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Halo formation at early stage of injection in high-intensity hadron rings
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Halo formation under a nonequilibrium state for a two-dimensional Gaussian beam in a FODO lattice, which
is an array of magnets where F is focusing, D is defocusing, and O is the drift space between magnets, was
examined in terms of a transition of time-varying nonlinear resonances. Nonlinear resonant-interactions be-
tween individual particles and intrinsic beam-core oscillations result in a beam halo. The location of the halo
is analytically tractable using canonical equations derived from an isolated resonance Hamiltonian.
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[. INTRODUCTION gested from the simulation results are theoretically examined
based on the IRH. In Sec. V, the obtained results are summa-

One of the major issues in high-power hadron acceleratorgzed.
is activation of the environment surrounding an accelerator Before proceeding, assumptions concerning the calcula-
due to beam loss. Beam loss must be reduced to a suffiions and the example discussed here are noted as follows.
ciently low level to allow hands-on maintenance. In order toThe calculations were carried out for 2D mismatched beams

produce an acceptab|e design’ it is important to understan\dith a Gaussian distribution in a typ|Ca| FODO lattice. Most
the mechanisms of emittance growth and halo formation tha@f the beam/machine parameters are taken from the 12-GeV
result in beam loss. proton synchrotron of the High Energy Accelerator Research

From this point of view, halo formation has been studiedOrganization(KEK-PS), where the injection energy is 500
by simulations and theoretical analyses. Especially, particleMeV and the circumference is 340 m. No external nonlinear
in-cell (PIC) simulation codes[1] and analysis using fields, except for space-charge originated fields, were in-
particle-core model$PCM) [2] have greatly facilitated the cluded in the present calculations. In order to manifest a key
understanding of space-charge effects. In these studies,@le of the space-charge effects in halo formation, accelera-
resonant interaction between the individual particles and intion was not taken into account and the momentum spread
trinsic beam-core oscillations has been found to be a drivingvas assumed to be 0%. The combination of bare tunes
mechanism of halo formation. However, an analysis usingvvxﬂ/y) chosen in the present study was close to the opera-
PCM has been made on an equilibrium state, where the rniéonal parameter$A(7.123,5.229) and(7.203,5.229)]. In
emittance is constant. The beam property in a nonequilibthe case ofA, a structure resonance due to a space-charge
rium COﬂditiOl’l, which takes a key role in the resonant inter_effect in the horizontal direction has been pointed out in past
action of an injected beam, is different from that in equilib- Simulation results, but no resonance was shown in the case of
rium. Therefore, the PCM could be misleading when aB [3].
nonequilibrium state is discussed. In addition, it is inaccurate
to apply a simulation analysis, such as an fast Fourier trans-
form analysis and a Poincaneap analysis, for a nonequilib-
rium as that shown in this paper, because these analyses need
to track over 100 turns, but the beam distribution varies
through the nonequilibrium state in a much shorter time pe- In order to delineate the halo-formation mechanisms in a
riod. typical FODO lattice, a 2D simulation COd®ATRASH has

The purpose of this paper is to examine halo formatiorbeen developed3]. The electric field originating from the
under a nonequilibrium condition in a circular accelerator. Inspace charge is calculated by the hybrid tree code method.
this context, we have been developing a useful analyti®IC-style charge is assigned in the dense core region in a
model, which is based on an isolated resonance Hamiltoniaway similar to that in Ref[4]. Then, the tree code method
(IRH). This model allows us to predict the position and size[5] is applied over the total region of interest. The effects of
of the halo as a function of the beam and machine paranthe image charge are ignored. The space-charge forces are
eters, even in nonequilibrium in terms of time-varying non-included asé-function-like kicks in orbit tracking. The lon-
linear resonances. gitudinal step size was chosen to be 10 cm, which gave suf-

The organization of this paper is as follows. In Sec. Il, theficient saturation in the calculation results as a function of
simulation results obtained by the newly develop@®) the step sizePATRASH'S results were compared with the re-
two-dimensional simulation codeaTRASH (particle tracking  sults ofaccsim andsIMPSONS[ 6], which have been indepen-
in a synchrotron for halo analysisre presented, where de- dently developed and widely employed for particle tracking
tails of the temporal evolution of the particle distribution in in high-intensity hadron rings. The same beam parameters
phase space are given. In Sec. Ill, the IRH is analyticallyand machine conditions were assumed for this benchmark
derived, while comparing it with the simulation results. In test. These results have been confirmed to be fairly in agree-
Sec. IV, the time-varying nonlinear resonances that are sugnent with each other, as shown in Fig[d].

Il. TEMPORAL EVOLUTION OF THE PARTICLE
DISTRIBUTION AFFECTED
BY NONLINEAR SPACE-CHARGE FIELDS
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the horizontal direction. The horizontal beam distributions in the nonequilibrium

state in casé\ are shown in Fig. 8. The beam distribution

The simulations were carried out gTRASHfor 2D mis-  remained Gaussian throughout the initial 10 turns in céses
matched beams with the Gaussian distribution for both casesnd B. Beyond this period, the beam distribution for case
of A and B. The initial phase-space projections of a mis-drastically changed from Gaussian, as shown in Fig. 9.
matched beam are shown in Fig. 2, which were chosen from The simulation results through a transient state clearly
the actual result observed on the KEK 500-MeV beam-ndicate that the beam-core oscillation, which drives the halo
transport line. The footprints on the tune diagram for 200formation by the parametric nonlinear resonance caused by
sampled particles are shown in Fig. 3. The maximum incocoupling with the betatron oscillation of an individual par-
herent tune shifts were 0.25 in the horizontal plane and 0.48cle, is dominated by a combination of mismatching and the
in the vertical plane. lattice structure, and then with the lattice structure alone.

The rms emittance growth is shown in Fig. 4. The hori-However, the simulation results cannot clearly indicate what
zontal and vertical rms emittances in c&equickly grew to  phenomena occur through this transient state and what
arrive in the equilibrium state after 5 turns. The vertical rmsmechanism can drive the phenomena through this transient
emittance in casé also quickly grew to arrive in equilib- condition.
rium. On the other hand, the growth of the horizontal rms
emittance showed a quite different feature; it continued to
grow until 40 turns. Ill. FORMALISM OF AN ISOLATED RESONANCE

The phase-space projections in the horizontal direction HAMILTONIAN FOR A GAUSSIAN BEAM

are shown in Figs. 5 and 6, where the particle distribution |, the early stage of the nonequilibrium state, the whole

stays in the nonequilibrium state. In casethe growth of the  \je\y of the time dependent process seems to be observed by
four characteristic areas is notable, which are identified a8sing snapshots of the first-order Hamiltonian turn by turn.
the resonance islandsliscussed in the following sectibn  Therefore, the fully analytic approach to explain the simula-
Since no nonlinear magnet components were included iRon results is developed. TheatrAstH's results indicated
these calculations, this nonlinear resonance is apparentiyat the Gaussian distribution is kept within the first 10 turns
driven by nonlinear space-charge self-fields. Particles, whosgs shown in Fig. 8. Therefore, it was assumed that the dis-
horlzontgl depressed tune closes.to 7, experlenceq SPalgihution remains Gaussian under nonequilibrium state. The
charge fields which oscillated 28 times per 1 turn with thespace-charge potentiab generated by a beam with the
beam-core oscillation due to the 28 FODO cells in KEK-PS.G5ssjan distribution is written in the form of a Taylor ex-
In caseB, no nonlinear resonances are found in Fig. 6 but
rather, the growth of the filamentation can be recognized.
The time-varying horizontal rms beam sizes in the non-

pansion:

equilibrium state in casé are shown in Fig. 7. During the eN & (-1)" & [n .
initial few turns, the beam core oscillated with a frequency P(X.¥i8)= 7— Z Y Z frr(S)X Yo,

. . . 0n=1 or=0\Tr
almost two times higher than the bare tune in casesdB. (1)

This is simply tumbling in phase space due to mismatching.
Beyond the 5th turn, the mismatching oscillation disappeared

and the beam core oscillated 28 times per 1 turn. ) T 11
g F——_
10 ——7— 1(5) T 1 E | v
£ g W‘ (b) -] ut e s Ik - PPY I A
s > S ] E 0 2040 60 80100 ‘£ 0 2040 60 80100
o1 . qoll— 1 o | = Turn number H Turn number
-20 0 20 20 0 20
X (mm) y (mm) FIG. 4. RMS emittance growth ife) the horizontal plane and

(b) the vertical plane. The solid line is caeand the dashed line is
FIG. 2. Initial phase-space mafs) horizontal andb) vertical. caseB.
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8 T T T whereH, is the unperturbed Hamiltoniary, p, andv are the
g oL _ relativistic mass factor, the momentum, and the velocity of
2 the on-momentum particle, respectively. By introducing
2 4l - action-angle variablesy,,#,,l,ly) and an independent
o variable #=s/R, [7], where x=+/28,1,c0s(+ox), Y
g 2 7] =v2p,l ycos(z/{y+ oy), Ro is the averaged orbit radiug,

0 ] and g, are Twiss parameters, anfg, and ¢, are the flut-

40 20 0 20 40 ters of the betatron phase with respect to the averaged phase

X (mm) advance of the unperturbed betatron oscillation, the Hamil-

L ) tonian is rewritten as
FIG. 9. Beam distribution after 100th turn in ca&e

S):f“ dt H thy Loy 1 0)= o 1yl
0 {t+ZUX(S)Z}n7r+(1/2){t+20'y(3)2}r+(1/2), R)

. . . . l/,yv X! y! )' (2)
whereN is the total number of particles per unit leng#g,is y pv

the permittivity, andr, ando, are the horizontal and vertical
rms beam sizes, respectively. The Hamiltonian describing the

betatron oscillation perturbed by the space-charge effects ihe space-charge potential can be separated into oscillating

given in the form

terms with the angle variable and the other oscillating terms,
g™(6), originating from the flutter, rms beam size, and
Twiss parameter. Then, the space-charge potential is written

H(X,Y,Px,Py;S) =Ho(X,Y,Px,Py:S) +—2— 7p <I>(xys) as
_eN (—1)" - (—1)" 1 “1(2n) W
q)(dlx,l//y’lx,ly’e)_47T60n:1 n! E( ) 0(0)| 27760;1 n! 2n|x | l(a)cos{(zn ZI)IJIX}

eN S (-ph1 om0 eN & (-1 1 ( >(3)
T Dme, &4l ZHIXIEO( | )gn,|(6)SIn{(2n—2l)wx}+—4 . gl o (0)1y

eN & (- 1)” " /2n

277602 2n yIo( ) (4)(6(:05{(2” 2I)¢y}

eN & (-1"1 "2n (-D"1
2meg iy Nl Elyl_o( | ) n(@)sinf(2n - 2|)¢Y}+ nZZ n! Z ( )
(Zn Zr)( ) (6)(6|“ ’I’

eN & ()" 1S (n) o f2n\ "G (2n-2r

27TEon Sl Erzl )Ix Iy r) I;O | n,,(a)cos{(Zn 2r—2|)¢x}
eN & (=1" 1 G (n) (2" (2n-2r) g

2meg iS5 nl _nr=1 r Ix Iy r “h ( | n,|(0)sm{(2n 2r—2|)¢x}
eN & (-D" 1 G (n) ., (2n-2r| G (2r)

27760”:2 n! _nr=1 r IX ly n—r )m=0 nrm(a)COS{(Zr—Zm)‘ﬁy}

eN & (=" 1S n| o f2n—2r) 'S 2
e 2 P 5 7 e -ama

eN & (-1)"1Hyny o "IN 2n—2r for

2meg =2 N! Er—l(r)lg r|; =0 m—O( | )( ) Ellrl)lm(a)cos{(Zn 2r =20y
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eN
+(2r—2m) gy} — Tmee 2

Xsin{(2n—2r —21) ¢, + (2r

x( ) (13 (O)cog(2n—2r —21) y,— (2r —

n-1 n n-r—1

-

where
9(0)="fn087,
g5i(6)=faBrcog (2n—21) o,
98:1(0) =1, 0BYsin{(2n—21) Yo,
g2(0)="1n 08y,
g\ (0) =1, nBjcog(2n—21) oy},
g50(0) =1qnBysin{(2n—21) o, },
gl O)=1,.B7 "By,
i 1(0)="Fn By "Bicog (2n—2r —21) iy, ,
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95 m(6)="Fo By BicO (20 —2m) gy},
9t 0) = By " Bisin{(2r —2m) go,},

9B (=T, By " Bicog(2n—2r —21) gy,
+(2r—2m) gy},

942 (O =T, By " Bisin{(2n—2r —21) o,

+(2r—2m) oy},

95 () =T, By " Bicod (2n—2r —21) o,
—(2r —2m) oy},

eN
—2m)¢y}+2
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n-r—1r-1
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n!

2n r=1

n-r—1r-1
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TEY n=2 n!

-H" 1
E( "1

27T€ =2 nlon

2m) i} —

2n|—2f>(2f) hrdm(O)sin{(2n=2r =21 ys = (2r=2m)y},  (3)

9l m(O)=f By " Bysin{(2n—2r —21) oy
—(2r—2m) g}

Furthermoreg(N)(6) is expanded by Fourier series as

gM(o)= 2 G(k™Me, @

1 (2w _
G(k)(N)=EL g™M(e)e kg, (5)

Then, the oscillating terms in EB) are described as

1 < .

g™ (0)cod AYy+ By =5 2 G(k) W[l By
k= —o
+e7j(A‘//x+B¢y7k0):|'

g™ (O)sin(A+BYy) = 57 Z G(k) N[l A By o)

_e—i(A¢x+Bwy—ka)]_

The parametric nonlinear resonances between an indi-
vidual particle and the intrinsic beam-core oscillation are
known to be excited when the phase of a particular Fourier
term, of which® consists, slowly varies witld. Because the
past simulation results have shown nonlinear resonances in
the horizontal directiori3], we focus on the lowest slowly
oscillating phase 2¢,,— b6, wherea andb are integers. The
other slowly oscillating phases are given HRay,—bé),
wherei is an integer. The IRH is known to be obtained by
averaging the Hamiltonian with respectd8]. In this pro-
cess, rapidly oscillating terms disappear. Details concerning
the evaluation are given in the Appendix. Finally, we arrive
at the IRH describing the parametric nonlinear resonance be-
tween the betatron oscillation and the oscillating space-
charge forces,

xalxvly)>'
(6)

b
Hiso(q,xlenly)z( Vy— 2a
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X
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Si(in)=— Eanu i (ﬂ)
0

Ox
X codi(2ayyxt+b6)}dé, (8)
im-2S o (2]
Xsinfi(2ayox+bo)}do, )]

2 n—-2 20 o u—-2r+1
. _“ n—rur [ Y
Sy(inn=—2 Cn,r,ufo hy hxy( ax)
X codi(2aygxt+b6)}dé, (10

n—2

| 2 o - o u—2r+1
34(I,I’l,l'):—;uZO Cn,r,ufO hy rh;y(o-_y)
= X

X sin{i(2ayox+bo)}do, (12)
0 77 o 7y|"
G<0>$,>— E | by de, (12
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eN % 1( )G(O) ( |§X>“+ eN

“Lin\/2n-2r\/2r LA\
- (6) _ X _y
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eN > 2 (n)(Zr)( 2n—2r
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2

PHYSICAL REVIEW E 68, 036503 (2003

LS n

1

© ©

1
4fllnalnl

| n—r
X
d

Ix n—r
_E)

)

2m+1

Anom+1~ 2

(—1)m—“—1(n—1>,

2m+1 m

n _
(u)(_l) u+1an,2mfu+1

2m-1 n
— _ —2m+v+1
Cn,r,2m vzo Cn,r,v(zm_v>( 1)

(_1)mn+l(n_1)
2m—-2r+1\ m )’
2m—2

n
— _ —2m+v
Chrom—1m=r= 020 Cn,r,u(zm_v_]_)( 1) ’

2r—2

Chror—1= 1;20 Cn,r,u( 2r

L=y (n—1)

_1)(_1)2r+v

i=o2u—2r+1\ U
Bx
h,(6)=— m, (14)
_ By
hey(0)= 20,(oxtoy)’ (15

Hiso @andl, in Eq. (6) become constants of motion. In this
paper, the position of the resonance islands is chosen as a
measure of the relative strength of nonlinear resonances. The
position of the resonance island for a structure resonance is
given bylymaxandlymin, Which are the maximum and mini-
mum values of the action variable along the trajectory
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FIG. 10. (a) Contour plot of Hiso andb) simulation result at the 0 1 ] ]
10th turn. 6 7 8 9 10

Bunch beam intensity (particle per bunch)

through the unstable fixed points. The stable and unstable

fixed points can be analytically evaluated from the canonical FIG. 11. Intensity dependence of the position of the resonance
equations. Island (10th turn.

Equation(7) were numerically calculated as follow8,,  nomena, which are induced by the combination of the beam-
By, Yox and ¢, can be given as the definition when the core oscillation due to the mismatching and the lattice
machine parameters such as the tune and the lattice are dgtucture, can be seen clearly.
cided. The informations ofr, and o, for each turn were The IRH for caseA gives the phase-space structure of the
evaluated byATRASH, then substituted into Eq§8)—(15). It nonlinear resonances, as shown in Fig. 12. The beam core is
is noted that Eqs(8)—(15) come from the Fourier series known to oscillate due to both the lattice structure and the
expansion of Eqg4) and(5). This means that Eq7) is time ~ Mismatching, as observed in Fig. 7. In Fig.(@2b is 14,
averaged for one period €9<2w). The nonequilibrium Which is the beam-core oscillation frequency due to the mis-
state kept through more than 10 turns as shown in R, 4 Matching per 1 turn, as observed in Figa)7 The two reso-
which is clearly longer than the above period. Therefore, thd@nce islands induced by mismatching are recognized in Fig.
time dependent process under nonequilibrium can be de-2@: In Fig. 12b), biis 28, which corresponds to the peri-
scribed by the averaged Hamiltonian. Moreover,,,, odicity of the lattice structure. The four resonance islands

which is the maximum limit of summation with respectrto induced due to the lattice structure are confirmed in Fig.
in Eq. (1), and|, were optimized by calculating, P and 12(b). Including the multiple-beam-core oscillation, the non-
. y y max

¢ . ; d h i linear resonances caused by the lattice structure and mis-
I vmin las upcuons offnmay and Iy, when caseA with 8.5 i"natching overlap, as shown in Fig. (€2
X 10" particle per bunch beam was assumed. The result Next, the IRH for cased andB was calculated for every
saturated aroundp.=20. A largerl, was found to give tyrn, The phase-space structures for casee shown in Fig.
Sma”er resonance IS|andS n the hO”ZOﬂtal phase Space. h_rB The resonance Caused by mismatching iS dominant at
order to estimate the maximum size of the halo, dgse0  early few turns because the mismatching remains there, as
was chosen. A contour plot ¢, is shown in Fig. 10 and shown in Figs. 7. Furthermore, the nonlinear resonance is
compared with the simulation result in cadeHere,a=1, switched to the structure resonance, after the decay of mis-
b= 14, andi ,,,= 10, which is the maximum value ofwere  matching due to the growth of filamentation. Thus, the halo
chosen. Furthermord,,,.x and I, predicted fromH,;,  tends to grow in the tune pair of cage The phase-space
were compared with the simulation results. They are alsstructures for cas® are shown in Fig. 14. The resonance
shown in Fig. 11 as functions of the intensity in csdoth  caused by mismatching is dominant, similar to that of dase
results are in good agreement with each other. However, because the condition of the structure resonance is
not satisfied since the depressed tune is far from 7, the non-
linear resonance is rapidly lost after decay of the mismatch-
ing. The particles moving to the resonance island caused by

V. NONLINEAR RESONANCES INDUCED BY mismatching are thought to be smeared out due to the non-
COMBINATION OF BEAM-CORE OSCILLATION linear space-charge fields.

As shown in Figs. @) and 5, there are small number of The difference in the time-varying nonlinear resonance
particles with the horizontally large emittance in cabe between cased andB should be explained by the depressed
though the beam distributions still keep the Gaussian fornfun€. The depressed tune is given by the time-averaged ca-
(see Fig. 8 at the early 10 turns. As mentioned at the end of?onical equatiofEq. (2)], substituting Eq(3) (see the Ap-
Sec. II, the simulation results cannot clearly indicate whaP€ndi¥ as
phenomena occur and what mechanism can drive the phe- dy 9H eN = 1 /2n
nomena by the combination of the beam-core oscillation due< X> :< > = 2 —(
to the mismatching and the lattice structure. Therefore, in

| n
- _— o) _ X

order to manifest what phenomena occurred by the combina- eN 2 1" i 2n—2r

tion of the beam-core oscillation due to the mismatching and + > = ( )( )

the lattice structure and to predict the position of the halo, 4meg a=2 Nl /=1 T —r

the time-varying nonlinear resonances in casesdB were o USRIy

examined by the IRH6) for the early 10 turns. By compar- ><( )G(O)(G)( — _X) ( _ _V) _ (16)
ing the isolated resonance Hamiltonian of each turn, the phe- r n 2 2
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I (m mm mrad)

X

FIG. 12. Phase-space structure of Hiso in cAs&he nonlinear resonance caugadby mismatching i(,.,=1, a=1, andb=14), (b)
by the lattice structureif,,,=1, a=2, andb=28) and(c) by the superposition afa) and (b) (i .x=10, a=1, andb=14).
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FIG. 13. Time varying of Hiso in casA. (a) 1st turn,(b) 3rd turn,(c) 5th turn, andd) 7th turn.i =10, a=1, andb=14.
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FIG. 14. Time varying of Hiso in casB. (a) 1st turn,(b) 3rd turn,(c) 5th turn, andd) 7th turn.i =10, a=1, andb=14.
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FIG. 15. Depressed tune in cages A and(b) B.
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The depressed tunes of E@.6) substituting the rms beam In the derivation of IRH, the momentum spread is sup-
size evaluated byATRASH are shown in Fig. 15. The reso- posed to be 0 for simplicity, but the application of the devel-
nance line, which is close to 7, is shown in both bare tunesoped analytic tool is straightforward for on-momentum.
The resonance island tends to become smaller when the resé/hile the nonlinear resonances in only the horizontal direc-
nance point on the resonance line becomes closgg=t@®. tion are taken into account in this paper, the vertical and
That is, the resonance point becomes closeg+c0 whenl,  coupling resonances are similarly applied in this theory.
becomes larger. Furthermore, the resonance point of Base

is closer tol ,=0 than forA When|y=O. ACKNOWLEDGMENTS

V. CONCLUSION One of the authorgY.S.) would like to thank K. Ishibashi,
K. Maehata, S. Kishiro, T. Toyama, M. Uota, and E. Naka-

Though the coupling between the nonlinear betatron osmura for their useful comments throughout this study. He
cillation of individual particles and the beam-core oscillationwould also like to thank to F. W. Jones for helpful comments
seems to drive the halo formation by a mechanism involvingconcerningPATRASH.
the parametric nonlinear resonance, the simulation results
cannot clearly prove what ph_enomena .precisely happen in APPENDIX: DERIVATION OF EQ. (6)
the process and what mechanism can drive these phenomena.
An isolated nonlinear resonance theory has been established We derive the time-averaged space-charge potential of EQ.
to understand the whole story, which can consistently explai3). Here, the horizontal and vertical action variables were
the phase-space dynamics at the early stage of injection. Tessumed to change little in each 1 turn. The time-averaged
isolated nonlinear resonance Hamiltonian has been proved terms of 5th, 6th and from 10th to 15th in E@) are all
be a useful tool to estimate the position and size of the haloegmoved because these terms do not include the slowly os-
which is quite important in a practical sense. It has beertillating term. For the time-averaged 1st, 4th, and 7th terms
concluded that the halo is driven by a time-varying nonlinearf Eqg. (3), the oscillating terms are removed so that only the
resonance excited by the intrinsic beam-core oscillation atonstant terms remain. The time-averaged 2nd term of Eqg.
the nonequilibrium state. (3) can be rewritten by using E¢4) as

o n n—1
< 2 _1) % (2 ) n(¢)cog(2n—2l ¢X}>

el n n-1
= <E( D 2n 15 ( )E G(k){Hcog(2n— 2I)¢//X+k0}>

47780 n!

+4i§0<n§1 (_n?)n% X”=1< )k; G(k)ﬁﬁ)CoS{(Zn—ZI)l/fx—ka}>
<z—z()2 CC )
e

Because the slowly oscillating phase is assumed 2&,—b#) in Sec. lll, the terms including(2ay,—b#) are picked up
from (2n—2I) ¢, £k6 in Eqg. (A1). Since the other terms are removed by time averaging{4h. can be rewritten as

eN (1" 1
2megn=1 N!

2
ol XE ( |”) 1(6)cog(2n— 2|>wx}>

oo oo

» ( ' )(2 [P0, cosi2an, - bo))

47780| 1 n=ai

o0 oo

eN 1 I \"
_(_ ) ( )Q(b| nn a,sm{l(Zasz bé’)},

+
4meq (=1 n=ai N!
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where

P(biyN=G(—-bi)N+G(bi)™N,

QbiYN=jG(—biyN—jG(bi)™.

In the same way, the time-averaged 3rd, 5th, and 6th terms dBEate given. Thus, the time-averaged space-charge potential
of Eq. (3) is written as

eN & 1/2n IL\" eN & 1/2n A" eN &1 "tin
- ) _ x el e _y el
(B by )= g 3, = n)G(o)n ( L Em( n)G(o)n ( 2) s 2(r>
2n—=2r\(2r LA 1\ eN &S 1
(6) _ % _y =
X( n—r )( r )G(O)n,r( 2) ( 2 * dreg ;1 nzai n!
L \" 2n _ , eN & « 1
X| =5 | n_ai/Sali.mcodi(2ay,—bo)}+ o Z,l 2 o
I, eN & 2 1" /n\(2r\/ 2n—2r
8 _E) n—ai al n)sm{|(2awx bﬁ)}+4 TEQ i= 1n:;rai nt r=1 (r>( r )(n_r_ai
I, eN & & 1" /n\(2r\/ 2n—2r
x E) (__) S3(I : r)cos{|(2an l36)}—’_4’”’80 izl n:;rai n_l r=1 (I’)( r )(n_r_ai
X IE) (—%) S,(i,n,r)sinfi(2ag,—bo)}, (A2)
[
where o dt
J;) (t+a2)n—r+(1/2)(t+ b2)r+(1/2)
Sy(i,n)=P(bi){}_ i+ Qb _,i, (A3) 2( "
_ b+a) Z nrutu 2r+1
Sy(i,n)=—P(bH_+QbDH o, (Ad)

The time-averaged Hamiltonian of E@R) is given by
using Eq.(A2) as

SIi(i"’]'r):P(bl)gr)n r— a|+Q(b|)nrn r—air (AD) (H(gh by 11y 0)) = v+ vyl

eRy
+ Dy, by, 14,1y 0)). (A7)
Sa(i,n,0)=—=P(bDE 1o+ QBN g Vool LWty llyi0)
(A6) Sincedy, /d6=d(H)/dl,=0, I, is the constant of motion.
(0) (0) (0) _ . Therefore, we remove the 2nd term of E42) and the 2nd
t(z(?z)i?eo’I tc);‘(i)sr}n’ Cé&%))nar,]dand Eqs(A3)~(A6) can be in term of Eq.(A7). Furthermore, sincéH) is not a constant of
9 y 9 the motion, the canonical transformation frong,(l,) to
u (V.= y—bol(2a),l,) is made, where the generating func-
tion is Fo(¢y,1)={¢y—bol(2a)}l,. Thus, the isolated
resonance Hamiltonia(6) and is obtained.

n—-1

b
a

* dt 2(—1)"
fo (t+ad)" @)(t+b5) T~ a'(b+a)" 2, an
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