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Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence
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A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in the presence of surface tension.
The dynamics of a multimode perturbation of the interface between two incompressible, inviscid, irrotational,
and immiscible fluids is analyzed. The quadratic and cubic nonlinear effects are taken into account. They
include the nonlinear corrections to the exponential growths of the fundamental modulations. The role of the
initial modulation spectrum is discussed. A saturation criterion in terms of the product of a local rms and a
particular wave number is exhibited. It gives theoretical foundations for numerical conjectures and allows one
to analyze the effects of fundamental parameters of the problem such as the dimension or the Atwood number.
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[. INTRODUCTION conditions is much more complicat¢@—11]. In the linear

regime the frequency modes grow independently and expo-

The stability of hydrodynamic flows has been a funda-nentially in time with the growth rate that depends on the
mental issue in fluid mechanics for a long tifi2]. Re- wave number. The main issue is whether the dynamics is

cently the Rayleigh-TaylofRT) instability has attracted a dominated by the mode with the largest initial amplitude or
growing attention because of its applications to astrophysicBY the mode with the largest linear growth rate. The answer
[3] and inertial confinement fusioiCF) [4]. The RT insta- t0 this question will have dramatic consequences on the

bility occurs at an interface between a fluid that accelerate¥VNL regime. Indeed, when the amplitude of the perturbation
another fluid of higher density. This phenomenon may dra/€aches a critical value, mode coupling becomes possible
matically reduce the performance of ICF experiments by dePetween a wide range of freq_uencu?s and wave numbers. The

grading the symmetry of implosion. In classical RT experi_results of these WNL interactions will strongly depend on the

ments it has been shown that the instability growth is IimitedmOdeS that dO’T".”ate the spectrum of.the modulation just
) . . efore the transition from the linear regime to the WNL re-

by surface tension during the linear stage, where the growtgirne

is exponential in timg5]. In ICF experiments the ablation '

S The paper is organized as follows. The description of the
process and the thermal transport are coming into play. Theyo tace elevation in terms of a random process is intro-

RT growth is stabilized by the flow of material through the q,ceq in Sec. II. We present the Hamiltonian formalism of
ablation front[6]. For both experimental conditions the lin- e eyolution equations in Sec. Ill. The single-mode case is
ear growth rate has a maximum for some wave number.  pyriefly discussed in Sec. IV. In Sec. V we study the power

The aim of this paper is to develop a weakly nonlinearspectral density of a multimode interface elevation. The role
(WNL) theory of the classical RT instability in the presenceof the initial spectrum is discussed in Sec. VI.

of surface tension. We have built this theory so as to be able
to propose closed-form expressions for the most important
physical quantities and to address arbitrary initial perturba-
tions. Recently a multimode WNL theory for the RT insta-  \We shall study the dynamics of a small-amplitude pertur-
bility in the absence of surface tension was presented in theation of the interface whose displacement with respect to
framework of a small finite bandwidtfv,8], but the model the unperturbed front=0 is described by = 7(t,x). The

can only be integrated numerically. In this paper we ar@ransverse spatial variables,y) are denoted by. It is con-

mainly interested in the multimode case, but we first start by,enient for the linear and WNL regimes to consider the Fou-
stating the results for a single-mode perturbation. We confirngjer modes of the interface

the standard result that the growth of the fundamental mode
slows down when its amplitude becomes comparable to its 1
wavelength, and we analytically compute the constant that 7(t,x)= _f d?k explik-X) 7(t).
appears in this relationship. 2m
The evolution of the RT instability from multimode initial

II. DESCRIPTION OF THE INTERFACE

Note that in a two-dimensiongRD) configuration,x e R,
and we should substitut¢2 7 for 24 in the definition of the
*Electronic address: garnier@cict.fr; Fourier transform. In this paper we shall briefly address for
URL: http://www.Isp.ups-tise.fr/Garnier consistency the single-mode case
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7(0,X)=+20, cogky-X), (1) ical statistical average and the experimental local or global
spatial averages, such as the spatial spectrum or the rms.
which reads in Fourier modes as

7(0)=2ma1[ S(k—kp) + 8(k+kp)], 2
o ) ) We consider an interface= 7(t,x) that separates two in-
where the initial amplitude has been normalized so that thegompressible, irrotational, inviscid, and immiscible fluids in
rms modulation iso;. We shall focus our attention to the g gravitational fieldy pointing into the negative direction.

multimode case. We shall model the initial perturbationgyolution equations can be written in Hamiltonian fofirg]
7n(0,x) of the interface elevation as the realization of a spa-

IIl. THE HAMILTONIAN FORMALISM

tially random process with Gaussian statistics. The statistical I SH an oH
distribution of this process is characterized by the two first — ==, /==, 3
moments o on’ dt oY

(n(0x))=0, (n(0x)7(0x')y=C(x—x"), with the canonical variableg and the surface potentiat

=p1b1l= y— p2oal,-,- Here g (¢,) is the hydrodynamic
where the brackets stand for a statistical averageGisdhe  potential for the upper fluidthe lower fluid. The Hamil-
so-called autocorrelation function. The autocorrelation functonian reads as a surface integral
tion of the Fourier transform of is

1
(7(0) 7 (0)) = 6(k+k")['y(0). H= Ef [oadV1+[V, 7]+ (p1—p2) g n°1d?x.
The positive-valued functiok—T", is the power spectral o
density(PSD defined by Note that the Hamiltonian seems to depend also on the nor-

mal velocity of the interface . Actually the tricky part of
) the analysis consists in expressing in terms of » and .
Fk(o)’:J COxexp —ik-x)d?x. Such an expression was obtained in the form of a series
expansion in Refl14]. Surface tension can be included into
A limit case is the white noise model where the correlationthe model by adding to the Hamiltonian the term
radius of the process is assumed to be very small. The auto-
correlation function is then reduced to a Dirac distribution
C(x)=028(x) and the PSD is identically equal to the con- Hs= Sf (VI+[V. 7"~ 1)d.
stanto3. Please note that, is not a rms, buir? has the
dimension of a length to the power 4 in three dimensions\We shall see that the primary effect of surface tension is to
and to the power 3 in two dimensions. stabilize the high-frequency modulations. Indeed classical
The choice of a statistical description for the multimodeRT instability exhibits a divergence of the growth rate for
interface is both mathematically and physically relevant. Ingrowing frequency which involves instantaneous blowup in
deed the initial modulation of the surface is only knownthe white noise case.
approximately. The statistical model takes into account the The main result derived in Refl14] is a systematic way
available datarms, spectrumand completes the unknown to calculate a closed-form expression of the expansion of the
data by putting a statistical distribution on them. This distri-Hamiltonian for arbitrary orders. Explicit formulas for
bution should be chosen in a natural way, and the most natwsecond- and third-order are given in the absence of surface
ral model(maximizing the entropywhen only the first two  tension. Inclusion of surface tension is a straightforward gen-
moments are specified is Gaussian statistics. Finally, theralization, and it is found that the Hamiltonian can be ex-
choice of Gaussian statistics is also consistent with the empanded in powers of; and ¢ asH=3_;H,,,
pirical picture that the initial interface perturbation originates
from many small imperfections: we can then invoke the cen- 1
tral limit theorem which claims that Gaussian statistics al- Hn:—f f d%ke- - - %K, mk. - - - 7k
ways results from the contribution of many independent ef- 2n!(2m)" ! "

fects[12]. ") ")
Before introducing the equations governing the dynamics, X (L*kt Koo knwktwko_l— G*kt koo kg ”kt”ko)'
we would like to comment on the interpretation of the re-
sults. We consider a set of possible realizations of the initialvhere k;=—ky—---—k,. Once the expression of the

perturbation of the interface. From a practical point of viewHamiltonian is known it is theoretically possible to solve the
we seek information that holds true for an arbitrary realiza-evolution equation$3). Unfortunately the coefficient& and
tion of the interface. We are going to compute statisticalL have so complicated expressions that it is impossible to
averages. Throughout the paper we shall focus our attentiocsolve analytically the evolution equations and to derive
to the PSD of the modulation. This function actually containsclosed-form expressions fon. A tractable approach is a
all the information about the spatial procegs[12]. The  WNL analysis which consists in solving E8) recursively.
ergodic principle gives the equivalence between the theorefAssuming that the amplitudes of the initial perturbatiops

036401-2



STATISTICAL ANALYSIS OF MULTIMODE WEAKLY . .. PHYSICAL REVIEW E 68, 036401 (2003

and ¢ are small(i.e., smaller than the typical wavelength whereF; ; andF; , are source terms that depend only gy
we introduce a small dimensionless parameteso thaty  and ¢, for I<j—1. It is consequently possible to solve

and ¢ can be expanded as recursively these systems. At order 3 we get that the Fourier
modes can be written as
=2 &, =2 e TN (1) = eWo(K,t) 7,(0)
i=o0 i=o0

82
A Y
We then substitute these Aftza into Eqs(3) and collect the * 277J d"koWia (k. ko, 1) 7k, 0) 7k (0)

terms with the same powers in We obtain by collecting the

. 83
terms of the order of the linear system N f j A2k o2k, Wo(K. Ko Ky 1)
(2m)?
IMko . (o Iy o 0
—r Lo — =G meo. ) X 7,(0) 7k, (0) iy, (0. ©®

¢ can be eliminated from this system consistent with theQuahtatwer, the terms of the order af give the second-

X ‘ . . 2 order nonlinear corrections. They involve sum-frequency and
appropriate order of perturbation which yields; 7, . .
2 . ' difference-frequency generations, but the fundamental modu-
=y Mk, Wherey, is the linear growth rate,

lations are not affected at this order. The nonlinear correc-
tions to the fundamental modulations appear in the third-

k|2 (p1—p2)9 order perturbations ir3. The full expressions of thev;'s
7= VAglK| Ve 32 Kmax= 3s are given in Appendix A.

max

A=(p1—p2)!/(p1+p>) is the Atwood number. Note that the V. SINGLE-MODE PERTURBATION

gain curve is maximal fofk| =kmax and the corresponding ~ We consider in this section an initial single-mode pertur-
maximal gain is Ymax= V2AgKnad3. Assuming d;7,(0) bation of the interface with carrier wave numbgrof forms

=0, we get that the Fourier modes in the linear regime grow(1) and(2). At time t the interface elevation is described by
like hyperbolic cosine:n,(t) = 7 (0)coshfst). If 7(0) three Fourier modes corresponding to the fundamental,
corresponds to a white noise, thenhas Gaussian statistics second- and third-harmonic modulations:

and its PSD is

1
Fk(t)zo-g COSH(’ykt). (5) nkp(t):WO(kpvt)ﬂkp(o)Jr (ZW)Z[WZ(kpvkp!kpit)

After a short transition time, as soon ag,,4> 1, expression +Wo(Kp, —Kp,Kp 1) +Wa(kp Ky, —Kp 1) ]
5) of the PSD be simplified int
(5) of the can be simplified into X|77kp(0)|277kp(0)1

r (t)za—éexp(Z Lyex _M 1 2
k 4 Yma ktz ’ 772kp(t): ZW]_(kaakprt) nkp(o) ’

where the spectral width i&=4%[(2k3.)/(3Agt). The 1 ,
spectral width of the modulatiok, decays with time. This 73k, (1) = ?WZ(Skp-kpakprt)nkp(o) :
gain narrowing effect originates from the fact that the wave (2m)
numbers close t&k.,.x grow much quicker than the other _ _ . o i
ones, so that the PSD after a transient period becomes ind\é\!e 'also h'aven,Jkp(t)—.anp(t) for. 1= 1’2’3' The qua )
pendent of the initial PSD. Of course this holds true only ifdratic nonlinear effects induce the first nonlinear correction
the initial perturbation contains modulations arolgg,, as  Which consists in the second harmonic generakgrt kj,
no new wavelength can be generated during the linear stage? 2Kp- The two other nonlinear corrections originate from

By collecting the terms of the order ef *%, j=1, in Eq. cubic and cascaded quadratic effects. They involve third-
(3) we obtain a series of linear systems for jherder per- harmonic generatiok, +ky+k,— 3k, and self-modulation
turbationsz, ; and i, : : of the fundamental mode througk,+k,—k,—k,. The

) ) complete calculations in the absence of surface tension can

be found in Ref[14]. In particular the nonlinear correction

Oy i e .

%: L(k0)¢k,j+ Fiak, (et me)o=i=j—1), to the fgndamental modulation is shoyvn to be negative val-
ued which slows down the exponential growth. Let us ad-
dress the influence of surface tens®mn0. The expressions

I ) become complicated, but they can be simplifiedyjft>1
AT 4E. . P
ot Gic e+ Fy. 2 (e e )o<i<j 1), because transient components can be neglected. Further-
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FIG. 1. (a) Evolution of an initial single-mode surface wiky=Kkp,x=2X 2, o= 104, A=1, g=1. The graphs correspond to times
2.2,2.32,2.45,2.5%t.,). (b) Evolutions of the Fourier modes of the three harmonics until the saturationttigneThe dashed line
corresponds to the exponential growth of the fundamental mode in the linear regime.

more, the gain curve is concave in the sense #hatl 2y,

We shall consider that the saturation is effective when the

and y3,. <37, . Accordingly we can also neglect Componentsgrowth of the fundamental Fourier mode is stopped. The

of W; which are proportional to expﬁkpt) [exp(ygkpt)] with
respect to those which are proportional to emgﬁ)

[exp(?xykpt)]. We get

o \/ETI' 6A?
M ()= (V2m)5-exp( ¥, t) — |kpl?
,, 2 ¥ e | 4
+ k|2 3 [Kl® Ymas exp(3y t)od
~Ta k Y01,
P 16 kﬁ]ax '}’Ep P
7ok ()= —w%exm t)os,
P 2(4_72kp/'ykp) P
Dk (D)= ¥2a Sol”__pz 3lkal”
P 9— 7§kp/ Yip 2(4— ngp/ Yip) 16
9 |kp|5 'yfnax
- exp(3y, t)os.
181G, 7 p

If k, has a modulus close tqy,, then
01
7,(1) = (V27) - Xl ymad)

13
kﬁ\ax E +3A2

Texqs')’maxt)o'i'

—(\2m)

Akmax
Mok, ()=~ (N2m) 2 O 2rma)ot,

<ﬁw>kéax(A2

Dot (D)= 0

3
3 128 exp(3ymadt)or. (7)

saturation time is thus defined by

al'y (t)

8'; <0J : ka(t) =| ﬂkp(t)|2-

tsar= inft?O[

By considering the expression of the moa}@p(t) we get
that the saturation is effective when

/ 2
nlrirzs(t) kmax L2 =1, (8)
4\2

where 7,,ms(t) =(7?(t,x))*? is the interface elevation rms
which is equal in the linear regime ton'r',ﬂs(t)

= 01 COShmal) =00 eXP(ymat)/2. At saturation time the ex-
pression of the fundamental Fourier mode in the WNL re-

gime is related to the one in the linear regime byp(t)
=(1/\/§)77kp(t)|,in. Accordingly the saturation condition
reads in the more conventional way as:

2
loc
(1)=Ceahmaxs Csat=—————r,
Mrms! sat’‘max sat +J13+ 24A2

where the local elevation rmsn',?]fs(t) is equal to
|77kp(t)|/(\/§7-r) in the single-mode case. For an Atwood

numberA=1, we havecg,=0.105, which is in agreement
with the values exhibited from numerical simulations
(Haan’s estimate isg,=0.1[15]).

Most of the numerical simulations are carried out in two
dimensional, so we briefly address the case of a 2D single-
mode configuration with wave vectds, . If k, is equal to
*Knax, then we have the same formul@s for the Fourier
modes as in the 3D case if we take care to substifltefor
the factorsy2#. As shown in Fig. 1, the second- and third-
harmonic generations give rise to bubbles and spikes forma-
tion. The saturation condition reads in terms of the interface
elevation rms in the linear regime as Eg) similarly as in
the 3D case. This is not surprising as a single-mode pertur-
bation in three dimensions is not sensitive to one of the trans-
verse spatial variables.

9
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V. MULTIMODE PERTURBATION [exp(n,+k, +k,t)] with respect to terms proportional to
The WNL analysis consists in expanding the interface el€Xf (%t vk, t] [explu,t vk, + ¥ )t]. In this framework
evation with respect to its initial amplitude<1, the expression ofV, becomesV,(k,t) = (1/2)exptt), the

) 3 4 expression of/; can be simplified into
m(t)=enotemte’ntO(e”),

where 7, ; contains terms of the formy (0) ... 7 (0), Wik k t)zl exl (vi,* vk )t QW +p® )
kot ---+kj=k. The physically relevant quantity is the S . Kola " ko ke
PSD. The second moment of the Fourier modes can be ex-
panded in powers of and we get wherek;=k—kg. Finally, denotingk,=k—ko—k;, the ex-
5 5 5 4 . 5 pression ofW, can be reduced to
(I mO%y=e*|mcol*) + &*(2 RE 7 o7 2 + (| m1c1|%))
+O(86). Wz(kak()!kl!t)
(1) (1)
This equation shows that the lowest-order WNL correction  _ 1 eXH (Y, T Y, T 1)U | Qi TPk,
for the PSD is of the order of* and depends both on the 8 9— ~v2/~2 A—~2 |, |42
. . . Y'Y Y Y
second- and third-order terms of the WNL expansion. That is K Fmax Karke Tmax
why it is necessary to develop a third-order WNL analysis to Q(kl)k I P(kl)k
I 1 I- 170 170
capture all effects of comparable magnitude in the multi X(Q(kj(;),k1+k2+zpf<:;),kl+k2)+

mode case. Haab] performs a WNL analysis in the multi-
mode case where the term 2(Bg o7y o) is neglected. This
allows us to report on high-frequency generation by sumfre- x(4QW, +2PM )+ Q¥, | +PP,
quency, but important phenomena are not captured, such as o e o e orE o Tor
the saturation of the growth of the fundamental modulations, IK|
although this mechanism has the same order of magnitude. - (k-ko)(ky-ky) |
This is in dramatic contrast with the single-mode case where 8 f’nax

the second-harmonic generation is much stronger than the
nonlinear feedback on the fundamental modulation.

In the WNL regime the PSD has the following form:

2 2
4— Yo+ kll Ymax

A. Mode coupling in dimension 2

In the following we consider the white noise cdsg0)
EUS. In the linear regime the PSD is E(p) and the vari-

) 1 5 ance of the interface elevation is obtained by integrating the
I (t)=Wa(k,0)I' (0) + (2m)? dkoWi(k,Kko,t) PSD overk:
X [Wi(k, — Ko t) + Wy (K, ko= K, 1) IT (O)T i (0) " Tok: €XP(2Ymast)

77rms(t)2’:<77('[1)()2>Iin2 (10

4\m

+ d?ko2Wo(k,t _ _ . .

(277)2j 02Wo(k,t) There exist three mechanisms that bring nonlinear correc-
tions to the linear regime with the same order of magnitude.

X[Wa(k,K,Ko,t) +Wa(k, ko K,t) Each mechanism generates a new band of frequencies.

FWa(K kg, — ko, Iy (0)T(0). Low-frequency generatiof8y subtracting two wave vec-

tors with wave numbers close ig, ., low-frequency modes

Note that in dimension 2 the factors 14®* should be are generated. It is found that aroufid~k the PSD is

changed into 1/(Z). The expression ofV, is easily trac- 4oy 12 5
table by a computerized system suchva®LE, so that it can r (t)ZUoA kik exn — k_ eXpl4ymat)
be integrated and theoretical PSD profiles can be obtained. k 327 2k? max:7s
Another approach consists in deriving approximate expres-

sions that will hold true in case of strong spectral narrowingthis demonstrates the excitation of a low-frequency modu-
effects. Let us assume that,,,> 1. The spectral narrowing |ation with typical wave numbek,= 2K, .

effect is then strong, as the modes with wave number around High-frequency generatiorBy summing two wave vec-
Kmax have been growing much more than the other ones duky, s with wave numbers close kg, . high-frequency modes

ing the linear stage. As a result the main WNL contributionsyith wave numbers aroundkg,,, are generated. More ex-
originate from couplingky+k;—k andkq+k;+k,—k be- actly, if |K| ~ 2Kmay, then the PSD is

tween modes whose wave numbgks| are close toky .
Furthermore, the gain curve is concave in the sense that
Yhorky < YioT Vi, AN Yk +k,< Yiy T Yk, T Yk, AccOrd-

oAk o (1K= 2Kmax?
(= d _
ingly we can neglect terms proportional to exg(t) 256\2 7

2kt2 )exq47maxt)-
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Saturation of the growths of the fundamental modulations. 2K
Through nonlinear cubic effects and cascaded quadratic ef-
fects, the growths of the fundamental modulatiéires., those AV‘ X
with wave numbers arounki,,,) are modified, so that the A L A max
PSD aroundk,,,, reads k- 0 k Kk

2 2
Op (|k| - kmax)
Fk(t)z—eXFXZVmaxt)eXP( - .
4 ki Dimension 2 Dimension 3
,13+24A2 Pk exp 2y )
—O0y————F— ex
0 128\/; t Yma

FIG. 2. Difference-frequency generation to create low modes.
: The possible contributions are plotted and compared in two and
three dimensions.

X| 1

The first term of the right-hand side is the exponential ) ) ) ) )
growth of the linear regime, while the second term result£ONStantCs,; by comparisons with numerical simulations.
from the interplay of all WNL effects. As the second term is The literature contains a lot of referen_ces for the valuesgf
always negative valued, this shows that the WNL contribufor an Atwood numbeA=1. In the original paper by Haan
tion to the fundamental modulations consists in reducinghe valuecs,=0.09 is proposed, then slightly reduced values
their exponential growths. This is the phenomenon called@n be found in following referencgs6-18, until the value
WNL saturation. 0.063 proposed by Ofeat al.[11]. The WNL analysis allows

We shall say that the saturation is effective as soon as ths t0 recover analytically the form of the equation that char-
growth of one of the modes is stopped. Accordingly weacterizes nonlinear saturation, as well as the value of the
adopt the following definition of the saturation time: constantcs,=0.074 forA=1.

T k(1) ing in dimensi
k( <0 (11) B. Mode coupling in dimension 3

tsar=infi=of Ik such that
In this section we consider a 3D white noise c&g€0)

— 2 . . . ._
which is consistent with the one adopted for the single-mode_?©" In the linear regime the PSD is Etp) and the vari

configuration. By considering formuld1) we can see that ance of the interface elevation is

saturation is effective when
Tokmakt EXH2Ymand)

lin ;4v2,_ 2y
, , 13+ 24A2 Trms(t) '—<77(th) >I|n 8\/;
kmax<77 >Iin 16 =1, (12

. (19

Mode coupling is more fascinating in dimension 3 than in
where(»?)i, is given by Eq.(10). The saturation condition dimension 2 because of coupling between noncollinear wave
(12) is very similar to the one obtained in the single-modevectors. In this section we give the exhaustive list of the
case, up to a factor 2. Roughly speaking the factor 2 origiimechanisms that bring WNL corrections.
nates from the statistical relatiofiz,|*)=2(| 7,/%)2. As a Low-frequency generatior.ow-frequency generation is
result saturation is effective for a lower value of the elevationmore efficient in dimension 3 than in dimension 2 because
rms in the multimode case than in the single-mode casehere exist much more possible combinations of wave vec-
Another important feature is that the rms at saturation timeors that generate small wave numb@s shown in Fig. 2

decays with the Atwood number as\13+ 24AZ. As a result, if|k| ~k; the expression of the PSD is
The PSD in the WNL regime arounkl,,, is equal to
3T (1)]in at saturation time. If we introduce the local eleva- ogA2 5
tion rms 7%= (7% 0c. Fy(t)= 64ﬂexﬂ47maxt)ktkmax|k| :
1 (1.25Kmay High-frequency generatiorLet us consider the second-
<772>I0c:=;f ) I'(tHdk, harmonic generation. Ifk|~ 2k.,., then the PSD is
0.75Kmay
4 a21,31211,121,1/2
then we have at saturation time ()= oAk K] kmaxexp(‘w 1)
5120 (3/4) w234 me
8 1
loc
~Coihrny,  Con= \| —————. (13 K| = 2Kmax?
Mrms= Csat*max sat 13+ 247227 (13 XeX[{ _ (| | 2max) '
2k;

A similar formula has been proposed by Hdah]. He was

the first one to suggest that neighboring modes with similaiThis expression is very similar to the 2D case. Indeed the
wavelengths add up to create an effective local amplitudegeneration of a wave vectdr with modulus close to R,
and that nonlinear saturation should occur when this collecby the sum of two wave vectoks andk, with moduli close
tive amplitude reaches some valag\. Haan has fixed the to k.4 requires a collinear configuratidg +k, (Fig. 3.
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1k

(b)
Dimension 2 Dimension 3 FIG. 4. Sum of frequencies in noncollinear configurations.
FIG. 3. Sum-frequency generation to create second harmonic
modulations at R,,,. Comparison between the configurations in  Saturation of the growths of the fundamental modulations.
two and three dimensions. Nonlinear corrections to the exponential growth of the fun-
damental modes are built up through cubic and cascaded
Filling of the spectral gap between,k, and 2k,.. In  quadratic effects. These corrections are stronger than in di-
dimension 3 the high-frequency generation is not reduced tension 2 due to contributions from noncollinear wave vec-
the generation of a second-harmonic modulation as in ditors configurationgsee Fig. $. Taking into account all pos-
mension 2. Indeed noncollinear configurations are possiblsible configurations, we get that [ik| =k.x, then the PSD
(Fig. 4). As a result, we could expect a filling of the spectral is
gap betweerk,,,x and X5, observed in dimension 2. We
can observe in the examples that will be treated in the fol- a5 (|K] = Kmax) 2
lowing sections a slight filling, but it is less important than D)= exp2ymat)exp — e
expecteda priori. The conversion efficiency for the noncol- t
linear configuration described in Fig(a} is actually rather
low, which involves the poor filling of the spectral gap be- X1
tweenk,,.xand X,.x. More exactly, if the wave numbek|
is betweerk,,, and X5y, then the PSD is

a(A)k kmax|k|2
- Uglé—\/;exqz')’maxt) )

wherea(A)=0.5182+0.573[ a(A=1)=1.090.

oA A2KK JK| We adopt the same definition of the saturation time than
T (t)z&ex 4 ) in dimension 2. By considering formulé5), we get that
k 25677 q ')’maxt . . M
saturation is effective when

[2— K|/ Kmax— [K|?/(4K3 20 1°

VL= K[/ (4kGa)[ 1= 7l (47ma)]
where( 7?)i, is given by Eq.(14). This condition looks like

Note that the conversion efficiency is roughly proportional tovery similar as the corresponding ofq. (12)] in dimen-
the function k—[2—k/Kmyax—k2/(4K2,,)]% This function Sion 2, up to a multiplicative constant. By comparing the
has a minimum close to (3/R),,,, which explains the poor Values of the constant we get that, for a givepay, the
filling of the spectral gap. interface elevation rms saturates at a higher level in dimen-

Filling of the spectral gap between 0 ang k.. The low-
frequency generation in dimension 3 does not reduce to the
generation of “&,,,, modulations as in dimension 2. Non-
collinear configurations are possib(Eig. 4). We can thus
expect a filling of the spectral gap between 0 &g, ob-
served in dimension 2. In this cageontrarily to the spectral
gap betweerk,.x and X,,,) this filling is quite important
because the conversion efficiency for the noncollinear con-
figurations presented in Fig(l) is high. As a result, if the
wave numbetk| is between O and,,,,, then the PSD is

kﬁqax<772>lina’(A):ly (15

45212
T3 AZKZ K2 K
L) =g eXp4Ymad)

[2— K|/ Kmax— |[K|?/(4KZ 4,012
V1= K%/ (4K ) [ 1= ¥Rl (4 Y00 ]

Dimension 2 Dimension 3

Note that the frequency conversion efficiency is roughly pro- G, 5. Nonlinear correction to the fundamental modulations by
portional to the functionk—k[2—k/Knax—k?*(4k3.)1%.  summation of three wave vectoks, k;, andk, (with modulus
This function has a maximum close to (1¥2).,, which  ~k.,). One of these three wave vectors is equaktahe other
explains the good filling of the spectral gap. two ones are complementary.
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FIG. 6. Evolution of the interfacda) Fourier modegsquare root of the PS[plotted at different times in the 3D case. The last time is
tear. Hereknya,=45 in dimensionless units. The initial perturbation is a white noise witks 10~ 7. The dashed lines correspond to the
exponential growths of the linear regime, the solid lines correspond to the WNL re@imsots the growth of the rms in time. The dotted
lines also correspond to the linear regime.

sion 3 than in dimension 2. More precisely, if we introducein the 2D-pseudo-3D case, because the initial Fourier modes

the local elevation rms;°%= V(7% 0c» aroundk,,x have stronger amplitudes in the 2D-pseudo-3D
case than in the 2D case. At saturation time, the PSD and the

) 1 max rms are very similar for the 2D and 2D-pseudo-3D cases, and

(m >IOC’=Z 0.75k F(®kdk very different from the PSD of the 3D case. We can see in

S Fig. 6 that the rms computed in the linear regime at satura-

then we can express the saturation condition as tion time in the 2D and 2D-pseudo-3D cases are the same

N , » and satigfyn'rir?,sksat: V163 50.6\"5;;1 In the same conditions
Trms=Csat\maxs Csat= (40.9A°+45.27 %2 (16)  the rms in the 3D case is highef,Ksa=0.96.
The rms#,,s computed in the WNL regime is obtained

VI. ROLE OF THE INITIAL SPECTRUM l:_)y integrating the WNL PSD over f_requency. At saturation
time the WNL rms is below the linear rms because the
A. White noise spectrum growths of the dominant modes have been slowed down. We

The aim of this section is to carefully analyze the WNL find that the productymks,=0.53 at saturation time in
regime for a white noise perturbation and to discuss the indimension 2, while we havgnsa=0.78 in dimension 3.
fluence of the dimension of the problem. This problem isFinally, if we integrate the PSD over th? nearby wave num-
practically relevant because most of the numerical simulabers ofkpay, then we get the values of;yikmax exhibited
tions are carried out in two dimensions and their relevance there abovelformulas (13—(16)]. This study demonstrates
physical 3D situations is questionable. In the 2D case théhat the extrapolations of results of 2D simulations to 3D
initial PSD is T',(0)|,p=02 and in the 3D casd'(0)|;p, realistic configurations are not easy, even if we take care to
=ch. We would also like to consider a 2D-pseudo-3D con-consider a 2D initial spectrum which has a 3D behavior.

figuration, which is a configuration in two dimensions with a

PSD that corresponds to a 3D white noise. The correspond- B. Algebraic spectrum

ing 2D-pseudo-3D spectrum is not white, but it is linearly  The white noise case studied in the preceding section is
enhanced for the high modeBi(0)|2p.pseudosn=06lKI/2.  usually not encountered in realistic configurations. Indeed
This configuration has recently been proposed to enhance tkgailable experimental data show that the initial perturbation
relevance of the results of 2D numerical simulations to 3Djs a colored noisd9,19]. We assume here that the initial

realistic situations. spectrum has power law decay:
The dynamics is analyzed until the saturation time. We
denote bykg,; the wave number of the mode that saturates o?
first. In the white noise case, it is very closekig,,, actually Fk(o):W-
(9

slightly above. All the following results have been computed

in the frameworkA=1 andg=1. We have found that the

2D and 2D-pseudo-3D cases are almost identical. The onlywo different types of behaviors can be encountered.
difference stands in the fact that the saturation occurs earlier If the amplitude of the initial perturbation is wedkig.
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1072 FIG. 7. Fourier modegsquare
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'é -§10 Kmax=45. The initial spectruntin
510'4 ‘ 5 dot-dashed lineds algebraic with
e ! E ke=10, p=4, and 0=5x10"°
w10 ; T (a), o=10"2 (b). The dashed lines
& correspond to the exponential
107 growths of the linear regime; the
107 oo solid lines correspond to the WNL
10° 10' ) 107 " 10° 102 regime.
(a)

7(a)], then the linear regime will last long enough so that thetg;s, the linear regime is still valid If t>tg,, there is no
spectral gain selection will prevail. This results in a loss ofmore maximum of the PSD in the low modes, but only
memory of initial conditions which is known to occur in aroundkp,,y. Accordingly, until timety;s, we must consider
these systemlal0]. Accordingly the dominant modes will be the band of modes arourg(t) and the one arounki,,, to
those with wave numbers arourdl,,, and the results are decide whether the linear stage has ended up. This is done by
very similar to the white noise casél) Saturation of the computing 7°,,, the sum of the modes arourg(t), and
exponential growths of the modes occurs first for the modesﬁms, the sum of the modes aroukg,,; we enter the WNL
aroundkmay; (2) the low-frequency modes are enhanced byregime as soon as eithef®, Kk, or 7" kmax reaches the
mode coupling from the dominant mode8) high frequen-  cyitical value 0.53dimension 2 or 0.78(dimension 3. The
cies are also generated by mode coupling. __ first product to reach the critical value indicates which modes
If the initial perturbation of the interface elevation is g4t rate first. If such an event has not occurred betfprg,
strong [Fig.. 7(b)], then some low-frequency modes will o aftertyp, the modes arounkly,, grow up exponen-
reach amplitudes that excite WNL effects before the modegy)|y fast and we get back a configuration very similar to the
aroundky,,,. Saturation happens earlier than the saturationyhite noise case.
time computed in the preceding sectitgee the discussion We now apply our results to a typical RT situation: Read
belov@. The occurrence of such an event rquitgs that the g Youngs's rocket rig experimefexperiment 359]). This
amplitudes of the low-frequency modes of the initial pertur-is 5 3p configuration where the initial interface perturbation
bation are high enough. In such a case we have the followy5 very low amplitude so that the spectral selection induced
Ing. _ _ by the gain curve is expected to be strong. Accordingly the
~ (1) The modes corresponding to high-frequency modulayecise description of the initial spectrum is not very impor-
tions, included those arourld,ax, are imposed by cascaded tant. \We may think at different sources of perturbation
sum-frequency generations from the low-frequency modesy ational noise,. . . ) andthermal noise is certainly a lower
and not by the exponential growths of the initial modes. 5. Following Ref[5], we use thermal excitations for the

(2) Saturation occurs first for the modes arouqd initial perturbation
(3) The Fourier modes belok, grow exponentially with
their respective linear growth rates. They are not affected by KT
: . . Blo
mode coupling from modes aroukg. This case is thus very I'(0)= ,
different from the white noise case. do(pn—p1) +5k|?

It is not easy to quantify analytically the threshold value
of the initial rms that leads to one or the other behaviorsvherekg=1.28<10"%3 J/K is the Boltzmann constanT,
described here, because we deal with a competition between300 K is the room temperaturgo=9.8 m/¢ is the stable
polynomial terms and exponential of polynomials. But of acceleration of gravity before the experimenp,
course this can be done with the help of a software such as 1.88 glcni, p;=0.63 g/crd, g=304 m/$ is the experi-
MAPLE, as for instance in Fig.(B). Besides it is possible to mental acceleration, ansi=36 dyn/cm is the surface ten-
describe precisely the initial dynamics of the low modes insion. Here the gain curve is maximal féf,q,=19 cni 2,
the linear stage. Le‘l:p=(2p—1)1’p andf be the function and Fig. 8a) confirms that the spectral selection succeeds in
defined over (@,] by f(c)=c?> P+cY2 We introduce the ~ driving up this mode and that saturation first occurs for this
critical time tgisp=(2p— 1)~ ¥/ Agk.. If t<tgs,, then ~ wave number. Note that the Atwood numiger-0.5, so that

there exists a maximum of the PSD at the producty,hKsa=1.2 at saturation timgsee Fig. &)].

C. Exponential spectrum

ky(t) =k f 1

2p
Agk:t ' It is not an easy task to derive closed-form expressions for

the first saturating mode or the saturation time in the case of
where f~1 is the inverse function of. At time tyisp, this  algebraic spectra, because we had to deal with competition
wave number iskp(tgisp) =CpKe (this holds true if at time between polynomials and exponential of polynomials in the

036401-9



GARNIER, CHERFILS-CL’ROUIN, AND HOLSTEIN PHYSICAL REVIEW E68, 036401 (2003

107
0 10°2 \ FIG. 8. Fourier modessquare
3 roots of the PSPplotted at differ-
E ent times for Read and Youngs'’s
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expression of the PSD. Here we consider a different type obf the interface elevation until the saturation time for differ-
colored noise, with an exponentially decaying spectrum  ent values ofk.. By choosingk. we can select the wave
numberk.,; as shown by Fig. @. For instance, ik.=2,
_ 2 _ sat c
(0)= 0" exp(—[k|/ke). thenkea= 15, while fork.= 10 we getks,=31. We also get

If k.o then we get the white noise case Ky is small, that the rms at saturation time |sma functionlqf, but the

then the initial spectrum decays very fast so that low modelTPortant point is that the produgg ksar at saturation time

are initially dominant, and the high modes will be progres-'S @ constant that depends only on the dimension and the

sively enhanced by the spectral gain. Atwood number. For dimension 2 and=1, we have
The choice ok, (i.e., the exponential decay of the initial at saturation timeznnks.=+16/37=0.65 as shown by

spectrum imposes the selection of the wave number that will Fig. 9(b).

saturate first. Indeed, the spectrum decays exponentially,

while the gain factor is an exponential function |&f with

entries that grow up with time. Accordingly the wave num- VII. CONCLUSION

ber of the dominant mode of the elevation interface increases )
continuously in time fromk, to k., and does not experi- To sum up, a weakly nonlinear model has been proposed

ence the sharp transition that we have seen in the case of 4 Study the Rayleigh-Taylor instability in the presence of
algebraic spectrum. surface tension. This model addresses the case of an initial

The wave number of the dominant mode can be computeEPummOde perturbation and uses statistical analysis. We
analytically. Let$ be the function defined ovei0,1) by show that the computation of the third-order nonlinearity is

)= Jx(1=xZ3)/(1—x3). The wave number of the necessaryand sufficientto capture the nonlinear saturation of
:jﬁém)inant(mode is) ( ) the growth of the interface modulation. This contribution al-

lows us to justify the saturation condition first introduced by

o Haan[5,15].
Ko(t) =Kmaxd ke VAQL ) The linear regime is characterized by the exponential
P VKmax growths of the Fourier modes of the initial spectrum. The

gain curve has a maximum at wave numkgg, and can be
If KiAgt<kpax, then we havek,(t)=kZAgt. If kZAgt fitted by a Gaussian function centeredkaf.x with width
>Kmax: thenky(t)=Kmax. We plot in Figs. 9 the evolution k.~k34%/(Agt?)¥% Consequently, if the initial spectrum is a

35

N W
o O

main wavenumber
- n
o

—
o O o o

(a)

FIG. 9. RT instability dynamics. Here we hakg,,=45. The initial spectrum is exponentially decaying witk= 10~ * and we consider
different values for the decay rakg. (a) plots the wave number of the dominant mode as a function of timeplots the producty, meKsat
which saturates at a value independenkof In (b) the dotted lines correspond to the exponential growths of the linear regime.

036401-10



STATISTICAL ANALYSIS OF MULTIMODE WEAKLY . .. PHYSICAL REVIEW E 68, 036401 (2003

white noise, then the linear stage of the dynamics will drive

up the modulations arourid,,,x. This phenomenon is called

spectral gain narrowing. When the amplitude of the interface

modulation becomes strong enough, nonlinear effects in-

volve mode coupling between the surface modes. In the early

stage of the nonlinear dynamics only quadratic and cubic L(klﬁ =
; . o pitp2

effects are important which corresponds to the weakly non-

linear stage characterized by the following mechanisibks:

High-frequency generation by sum frequend®) low- 2 1 (kotki)(kotky) (kotks)(kotks)

frequency generation by difference frequen(@), saturation Lk,ko,kl:pl+p2 : Ko+ Ky + kot Ky

of the exponential growths of the dominant modes around

kmax- Saturation is effective as soon as the product

kmax77|rcr)r$s(t) reaches a critical value that depends only on the

dimension and the Atwood number.

Some of these results can be generalized to colored
noises, but original features appear. The modes arépnd whereko—=K—Kkn— K.
are not always the ones that saturate first. It is not possible to 2 o b
separate the study of RT instabilities into the analysis of the
low-frequency modes on the one hand and of high-frequency L@ LD L) O
modes on the other hand. If the initial amplitudes of the 1) _ Kotkike - Tkotkyky kg kg Tkotky
low-frequency modes are strong enough, then cascaded non- Kooky ™ 2L 2L 2LOLO
linear mode coupling of the low-frequency modes will bring 0 1 o
the main contribution to the growth of the high-frequency

K|
p1tp2’

0
L(k )=

(Kl[kol —k-ko),

i~ Ikol | Ko,

modes. Inversely, if the high-frequency modes are strongly
amplified by the linear stage, then they will drive up the
low-frequency dynamics by difference-frequency mecha-
nisms.

1
Lk ke

0:%1 L(ko)

Nevertheless, we have exhibited an important feature that

does not depend on the initial spectrum. The raff/\ ¢a Lk, LOLEL ko,

at saturation time is a function that depends only on the Pﬁi),kl,kzz L@ 5 OO
dimension of the system and the Atwood numberA# 1, ko ko kg
then in dimension 217',‘r’n°5z0.074>\3at and in dimension 3 we
have nlcgszo.lo&sat. This remark may help to understand, L(2)

) . kK, ,k
for instance, the phenomenological model based on the so- Q@ __2f
called wavelength renormalization hypothe§@WRH) first ko kykz 2L(k‘;) ’

introduced by Belenkii and Fradkir20], discussed in Refs.
[10,21-23, and developed in a systematic way by Ramshaw
[24]. The WRH suggests that the interface behaves as if it @) _ SL(O) DRV

always remains in the linear regime, but with a time- kookpky ™ g Tk (k-ko)(ka-ka),

dependent wavelength which is continuously dynamically

renormalized to a value of the order of the interface rms. -

Accordingly the ANSATZ 7..=c/\ (where ¢ is a well- wherek =kq+ ki +k,. The coefficientdV; can be expressed
chosen constaptis substituted into the single-mode linear asWo(k,t) = coshiut),

evolution equation to study the multimode nonlinear dynam-

1
ICS.

w1<k,ko,t>=j§0 VP (ko k)
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wherek; =k—kq, §=(—1)!, and
APPENDIX: W; COEFFICIENTS

The following expressions extend the formulas given in
Ref.[14] in the absence of surface tension. The entries of the
expansion of the Hamiltonian a®Y= (p,—p;)g+s|k|?,
G, =0, GIA, i, = (514 (K-Ko) (K1 -Ko),

. 1
V(Ko ka) =5 (72 Qi+ 85 ¥k Vi, Pl

Finally, denotingk,=k—ky—kj,
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! coshi (65 vk,t 617k, + ¥, ) ] — cosh yt]

: VO (k, k
Wz(k,ko,kl,t)z E V(zll)(k0|klrk2) : ( ; 2)
j,I=0

(85 Ykt 017k, 7k2)2—7§ (v, T 7k2)2_7i1+k2

V(K k)

| Wa(kko )~
(Vi ™ k)"~ Yiey+k,

V§(ky, ko) . ViY(ky, ko)
(Yot )2 Yok, (Vg™ Y)* = Yigrky
X W (k,ko+Kkq,t),

V(2“)(k0:k1:k2):§

2 (1 1
2 ['kaQf(O),lirkz"_aj Yio( Yk, T 0 Ykl)P(ko),k1+k2]

1 VPkike)
(Y, + 057,) 5= iy,

VI (ks ko)
(Vi 05017k, 2— 7E0+ Ky

1 1
[(vk, T 86 ykl)zQ(ko)-%— ky ko T 07 Vi ( Vit 61017k, P(k0)+ Ky k,)

1
Z(~+2 03 (2) (2)
+ 5 (Y, Qg kT 9101V Vi Pk iy T Rigiey ) -

Note that there are two contributions of the surface tension in the expressions\Wif tfigne first contribution taV, impedes
the linear growth, while the second contributionW involves a slight reduction of the nonlinear correction to the funda-
mental modulations as well as a slight reduction of the third-harmonic generation efficiency.
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