) ) Here D=0.47 mnf/sec is the diffusion coefficient of the
F(k)=Ek sint?(kb) —kb (9) 9lasshis the distance between the cold bath and the heater,
sinh(2kb) + 2kb’ and n is the unit vector normal to the boundary of the
domain.
- [1—cosh{kb)][sinh(kb)—kb] This equation can be simplified for the straight crack con-
D(k)=2EarT(k) sinh(2kb) 1 2kb ; figuration, for which there is ng dependence, by looking for

(10) @ stationary solution in the laboratory frame of reference, of
the formT(x—wvt). This solution obeys the stationary diffu-

where one still has to obey the boundary conditions of EqSiOn equation
(7). Note that the subscript denotes the transformation

—Xx+¢€ in the temperature field such that the origin of the V2T + iﬂzo, (15)
coordinates system is at the tip of the crack. For conve- din 9X
E;/e?ﬁ:’hf;ﬁ_rcvigﬁ\:\é on, we rescale all lengths in the prObIemwhere diy,=D/v is the thermal diffusion length. The exact
Writing F(k)=F~(K)/F*(k), whereF~(k) has neither SClution of this equation is
zeros nor singularities for Ink) <0, andF * (k) has neither 1— e~ Xd,
zeros nor singularities for Ink)>0, the Wiener-Hopf T(X)=AT Wﬁ(x) o(h—x)+68(x—h)|. (16)
— t

method[14] results in
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160 ‘ ; possible to find amexactfactorization, so one tries an approx-
140l imantF (k)=F (k) that can be exactly factorized. This can be
made rigorous following a recently proven theorgf?]
120f which establishes the closeness of the product factors of
G F(k) to those ofF (k) in their region of regularity ifF (k)
=100 =F(k) for all ke D, whereD is the strip of analyticity of
_% 80r F(k). A commonly followed first step in finding (k) is to
g examine the behavior df(k) near zero and- oo,
E 60'
e

)
o
T

k
F(k)—>i§ as k— to, (17)

N
o

| 4
Cold bath Heater F(k)— :—2 as k—=0. (18

g 0 5 10
position (mm)

FIG. 2. The calculated temperature distribution inside the glass A Standard approach to finding a good factorization is
plate. We can identify two distinct regimes—the diffusive regime attNen 0 seek a functiorp(k) that reproduces the asymp-
low velocities ¢ =0.05 mm/sec in the lower curyend the advec- tOtC beh_aV'Or ofF(k) and to correct it by a ratio of two
tive regime at higher velocities vE&0.3 mm/sec, andv polynomials
=0.5 mm/sec in the upper two curyeshese curves should be

compared with the measured temperature field in F8f. E K " k*+ ak2+ﬂ 19

o N | o (k) ¢()k4+yk2+3’ (19
We can identify two distinct regimes, as shown in Fig. 2.

The first one, at low velocities, is the diffusive regime, in where, for example,

which the temperature field is controlled by the spatial sepa-

ration of the thermal bathls. The second one, at higher ve- K

locities, is the advective regime, in which the temperature d(K)= ——, (20)

field is controlled by the thermal diffusion length, . Actu- V4K®+ 144

ally, there is a third regime, at still higher velocities, in which

the temperature field is controlled by the thickness of theand «,(3,y are free parameters that should be chosen as to
plate. Note that we assumed that the temperature is uniformest fitF (k) to F(k). In principle, one can use higher order
along this dimension and therefore the breakdown of thipolynomial ratio to achieve greater accuracy. The disadvan-
assumption in this regime leads to a three-dimensional proltage of this approach is that the positions of the poles and
lem, which is outside the scope of our two-dimensionalzeros are not well controlled and that the convergence behav-
model. ior of the process is not clear.

The temperature field enters the problem through the term |In our work we follow a new method developed in Ref.
—Ea7V?T(x) of the inhomogeneous Bi-Laplace equation.[12]. In the heart of this approach lies the use of Page
This term is sensitive only to variations of the temperatureproximants. An N/M] approximant ofF (k) is written as
gradient, i.e., to the curvature of the thermal field. In &d)
we considered a finite spatial separation between the thermal ~ Pn(k)
baths, but assumed perfect thermal baths, an assumption that F(k)= (k) (22)
leads to a discontinuity of the gradient near the baths. This M
discontinuity results in incorrect estimates of the stress fieldy hore
since at low velocitiegsee Fig. 2 the only gradient varia-

tions are in these regions, we cannot expect a very good Pu(K) =ag+agk+ak2+ - - - +aykM (22)
guantitative agreement with the experiment for low veloci-
ties. At higher velocities, there is a significant curvature in- Qu(K) =1+ byk+bok?+ - - - + by kM 23)

side the glass, so we expect a better quantitative agreement
with the experiment. In Ref.9] the temperature field was

measured and found to vary smoothly near the baths due o The coefficientsa, b, are determined from the Taylor-
the finite impedances of the baths. In the absence of th eries expansion 6f(k) at any regular point. Let us take the

experimental data of the measured temperature field we Wif?xpansmn point to b&=0, so

use the ideal baths approximation. o
F(k)= 2 ck", (24)
D. The Wiener-Hopf factorization n=0
The crucial element in the solution is the Wiener-Hopfwherec, are known. In order to solve for the unknown co-
factorization of the known kernét (k). Generally it is not efficients one should set
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P(K) o 0.00004

N

O (K) +O(kN+M+l):n§O Crk" (25 0.00003
0.00002

to obtain a set of linear equatiof$2]. In this method one

approximates directly the factorization and the process is 0.00001

completely algorithmic. Note that since in practice one uses 0 Hyf

the truncated series &f(k) it is not possible to approximate 0 20 10 60 80 100 120
directly the product factors for arbitrary largés. In order to k

overcome this difficulty we should find the asymptotic form - - oy
of the factorization and use it as a boundary condition for thqunl;lic(;h ?)f k'.rhe relative erro P (k)/F (k) = F (k) J/F (k). as a
Padeapproximants. The asymptotic factorization is found by
noticing that the zeros and polesfetk), which are, respec- Py a(K)
tively, the solutions of the equations F2(k)= % (31)
N
sinkP(w,) —w2=0, (26)
with N even. This approximation contaifst 2 zeros andN
sinh(2z,,) —2z,=0 (27)  poles which become, after taking the square rddt 1
i . branch points in the upper half-plane adée- 1 branch points
have the property that if, for exampley, is a zero ofF(k) in the lower half-plane. The relative errdi ~(k)/[F * (k)
thenw,, —w, and —w, are also zeros. The same holds for —F(k)])/F(k), for N=28 is shown in Fig. 3. The
the poles. Therefore, considering the solutions of E&6)  asymptotic matching of * (k) to \2/(—ik) is shown in Fig.

and (27) only in the first quadrant, we obtain 4.
* K K K E. The determination of the fracture energyI'
1-— 1+ —]||1-=|| 1+= i :
K4 nl;[l ( N Wi, w, W, In Sec. Ill we develop a theory for the oscillatory insta-

F(k)=-—=— . bility and compare it with the experimental results. A crucial
1 (1_ E) ( . 5) - k parameter in that theory, as here, is the fracture enrgye
A= Z, Z, ;n can extract the fracture energy from the experimental thresh-
old for propagation, cf. Eq(3). The relevant measurement
was reported in Ref.7] in which a linear elastic model iden-
tical to ours was used to extract the fracture enefgwas
chosen to best fit the experimental data of the onset of the
straight crack propagation. It was found thit depends
weakly on the velocity when the idealized thermal profile
1 was employed]’ turned out velocity independent for the
( Kk ) ( . k) B Fr(—k) actual thermal profile measured in the experiment. Since we

K
1+ =
Zn

(28)

do not have the experimental data for the thermal profile we
will use, for consistency, a typical value of the former, i.e.,
(29 I'=3.75 J/m. This value should be compared to Fig. 5 in

Using this relation and the asymptotic relation of ELy) we Ref. [7].

conclude that the asymptotic factorization is
[ll. THE STRAIGHT TO OSCILLATORY CRACK

2 ik TRANSITION
Frk—\— F (K—=\5 (30) . : , S
—ik 2 Solving a dynamic fracture problem in the quasistatic

We should choose the Padpproximants to match these limit consists of(i) solving the equilibrium equations for the
asymptotic forms. This is achieved by squaring the originalkstress field together with a given set of boundary conditions
kernelF(k), to obtain an even function dfthat behaves as at the sample boundaries and on thepriori unknown and
k? as|k|—. Hence, we can derive g(N+2)/N] Pade evolving crack boundary andii) employing a dynamical

approximation principle to evolve the crack. A proper solution determines
0.4 0.8
0.3 0.6

FIG. 4. The realleft-hand pangland imagi-
0.2 0.4 nary (right-hand panel parts of F* (k) (lower
curve in both panejscompared to the real and
imaginary parts ofy2/(—ik), as a function ok.

0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
k k
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the correct shape of the crack as a function of time. Clearlypne to significantly simplify the derivation. The critical point
the predictions of the employed crack growth law should béds calculated by solving the set of equations governing the
consistent with the experimental observations. In this sectiotransition. The time evolution of the crack just above the
we use the dynamical law in EQR) to study the straight to critical point is studied by directly solving the equations of

oscillatory crack transition. motion for the tip of the crack.
Rewriting the tangential and normal unit vectors at the tip
of the crack in terms of the angl that the tangential unit A. The decomposition problem

vector makes with th& axis, we obtain . .
In order to study the stability of the straight crack to small

perturbations we arbitrarily chooge=0 in Eq. (34). This
choice will be shown later to be legitimate. We are interested
first in finding an expression fd,, to leading order in the

t=xcos@+ysiné,

: xsing-+y coso, (32) amplitude of the perturbation. We begin by formulating an

which, upon substitution into Eq2), leads to auxiliary problem. The presence of a crack, which is usually
modeled as a mathematical branch cut, introduces the fa-

J0 mous square-root singularity of the stress field near the tip of
ot K- (33 the crack. We want to represent our problem as a sum of two

parts. The first part contains no singularity, implying that it is
This equation predicts that as long Kg=0, the crack crack free, but it includes the geometry of the problem and
will propagate in a straight line. Nevertheless, in any realthe thermal field. The second part contains the singularity,
material there exist intrinsic instabilities, due to imperfec-implying that there is a crack with a given load on it, but the
tions of the material and the loading conditions, which pro-domain is infinite. The nonsingular part is chosen such that it
duce a small randon{,# 0. We are now facing two distinct reproduces the required boundary conditions on the plate’s
guestions: Under what conditions, in terms of the controledges and on the crack.
parameterd\T, h, v, and 2, does straight crack propaga- Once we obtain the load on the semi-infinite straight
tion become unstable? Once the straight crack propagatiotrack in an infinite medium we can apply the classical result
becomes unstable, what is the stable stationary path that @f Cotterell and Rice for slightly curved crack43]. The
follows? mathematical formulation of this decomposition problem
The criterion of stability arises naturally from the dynami- leads to a set of integro-differential equations whose com-
cal equation. If¢ and K, have the same sign, with>0, plexity may cast doubt on the usefulness of the whole pro-
then 96/t has the opposite sign arjd| decreases, which cedure[16]. In what follows we will show how to avoid
means that a small perturbation decays. By the same argthese mathematical difficulties and effectively solve the
ment, for @ andK,, having the opposite sign a small pertur- problem.
bation grows. This criterion is identical to that suggested in  To see that the solution is almost at hand, suppose for a
Refs.[4,5]. moment that we succeeded to solve the problem in this way
The question of the future evolution of the crack, once thdfor a straight crack and for a given set of the control param-
instability threshold is reached, should be answered by soleters. The load on a straight crack am infinite domain
ing the dynamical equation just above the onset of the instawhich is a fictitious quantity, must be a pure mode | load by
bility. Guided by the experimental observation that the shapsymmetry. We denote it asfyy(x,yzo;e), where we marked
of the crack just above the onset of the oscillatory instabilityexplicitly the parametric dependence 6énThe mode | stress
is a pure sine function, we introduce a smooth deviation fromintensity factor is given by15]
a straight crack path

) 2 (o dXU;y(x,y=0;€)
y(x,t)=Asifw(x+vt)]+O(A% for x<0. (34 K(€)= ;J, = : (35

This assumption serves two roles: first, it represents a single

mode component, corresponding to a wave numpén the  Introduce now thex-Fourier transform ofe’ (x,y=0;¢),
linear decomposition of a small random perturbation on topdenoted as};y(k,yzo;{’). With this object in mind we re-
of the straight crack and will enable us, for 0, to analyze  write Eq.(35) as

its stability; second, it is an ansatz for the solution of the

dynamical equation just above the onset of instability. Note = dk.. 2 (0 dxe
thaty(x,t) satisfiesy(x,t)|<1 and|y’(x,t)|<1. Ki(€)= Jixgoyy(k,y=0;€) EJ,x =k
In this section we will study the stability of the straight X

crack as well as the time evolution of the crack after the (36)
onset of instability by analyzing the dynamical model of Eq. .
(33). The stability is studied by applying the stability crite- O the other hand, we have calculated the same quantity
rion derived above for which an expressionkf to leading ~ USing the Wiener-Hopf techniqusee Eq(12)]:

order in the perturbation amplitude is needed. We derive this .

expression_ _by introducing an auxiliary p_roblem, the so-called K,(€)= f %Do(k)e*i”ﬁ(k). (37)
decomposition problem, whose effective solution enables —2T
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These two expressions fd¢,(¢), though derived through 80
completely different mathematical procedures, should be 60
identical functions off. The ¢ dependence of the second
expression is given by the phase factor*‘ which imme- Kpp /A
diately implies that, (k,y=0;¢) =a(k,y=0)e"'¥’. We 20
conclude, by the uniqueness of the Fourier transform, that 0
12 14 16 18 20 22 24
~ Do(K)F* (k) Do(k)F ™ (k) w
Uyy(k,y=0)= . = ’ : : ]
2 ro dxe kx 2 FIG. 5. K;; /A vs the dimensionless wave numher For fixed
[ \ﬁf ] \ [ — AT, v, andh, the curves from top down show the increasing of the
TS —e \/—_X —ik stored elastic energy via the increasing of the width of the plate. It

(38) is clear that there is a critical width for whid, (w)=0.

which effectively solves the auxiliary problem. “physical” shear stress which is a destabilizing teifthe
Hence, we have shown how one can use the Wiener-Hogfrst term, and as a “geometric” shear stress, which is a

solution for a traction-free straight crack in a finite configu- stabilizing term(the second terjnWe expect to find a range

ration in order to find the effective load on a straight crack inof the control parameters for which for evem0 the sec-

an infinite configuration via the solution of the decomposi-ond term dominates the first, leading kg >0, which im-

tion problem. We reiterate that this load is a fictitious tensiorplies a stable straight crack propagation. Thus, our stability

on a crack in an infinite domain corresponding to a traction<riterion states that the transition between straight and oscil-

free situation in a finite domain. The solution of this auxil- latory crack propagation occurs when there exisiv+#0

iary problem will enable us later on to use the powerfulsuch tha; (A,w,t=0)=0. One concludes that the straight

tool of the complex potential method that is most suitable forcrack to oscillatory crack transition is governed by the fol-

an infinite domain problems. Other theoretical treatmentdowing set of equations:

that were unable to solve this problem led to incorrect

predictions[16]. Kf(b,6)+Kj(b,¢,w) KP(b,6)
We comment that the approach described in this section is E T E =T,
equally valid for general loading conditions, including mode
[l. The generalization is straightforward, but is not needed K, (b,€,w)=0,
for the present problem.
Ky (b, €,w)
B. The critical point —w =0, (40)

The calculation now is straightforward. Let us select a

local coordinate syster{r,6} at every point on the crack, Where we made explicit the dependencebpif, andw.

with r being the distance from the point arftibeing the The first equation is the Irwin’s relation that expresses the
angle, starting with9=0 for the tangent. In such coordinates energy balance between the elastic energy flow to the tip of
the normal opening streg,(x,y(x,t))=o4,(x,y(x,t)) and  the crack and the fracture energy needed to create a new
the tangential shearing stre3s(x,y(x,t))=a,4(x,y(x,t)). ~ crack surface. This fracture energy is a parameter of our
Using the loado, we can find these stress components formodel; in previous applications this parameter was optimized
any small deviatiory(x,t) from the straight crack. Applying for agreement with experimenfg]. We cannot afford such
these loads to the classical result of Cotterell and RIg, ~ !uxury since we have determined already the parameter in
with t=0, we obtain the following expressions féf; and Sec. Il E. Therefore in our comparison with experiments the

K, to leading order imA (see the Appendijx theory is truly challenged, and the agreement will be shown
to be very satisfactory.
2 (o dxa' (k,y=0;¢) The second and third equations express the stability
K= \/:f Al +0(A?), threshold. In order to characterize quantitatively this transi-
T e V=x tion we adopt the experimental scheme of R&f, in which

_ ~ AT andh are kept fixed and for a givenm the critical width
K AWt 0)— — \E o dxAsin(wx)oy(k,y=0;€)]  for the the onset of oscillationd, ., is found. Figure 5
n(AWw, ) 7w (—x)3?2 shows a typical situation in whick, /A is plotted as a func-
tion of w for different values of the width2 at constaniA T,
v, andh. It is shown that as one increases the width a solu-
tion for the equatiork(A,w,t=0)=0 appears.

We solved the above set of equations graphically by the
This result shows that onli,, is changed to first order in the following procedure. We fixed T=135°C andh=5 mm
amplitude of the perturbation. The expressionKgrhas the and for each velocity we changdduntil we converged to
general form derived in Ref5]. It is the sum of two com- the solution. Note that first one has to solve the first equation
petitive terms which the authors of RdE] refer to as a for €. Figure 6 shows the critical width for oscillations

1
+5A wK;+O(A3). (39
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in Sec. Il C, the agreement with the experiment is much bet-
ter within the advective regime, in which the temperature
field is controlled bydy,,, than within the diffusive regime, in
which the temperature field is controlled hy Our solution
here yields also the wave number of the unstable mode. In
Ref.[5] this wave number was identified with the wave num-

E ber of the actual trajectory in the post-critical conditions
"§ without further discussion. We find this unsatisfactory;
-l

whether or not this wave number will be observed in the
actual crack trajectory also in post-critical conditions de-
pends on the dynamics. If the “fastest growing mode”
R A becomes stabilized by the nonlinear terms, then this wave
-2 107 number would be observed. To assess this issue we must turn

10
V (mm/s) next to the weakly nonlinear theory in the post-critical
regime.

FIG. 6. The critical width for oscillationd ,s.=2bys. VS the
driving velocityv for AT=135°C andh=5 mm. We did not cal- " ) .
culate these quantities for still higher velocities since this regime is C. The posteritical time evolution of the crack
controlled by three-dimensional effects which are outside the scope Crack propagation laws used in the literature so far were
of our theory. The theoretical values are connected by the dasheghable to predict analytically nontrivial trajectories left be-
line that was added as a guide for the eye. The experimental valug§ing a crack tip. The set of well-controlled experiments de-
that are represented by the unfilled squares were extracted from Fig.riped here offers a challenge to any dynamical law, espe-
15 in Ref.[9]. The deviation oL .. from the measured data is due a1y near the critical point where the crack exhibits a lateral

to its high sensitivity to the fine details of the temperature ﬁeld_'oscillatory motion with a well-defined wavelength and am-

which we approximated, in the absence of the measured one, us';{ﬁitude. In this section we will show that the adopted dy-

the ideal baths assumption. It is clear, as predicted in Sec. Il C, th . .

. . . - namical law meets that challenge. The stationary stable path
the agreement with the experiment is much better within the advec-f th K iust ab h t of th illat instabilit
tive regime than within the diffusive regime. ofthe crack just above the onset ot the oscillatory instability
is determined by the solution of the dynamical equation near
the transition. Noting that under our assumptioms

Losc=2bosc @s a function of the driving velocity. The ex-  ~y/(qt), we obtain

perimental data reported in Re] have been added for
comparison. ay'(0}) 3

The deviation ofL .. from the measured data is due to its o — Ky (Aw, 1)+ O(A%). (41)
high sensitivity to the fine details of the temperature field,
which we approximated, in the absence of the measured onBeriving the time dependent expression Ky (see the Ap-
using the ideal baths assumption. Nevertheless, as predictpendiX and substituting our ansat24), Eq. (41) becomes

szvsin(th)= \/%fo dx{2A sinw(x+vt)]al (x,y=0;0)} —Asin(wot) o} (x,y=0;€)

1
- + =Awcogwout)K;.

. —x 2

(42

This equation has a trivial solution, i.éA,=0, which is  which is anexact solution of the post-criticalynamics. This
the straight crack. An explicit calculation with+=0 deter- is in good agreement with the experimental observations.
mines that the right-hand sid&®HS) of this equation is a This result also shows that the arbitrary choiee0 in the
pure sine function. Thus our ansat#4) can be an actual linear stability analysis is legitimate since one has to fix the
solution only if we can choose the control parameters such gghase only at one time point.
to set the phase of the sine function to zerd=ab (cf. the Figure 7 shows the wavelength of the oscillationg.
LHS). We see that this is possible with,(A,w,t=0)=0  =2m/wys.as a function of the driving velocity. The criti-
which is exactly what was calculated above in the context ofal width for oscillationa ,sc= 2bs, first shown in Fig. 6,
linear stability analysis. Thus if this condition can be met,was added for completeness, while the experimental data re-
(and if A remains small above the critical point, cf. Sec. ported in Ref[9] have been added for comparison. It is clear
[11D) we can indeed identify the aforementioned wave num-+that the wavelength of oscillations agrees rather well with the
ber as the wave number of the oscillations in the close vicinexperimental data, which confirms the assertion in R&f.
ity of the critical point. We conclude that the equation of that the oscillation wavelength,s. Seems far less sensitive
motion (33) is consistent with a pure sinusoidal trajectory, to the fine details of the temperature field thag,.
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FIG. 7. The wavelength of the oscillatiohgs= 27/Wys. VS the 03 04 05 06 0.7/ ?.8 0.9 1
driving velocityv for AT=135°C andh=5 mm. The theoretical Vs (MM/sec

values are connected by the dashed lines that were added as guidesFI /(ab ¢ . o i locities in th

for the eye. The experimental points that are represented by the G_' 9. Uosc (gbosd as a function ob o, for velocities in the

unfilled points were extracted from Fig. 15 in RE3]. The results advective regime, wherg=fEa7AT Vbos

of Fig. 6 were superimposed for completeness. The wavelength of

oscillations ,s; Seems far less sensitive to the fine details of thevalues ofa=0.15 andB8=2.5[9] and the FEM simulation

temperature field thah . values ofe=0.14 andB=2.1[17]. This result shows that
the scaling between,s.andL 4. is controlled by the thermal

As we have indicated before, there are several relevardiffusion length.

length scales in the problem. Here we have calculated a Up to now we have dealt with the matching of the phases

guantity that has the dimension of length and we wanted t@f both sides of Eq(42). The matching of the amplitudes

explore its dependence on the various length scales in theill enable us to calculate the functidnWe stress that cal-

problem. Therefore, we have calculated the dimensionlessulatingf is not related to the comparison with the experi-

oscillation wavelengti\ ../ L osc at the threshold of instabil- ment which is exhausted by the matching of the phases.

ity as a function of the dimensionless thermal diffusion The RHS of Eq.(42), at the critical point, has the form

length di,/Lose. The results are shown in Fig. 8. We have

found that within the advective regime, which corresponds to

relatively high velocities, this function can be well fitted by AEarAT VbosA* SIN(Wos osd). (43

the linear scaling lawh g go/Los=a+ Bdin/Losc With «

=0.12 andp=2.1, to be compared with the experimental . . . .
B P P whereA* is a dimensionless amplitude to be calculated. By

05 equating the amplitudes of both sides of E4R) we obtain

2

w
0.4 f= os osc . (44)
EaTAT\/bOS *
3 03
o The functionf determines the decay length of perturbations
j with finite K, back to a pure mode | propagation in the

et
)

straight crack regime. A typical length is constructed from
Vosc!9, Whereg=fEatAT\b,s, Figure 9 shows /g (in
units of bogd as a function ofv . for velocities in the ad-
vective regime where the theory agrees with the experiment.
‘ It is seen that this lengtfin units of b.) decreases as the
: : : velocity increases. Assuming that this behavior is not sensi-
0 0.05 0.1 0.15 0.2 0.25 tive to the details of the temperature field, it is a challenge to
th “osc any theory that will suggest an independent derivatiof. of
FIG. 8. Dimensionless oscillation wavelength./L . at the Note thqt ilj this calculatiohturns.ogt to be velocity depen-
threshold of instability as a function of the dimensionless therma@€nt. This is not unreasonable sirfds expected on general
diffusion lengthdy, /L ... It is Seen that within the advective re- grounds to be a function &€, andKj [11]. It is not impos-
gime the values can be well fitted by a straight line. This resultsible however that the velocity dependence is an artifact of
shows that the scaling betwean,. and L is controlled by the the ideal baths assumption, similar to the influencelon
thermal diffusion length. reported in Ref[7].

0.1
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D. The critical exponents of the amplitude of oscillations — oW2A/2+ v WAA3I8— v WRAA' 2/8+ v A" /12— v WRAZA" 8

In the previous sections we discussed how the solution of —3vA’2A"/8
the equation of motion changes its nature fromAan0 so- f

. . . . Wuo [ 2mwu
lution to anA#0 solution, but since we considered all the = — Kﬁ{A(x+vt)sir’[w(x+vt)]}
relevant quantities t®(A) we could not study the properties 2m
of the amplitude itself. In order to extend our analysis we fwo
should introduce a time dependent amplitude in our ansatz Xsin(wot)dt— e

a
X,t)=A(x+vt)sin w(x+uvt 45 2rlwy _ .
YO =Alxtopsinwix+ot)] (45) xf K3{A(x+vt)sifw(x+ovt) ]}sin(wot)dt.
0

and write the equation of motion ©(A%). The orientation (49

of the tip of the crack is given by This is a highly nontrivial integro-differential equation for

the time evolution of the amplitud&. We expect that after a
transient the amplitude saturates to a fixed value. Therefore,

13(y —
- y"“(x=01) we set all the derivatives to zero and the amplitud ti
—ta~ Ly’ (x= ~v/(x=0t)— 2 "~ " plitude equation
6()=tg" [y'(x=0)]=y"(x=0¢) 3 reduces to
(46)
—vW2AR2+vW*A%8
. . fwou [ 2m/wo
which upon substitution of our ansatz becomes =_ Zfo K(P{A sifw(x+vt)]}sin(wot)dt
, . fw 2/ wy
o(t)=wA(vt)cogwot) +A' (vt)sin(wot) —2—: ) KA siMw(x+ot)]}sin(wot)dt.
1
—§[WA(vt)cos{th)+A’(vt)sin(th)]3, (50
(47) If we consider one of the control parameters slightly

above its critical value, e.g., the velocity, and expand all the
terms around the critical point we obtain

where the prime denotes a derivative with respect to the ar-

—wW? _ 2 4 A3
gumentvt. Because of the symmet#d— — A the next order WosdA/2 € (Wosch 20 0sdloses Wosd AT2H Wos A™/8

term in the expansion oK, in powers ofA is of O(A3). = — fFAKP{A SiMTWosd X+ 00sd) 1H20 osc
Thus,
+a(Uosc)evA+,8(Uos&A3-
@ ; Heree,=(v—vos/vosd IS the critical paramete (v s IS
K=K {AGcroDsinwix o1} the coefficient of a critical linear term related to
+KE{A(x+vt)siMw(x+uvt)]} + O(AY), 3, KDLA sifwosdX+vost) T}, Bluosd s the coefficient of

the noncritical cubic term, and we neglected terms of
O(€,A%). The lineamoncritical terms cancel out since these
are just the equation t@(A). Therefore, we are left with

(48)

where K(M{-} is the functional that was calculated in the 0=[(Wisst 20 0stVosey Wosd 2+ (v 059 1 €,A

Appendix, being ofO(A). K,(,3){~} is a functional whose 4 5
derivation is straightforward but very lengthy; we do not [~ Wosd8+ B(vosd JA”, (51

present it explicitly here, but note that it yields a term . . . .
of O(A3). where d,w,s>0 since as we increase the velocity we in-

In order to proceed we assume that our problem exhibit§'€45€ the energy flow to the_ cr_ack tip Wh'Ch requires more

separation of time scales: the amplitude changes on a typ?—raCk surface cr_e_ateo! per unit time. The instability is tanta-
| i that | h | ’ than th iod of il mount to a positive linear coefficient. Wessumethat the

cal ime that Is-much fonger than the pernod of 0SCHla- oy term leads to saturation. It follows that

tions. Hence, we can substitute the expressiong fandK,

into the equation of motion, cf. Eq33), and operate on

both sides of the equation with the operator A

wol2m 27" f sin(wt)dt to obtain Wisd8— (v osd

_ (Wgsc+ 20 osWose?y Wosd 12+ (v osd) (U2

v ot

(52
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This result shows that the critical exponent with respeet,to translates to an amplitude equation for the oscillatory solu-
is 1/2, in agreement with the experimental dath A similar ~ tion. This equation resulted in calculated critical exponents
calculation can be presented for the dependencé aih  of the transition, in agreement with the measured ones. The
ear=(AT—ATd/AT,s.. Such a calculation results in the success of the dynamical theory based on the law of tip
same exponent 1/2 as observed in the experiment. propagation lends strong support to this law, at least in these
Two comments are in order. First, vakerivedthe ampli-  quasistatic conditions. One should stress at this point that the
tude equation from the dynamics of the tip, E§3), rather  analysis considered the temperature field as effectively fro-
than guess it as in previous works. More stamina can irzen. The oscillatory nature of the crack has very little to do
principle lead to an actual calculation of the last term in thiswith the temperature dynamics. This cannot be expected to
equation. Second, we have projected the full amplitude equaemain valid for larger amplitudes of oscillations since the
tion onto its asymmetric part. Projecting onto the symmetridboundary condition restricts the temperature level sets to be

(cosing part yields the equation normal to the crack. Thus at some point the dynamics of
the temperature field must enter the discussion, potentially
vWA' —oW3AZA’ [2— v WA 34— vwAA A" /4 leading to new dynamic instabilities including chaos and
disorder.
— fﬂ ZWIWUK(l){A(ervt)sir’[w(x+vt)]} In fact, the conclusion of this study appears to be that in
2m Jo ! the quasistatic conditions the assumption of small scale
yielding holds, making it sufficient to solve the linear elas-
X cogwot)dt— fﬂ ticity problem, coupled to a correct law of motion that dic-
2 tates how the tip propagates. It would be interesting to try to
— apply thi_s or similar laws to other contexts in which the
Xf K LA+ vt)sifw(x+vt) [Fcogwot)dt. quasistatic problem can be solved, but where the absence of
0 an accepted propagation law has led to a number of possible

(53) evolutions[18,19. We expect however that in truly dynami-
cal crack propagation new theoretical concepts need to be

Discarding again, for the stationary state, all the derivativesdeVveloped in order to reach a similar level of calculation of
we see that we do not gain any new information about th&XPerimental observations.
stationary amplitude. On the other hand, we learn that also

the last term is a pure sine function, since it has to vanish at ACKNOWLEDGMENTS
the critical point exactly like th&;™ term. We thank Vincent Hakim for proposing the problem to us,
suggesting that there is substantial amount of theory to be
IV. CONCLUDING REMARKS done. This work was supported in part by the Petroleum

i ) . Research Fund; the Minerva Foundation, Munich, Germany;
The main point of departure of our theory from previous ;4 by the European Commission under a TMR grant.
ones is that we employ, in addition to the two-dimensional

linear elasticity part, the dynamical crack-tip propagation
law suggested in Ref11]. Using this dynamical law we first
derived a stability criterion for the straight crack propaga- The aim of this appendix is to derive Eq89) and (42).

tion, which is identical to a previously suggested criterionAssume that we have a mode | loag(x,0) on a semi-
[4,5]. We then extended the analysis to the evolution of thenfinite crack whose tip is at=0. Let us first find the nor-
crack shape just above the onset of the oscillatory instabilitynal opening stressT,(x,y(x,t)) and tangential shearing
and showed that the dynamical equation has a stationarmstress T,(x,y(x,t)) on any small deviationy(x,t) from
sinusoidal solution with a theoretically calculated wave num-straight crack in terms ofr,,(x,0). The cartesian compo-
ber. We should stress at this point that this trajectarglves  nents of the stress tensor field are related to polar compo-
with K, # 0 except at isolated pointJhus the “principle of  nents according to

local symmetry” is shown to be insufficient as a dynamical ) ]

criterion. We presented a quantitative comparison with the Oxx= O COS O+ g SIPO— 4 SIN 20,

experimental data for a temperature field that is characterized
both by the spatial separation between the thermal baths
and the thermal diffusion lengt,,. Our results agree rather
well with the experiment$9].

From the conceptual point of view we have offered aHere ¢ is the local angle made by the tangent to the crack

successful way to decompose the problem into a singular anghd thex axis. These relations can be expanded to first order
a nonsingular part. This decomposition enabled us to derivgy g~y’(x,t) and then inverted to yield

an expression foK, to leading order in the amplitude of the

oscillations that depended only on the factorization of one Tn(X,y(X,1))=04y(X,y(X,1))

Wiener-Hopf kernel. This factorization is done by applying _ o

the method of Padapproximants suggested recenfty2]. =y (Y (1) =2y (X D oy (XY (X, 1),
Finally, we showed how the dynamical tip propagation law (A2)

APPENDIX: SLIGHTLY CURVED CRACKS

Oyy= 0y SIPO+ 0y COS O+ 0y SiN 26,

Oxy=(0y — 0y SIN(20)/12+ 0,4 COS 20. (A1)
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T Y(X, 1) = 074X, Y (X,1)) = 0y (X, Y (X, 1)) Y (X, 1)
X [ayy(X,y(X,1)) = oyx(X, Y (X, 1)) ].
Expanding the cartesian components to first order(it)
ayy(X,Y(X, 1)) = ayy(X,0) + dyoyy(X,00y(X,1),
Oxy(X,Y(X,1))= 0y (X,0) +dyoyy (X,0)y(X,1),  (A3)

and using the relation

Ay (X,0) = dy(— dydyx) = — dxdydyx = — 0,,(X,0),

(A4)
we end up with
Ta(,Y(X,0)=0y(X,0),
T,y (X,1)) =Y (X,1) [ 0yy(X,0) = 0y,(X,0) ]
—Y(X,1)03(x,0), (A5)

where we used the symmetry of the problem to set
0y(X,0)=0; 0,,(x,0) can be calculated from the knowl-

edge of the boundary conditian,(x,0).

PHYSICAL REVIEW 68, 036601 (2003

such that the deviation vanishes as the tip of the crack at any
time. This adaptation yields

. 2 (0 dxq(x)—igy(x)]
K|_IK||:\/;J’OQ il \/_—Xq“ ) (A8)
where
a=To— 2y OO T +Y(X DT +2y(x,) Ty,
Q=Te+Y DT+ 3y (00T, (A9)

Using the derived loading conditions of E@5) and apply-
ing these results to our ansatz fgx,t) we obtain

q= O'yy(X,O) + O(Az):
au={Asimw(x+ovt)][ oy, (X,0) = oy(x,0) ]}’
—Asin(wot) oy, (x,0)+ 3 Awcogwout) gy, (x,0)
+O(A3). (A10)

The last step is to relate,,(x,0) to the boundary condi-

The problem we should solve now is formulated as fol-jg yy(x,0). According to the complex potentials method

lows. Given the following crack configuration and loading
conditions:(i) a semi-infinite crack whose shape is describe
by a small deviatiory(x,t) from a straight crack configura-

tion in an infinite two-dimensional domaifii) a normal
opening loadT,(x,y(x,t)) and a shear load,(x,y(x,t)) at

0[15] we have for a semi-infinite straight crack

Tyt on=4 RED(2)] (A11)

with

any point on the crack, what are the mixed mode stress in-

tensity factors?

A version of this problem was treated completely by Cot-
terell and Ricd 13]. They have found that the stress intensity
factors for a finite slightly curved crack extending from
—ato a, where the deviation vanishes at both tips, are give

by

. 1 fa . at+x
K|_|KuzﬁfadX[Q|(X)_|Q||(X)] \/ﬁ, (A6)

whereq,(x) andqg,(x) were derived explicitly in Ref[13].

In order to adapt this result to our semi-infinite configuration

we should fix one tip of the crack t®=0, take the limit
where the other tip goes te«, and finally shift the origin,

Y(X,1)=y(x,t)—y(0}), (A7)

1 [0 dX{ayy(X,0)—ioyy(X,0]y/—x

) =
&= —

(A12)

Since in our case there is no shear loading on the straight

crack we obtain

q|=0'yy(X,0)+O(A2), (A13)

dy={2AsiMw(x+uvt)]oyy(x,0} —Asin(wot)ay,(x,0)
+3Awcogwut) ay,(x,0)+ O(A?),
which becomes, upon substitution into E48), the RHS of

Eqg. (42) and by setting=0 and integrating by parts gives
Egs.(39).
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