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Statistical analysis of multimode weakly nonlinear Rayleigh-Taylor instability in the presence
of surface tension
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A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in the presence of surface tension.
The dynamics of a multimode perturbation of the interface between two incompressible, inviscid, irrotational,
and immiscible fluids is analyzed. The quadratic and cubic nonlinear effects are taken into account. They
include the nonlinear corrections to the exponential growths of the fundamental modulations. The role of the
initial modulation spectrum is discussed. A saturation criterion in terms of the product of a local rms and a
particular wave number is exhibited. It gives theoretical foundations for numerical conjectures and allows one
to analyze the effects of fundamental parameters of the problem such as the dimension or the Atwood number.
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I. INTRODUCTION

The stability of hydrodynamic flows has been a fund
mental issue in fluid mechanics for a long time@1,2#. Re-
cently the Rayleigh-Taylor~RT! instability has attracted a
growing attention because of its applications to astrophy
@3# and inertial confinement fusion~ICF! @4#. The RT insta-
bility occurs at an interface between a fluid that accelera
another fluid of higher density. This phenomenon may d
matically reduce the performance of ICF experiments by
grading the symmetry of implosion. In classical RT expe
ments it has been shown that the instability growth is limi
by surface tension during the linear stage, where the gro
is exponential in time@5#. In ICF experiments the ablatio
process and the thermal transport are coming into play.
RT growth is stabilized by the flow of material through th
ablation front@6#. For both experimental conditions the lin
ear growth rate has a maximum for some wave number.

The aim of this paper is to develop a weakly nonline
~WNL! theory of the classical RT instability in the presen
of surface tension. We have built this theory so as to be a
to propose closed-form expressions for the most impor
physical quantities and to address arbitrary initial pertur
tions. Recently a multimode WNL theory for the RT inst
bility in the absence of surface tension was presented in
framework of a small finite bandwidth@7,8#, but the model
can only be integrated numerically. In this paper we
mainly interested in the multimode case, but we first start
stating the results for a single-mode perturbation. We confi
the standard result that the growth of the fundamental m
slows down when its amplitude becomes comparable to
wavelength, and we analytically compute the constant
appears in this relationship.

The evolution of the RT instability from multimode initia
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conditions is much more complicated@9–11#. In the linear
regime the frequency modes grow independently and ex
nentially in time with the growth rate that depends on t
wave number. The main issue is whether the dynamic
dominated by the mode with the largest initial amplitude
by the mode with the largest linear growth rate. The answ
to this question will have dramatic consequences on
WNL regime. Indeed, when the amplitude of the perturbat
reaches a critical value, mode coupling becomes poss
between a wide range of frequencies and wave numbers.
results of these WNL interactions will strongly depend on t
modes that dominate the spectrum of the modulation
before the transition from the linear regime to the WNL r
gime.

The paper is organized as follows. The description of
interface elevation in terms of a random process is int
duced in Sec. II. We present the Hamiltonian formalism
the evolution equations in Sec. III. The single-mode case
briefly discussed in Sec. IV. In Sec. V we study the pow
spectral density of a multimode interface elevation. The r
of the initial spectrum is discussed in Sec. VI.

II. DESCRIPTION OF THE INTERFACE

We shall study the dynamics of a small-amplitude pert
bation of the interface whose displacement with respec
the unperturbed frontz50 is described byz5h(t,x). The
transverse spatial variables (x,y) are denoted byx. It is con-
venient for the linear and WNL regimes to consider the Fo
rier modes of the interface

h~ t,x!5
1

2pE d2k exp~ ik•x!hk~ t !.

Note that in a two-dimensional~2D! configuration,xPR,
and we should substituteA2p for 2p in the definition of the
Fourier transform. In this paper we shall briefly address
consistency the single-mode case
©2003 The American Physical Society01-1
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h~0,x!5A2s1 cos~kp•x!, ~1!

which reads in Fourier modes as

hk~0!5A2ps1@d~k2kp!1d~k1kp!#, ~2!

where the initial amplitude has been normalized so that
rms modulation iss1. We shall focus our attention to th
multimode case. We shall model the initial perturbati
h(0,x) of the interface elevation as the realization of a s
tially random process with Gaussian statistics. The statist
distribution of this process is characterized by the two fi
moments

^h~0,x!&50, ^h~0,x!h~0,x8!&5C~x2x8!,

where the brackets stand for a statistical average andC is the
so-called autocorrelation function. The autocorrelation fu
tion of the Fourier transform ofh is

^hk~0!hk8~0!&5d~k1k8!Gk~0!.

The positive-valued functionk°Gk is the power spectra
density~PSD! defined by

Gk~0!ªE C~x!exp~2 ik•x!d2x.

A limit case is the white noise model where the correlat
radius of the process is assumed to be very small. The a
correlation function is then reduced to a Dirac distributi
C(x)5s0

2d(x) and the PSD is identically equal to the co
stants0

2. Please note thats0 is not a rms, buts0
2 has the

dimension of a length to the power 4 in three dimensio
and to the power 3 in two dimensions.

The choice of a statistical description for the multimo
interface is both mathematically and physically relevant.
deed the initial modulation of the surface is only know
approximately. The statistical model takes into account
available data~rms, spectrum! and completes the unknow
data by putting a statistical distribution on them. This dis
bution should be chosen in a natural way, and the most n
ral model~maximizing the entropy! when only the first two
moments are specified is Gaussian statistics. Finally,
choice of Gaussian statistics is also consistent with the
pirical picture that the initial interface perturbation originat
from many small imperfections: we can then invoke the c
tral limit theorem which claims that Gaussian statistics
ways results from the contribution of many independent
fects @12#.

Before introducing the equations governing the dynam
we would like to comment on the interpretation of the r
sults. We consider a set of possible realizations of the in
perturbation of the interface. From a practical point of vie
we seek information that holds true for an arbitrary reali
tion of the interface. We are going to compute statisti
averages. Throughout the paper we shall focus our atten
to the PSD of the modulation. This function actually conta
all the information about the spatial processh @12#. The
ergodic principle gives the equivalence between the theo
03640
e

-
al
t

-

to-

,

-

e

-
u-

e
-

-
-
f-

s,
-
l

-
l
on
s

t-
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spatial averages, such as the spatial spectrum or the rm

III. THE HAMILTONIAN FORMALISM

We consider an interfacez5h(t,x) that separates two in
compressible, irrotational, inviscid, and immiscible fluids
a gravitational fieldg pointing into the negativez direction.
Evolution equations can be written in Hamiltonian form@13#

]c

]t
52

dH

dh
,

]h

]t
5

dH

dc
, ~3!

with the canonical variablesh and the surface potentialc
5r1f1uz5h2r2f2uz5h . Heref1 (f2) is the hydrodynamic
potential for the upper fluid~the lower fluid!. The Hamil-
tonian reads as a surface integral

H5
1

2E @vncA11u¹'hu21~r12r2!gh2#d2x.

Note that the Hamiltonian seems to depend also on the
mal velocity of the interfacevn . Actually the tricky part of
the analysis consists in expressingvn in terms ofh andc.
Such an expression was obtained in the form of a se
expansion in Ref.@14#. Surface tension can be included in
the model by adding to the Hamiltonian the term

HS5sE ~A11u¹'hu221!d2x.

We shall see that the primary effect of surface tension is
stabilize the high-frequency modulations. Indeed class
RT instability exhibits a divergence of the growth rate f
growing frequency which involves instantaneous blowup
the white noise case.

The main result derived in Ref.@14# is a systematic way
to calculate a closed-form expression of the expansion of
Hamiltonian for arbitrary orders. Explicit formulas fo
second- and third-order are given in the absence of sur
tension. Inclusion of surface tension is a straightforward g
eralization, and it is found that the Hamiltonian can be e
panded in powers ofh andc asH5(n50

` Hn ,

Hn5
1

2n! ~2p!nE •••E d2k0•••d2knhk1
•••hkn

3~L2kt ,k0 , . . . ,kn

(n) ckt
ck0

1G2kt ,k0 , . . . ,kn

(n) hkt
hk0

!,

where kt52k02•••2kn . Once the expression of th
Hamiltonian is known it is theoretically possible to solve t
evolution equations~3!. Unfortunately the coefficientsG and
L have so complicated expressions that it is impossible
solve analytically the evolution equations and to der
closed-form expressions forh. A tractable approach is a
WNL analysis which consists in solving Eqs.~3! recursively.
Assuming that the amplitudes of the initial perturbationsh
1-2
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and c are small~i.e., smaller than the typical wavelength!,
we introduce a small dimensionless parameter« so thath
andc can be expanded as

hk5(
j 50

`

« j 11hk, j , ck5(
j 50

`

« j 11ck, j .

We then substitute these Ansa¨tze into Eqs.~3! and collect the
terms with the same powers in«. We obtain by collecting the
terms of the order of« the linear system

]hk,0

]t
5Lk

(0)ck,0 ,
]ck,0

]t
52Gk

(0)hk,0 . ~4!

c can be eliminated from this system consistent with
appropriate order of perturbation which yields] t

2hk

5gk
2hk , wheregk is the linear growth rate,

gk5AAgukuA12
uku2

3kmax
2

, kmax5A~r12r2!g

3s
,

A5(r12r2)/(r11r2) is the Atwood number. Note that th
gain curve is maximal foruku5kmax and the corresponding
maximal gain is gmax5A2Agkmax/3. Assuming ] thk(0)
50, we get that the Fourier modes in the linear regime gr
like hyperbolic cosine:hk(t)5hk(0)cosh(gkt). If hk(0)
corresponds to a white noise, thenh has Gaussian statistic
and its PSD is

Gk~ t !5s0
2 cosh2~gkt !. ~5!

After a short transition time, as soon asgmaxt.1, expression
~5! of the PSD can be simplified into

Gk~ t !.
s0

2

4
exp~2gmaxt !expS 2

~ uku2kmax!
2

kt
2 D ,

where the spectral width iskt5A4 @(2kmax
3 )/(3Agt2). The

spectral width of the modulationkt decays with time. This
gain narrowing effect originates from the fact that the wa
numbers close tokmax grow much quicker than the othe
ones, so that the PSD after a transient period becomes i
pendent of the initial PSD. Of course this holds true only
the initial perturbation contains modulations aroundkmax, as
no new wavelength can be generated during the linear st

By collecting the terms of the order of« j 11, j >1, in Eq.
~3! we obtain a series of linear systems for thej-order per-
turbationshk, j andck, j :

]hk, j

]t
5Lk

(0)ck, j1F j ,1„k,~ck,l ,hk,l !0< l< j 21…,

]ck, j

]t
52Gk

(0)hk, j1F j ,2„k,~ck,l ,hk,l !0< l< j 21…,
03640
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whereF j ,1 andF j ,2 are source terms that depend only onhk,l
and ck,l for l< j 21. It is consequently possible to solv
recursively these systems. At order 3 we get that the Fou
modes can be written as

hk~ t !5«W0~k,t !hk~0!

1
«2

2pE d2k0W1~k,k0 ,t !hk0
~0!hk2k0

~0!

1
«3

~2p!2E E d2k0d2k1W2~k,k0 ,k1 ,t !

3hk0
~0!hk1

~0!hk2k02k1
~0!. ~6!

Qualitatively, the terms of the order of«2 give the second-
order nonlinear corrections. They involve sum-frequency a
difference-frequency generations, but the fundamental mo
lations are not affected at this order. The nonlinear corr
tions to the fundamental modulations appear in the th
order perturbations in«3. The full expressions of theWj ’s
are given in Appendix A.

IV. SINGLE-MODE PERTURBATION

We consider in this section an initial single-mode pert
bation of the interface with carrier wave numberkp of forms
~1! and ~2!. At time t the interface elevation is described b
three Fourier modes corresponding to the fundamen
second- and third-harmonic modulations:

hkp
~ t !5W0~kp ,t !hkp

~0!1
1

~2p!2
@W2~kp ,kp ,kp ,t !

1W2~kp ,2kp ,kp ,t !1W2~kp ,kp ,2kp ,t !#

3uhkp
~0!u2hkp

~0!,

h2kp
~ t !5

1

2p
W1~2kp ,kp ,t !hkp

~0!2,

h3kp
~ t !5

1

~2p!2
W2~3kp ,kp ,kp ,t !hkp

~0!3.

We also haveh2 j kp
(t)5h j kp

(t)* for j 51,2,3. The qua-
dratic nonlinear effects induce the first nonlinear correct
which consists in the second harmonic generationkp1kp
→2kp . The two other nonlinear corrections originate fro
cubic and cascaded quadratic effects. They involve th
harmonic generationkp1kp1kp→3kp and self-modulation
of the fundamental mode throughkp1kp2kp→kp . The
complete calculations in the absence of surface tension
be found in Ref.@14#. In particular the nonlinear correctio
to the fundamental modulation is shown to be negative v
ued which slows down the exponential growth. Let us a
dress the influence of surface tensions.0. The expressions
become complicated, but they can be simplified ifgkp

t@1
because transient components can be neglected. Fur
1-3
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FIG. 1. ~a! Evolution of an initial single-mode surface withkp5kmax5232p, s151024, A51, g51. The graphs correspond to time
2.2,2.32,2.45,2.57(5tsat). ~b! Evolutions of the Fourier modes of the three harmonics until the saturation timetsat . The dashed line
corresponds to the exponential growth of the fundamental mode in the linear regime.
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more, the gain curve is concave in the sense thatg2k,2gk
andg3k,3gk . Accordingly we can also neglect componen
of Wj which are proportional to exp(g2kp

t) @exp(g3kp
t)# with

respect to those which are proportional to exp(2gkp
t)

@exp(3gkp
t)#. We get

hkp
~ t !5~A2p!

s1

2
exp~gkp

t !2
A2p

64 S 6A2

42g2kp

2 /gkp

2
ukpu2

1ukpu22
3

16

ukpu5

kmax
3

gmax
2

gkp

2 D exp~3gkp
t !s1

3 ,

h2kp
~ t !52p

Aukpu

2~42g2kp

2 /gkp

2 !
exp~2gkp

t !s1
2 ,

h3kp
~ t !5

A2p

92g3kp

2 /gkp

2 S 3ukpu2

2~42g2kp

2 /gkp

2 !
A22

3ukpu2

16

2
9

128

ukpu5

kmax
3

gmax
2

gkp

2 D exp~3gkp
t !s1

3 .

If kp has a modulus close tokmax then

hkp
~ t !5~A2p!

s1

2
exp~gmaxt !

2~A2p!

kmax
2 S 13

8
13A2D

128
exp~3gmaxt !s1

3 ,

h2kp
~ t !52~A2p!

Akmax

8A2
exp~2gmaxt !s1

2 ,

h3kp
~ t !5

~A2p!kmax
2

3 S A2

8
2

11

128Dexp~3gmaxt !s1
3 . ~7!
03640
We shall consider that the saturation is effective when
growth of the fundamental Fourier mode is stopped. T
saturation time is thus defined by

tsat5 inft>0H ]Gkp
~ t !

]t
,0J , Gkp

~ t !5uhkp
~ t !u2.

By considering the expression of the modehkp
(t) we get

that the saturation is effective when

h rms
lin ~ t !kmax

A13124A2

4A2
.1, ~8!

where h rms(t)5^h2(t,x)&1/2 is the interface elevation rm
which is equal in the linear regime toh rms

lin (t)
5s1 cosh(gmaxt).s0 exp(gmaxt)/2. At saturation time the ex-
pression of the fundamental Fourier mode in the WNL
gime is related to the one in the linear regime byhkp

(t)

5(1/A2)hkp
(t)u l in . Accordingly the saturation condition

reads in the more conventional way as:

h rms
loc ~ t !.csatlmax, csat5

2

pA13124A2
, ~9!

where the local elevation rmsh rms
loc (t) is equal to

uhkp
(t)u/(A2p) in the single-mode case. For an Atwoo

numberA51, we havecsat50.105, which is in agreemen
with the values exhibited from numerical simulation
~Haan’s estimate iscsat50.1 @15#!.

Most of the numerical simulations are carried out in tw
dimensional, so we briefly address the case of a 2D sin
mode configuration with wave vectorkp . If kp is equal to
6kmax, then we have the same formulas~7! for the Fourier
modes as in the 3D case if we take care to substituteAp for
the factorsA2p. As shown in Fig. 1, the second- and third
harmonic generations give rise to bubbles and spikes for
tion. The saturation condition reads in terms of the interfa
elevation rms in the linear regime as Eq.~8! similarly as in
the 3D case. This is not surprising as a single-mode per
bation in three dimensions is not sensitive to one of the tra
verse spatial variables.
1-4
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V. MULTIMODE PERTURBATION

The WNL analysis consists in expanding the interface
evation with respect to its initial amplitude«!1,

hk~ t !5«hk,01«2hk,11«3hk,21O~«4!,

where hk, j contains terms of the formhk0
(0) . . .hk j

(0),

k01•••1k j5k. The physically relevant quantity is th
PSD. The second moment of the Fourier modes can be
panded in powers of« and we get

^uhk~ t !u2&5«2^uhk,0u2&1«4~2 Rê hk,0* hk,2&1^uhk,1u2&!

1O~«6!.

This equation shows that the lowest-order WNL correct
for the PSD is of the order of«4 and depends both on th
second- and third-order terms of the WNL expansion. Tha
why it is necessary to develop a third-order WNL analysis
capture all effects of comparable magnitude in the mu
mode case. Haan@5# performs a WNL analysis in the multi
mode case where the term 2 Re^hk,0* hk,2& is neglected. This
allows us to report on high-frequency generation by sum
quency, but important phenomena are not captured, suc
the saturation of the growth of the fundamental modulatio
although this mechanism has the same order of magnit
This is in dramatic contrast with the single-mode case wh
the second-harmonic generation is much stronger than
nonlinear feedback on the fundamental modulation.

In the WNL regime the PSD has the following form:

Gk~ t !5W0
2~k,t !Gk~0!1

1

~2p!2E d2k0W1~k,k0 ,t !

3@W1~k,2k0 ,t !1W1~k,k02k,t !#Gk0
~0!Gk2k0

~0!

1
1

~2p!2E d2k02W0~k,t !

3@W2~k,k,k0 ,t !1W2~k,k0 ,k,t !

1W2~k,k0 ,2k0 ,t !#Gk0
~0!Gk~0!.

Note that in dimension 2 the factors 1/(2p)2 should be
changed into 1/(2p). The expression ofW2 is easily trac-
table by a computerized system such asMAPLE, so that it can
be integrated and theoretical PSD profiles can be obtai
Another approach consists in deriving approximate exp
sions that will hold true in case of strong spectral narrow
effects. Let us assume thatgmaxt.1. The spectral narrowing
effect is then strong, as the modes with wave number aro
kmax have been growing much more than the other ones
ing the linear stage. As a result the main WNL contributio
originate from couplingk01k1→k andk01k11k2→k be-
tween modes whose wave numbersuk j u are close tokmax.
Furthermore, the gain curve is concave in the sense
gk01k1

,gk0
1gk1

and gk01k11k2
,gk0

1gk1
1gk2

. Accord-

ingly we can neglect terms proportional to exp(gk01k1
t)
03640
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@exp(gk01k11k2
t)# with respect to terms proportional t

exp@(gk0
1gk1

)t# @exp(gk0
1gk1

1gk2
)t#. In this framework

the expression ofW0 becomesW0(k,t)5(1/2)exp(gkt), the
expression ofW1 can be simplified into

W1~k,k0 ,t !5
1

4

exp@~gk0
1gk1

!t#

42gk
2/gmax

2 ~Qk0 ,k1

(1) 1Pk0 ,k1

(1) !,

wherek15k2k0. Finally, denotingk25k2k02k1, the ex-
pression ofW2 can be reduced to

W2~k,k0 ,k1 ,t !

5
1

8

exp@~gk0
1gk1

1gk2
!t#

92gk
2/gmax

2 F Qk1 ,k2

(1) 1Pk1 ,k2

(1)

42gk11k2

2 /gmax
2

3~Qk0 ,k11k2

(1) 12Pk0 ,k11k2

(1) !1
Qk1 ,k0

(1) 1Pk1 ,k0

(1)

42gk01k1

2 /gmax
2

3~4Qk01k1 ,k2

(1) 12Pk01k1 ,k2

(1) !1Qk0 ,k1 ,k2

(2) 1Pk0 ,k1 ,k2

(2)

2
uku

8kmax
3 ~k•k0!~k1•k2!G .

A. Mode coupling in dimension 2

In the following we consider the white noise caseGk(0)
[s0

2. In the linear regime the PSD is Eq.~5! and the vari-
ance of the interface elevation is obtained by integrating
PSD overk:

h rms
lin ~ t !2

ª^h~ t,x!2& l in.
s0

2kt exp~2gmaxt !

4Ap
. ~10!

There exist three mechanisms that bring nonlinear cor
tions to the linear regime with the same order of magnitu
Each mechanism generates a new band of frequencies.

Low-frequency generation.By subtracting two wave vec
tors with wave numbers close tokmax low-frequency modes
are generated. It is found that arounduku;kt the PSD is

Gk~ t !.
s0

4A2ktk
2

32Ap
expS 2

k2

2kt
2D exp~4gmaxt !.

This demonstrates the excitation of a low-frequency mo
lation with typical wave numberkb5A2kt .

High-frequency generation.By summing two wave vec-
tors with wave numbers close tokmax high-frequency modes
with wave numbers around 2kmax are generated. More ex
actly, if uku;2kmax, then the PSD is

Gk~ t !.
s0

4A2ktk
2

256A2Ap
expS 2

~ uku22kmax!
2

2kt
2 D exp~4gmaxt !.
1-5
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Saturation of the growths of the fundamental modulatio
Through nonlinear cubic effects and cascaded quadratic
fects, the growths of the fundamental modulations~i.e., those
with wave numbers aroundkmax) are modified, so that the
PSD aroundkmax reads

Gk~ t !.
s0

2

4
exp~2gmaxt !expS 2

~ uku2kmax!
2

kt
2 D

3F12s0
213124A2

128Ap
k2kt exp~2gmaxt !G .

The first term of the right-hand side is the exponen
growth of the linear regime, while the second term resu
from the interplay of all WNL effects. As the second term
always negative valued, this shows that the WNL contrib
tion to the fundamental modulations consists in reduc
their exponential growths. This is the phenomenon ca
WNL saturation.

We shall say that the saturation is effective as soon as
growth of one of the modes is stopped. Accordingly w
adopt the following definition of the saturation time:

tsat5 inft>0H 'k such that
]Gk~ t !

]t
,0J ~11!

which is consistent with the one adopted for the single-m
configuration. By considering formula~11! we can see tha
saturation is effective when

kmax
2 ^h2& l in

13124A2

16
.1, ~12!

where^h2& l in is given by Eq.~10!. The saturation condition
~12! is very similar to the one obtained in the single-mo
case, up to a factor 2. Roughly speaking the factor 2 or
nates from the statistical relation̂uhku4&52^uhku2&2. As a
result saturation is effective for a lower value of the elevat
rms in the multimode case than in the single-mode ca
Another important feature is that the rms at saturation ti
decays with the Atwood number as 1/A13124A2.

The PSD in the WNL regime aroundkmax is equal to
1
2 Gk(t)u l in at saturation time. If we introduce the local elev
tion rmsh rms

loc 5A^h2& loc,

^h2& locª
1

pE0.75kmax

1.25kmax
Gk~ t !dk,

then we have at saturation time

h rms
loc .csatlmax, csat5A 8

13124A2

1

2p
. ~13!

A similar formula has been proposed by Haan@15#. He was
the first one to suggest that neighboring modes with sim
wavelengths add up to create an effective local amplitu
and that nonlinear saturation should occur when this col
tive amplitude reaches some valuecsatl. Haan has fixed the
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constantcsat by comparisons with numerical simulation
The literature contains a lot of references for the value ofcsat
for an Atwood numberA51. In the original paper by Haan
the valuecsat50.09 is proposed, then slightly reduced valu
can be found in following references@16–18#, until the value
0.063 proposed by Oferet al. @11#. The WNL analysis allows
us to recover analytically the form of the equation that ch
acterizes nonlinear saturation, as well as the value of
constantcsat.0.074 forA51.

B. Mode coupling in dimension 3

In this section we consider a 3D white noise caseGk(0)
[s0

2. In the linear regime the PSD is Eq.~5! and the vari-
ance of the interface elevation is

h rms
lin ~ t !2

ª^h~ t,x!2& l in.
s0

2kmaxkt exp~2gmaxt !

8Ap
. ~14!

Mode coupling is more fascinating in dimension 3 than
dimension 2 because of coupling between noncollinear w
vectors. In this section we give the exhaustive list of t
mechanisms that bring WNL corrections.

Low-frequency generation.Low-frequency generation is
more efficient in dimension 3 than in dimension 2 becau
there exist much more possible combinations of wave v
tors that generate small wave numbers~as shown in Fig. 2!.
As a result, ifuku;kt the expression of the PSD is

Gk~ t !.
s0

4A2

64A2p
exp~4gmaxt !ktkmaxuku2.

High-frequency generation.Let us consider the second
harmonic generation. Ifuku;2kmax then the PSD is

Gk~ t !.
s0

4A2kt
3/2uku2kmax

1/2

512G~3/4!Ap23/4
exp~4gmaxt !

3expS 2
~ uku22kmax!

2

2kt
2 D .

This expression is very similar to the 2D case. Indeed
generation of a wave vectork with modulus close to 2kmax
by the sum of two wave vectorsk1 andk2 with moduli close
to kmax requires a collinear configurationk11k2 ~Fig. 3!.

FIG. 2. Difference-frequency generation to create low mod
The possible contributions are plotted and compared in two
three dimensions.
1-6
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Filling of the spectral gap between kmax and 2kmax. In
dimension 3 the high-frequency generation is not reduce
the generation of a second-harmonic modulation as in
mension 2. Indeed noncollinear configurations are poss
~Fig. 4!. As a result, we could expect a filling of the spect
gap betweenkmax and 2kmax observed in dimension 2. W
can observe in the examples that will be treated in the
lowing sections a slight filling, but it is less important tha
expecteda priori. The conversion efficiency for the nonco
linear configuration described in Fig. 4~a! is actually rather
low, which involves the poor filling of the spectral gap b
tweenkmax and 2kmax. More exactly, if the wave numberuku
is betweenkmax and 2kmax, then the PSD is

Gk~ t !.
s0

4A2kt
2kmaxuku

256p
exp~4gmaxt !

3
@22uku/kmax2uku2/~4kmax

2 !#2

A12uku2/~4kmax
2 !@12gk

2/~4gmax
2 !#

.

Note that the conversion efficiency is roughly proportional
the function k°@22k/kmax2k2/(4kmax

2 )#2. This function
has a minimum close to (3/2)kmax, which explains the poor
filling of the spectral gap.

Filling of the spectral gap between 0 and kmax. The low-
frequency generation in dimension 3 does not reduce to
generation of ‘‘0kmax’’ modulations as in dimension 2. Non
collinear configurations are possible~Fig. 4!. We can thus
expect a filling of the spectral gap between 0 andkmax ob-
served in dimension 2. In this case~contrarily to the spectra
gap betweenkmax and 2kmax) this filling is quite important
because the conversion efficiency for the noncollinear c
figurations presented in Fig. 4~b! is high. As a result, if the
wave numberuku is between 0 andkmax, then the PSD is

Gk~ t !.
s0

4A2kt
2kmaxuku

256p
exp~4gmaxt !

3
@22uku/kmax2uku2/~4kmax

2 !#2

A12uku2/~4kmax
2 !@12gk

2/~4gmax
2 !#

.

Note that the frequency conversion efficiency is roughly p
portional to the functionk°k@22k/kmax2k2/(4kmax

2 )#2.
This function has a maximum close to (1/2)kmax, which
explains the good filling of the spectral gap.

FIG. 3. Sum-frequency generation to create second harm
modulations at 2kmax. Comparison between the configurations
two and three dimensions.
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Saturation of the growths of the fundamental modulatio
Nonlinear corrections to the exponential growth of the fu
damental modes are built up through cubic and casca
quadratic effects. These corrections are stronger than in
mension 2 due to contributions from noncollinear wave v
tors configurations~see Fig. 5!. Taking into account all pos-
sible configurations, we get that ifuku.kmax, then the PSD
is

Gk~ t !.
s0

2

4
exp~2gmaxt !expS 2

~ uku2kmax!
2

kt
2 D

3F12s0
2a~A!ktkmaxuku2

16Ap
exp~2gmaxt !G ,

wherea(A)50.518A210.573@a(A51)51.090#.
We adopt the same definition of the saturation time th

in dimension 2. By considering formula~15!, we get that
saturation is effective when

kmax
2 ^h2& l ina~A!.1, ~15!

where^h2& l in is given by Eq.~14!. This condition looks like
very similar as the corresponding one@Eq. ~12!# in dimen-
sion 2, up to a multiplicative constant. By comparing t
values of the constant we get that, for a givenkmax, the
interface elevation rms saturates at a higher level in dim

ic
FIG. 4. Sum of frequencies in noncollinear configurations.

FIG. 5. Nonlinear correction to the fundamental modulations
summation of three wave vectorsk0 , k1, and k2 ~with modulus
;kmax). One of these three wave vectors is equal tok, the other
two ones are complementary.
1-7
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FIG. 6. Evolution of the interface.~a! Fourier modes~square root of the PSD! plotted at different times in the 3D case. The last time
tsat . Herekmax545 in dimensionless units. The initial perturbation is a white noise withs051027. The dashed lines correspond to th
exponential growths of the linear regime, the solid lines correspond to the WNL regime.~b! plots the growth of the rms in time. The dotte
lines also correspond to the linear regime.
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sion 3 than in dimension 2. More precisely, if we introdu
the local elevation rmsh rms

loc 5A^h2& loc,

^h2& locª
1

2pE0.75kmax

1.25kmax
Gk~ t !kdk,

then we can express the saturation condition as

h rms
loc .csatlmax, csat5~40.9A2145.2!21/2. ~16!

VI. ROLE OF THE INITIAL SPECTRUM

A. White noise spectrum

The aim of this section is to carefully analyze the WN
regime for a white noise perturbation and to discuss the
fluence of the dimension of the problem. This problem
practically relevant because most of the numerical simu
tions are carried out in two dimensions and their relevanc
physical 3D situations is questionable. In the 2D case
initial PSD is Gk(0)u2D5s0

2 and in the 3D caseGk(0)u3D

5s0
2. We would also like to consider a 2D-pseudo-3D co

figuration, which is a configuration in two dimensions with
PSD that corresponds to a 3D white noise. The correspo
ing 2D-pseudo-3D spectrum is not white, but it is linea
enhanced for the high modes:Gk(0)u2D-pseudo-3D5s0

2uku/2.
This configuration has recently been proposed to enhance
relevance of the results of 2D numerical simulations to
realistic situations.

The dynamics is analyzed until the saturation time.
denote byksat the wave number of the mode that satura
first. In the white noise case, it is very close tokmax, actually
slightly above. All the following results have been comput
in the frameworkA51 andg51. We have found that the
2D and 2D-pseudo-3D cases are almost identical. The o
difference stands in the fact that the saturation occurs ea
03640
-
s
-

to
e

-

d-

he

e
s

ly
er

in the 2D-pseudo-3D case, because the initial Fourier mo
aroundkmax have stronger amplitudes in the 2D-pseudo-
case than in the 2D case. At saturation time, the PSD and
rms are very similar for the 2D and 2D-pseudo-3D cases,
very different from the PSD of the 3D case. We can see
Fig. 6 that the rms computed in the linear regime at satu
tion time in the 2D and 2D-pseudo-3D cases are the sa
and satisfyh rms

lin ksat5A16/37.0.65. In the same condition
the rms in the 3D case is higher,h rms

lin ksat.0.96.
The rmsh rms computed in the WNL regime is obtaine

by integrating the WNL PSD over frequency. At saturati
time the WNL rms is below the linear rms because t
growths of the dominant modes have been slowed down.
find that the producth rmsksat.0.53 at saturation time in
dimension 2, while we haveh rmsksat.0.78 in dimension 3.
Finally, if we integrate the PSD over the nearby wave nu
bers ofkmax, then we get the values ofh rms

loc kmax exhibited
here above@formulas ~13!–~16!#. This study demonstrate
that the extrapolations of results of 2D simulations to 3
realistic configurations are not easy, even if we take care
consider a 2D initial spectrum which has a 3D behavior.

B. Algebraic spectrum

The white noise case studied in the preceding sectio
usually not encountered in realistic configurations. Inde
available experimental data show that the initial perturbat
is a colored noise@9,19#. We assume here that the initia
spectrum has power law decay:

Gk~0!5
s2

~11ukup/kc
p!2

.

Two different types of behaviors can be encountered.
If the amplitude of the initial perturbation is weak@Fig.
1-8
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FIG. 7. Fourier modes~square
root of the PSD! plotted at differ-
ent times. 2D configuration with
kmax545. The initial spectrum~in
dot-dashed lines! is algebraic with
kc510, p54, and s5531026

~a!, s51022 ~b!. The dashed lines
correspond to the exponentia
growths of the linear regime; the
solid lines correspond to the WNL
regime.
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7~a!#, then the linear regime will last long enough so that t
spectral gain selection will prevail. This results in a loss
memory of initial conditions which is known to occur i
these systems@10#. Accordingly the dominant modes will b
those with wave numbers aroundkmax and the results are
very similar to the white noise case:~1! Saturation of the
exponential growths of the modes occurs first for the mo
aroundkmax; ~2! the low-frequency modes are enhanced
mode coupling from the dominant modes;~3! high frequen-
cies are also generated by mode coupling.

If the initial perturbation of the interface elevation
strong @Fig. 7~b!#, then some low-frequency modes w
reach amplitudes that excite WNL effects before the mo
aroundkmax. Saturation happens earlier than the saturat
time computed in the preceding section~see the discussion
below!. The occurrence of such an event requires that
amplitudes of the low-frequency modes of the initial pert
bation are high enough. In such a case we have the foll
ing.

~1! The modes corresponding to high-frequency modu
tions, included those aroundkmax, are imposed by cascade
sum-frequency generations from the low-frequency mod
and not by the exponential growths of the initial modes.

~2! Saturation occurs first for the modes aroundkc .
~3! The Fourier modes belowkc grow exponentially with

their respective linear growth rates. They are not affected
mode coupling from modes aroundkc . This case is thus very
different from the white noise case.

It is not easy to quantify analytically the threshold val
of the initial rms that leads to one or the other behavi
described here, because we deal with a competition betw
polynomial terms and exponential of polynomials. But
course this can be done with the help of a software suc
MAPLE, as for instance in Fig. 7~b!. Besides it is possible to
describe precisely the initial dynamics of the low modes
the linear stage. Letcp5(2p21)1/p and f be the function
defined over (0,cp# by f (c)5c1/22p1c1/2. We introduce the
critical time tdisp5(2p21)121/(2p)/AAgkc. If t<tdisp , then
there exists a maximum of the PSD at

kb~ t !5kcf 21S 2p

AAgkct
D ,

where f 21 is the inverse function off. At time tdisp , this
wave number iskb(tdisp)5cpkc ~this holds true if at time
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tdisp the linear regime is still valid!. If t.tdisp , there is no
more maximum of the PSD in the low modes, but on
aroundkmax. Accordingly, until timetdisp we must consider
the band of modes aroundkb(t) and the one aroundkmax to
decide whether the linear stage has ended up. This is don
computingh rms

b , the sum of the modes aroundkb(t), and
h rms

h , the sum of the modes aroundkmax; we enter the WNL
regime as soon as eitherh rms

b kb or h rms
h kmax reaches the

critical value 0.53~dimension 2! or 0.78~dimension 3!. The
first product to reach the critical value indicates which mod
saturate first. If such an event has not occurred beforetdisp ,
then, aftertdisp , the modes aroundkmax grow up exponen-
tially fast and we get back a configuration very similar to t
white noise case.

We now apply our results to a typical RT situation: Re
and Youngs’s rocket rig experiment~experiment 35@9#!. This
is a 3D configuration where the initial interface perturbati
has very low amplitude so that the spectral selection indu
by the gain curve is expected to be strong. Accordingly
precise description of the initial spectrum is not very impo
tant. We may think at different sources of perturbation~vi-
brational noise,. . . ) andthermal noise is certainly a lowe
bound. Following Ref.@5#, we use thermal excitations for th
initial perturbation

Gk~0!5
kBT0

g0~rh2r l !1suku2
,

where kB51.28310223 J/K is the Boltzmann constant,T0
.300 K is the room temperature,g059.8 m/s2 is the stable
acceleration of gravity before the experiment,rh
51.88 g/cm3, r l50.63 g/cm3, g5304 m/s2 is the experi-
mental acceleration, ands536 dyn/cm is the surface ten
sion. Here the gain curve is maximal forkmax.19 cm21,
and Fig. 8~a! confirms that the spectral selection succeeds
driving up this mode and that saturation first occurs for t
wave number. Note that the Atwood numberA50.5, so that
the producth rmsksat.1.2 at saturation time@see Fig. 8~b!#.

C. Exponential spectrum

It is not an easy task to derive closed-form expressions
the first saturating mode or the saturation time in the cas
algebraic spectra, because we had to deal with compet
between polynomials and exponential of polynomials in
1-9
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FIG. 8. Fourier modes~square
roots of the PSD! plotted at differ-
ent times for Read and Youngs’
rocket rig experiment~a!. The
producth rmsksat is plotted in ~b!
~solid line! and compared with the
exponential growth of the linea
regime~dotted line!.
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expression of the PSD. Here we consider a different type
colored noise, with an exponentially decaying spectrum

Gk~0!5s2 exp~2uku/kc!.

If kc→` then we get the white noise case. Ifkc is small,
then the initial spectrum decays very fast so that low mo
are initially dominant, and the high modes will be progre
sively enhanced by the spectral gain.

The choice ofkc ~i.e., the exponential decay of the initia
spectrum! imposes the selection of the wave number that w
saturate first. Indeed, the spectrum decays exponent
while the gain factor is an exponential function ofuku with
entries that grow up with time. Accordingly the wave num
ber of the dominant mode of the elevation interface increa
continuously in time fromkc to kmax, and does not experi
ence the sharp transition that we have seen in the case
algebraic spectrum.

The wave number of the dominant mode can be compu
analytically. Let f be the function defined over@0,1) by
f(x)5Ax(12x2/3)/(12x2). The wave number of the
dominant mode is

kp~ t !5kmaxf
21S kcAAgt

Akmax
D .

If kc
2Agt!kmax, then we havekp(t).kc

2Agt2. If kc
2Agt

@kmax, thenkp(t).kmax. We plot in Figs. 9 the evolution
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of the interface elevation until the saturation time for diffe
ent values ofkc . By choosingkc we can select the wave
numberksat as shown by Fig. 9~a!. For instance, ifkc52,
thenksat515, while forkc510 we getksat531. We also get
that the rms at saturation time is a function ofkc , but the
important point is that the producth rms

lin ksat at saturation time
is a constant that depends only on the dimension and
Atwood number. For dimension 2 andA51, we have
at saturation timeh rms

lin ksat5A16/37.0.65 as shown by
Fig. 9~b!.

VII. CONCLUSION

To sum up, a weakly nonlinear model has been propo
to study the Rayleigh-Taylor instability in the presence
surface tension. This model addresses the case of an in
multimode perturbation and uses statistical analysis.
show that the computation of the third-order nonlinearity
necessary and sufficient to capture the nonlinear saturatio
the growth of the interface modulation. This contribution a
lows us to justify the saturation condition first introduced
Haan@5,15#.

The linear regime is characterized by the exponen
growths of the Fourier modes of the initial spectrum. T
gain curve has a maximum at wave numberkmax and can be
fitted by a Gaussian function centered atkmax with width
kt;kmax

3/4 /(Agt2)1/4. Consequently, if the initial spectrum is
FIG. 9. RT instability dynamics. Here we havekmax545. The initial spectrum is exponentially decaying withs51024 and we consider
different values for the decay ratekc . ~a! plots the wave number of the dominant mode as a function of time.~b! plots the producth rmsksat

which saturates at a value independent ofkc . In ~b! the dotted lines correspond to the exponential growths of the linear regime.
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white noise, then the linear stage of the dynamics will dr
up the modulations aroundkmax. This phenomenon is calle
spectral gain narrowing. When the amplitude of the interfa
modulation becomes strong enough, nonlinear effects
volve mode coupling between the surface modes. In the e
stage of the nonlinear dynamics only quadratic and cu
effects are important which corresponds to the weakly n
linear stage characterized by the following mechanisms:~1!
High-frequency generation by sum frequency,~2! low-
frequency generation by difference frequency,~3! saturation
of the exponential growths of the dominant modes arou
kmax. Saturation is effective as soon as the prod
kmaxh rms

loc (t) reaches a critical value that depends only on
dimension and the Atwood number.

Some of these results can be generalized to colo
noises, but original features appear. The modes aroundkmax
are not always the ones that saturate first. It is not possib
separate the study of RT instabilities into the analysis of
low-frequency modes on the one hand and of high-freque
modes on the other hand. If the initial amplitudes of t
low-frequency modes are strong enough, then cascaded
linear mode coupling of the low-frequency modes will brin
the main contribution to the growth of the high-frequen
modes. Inversely, if the high-frequency modes are stron
amplified by the linear stage, then they will drive up t
low-frequency dynamics by difference-frequency mec
nisms.

Nevertheless, we have exhibited an important feature
does not depend on the initial spectrum. The ratioh rms

loc /lsat

at saturation time is a function that depends only on
dimension of the system and the Atwood number. IfA51,
then in dimension 2,h rms

loc .0.074lsat and in dimension 3 we
haveh rms

loc .0.108lsat . This remark may help to understan
for instance, the phenomenological model based on the
called wavelength renormalization hypothesis~WRH! first
introduced by Belenkii and Fradkin@20#, discussed in Refs
@10,21–23#, and developed in a systematic way by Ramsh
@24#. The WRH suggests that the interface behaves as
always remains in the linear regime, but with a tim
dependent wavelength which is continuously dynamica
renormalized to a value of the order of the interface rm
Accordingly the ANSATZ h rms5c/l ~where c is a well-
chosen constant! is substituted into the single-mode line
evolution equation to study the multimode nonlinear dyna
ics.

ACKNOWLEDGMENT

We thank Pierre-Arnaud Raviart for useful and stimul
ing discussions.

APPENDIX: Wj COEFFICIENTS

The following expressions extend the formulas given
Ref. @14# in the absence of surface tension. The entries of
expansion of the Hamiltonian areGk

(0)5(r22r1)g1suku2,
Gk,k0

(1) 50, Gk,k0 ,k1

(2) 5(s/4)(k•k0)(k1•k2),
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Lk
(0)5

uku
r11r2

,

Lk,k0

(1) 5
A

r11r2
~ ukuuk0u2k•k0!,

Lk,k0 ,k1

(2) 5
1

r11r2
k•S ~k01k1!~k01k1!

uk01k1u
1

~k01k2!~k01k2!

uk01k2u

2uku2uk0u D •k0 ,

wherek25k2k02k1;

Pk0 ,k1

(1) 5
Lk01k1 ,k0

(1)

2Lk0

(0)
1

Lk01k1 ,k1

(1)

2Lk1

(0)
2

L2k0 ,k1

(1) Lk01k1

(0)

2Lk0

(0)Lk1

(0)
,

Qk0 ,k1

(1) 5
Lk01k1 ,k0

(1)

Lk0

(0)
,

Pk0 ,k1 ,k2

(2) 5
Lk,k0 ,k1

(2)

Lk0

(0)
2

Lk
(0)L2k0 ,k1 ,k2

(2)

2Lk0

(0)Lk1

(0)
,

Qk0 ,k1 ,k2

(2) 5
Lk,k2 ,k1

(2)

2Lk2

(0)
,

Rk0 ,k1 ,k2

(2) 52
s

4
Lk

(0)~k•k0!~k1•k2!,

wherek5k01k11k2. The coefficientsWj can be expressed
asW0(k,t)5cosh(gkt),

W1~k,k0 ,t !5(
j 50

1

V1
( j )~k0 ,k1!

3
cosh@~gk0

1d jgk1
!t#2cosh@gkt#

~gk0
1d jgk1

!22gk
2

,

wherek15k2k0 , d j5(21) j , and

V1
( j )~k0 ,k1!5

1

2
~gk0

2 Qk0 ,k1

(1) 1d jgk0
gk1

Pk0 ,k1

(1) !.

Finally, denotingk25k2k02k1,
1-11
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W2~k,k0 ,k1 ,t !5 (
j ,l 50

1

V2
( j l )~k0 ,k1 ,k2!

cosh@~d jgk0
1d lgk1

1gk2
!t#2cosh@gkt#

~d jgk0
1d lgk1

1gk2
!22gk

2
2S V1

(0)~k1 ,k2!

~gk1
1gk2

!22gk11k2

2

1
V1

(1)~k1 ,k2!

~gk1
2gk2

!22gk11k2

2 D W1~k,k0 ,t !2S V1
(0)~k1 ,k0!

~gk0
1gk1

!22gk01k1

2
1

V1
(1)~k1 ,k0!

~gk0
2gk1

!22gk01k1

2 D
3W1~k,k01k1 ,t !,

V2
( j l )~k0 ,k1 ,k2!5

1

2 H V1
( j )~k1 ,k2!

~gk1
1d jgk2

!22gk11k2

2 @gk0

2 Qk0 ,k11k2

(1) 1d jgk0
~gk2

1d lgk1
!Pk0 ,k11k2

(1) #

1
V1

( j 1 l )~k1 ,k0!

~gk0
1d jd lgk1

!22gk01k1

2 @~gk0
1d jd lgk1

!2Qk01k1 ,k2

(1) 1d jgk2
~gk0

1d jd lgk1
!Pk01k1 ,k2

(1) #

1
1

2
~gk2

2 Qk0 ,k1 ,k2

(2) 1d jd lgk0
gk1

Pk0 ,k1 ,k2

(2) 1Rk0 ,k1 ,k2

(2) !J .

Note that there are two contributions of the surface tension in the expressions of theWj . The first contribution toW0 impedes
the linear growth, while the second contribution toW2 involves a slight reduction of the nonlinear correction to the fun
mental modulations as well as a slight reduction of the third-harmonic generation efficiency.
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