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Kinetics of the shear banding instability in startup flows
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Motivated by recent light scattering experiments on semidilute wormlike micelles, we study the early stages
of the shear banding instability using the nonlocal Johnson-Segalman model with a “two-fluid” coupling of
flow to micellar concentration. We perform a linear stability analysis for coupled fluctuations in sheéyzr rate
micellar strainW, and concentratiog about an initially homogeneous state. This resembles the Cahn-Hilliard
(CH) analysis_of fluid-fluid demixingalthough we discuss important differengeBirst, assuming the initial
state to lie on the intrinsic constitutive curve, we calculate the “spinodal” onset of instability in sweeps along
this curve. We then consider start-up “quenches” into the unstable region. Here the instability in general occurs
before the intrinsic constitutive curve can be attained, so we analyze the fluctuations with respect to the
time-dependenstart-up flow. We calculate the selected length and time scales at which inhomogeneity first
emerges. When the coupling between flow and concentration is switched off, fluctuations in the “mechanical
variables” y andW are independent of those i, and are unstable when the intrinsic constitutive curve has
negative slope; but no length scale is selected. Coupling to the concentration enhances this instability at short
length scales, thereby selecting a length scale, consistent with the recent light scattering experiments. The
spinodal region is then broadened by an extent that increases with proximity to an undeymghearCH
fluid-fluid (¢) demixing instability. Far from demixing, the broadening is slight and the instability is still
mechanically dominatetby 5y and SW) with only small §¢. Close to demixing, instability sets in at a very
low shear rate, where it is dominateEinsteadaay In this way, the model captures a smooth crossover from
shear banding instabilities that are perturbed by concentration coupling to demixing instabilities that are
induced by shear.
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I. INTRODUCTION adjusts the relative fraction of the bands while the steady-
state stres& ¢, (common to bothremains constant.

For many complex fluids, the intrinsic constitutive curve  Experimentally, this shear banding scenario is now well
of shear stres® as a function of shear ratg is non- established for shear-thinning wormlike micell[aﬁ%—l&'i. '
monotonic, admitting multiple values of the shear rate at a N Steady-state flow curve has a well defined, reproducible
common stress. For example, Cates’ model for semidilut lateauXs.. The coexistence of high and low viscosity
wormlike micelles[1] predicts that the steady shear stress ands has.been observed by NMR spectros¢igyL6-18. .

R o ) Further evidence comes from small angle neutron scattering
decreases above a criticg y; (CEin Fig. 1). At very high [13,19-23, and from flow birefringence(FB) [24-27,
shear rates, fast relaxation processes must eventually restQ@ich reveals dquasjnematic birefringence band coexisting
an increasing streg42,3], giving an overall curveA\CEG In ith an isotropic one. The nematic band of FB has com-
the regimey<y<1y., of decreasing stress, steady homo-monly been identified with the low viscosity band of NMR;
geneous flowFig. 2@)] is unstablg4]. For an applied shear but see[28,29.

rate y in this unstable range, Spenley, Cates, and McLeish [N this paper, we consider banding formation kinetics. Ex-
[3] predicted that the system must separate into high and lowerimentally[13,15,30—-34 in rapid upward stress sweeps

: : : : : the shear rate initially follows the steady-state flow curve
shear rate bandsyf, and with relative volume fractions R .
&L ve) with (AB in Fig. 1) before departing for stress&s>3, . along a

satisfying the applied shear raje[Fig. 2(b)]. metastable branctBC). When this branch starts to level off
In any local constitutive model, the shear stress of any

such banded state is not uniquely selected; it depends on x

initial conditions[5—9]. However, the inclusion of interfacial
gradient terms into the constitutive equation turns the stress o C. Top jump .G
selection problem into the search for a stationary “front”
between the low and high shear rate bands. This is satisfied / Y /
only by a unique total stress=23...[6,10—13. The steady- pIm B ‘\D “
state flow curve then has the forABFG in Fig. 1. Within
the banding regiméBF a change in the applied shear rate :
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"Electronic address: p.d.olmsted@Ileeds.ac.uk FIG. 1. Schematic flow curve for wormlike micelles.
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> work, we present a model that conceptuallyifiesthese in-
% b) stabilities, smoothly interpolating between “mechanical”
V—.y a) — shear banding instabilities and SID, with increasing proxim-
_,4* L :~ "y:dv/dy ity to zero-shear demixing.
- X 3{{ = Our approach couples the nonlocal “diffusive” Johnson-

Segalmar(d-J9 model[6,40] for the dynamics of the micel-
lar stress to a two-fluid moddl1-44 for concentration
FIG. 2. (8 Homogeneous shear rate aftml banded profiles. fluctuations. The d-JS model is the simplest tensorial model
with a flow curve of negative slope, allowing a flow insta-
- - bility of the type shown in Fig. 1. The two-fluid model cap-
(hinting of at an unstable branch fg= vc,) the s_hear rate ture)fs the soi%lled Helfand-lgredrickson coupling of concpen-
finally “top jumps.” Under shear start-ufimposedy) inthe  tration to flow [45], used previously to describe shear-
metastable regiony, < y=< vy.1, the stress first rapidly attains enhanced concentration fluctuations, SID, and viscoelastic
the metastable brandBC (sometimes via oscillationsbe-  phase separation in marginally miscible polymer solutions

fore slowly decaying onto the steady-state plat®gyviaa with monotonically increasing stress,d,,/dy>0
“sigmoidal” envelope exp—(t/7ng)“]. The time scalerne  [36,41,45-48,48-53In essence, parts of a shear-extended
=1vc(y) greatly exceeds the Maxwell time scale of linear polymer molecule(or micellg that are in regions of lower
rheology. In the data of Ref34], for example, it has an viscosity will, during the process of relaxing to equilibrium,

apparent divergence ag—y, from above, but decreases Move more than those parts mired in a region of higher vis-
dramatically for larger shear rates approaching the threshol@0sity and concentration. A relaxing molecule therefore on
of instability, y~ y;. In the same experiments, the stretch- &verage moves toward the higher concentration region, pro-

ing exponenta~2 in the metastable regime, with a cross- viding a positive fegdback me_chamsm whereby shear can
enhance concentration fluctuations and cause SID.

over toa~1 for y= yc, signifying the onset of true insta-  \wjthin this two-fluid Johnson Segalmdd-JS<) model,
bility. _ we study the initial stage of instability in the unstable regime

In other systemg32], the onset of instability neay by performing a linear stability analysfsimilar in spirit to
~ vy, is marked(in start-up by a huge stress overshoot that the Cahn-Hilliard(CH) calculation for conventional liquid-
rapidly subsides t& ., via damped oscillations. Notably, this liquid demixing] for coupled fluctuations in shear rate, mi-
overshoot often coincides with strongly enhanced concentresellar stress, and concentration about an initially homoge-
tion fluctuationg 32], seen as butterfly patterns in light scat- neous shear state. We calculate the “spinodal” boundary of
tering with a peak amplitude at a selected length scaléhe region in which these fluctuations are unstable. We then
~1 pum. This clearly suggests that flow-concentration cou-consider start-up “quenches” into the unstable region, pre-
pling plays an important role in the shear banding instabilitydicting the selected length and time scales at which inhomo-
in wormlike micelles. Further evidence comes from thegeneity first emergeghe peak amplitude of any developing
slight upward slop§22] in the steady-statetress plateaBF  scattering pattepnWe also discuss the physical nature of the
of some systems. This is most readily explain@dplanar  growing instability, according to whether its eigenvector is
shear at leagthy a concentration difference between the co-dominated by the flow variables or by concentration.
existing bandg11,35. Any coupling to concentration has  We introduced and briefly analyzed the d-3Snodel in a
important implications for the kinetics of macroscopic bandprevious Lettef54]. In this work we discuss more fully the
formation, due to the large time scales involved in diffusion.model’s origin and approximations and give detailed numeri-

Coupling between flow and concentration is alreadycal and analytical arguments supporting the results an-
known to be an important effect in sheared polymer solutiongiounced in Ref[54].

[36,37] and (more recently wormlike micellar solutions The paper is structured as follows. In Sec. Il we introduce
[38,39 that are marginally miscible, i.e., close to an under-the model and describe its intrinsic constitutive curves. In
lying fluid-fluid demixing instability. In these systems, even Sec. Il we review its separate shear banding and demixing
rather weak shear causes dramatically enhanced concentiastabilities when the coupling mechanism between flow and
tion fluctuations in steady state, interpreted as a precursor toncentration is switched off. We then study the unified in-
a shear-induced demixingSID) instability at higher shear stability of the coupled model, performing a linear stability
rates. Notably, the associated butterfly patterns strikingly reanalysis for its initial stage. We do this in two parts. In Sec.
semble those seen in the shear banding start-up experimed¥ we consider shear rate sweeps along the intrinsic consti-
of Ref.[32], described above. In both cases, the scattering itutive curve, to define the spinodal onset of instability. In
strongest perpendicular to the compression axis of the shedsgc. V we consider shear start-up “quenches” into the un-
contrary to immediate intuition. stable region. We conclude in Sec. VI.

While the SID of marginally miscible polymers
[36,37,43 is usually seen as a perturbation of the nearby
thermodynamic demixing instabilityprematurely triggered
by sheay, the shear banding of semidilute wormlike micelles The existing literature contains several approaches for
is often attributed to a purely “mechanical” origifin the  coupling concentration and flow36,41,45—-49 The two-
unstable negatively sloping constitutive cury8,4]. In this  fluid model considered by us follows closely that of Milner

Il. THE MODEL
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[47], although we extend his work slightly by including a

Newtonian contribution to the micellar stress, for reasons F°(</>):f d3x

discussed in Sec. IV C IMilner was mainly interested in

slow shear phenomena, for which the Newtonian terms are 1 5 > 2 en 5

unimportant “EJ d*q(1+&%99)1"|p(q)l*, (2.6
The basic assumption of the two-fluid model is a separate

force balance for the micellgselocity v ) and the solvent

(velocity v  within any element of solution. These are

added to give the force balance for the center of mass velo

f(¢)+§<z¢)2}

wheref” is the osmotic susceptibility ané is the equilib-
rium correlation length for concentration fluctuations. The
@lastic component is

ity
e 1 3
v=c¢dvnt+(1—P)vs, (2.2 FAW, ¢)= > d*XG(HHUW—In(s+W)] (2.7
and subtracted for the relative velocity in which G(¢) is the plateau modulus.
Urel=Um— Us» (2.2 B. Dynamical equations

We now specify the dynamics. As noted above, the two-

which in turn specifies the concentration fluctuations. Wefluid model considers a separate force balance for the mi-

give these dynamical equations in Sec. Il B below. First, wec€lles and the solvent. In any fluid element, the forces and
specify the free energy. stresses on thmicellesare assumed to be as follows.

(1) The viscoelastic stress communicated along the mi-

cellar backbone:
A. Free energy

In a sheared fluid, one cannot strictly define a free energy o=2(W+§)- oF _ G(¢)W. (2.8
because shear drives the system out of equilibrium. Nonethe- = = = W =

less, for realistic experimental shear rates many of the inter-

nal degrees of freedom of a polymeric solution relax very (2) The osmotic forcepV[ 6F/5¢], which acts directly
quickly compared with the rate at which they are perturbedetween monomers, driving conventional cooperative micel-
by the externally moving constraints. Assuming that such dar diffusion. (Actually, because- has contributions from
separation of time scales exists, one can effectively tredooth F° and F°, this term also contains a “nonlinear elastic
these fast variables as equilibrated. By integrating over thenforce” ¢V[ 6F% 6¢].)

one can define a free energy for a given fixed configuration (3) A Newtonian stress @7 ,D°,, where

of the slow variables. For our purposes, the relevant slow o

variables are the fluid momentupy and micellar concen- 0

tration ¢ (which are both conserved and therefore truly slow Dm=Dm=39TrDm 2.9

in the hydrodynamic sengeand the micellar strainV
(which is slow for all practical purposesV is defined as the
local strain that would have to be reversed in order to relax
the micellar stress:

1
W=E-ET—§ with &r'=E-&r (2.3 Dn=3[Vomt (Yom']. (210

where or’ is the deformed vector corresponding to the un-This arises from fast “mlcellar _relaxlatlg)n.s such as Rouse
modes. We callp,,, the “Rouse viscosity,” distinct from the

deformed vectoor. fgro shear viscosity of thital micellar stress
The resulting free energy is assumed to comprise separal (4) The drag forcel()v,« impeding the relative motion

kinetic, osmotic, and elastic components: . !
P of micelles and solvent. Scaling theofp5] suggests{
~6mné ? where 7 is the mean viscosityp= ¢+ (1

F=FX(0)+F%($)+FYW, ). 24 —¢)n..
(5) Stress due to gradients in the hydrostatic prespure
The kinetic component is The overall micellar force balance equation is thus
1 ¢(ditvm- Vv =V-G(<15)W—¢VM
FK(2)= Ef d3Xp22. (2.5 Pm@LoT Em: Z)8m™ = "= 6¢
+2V - ¢ 9aDp— {(A)vrei— VP
The osmotic component is (2.11
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Likewise, for the solvent we have the Newtonian Vviscous(g,+v-V)¢p=—V-d(1— ¢)v g
stress, the drag force, and the hydrostatic pressure: - - -

= M[_vi+iv.g(¢)w
1= ) (di+vs V)us IS 2 S A
=2V (1= )7 DI+ Hvra—(1- $)Vp. 2V 7w _2V-(1-¢)7 522}
(2.12 ¢ 1-¢ '
(2.1

These equations contain the basic assumption of “dynamical
asymmetry,” i.e., that the viscoelastic stress acts only on th&he essence of the two-fluid model is that the viscoelastic
micelles and not on the solvent. Adding them, and assumingtressG(¢)W appears alongside the familiar osmotic stress

equal mass densitigs,,= ps=p [56], we obtain the overall
force balance equation for the center of mass motion

p(di+v-V)v—pvev-Vo+pd(l—)ve Vg

SF ()
=V G(HW- T

+2V-¢n nDY,
+2V-(1-¢)n DI-Vp, (2.13

in which the equal and opposite drag forces have cancel
each other. The pressupeis fixed by incompressibility,

V.0=0. (2.14

We attach a cautionary note to E@.13. The right-hand

LHS, therefore, should equal the rate of change of that el-

ement’s momentuny(d;+v - V)v. Although this term is in-
deed present, we also find two extra terms, contaiwigg

- ¢25F/5¢_in this diffusion equation. This causes micelles
to diffuse up gradients in this stre&{ ¢)W and so couples
flow to concentratiori45]. If the viscoelastic stress then in-
creases with concentrationdG/d¢>0, assumed heje
positive feedback occurs, causing net diffusion of micelles
up their own concentration gradient. Although obviously op-
posed by the restoring osmotic force, which drives conven-
tional micellar diffusion, this mechanism causes shear-
enhanced concentration fluctuations or SID in systems
already close to demixinf41,48. In SB systems, it causes
concentration couplin¢see below and Reff54,58,59). The
€8\Verall rate of micellar diffusion is set by the kinetic drag
coefficient(¢). The “raw” micellar diffusion coefficient in

the absence of flow-concentration couplingdis "/ ().

For the dynamics of the viscoelastic micellar backbone

strain we use the phenomenological d-JS m¢agtQ]:

w
4

|2

()

2D~ vaw.

To circumvent this discrepancy, one might argue that the

separate advected derivatives on the LHS’s of Egsll)
and (2.12 [which were added to give Eq2.13] should
havev -V v; in place ofv;-V v; (for ie m,s). However, this

would still leave the correctior-v v - V¢ on the LHS of

Eqg. (2.13 and does not improve the approximation. We con-
sider this discrepancy to be an unsatisfactory aspect of tr\ﬁ
two-fluid model that is seldom acknowledged in the litera-
ture. In this paper, however, we consider only small fluctua

tions about a homogeneous shear statewhich v,=0),
and the correction terms are truly negligible.

Subtracting the micellar and solvent Eq®.11) and
(2.12 (with each predivided by its own volume fractipn
and neglecting small inertial terni§7] we find an expres-
sion for the relative motion:

0

_d-¢)) o 1 2V ¢7mDm
L= () { R
2V-(1-¢) pD?2
_—Td)n—, (215)

The terms invy,, Dy, and{},, describe convection, stretch-
ing, and rotation of the micellar strain by flow; (2,
=V om=(Vom)" With (Y ur) s=du(vms. The slip pa-
rametera measures the nonaffinity of the molecular defor-
mation, i.e., the fractional stretch of the polymeric material
ith respect to that of the flow field. Fda|<1 (slip) the
intrinsic constitutive curve in planar shear is capable of the
‘nonmonotonicity of Fig. 1, thereby admitting a shear band-
ing instability[40]. The termW/ = describes relaxation of the
micelles back to their unstrained state with a Maxwell time
7(¢). The gradient ternjl?/7(4)]V2W allows a selected
banding stress to be calculaté@ee Refs[6,58], although
other treatmentgs0,61] have used alternative forms for non-
local terms that can also give a uniquely selected sirébe.
lengthl could, for example, be set by the mesh size or by the
equilibrium correlation length for concentration fluctuations.
Here we assume the former, since the dynamics of the mi-
cellar conformation are more likely to depend on gradients in
conformation than in concentration. The equilibrium correla-
tion length ¢ of course still enters our analysis, through the
osmotic free energy of Eq2.6). Together,| and ¢ set the
length scale of any interfaces. We use E@s13), (2.14),

which in turn specifies the dynamics of the concentration(2.16), and (2.17) as our model for the remainder of the

fluctuations:

paper.
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C. Flow geometry and boundary conditions TABLE 1. Experimental values of the model's parameters at
. — . . volume fractionp=0.11 (column 3. Scaling laws for the depen-
We consider a state(y) of idealized homogeneous pla- gence of each parameter upgn(column 4. In most calculations
nar shear bounded by infinite plates yat{O,L} with (v we use the reference values of column 3gat0.11, then tunep

=;y>A( Vo, V/\v_) in the ()”( 9 2) directions. In what follows using the scaling laws of column 4. Only where stated do we allow

we will analyze the stability of small fluctuations about this € Parameters to vary independently.

state, for simplicity considering fluctuation wave vectors

only in the flow gradient directiony =v(y)+ dv(y) and  Parameter Symbd)  Value at¢=0.11 dinQ
(separately the vorticity directiony =v(y)+ dv(z). din ¢
We assume that there is no slip at the plates, so for conzheometer gap L 0.15 mm 0
trolled average shear rate conditio@@ssumed throughout — paxwell time . 017 s 11
L Plateau modulus G 232 Pa 2.2
'yzj dyy(y,z)=constY z. (2.18  Density P 10° kgm? 0
0 Solvent viscosity 7 10 3kgmts? 0
— Rouse viscosity Tm 0.4kgmts? 0
In this equation,y is the applied shear rate, and Mesh size [ 2.6X10°8 m ~0.73
, Diffusion coefficient D 3.5x10 M m?s?t 0.77
Y(Y,2) = dyvy(Y,2) (219 Drag coefficient ¢ 2.4x102kgm3s! 154
] ] ] Correlation length £ 6.0x10 " m -0.77
is the local shear rat@ependent on eitheror z, according Slip parameter a 0.92 0

to the wave vector’s directionWe also assume boundary
conditions[62]

other parameters upap (column 4 of Table ). We do, how-
ever, calculate the spinodal for several different values of the
diffusion coefficientD to investigate the effect of increasing
proximity to a zero-shear demixing instability. For simplicity
_ _ we assume that the slip paramedds independent of. 7 ,
OyWap=0 V¥ a,fp aty=0L. 2.23 and 7 ¢ are also assumed independentdgfbut are prefac-
tored by the extensive factois and 1— ¢, respectively, in
D. Model parameters Egs.(2.13 and(2.16. We often eliminatep in favor of the
Typical values for the model parameters are taken as folReynolds timerg=pL?/n;=0(10"37(¢=0.11).
lows. We assume the solvent viscosify, and densityp to
be those of water. We take the plateau moduBuand the E. Intrinsic constitutive curves
Maxwell time 7 from linear rheology[63] at ¢=0.11 on
cetyltrimethylammonium bromide (CTAB) — . .
(0.3V)/NaNO;(1.79M)/H,0. We estimate the Rouse vis- ¢ and sheary (with v,=v=v), the components of the
cosity 7 , from the(limited data on thehigh shear branch of Micellar strain are given by
the flow curve of a closely related systdi®3]. The mesh N
size is estimated to ble= (kg T/G)Y?[55]. In fact this form W y7(¢)
is truly valid only for a good solvent, although in the inter- Xy

dyp=3d3¢p=0 aty=0L (2.20

and, following[6],

In planar homogeneous flow with uniform concentration

y

ests of simplicity we assume it to be a good approximation 1+by*7(¢)

even for systems closer to demixing. We take the diffusion o
coefficientD and the equilibrium correlation length from _ 1 b'yZTZ(E)
dynamic light scatteringDLS) data [64] on CTAB/KBr/ Wyy=— (1t a) —
H,O, at a comparable micellar volume fraction. We calculate 1+by*7(¢)
the drag coefficient =6 7né&~ 2 [55]. We fix the slip param-

etera=0.92 by comparing our intrinsic constitutive curve in —  l+a—

the semidilute regime to that of Cates’ model for wormlike WXX:ﬁWyy!

micelles[1]. We then have realistic values for all parameters,
at ¢=0.11(Table ). -

After a rescaling of stress, time, and length so B4t Woz= W= W),=0, (2.22
=0.11)=1, 7(¢=0.11)=1, andL=1, whereL is the rhe- )
ometer gap (0.15 mm) used in REB3], the model has eight N which
scaled parameters. Exploring this large parameter space is a
daunting prospect so we shall not, in general, vary the pa- b=1-aZ (2.23
rameters independently. Indeed, any given spinodal is gener-
ated by simply tuning the single paramet¢r relying on  The total shear stress is the sum of the micellar stress and a
known semidilute scaling laws for the dependence of theéNewtonian component:
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_#PA-g)"

Uncoupled (3.1
7 , .

D

the concentration still fluctuates, but independently of the

rheological variables. Equatig2.16) then reduces to the CH

equation(with a ¢-dependent mobility Independently of

o¢, the shear rate and micellar stress together obey uniform-

¢ d-JS dynamic$6,65,64. Accordingly (as described in de-

tail in Sec. IV B below, two separate instabilities are pos-

sible.

Lol N bbb (a) Demixing instabilityFor D<0, the concentration has
10 10 its own CH demixing instability, governed primarily by the

strain rate y free energy defined in E¢2.6). As noted, this occurs regard-

02F less of shear. In this work we consider orflpw-induced

: D=2.6e-5 instabilities, and so séd>0.
(b) Mechanical instabilityFor shear rates where the in-

- d
© .
§unstable°o trins_ic co_nstitutive curve has neggtive slaf®/dy<0, fluc_-

b4 o tuations in the shear rate and micellar stress have their own
g‘§ ° shear banding instability, which for convenience we call

total shear stress Zx

<
<o
©
<
<

0.15

3

201 unstable
y .
$° “mechanical.”
S For finite drag, these instabilities are mixed by feedback
§  stable between flow and concentration. Although we always con-
Voo do0 L 0 | B0 °°|]. L. sider systems stable against zero-shear fluid-fluid demixing,
D>0, the mechanical instability is nonetheless enhanced by

0
0 20 40 60 80 100 ! : .
¥ (_:oupllng to concentration and can now set in at a shear rate
v<7%e, for whichd2/dy>0. Indeed, for systems close to

FIG. 3. Top graph: intrinsic constitutive curves fgr=0.11, demixing, D=0, instability sets in afyZO, for which the
0.091, 0.072, 0.053, 0.034, 0.01&ashed lines, downwardSpin- . f i tituti | Fob v | tiall
odals for the uncoupled limif—« (O); coupled model with region of negative constitutive Slope 1P ., IS essentially

irrelevant. In this way, the coupling mechanism allows a

D(¢4=0.11) taken from the DLS daté&Table 1); coupled . :
(¢ ) 4 b (©) P smooth crossover between “mechanical instabiliti¢sig-

model withD artificially reduced € ,A). Bottom graph: spinodal . . T ; .
for D=2.6x 10~%, replotted on a linear scale to show the lobe of 9€red mainly by the negative constitutive slppe “demix-

instability at high shear rate more clearly. ing, triggered by flow” with increasing proximity to zero-
shear demixingD=0.
—— — — — In what follows, we study in detail the onset of this com-
2(7,¢)=G(d)Wyy( v, )+ 1( ) 7. (2.24  pined instability. We consider two different flow histories.
The first (Sec. IV) assumes an initial state on the intrinsic

This defines a set of intrinsic constitutive Curvg$;’$) constitutive curve and is used to define the “Spinodal" limit
— of stability in sweeps along this curve. This is analogous to

hed li in Fig. f h ioh. Th > ) o >
(d_as _ed ines in Fig.)3 one o.r gac _concentrau_cxp N defining the spinodal of a van der Waals fluid via quasistatic
criterion for the nonmonotonicity oWy to dominate the  compression and suffers from the same practical ambiguity
Newtonian termzn(¢)y and cause nonmonotonicity in the that finite fluctuations can cause separation or banding via
overall stresSS is 77(5)<%G($) T(g)_ As g is reduced, metastablekinetics before the spinodal is reached. The sec-

therefore, the region of negative slope narrows, terminatin@nd history(Sec. V} considers a start-up “quench” into the
— nstable region and iessentially the counterpart of a tem-

itn ad“ck:itic?)l” point at fl): ¢tCTO'Q§5' The shalmedgglitative perature quench into the demixing regime of a van der Waals
rend has been seen in cetylpyridrimum chlori ) so- fluid. The analysis here is complicated by the fact that the

lo & of of

0.05

o0

dium sahcylade(Na_Sa}/br_me [13]'. . . fluctuations emerge against the time-dependent start-up flow.
Although these intrinsic constitutive curves atationary

solutions, d;- - - =0, they are not necessaristable against

perturbations that can lead to shear banding and/or demixing. IV. INITIAL STATE ON INTRINSIC CONSTITUTIVE

We now proceed to discuss the instabilities that can arise. CURVE; SLOW SHEAR RATE SWEEPS

A. Linear analysis

Ill. UNCOUPLED LIMIT . N . :
Armed with the intuition of the previous section, we now
In the limit of infinite drag, i.e.{— at fixedf”(¢), the  turn to the analysis proper. In this section, we study the linear
relative motion between micelles and solvent is switched offstability of homogeneous initial states on the intrinsic consti-
disabling concentration fluctuations. In the slightly differenttutive curve to find the spinodal onset of instability in shear
limit of {—co at fixed micellar diffusion coefficient rate sweeps along this curve.
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Looking back at Eqs.2.13, (2.14), (2.16), and(2.17), we The stability matrixM , determines the fate of the fluc-
recall that the model has the following dynamical order pa-+tuations. Its eigenmodes obey
rameters: fluid velocity, local micellar strairv, and con-
centration¢. (For large dragu e is assumed to respond
adiabatically. In what follows, we will work in terms of the
shear rateV v instead of velocityy, taking the gradient of
the (linearized version of theforce balance equation Eq.
(2.13.

An initial homogeneous shear state on the intrinsic conwhere« is the mode index. The eigenvalueg , versusk
stitutive curve has uniforny v = 751 and =, with the dteftlne ta meItlb;Z(r;Ched d|s§erf|ort1 rr()alit::on Flor tthef |r::t|al

— . . stateu to be sta ecaying fluctuationsthe real part of a

ngpone;tstr(])_f/:V(gf,;i)) (alfs<|)| umfprrr) given by Eq.(2.22). dispersion branches must be negative. A positive eigenvalue

€ encode this state as follows: wy ., indicates an unstable mode that grows exponentially in
time with relative order-parameter amplitudes specified by

Ok Nk a=M Vi o (4.4
k,a¥ k,a =|§_K,a

EZ?EMXQLZ V_Vijévvij + pey, (4.)  the corresponding eigenvectoy, . As the background ho-
i ==
mogeneous shear state=[y, W, ¢] is tracked upwards
in which thee are dimensionless unit vectdig7]. (downward$ sweep along the intrinsic constitutive curve,
Noise induces fluctuations about this state, giving therefore, the lowefuppe) spinodal lies where the eigen-

value wy« of M =M (u) with the largest real parimaxi-
mized overk and«) crosses the imaginary axis in the posi-
tive direction.

For any shear rate between the spinodals, the dispersion
with the sum covering both positive and negatikeand relation is positive for some range of wave vectors. Typi-
8u_ = duy ensuring thau(r,t) is real. For simplicity, fol-  cally, we find just one unstable branel. We give results
lowing numerous previous authdi,35,48,69, we consider  for this branch below, focusing on any global maximum,
only fluctuation wave vectors in the velocity gradient direc-which indicates a selected length sckfe * at which inho-
tionk= k§/ and(separatelythe vorticity directionk= kE We  mogeneity emerges most quickly. We also study the unstable

discard any component in the flow directisnwhich would ~ €igenvectov . at this maximum, which encodes the “na

be advected by the background flow, greatly complicatingure” of the instability (mechanical versus demixing

the analysis. Indeed, the spinodal is commaié§inedusing We devote most of our attention to flow gradient fluctua-

only these advection-free fluctuatioh88]. We defer to a tions k= ky, returning at the end of this section to briefly

future papef70] a full numerical calculation of the scatter- analyze vorticity fluctuations, the stability of which turns out

ing structure factors in the entilg-k, andk,-k, planes, as to be unaffected by shear in our model.

could be investigated experimentally by light scattering. For flow gradient fluctuations, they,=0 by incom-
Substituting Eq(4.2) into Egs.(2.13, (2.14), (2.16, and  pressibility and the relevant remaining components of

(2.17 and retaining only terms linear in the fluctuations, we Su(t) are ikdv,= 5y ik Sv 4, Wy, SWyy, SWyy , SWy,,

u(rh=u+ du(texaik-n), (4.2

get an equation of the form 8W,,,8W,,, andd¢. Evaluating the components of the sta-
bility matrix M ,(u), we find that it decomposes into three
FOU (D) =M - U (1) + 77(1), (4.9 independent subspaces:G,=[ikdv,= 5%5\ny.5\/\/><><,

- - oWy ,00], G=[ikdév,,W,,,W,,], and &3=W,,. In all
unstable regimes, for this flow history, on§; is unstable
where we have now included a noise source of the fluctua-71], so we focus on this subspace hereafter.
tions, 7 (t). This linearized equation is valid only as long as ~ While most of the results given below will be numerical,
the fluctuations remain small, and so can predict only thén some regimes we also givgualitative analytical results,
initial stages of fluctuation growth in any instability, which is obtained from the following simplified form of the relevant

our aim. stability matrix in the subspadeSy, 6W,y, 6Z,5¢]:
2 2 .

LS 0 G’ W, K

NsTd 7sTd o NsTd

e 42,2 -— —
M= 1+z 1-1% 04 Wiy’ ) (4.5)

_bV_ny —b; —1-1%k? Z7'

0 0 K27 —DKX(1+&%?)
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For convenience, we have changed variables to nonzero but irrelevant to the eigenvalues since all off-
diagonal elements in the bottom row are zglts eigenval-
a—-1 l+a ues obe
Z= —— Wit —5— Wy (4.6) y
wp+aws+bol+cw+d=0, 4.1

and[actually absent from the simplified matri4.5)] whered=DetM ;. Since the roots of any such polynomial

a—1 1+a with real coefficients are either real or complex-conjugate
Y= TWXX— Twyy. (4.7 pairs, there are two possibilities for the spinodal. First, the
root with the largest real part could be zero, implying the

onset of a monotonically growing instability. Alternatively,

We have also defined renormalized drag the root could be one of a pure imaginary pair, implying the

- (1+a) onset of growing oscillationgln the language of dynamical
(=——— (4.9 systems’ theory, this is the signature of a Hopf bifurcation
d(1-¢)? [74].) For the parameters considered, we have mostly found
o o the first casd 75]. Accordingly, our analysis hereafter con-
and diffusion coefficient siders only this first case, for which the spinodal is given by
_ d=DetM,=0. Assuming just one unstable eigenvalue
B=D_ Z_G' 4.9 (which is the case for the present purpgs&etM <0 in
7 ' the unstable region, i.e.,
DD\>0, (4.12

(fis negative s®>D>0.) The matrix(4.5) is exact in the
uncoupled limitZ—-ce. In this limit, therefore, we note that in which
the normal stresses appear only through the linear combina-

tion Z(Wy,Wy,), with Y(W,y,W,,) playing no part. For Du=DetMy

finite £ it contains several approximatiofg2]—most nota- 2 o o

bly neglectingdY—and so underestimates the growth rate of v3) —(14+2)+ bV_VXy'y}

the coupled instability. However, we have checked that the NsTd

qualitative trends are unaffected. In some places below we 5 —

further neglect terms of ordey. This is valid only for con- _ [ k (1+b 2)}‘3‘2 4.13
centrations not too near the critical concentrati¢p and T Y ’

. . d
shear rates not too far above the lower spinodal, so#4hat 4

<GW,y. In any case, start-up at higher shear rates is togWe have neglected the interfacial terf&? and £2k? in
violent to study experimentally73]. calculating the spinodal, because they merely cut off the dis-

In order to satisfy the boundary conditiorgs$=0,  persion relation at short length scales without affecting the
dy6W=0, anddv =0 (imposed strain rajeonly harmonics sign of the maximum growth rajeThe term in the square
of the gap siz&,=n/L are allowed. But in order to define brackets of Eq(4.13 is always positive, so the condition for
the spinodal mdependently of the system size, we allow arinstability is finally just
bitrarily small wave vectors.

d>
~-D-—>0. (4.14

B. Results: Uncoupled limit
dy

1. Spinodal

From this, we see that CHb demixing can occur if the

fero- -shear diffusion coefficient is unstablz<0. As noted
above, however, in this paper we consider only flow insta-

bilities, and so setD>0. The unstable region then is

In the limit {—o at fixed D f"/, fluctuations in the
mechanical variables decouple from those in concentratio
Our numerical results for the spinodals in this limit are given
by the circles in Fig. 3. The unstable region coincides with”_—
that of negative constitutive slopi®/dy<0, as expected. It d3/dy<0, as seen numerically: the instability occurs in the
vanishes at a “critical point’¢ ~0.015, as in the experi- Upper 3<3 subspace of the matri¢d.10 and so is purely

hanical.
ments of Ref[13]. mec
Analytically, the stability matrix in this limit is exactly Note that, although the normal stresgesicoded byZ

=Z(Wyy,W,,)] have apparently canceled from E@.14),
My _ “mechanical’, they in fact play a c.rucial r_olg in thg mgchanical ?r)stability,

M= = 5 ) 5 as follows. The_or|g|n of this instability is the positive term
0  —DKkH(1+&%9) ¢ (4.10 (kzlnsrd)way'y in the curly braces of Eq(4.13). In this

term, —k?/ 5 ¢4 is the prefactor taW,, in the 6y equation,

in which M, is the upper left X3 “mechanical” sector of ~and states.that a local increase W, causes a diffusive

matrix (4.5). (The three elements represented by the dash argecrease iny. The remaining factor feeds back positively: a
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(d)¢ — oo (detail). (e)D(¢ = 0.11) = 2.6 x 104 (detail). ()D(¢ = 0.11) = 2.6 x 10~ (detail).

FIG. 4. Positive(unstable dispersion branch ap=0.11. (a) and(d) are for the uncoupled modegb) and(e) are for the coupled model
in which all parameters assume the experimental values of Tabf@rodal given by s in Fig. 3; (c) and(f) are for a coupled model in
which D(¢) is artificially reducedspinodal given byAs in Fig. 3. For each vertical pair of graphs, the bottom is an enlargement of the top
one, at shear rates near the lower spinodal. In each subfigure, the white space dekpesl(ies for which all dispersion branches are
negative.

decrease iny causes a constitutive increase\,, consis-  boundaryof instability in sweeps along the flow cur¢pre-
tent with the negative slope in the constitutive curve. How-Vious section, it is less usefulinside the unstable region
ever, this factor itself describes two mechanisms, each o$ince one cannot prepare an initial state on the unstable part

which involves the normal stregs The factor—bV_VXy (pref-  of the constitutive curve. Indeed, start-up quenches into the

actoring 5')/ in the §Z equation states that the decreasejn u_nstable region in general go uns_table long before the intrin-
— sic constitutive curve can be attainesbe Sec. Y However,

causes an increaseh The remaining factoy (prefactoring  he main features of the dispersion relation for fluctuations
dy in the oW,y dynamic$ states that this increase @  about the unstable constitutive curve do still appear in their
causes an increase i, thereby completing the positive time-dependent counterparts of start-up flow. Our motivation
feedback. This role of normal stress was not considered ifor discussing them here is to gain early qualitative insight
early studies of mechanical instabilit§], although se¢76].  without the complication of time dependence.
Note finally that theabsolutevalues of the micellar normal For this pure mechanical instabilityvith this initial con-
stresses are important, not just the differeég—W,,: the  dition) we observe only one positive dispersion branch,
trace of themicellar contributionto the stress tensor is not shown in Figs. 4a) for ¢=0.11 and %) for ¢=0.02.
arbitrary. Strictly, only harmonicsk=n of the gap sizeL=1 are
Having discussed the spinodal onset of mechanical instaallowed. However, we still shovk<<s, because for some
bility, we now consider the dispersion relations in the un-systems the features of this domadiscussed beloycould
stable regime. lie in the allowed regionk=. Figure 4d) contains the
same data as Fig.(@, but enlarged on shear rates near the
2. Dispersion relation lower spinodal: this is the only regime in which banding
Before discussing the dispersion relation for fluctuationsStart-up kinetics have been studied experimentally since they
about an initial state on the intrinsic constitutive curve, weP&come too violent at higher shear rafes].

make the following cautionary remark. While the stability ~ For a given unstable applied shear ratethe growth rate
analysis of this initial state can correctly define the spinodaly tends to zero ak—0 and ask— <, with a broad plateau
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(a)¢ — oo. (b)D(¢ = 0.11) = 2.6 x 10~%. (c)D(¢ = 0.11) = 2.6 x 108,

FIG. 5. Unstable dispersion branch &t 0.02. (a) is for the uncoupled modelb) is for the coupled model in which ab=0.11 all
parameters assume the experimental values of Talkdpihodal is given byJs in Fig. 3; (c) is for a coupled model in whiclD (¢
=0.11) is artificially reducedspinodal given byAs in Fig. 3. In each subfigure, the white space definésk][ values for which all
dispersion branches are negative.

in between. This can be understood via the following anastress evolvegnd the Reynolds number is effectively zero
lytical results obtained from the characteristic equation ofBecause micellar stress is nonconserved, the growth rate is
matrix (4.10 and schematized in Fig(®. independent ok:

(i) Reynolds regime 0. Here we find

_ D 1 d§+o( = was
2 w= == - =, —— n,n .
o - 22 K .15 142 (1427 g
d; 7 sTd
with

This is marked as a dashed line in Figa$p and agrees well
with the numerical data. Here, the instability is limited by the y Ny
Reynolds rate at which the shear rdtmnserved overall Du=Dwm ;2 (4.17)

diffuses a distanc®(1/k): the micellar stress responds adia-

batically in comparison.
(i) Nonconserved plateau regimit these shorter length  (Recall thatD,,k?.) The prediction of Eq(4.16) is marked

scales(but still with k?I2<1) the growth rate is instead lim- as a dashed linéalso incorporating the interfacial regime,
ited by the Maxwell time on which the micellar backbone below) in Fig. 6(a).

]
1 4 1 4
(ii) Non—conserved (i) Non—conserved 3
oF ¢—coupled 0
o [ [
-1+ -1
05 i i
3 i 3 2 -2
= | (i) Reynolds (iii) Interfaces o |
2 4k =3 (@) Diffusiv -3r
-4r -4 iv]
-L5} [ [ () Reynolds
- sk _g] (i) Non~conserved mechanical
e |
2 R 1 N 1 N 1 R I 1 1 6Ll N .(l)lé ‘1‘ _glL— IZI(I).é ‘|‘
-6 -4 -2 0 2 6 -4 -
log, ,(k/m) log, ,(k/m) log, (k/m)
(a)¢ = 0.11,¢ — oo, ¥ = 4.0. (b)¢ = 0.11, D = 2.6 x 10~4, 4 = 2.55 (left), ¥ = 4.0 (right).

FIG. 6. lllustration of the various dispersion regimes discussed in the(@xincoupled mechanical instabilit§h) coupled model(b,
left) is for a shear rate that would be stable in the uncoupled lmite; (b, right) is for a higher shear rate that inside the uncoupled
mechanical spinodal. The solid lines are the exact numerical results. The dashed lines are the approximate analytical asymptotes given in
Egs.(4.19, (4.16), and(4.21). The dashed arrows show the approximkteof Eq. (4.24.
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(iii) Interfacial cutoff.The dispersion relation is cut off 1. Spinodal
oncekl=0(1) by the reluctance to form interfaces. Here,
the growth rate follows from Eq4.16 with w— w+12k?. We now study how this flow-concentration feedback

The crossover between the first two regimes occurs at &hifts the spinodal onset of instability, so that the lower spin-
length scale much greater than the interfacial cutoff, giving axdal now occurs at a shear rajec 'ycl. This will have im-
broad intermediate plateau. The maximumdi(k) is very  portant implications for fast upward stress sweep experi-
shallow and its length scale exceeds the system size for thments: “top” jumping will now occurbeforethe maximum
experimental systems considered here. Therefore fluctuatioras the underlying flow curve is reached.
grow equally quickly at all length scales from any typical  Our numerical results are given in Fig. 3. For the experi-
system size down to the interface width, and there is nanental model parameter values of Table | the spinodals are
selected length scale, in disagreement with experiment. Ishifted only slightly(squares in Fig. 3 so that the instability
the next section, we see that coupling to concentration natus still essentially “mechanical,” but perturbed by concentra-
rally selects an initial length scale at which inhomogeneitytion coupling. However, this shift increases dramatically in
emerges. systems that are near to an underlying CH demixing instabil-

Before proceeding, however, we pause to note that several, as illustrated by reducin®(¢=0.11) at fixed coupling
previous authors have considered the mechanical instabilitzg;//g (diamonds and triangles in Fig).3or D=0, instabil-
of the JS model, without concentration coupling, althoughity sets in at very low shear rates, for which the regime of
few have included the interfacial term required to select the

ultimate steady banded state, and which, in this linear anal)nega:'vgt ?r? nst|t|ut|ve hs lope 207>tr]°1 IS tesbs'l('at nt@lly wrel;. I
sis, cuts off the dispersion relation at high wave vector. acvant. ese low shear rates, the Instability 1S essentially

collection of references can be found in the reviéWi]. For CH demixing, triggered by sheatWhen D finally goes

example, Refs[7,8] gave a nice analysis of the stability of Negative—not shown—demixing must occur even at zero
stationary homogeneous solutions on the intrinsic constituShean _ _ _

tive curve, at fixed overall stress. They considered the zero On the basis of these results, we classify systems into two
Reynolds limit and therefore found rnodependence. In the basic types. S 3

plane ofW,,-Z, they found the lower shear branch to be an  Type | systemare far from a CH demixing instability. The
attracting node, the upper branch to be a stable focus, and tt%inodal is shifted only slightly by concentration coupling.
branch of decreasing stress to be a saddle point. Reference Type Il systemare close to a CH instabilityl{=0). The

[9] found the condition for instability to bels,,/dy<0,  SPinodal is strongly perturbed by concentration coupling.
consistent with our analysis. Beyond the JS model, Rf. Correspondingly, we anticipate two types of instability
considered the linear stability of a simple scalar viscoelasti¢with @ smooth crossover in betwgen

model, without interfacial terms, at zero Reynolds number. Type A instabilities which are essentially mechanical
Consistent with our analysis, they found kadependence. “shear banding” (eigenvector mostly insy, W) but per-
Reference[61] studied a scalar viscoelastic modelfite  turbed by coupling tad¢. These are expected in all type |
Reynolds numbenith interfacial terms, and did apparently systems, and in type Il systems for shear rates well above the
find a selected wave vector. However, there the viscoelastig)yer spinodal.

stress was assumed to respond adiabatically so the interme- Type B instabilities which are essentially CH demixing

diate plateau, which in our case eliminates this length Scale{eigenvector dominated by¢), triggered by flow(SID).

was artificially absent. These occur in type Il systems at shear rates just inside the
lower spinodal, see Reff36,41,45—-48

This intuition is confirmed by the results given in Sec. V
below.
~ For finite drag, the m_echar)ical instability_ descriped above To complement the numerical results of Fig. 3, an ap-
is coupled to fluctuations in concentratiofiy via the proximate analytical condition for instability that qualita-
Helfand-Fredrickson feedback mechanism. As already dISﬁve|y reproduces the shifts in the lower spinound by

cussed, the main source of this feedback is the presence giiing ,, =0 in the characteristic equation of the approxi-
the viscoelastic stres5(¢)W in the diffusion equation Eq. mate stability matrix(4.5)] is

(2.16. This causes concentration to diffuse up gradients in
W, at ratex1/{. The elastic part of the stre$gq. (2.13)]
then increases in proportion ®'($)=dG(¢)/d¢, result-

ing in a positive feedback proportional @'/, which en- ~ 1
hances the mechanical instability. Equati¢hl16 actually DDOy+ =D>0. (4.18
contains another source of feedback, in the elastic contribu- 4

tion of F, to the termV(8F%6¢). For completeness we

include this in our numerics but neglect it in our analytical

work, since it does not affect the qualitative trends at sheaf this inequality, D, is the mechanical determinant already
rates near the lower spinodal>~y.;, which are the main defined in Eq(4.13; D is a “feedback determinant,” which
ones of interest to us. captures the flow-concentration coupling discussed above:

C. Results: Coupled model
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Y. 4 a) £ infinite (uncoupled limit)

-------

FIG. 7. Sketch of the unstableashed region of a mechanical
instability (a) decoupled from ofb) coupled to concentration. As
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elasticityf”. The kinetic coefficient has canceled from this
ratio, since the instability occurs adiabatically at the spin-
odal.

Note finally that a second lobe of instability appears at
high shear rates for small values bf [See Fig. 3(bottom)
and Fig. 7] However, its existence and location are highly
sensitive to the choice of model parameters and to the precise
details of model definition: it appears much more readily and
extends to much higher shear rates if the Newtonian contri-
bution to the micellar stress is not included. Its eigenvector is

overwhelmingly dominated byy. It is associated with two
complexeigenvalues with equal positive real parts. We do
not study this instability in detail, but return in Sec. VI to
discuss its potential implications. The effects of concentra-
tion coupling in our model are summarized in Fig. 7.

The enhancement of flow instabilities by concentration
coupling was first predicted by the remarkable insight of
Schmittet al. [35]. Our Eq.(4.20 corresponds to their Eq.
(24), and the flow-concentration feedback mechanism of our
model corresponds to their direct assumption of a chemical

potential = w(7y). However, this is truly equivalent to our

approach only if the viscoelastic stréd%y) can adjust adia-

batically (assumed in Ref35]), whereas we find below that
the dynamics inside the spinodale dictated by the rate of

micellar stress responsé€lhe spinodal is unaffected, since
the response here is adiabatic by definitidBchmitt et al.

discussed in the text, concentration coupling broadens the region ¢figq predicted an instability for negative feedback, but con-
instability and can sometimes cause a new region of instability 1% uded it to be similar in character to a pure mechanical

develop in the high shear rate brangee Fig. 3.

k? G’ W, k2

0 —
7]STd 7]37'(1
_ — — 070
V=l 147 -1 W | PO
—bV_VXy —b; zr

k? — . — _ -
=- 7757_SG’WXy{— by(1+2)— bny}-i- O( 770, 770)

'\A/ k2 ~2 dz 070
==G'Wyy| —(1+by")|—+0(7",7°), (419
NsTs dy

wheredf/d;<0. (The terms inr’ cancel each otherAs for
the uncoupled model, the interfacial terms have been n

glected in locating the spinodal. Our final condition for in-

stability is thus

~d%  G'W,, dZ
D—._+ po —._< 0, (42@
dy ¢ dy
which reduces to the uncoupled conditi@hl4) for {—« at
fixed D, as required. The size of the second temwhich
encodes feedbatkelative to the “diagonal” product of un-
coupled instabilitiegfirst term is set byG'/(D{)~G'/f",
i.e., the ratio of the “feedback elasticityG’ to the osmotic

03631

instability in which concentration plays no role. In our
model, negative feedback would correspondit®/d¢<O0;
we consider only positive feedback the notation of Ref.
[35], C>0).

2. Dispersion relation

We now discuss the dispersion relation for fluctuations
about a state on the intrinsic constitutive curve when concen-
tration coupling is present. The cautionary remark made in
Sec. IV B 2 above for the uncoupled model still applies: one
cannot in practice prepare an initial state on the unstable part
of this curve.

We have seen in the previous section that concentration
coupling enhances the mechanical instability, shifting its

lower spinodal to a shear rage< y.;. We focus mainly, and
first, on shear rates just inside this lower spinodal, since this
is the only regime in which unstable start-up kinetics are
ef'easibly studied: the instability is too violent at higher shear
rates[73]. Comparing the dispersion relation for the pure
mechanical instabilityFig. 4(d)] to that for a coupled model

of type I[Fig. 4(e)], we see thatoncentration coupling en-
hances the mechanical instability only at short wavelengths
thereby selecting a length scal& k*. We discuss this length
scale in more detail below. At long wavelengttssnall k),

the plateau of the uncoupled instability is still appangmb-
vided d3/dy<0) and unperturbed. Fat>/dy>0 this pla-
teau disappears to leave only the diffusive, concentration-
coupled bump. The dispersion relation for a system closer to
type Il (D reduced by a factor 100, at fixgsl'/{) is shown

in Fig. 4(f): the enhancement at long length scales is much
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more pronounced, corresponding to the greater spinodal shifthere
(triangles of Fig. 3 However the mechanical plateau
(present whenlS./dy<0) is still unperturbed at long length
scaleq although indiscernible on the scale of Figf)4.

The overall dispersion shape is therefore the same in type
I and Il systems. Its main features can be understood in morgpjs k* is marked by a dashed arrow in Figh§ and agrees
detail by analyzing the simplified stability matrid.5). We  reasonably with the numerics. As in the conventional CH
consider two separate cases. . instability, k* —0 at the spinodalwhere w* —0). This is

(&) Shear ratembovethe lower spinodal of theoupled ot yisible in Figs. 4 and 5, becauké starts to diminish
model but that are still low enough to be mechanically Stableappreciably only for indiscernibly smalb* on our scale.
in the uncoupled limifd>/dy>0; Fig. @b, lef)]. Here, we  Note that Eq.(4.24 does not reproduce the selected wave

Dy=Dy— wp(1+2)<0. (4.25

find the following regimes. vector of standard CH theory at zero shear, since phase sepa-
(i) Diffusive regime k=0 in which ration is still affected by the coupling of composition to vis-
coelastic effect$78] even in this limit.
_ |54 E & K2 (4.20 (b) For higher shear rates that would have been unstable
@~ 79w ' even in the uncoupled limiS/dy<0, the dispersion rela-

tion develops a shoulder at sméll see Fig. @, right). As
This is marked as a dashed line in Figbgleft), and slightly  noted above, this is just the large length scale part of the pure
underestimates the exact requi2]. The growth rate in this mechanical dispersion branctSec. IV B, comprising a
regime is limited by the rate at which matter diffuses a dis-Reynolds regime and a mechanical nonconserved regime.
tanceO(1/k): momentum diffusion and micellar strain re- [See regimesi) and(ii) in Fig. 6(b, right).] The growth rate
sponse are adiabatic in comparisgMote that for larger here is much faster than diffusion so concentration is absent

shear rates for whict>/dy<0, discussed iitb) below, Eq. ~ from the eigenvector. At shorter length scales, concentration
(4.21) gives w<0, so this branch is absent from the insta-can keep pace and included. For shear rates that are not
bility; compare Figs. @, left and righ}.] too deep inside the unstable region, the dispersion relation
(i) Nonconserved “plateau’ regimeror largerk, the rate  then rises to the rounded plateau estimated by (E®2)
at which the nonconserved micellar strain can resgenen  [regime(iii) of Fig. 6(b, right ] before finally being cut off
within concentration enhanced dynamiésthe limiting fac- by interfaces[regime (iv)]. The maximum at* is again
tor; concentration diffusion becomes adiabatic in compari€stimated by Eq4.24) [marked by the dashed arrow in Fig.
son. If the eventual interfacial cutoff in the dispersion rela-6(b, right].
tion oncel2k?=0(1) or £2k?=0(1) were absent we would The preceding analysis captures the qualitative features of
then see a nonconservéeindependent plateau regime in the dispersion relations in many regimes. However, some
which more exotic effects are apparent in Figgb)4and 4c) for
S shear rates well above the lower spinodal. For=306<80,
DutDe/D concentration coupling givesiegative feedback at short
wp':1+f—G’bV_V2y/52’ (4.22 length scales. The origin of thi:ot included in our above
X analytical treatmentis that the velocity advecting the micel-
with lar backbone strain is not the center of mass velogityas
the above analytical work assumeéilit the micellar velocity
Um=v+ (1= ¢)v . Afluctuation Wy, in general causes a
ieF,M. (4.23  fluctuation ing, i.e., inv,. When included in the advective
term, this feeds back negatively o, . At still higher shear

(Recall thatD,,<k? andDr<k?.) However, for the systems rates 7>SQ in Fig. 4c), th(_—} dispersion relation has a pro-
of interest to us, the lov crossover to this regime is not Nounced ridge corresponding to the high shear rate lobe dis-
well separated from the interfacial cutoff and the plateau i€USSed above and schematized by the right hand dashed line
replaced by a rounded maximum &*(w*) (thus definey  ©f Fi9- 7(0).

where w* <~w. This maximum selects the length scale

k* ~1 at which structure first emerges, as noted above, and as 3. Fluctuations in the vorticity direction

seen experimentall}32]. . . o In the uncoupled limit—, the mechanical subspace is
(iii) High k interfacial é:uztoff.The d|sgleS|0n relation is - staple with respect to vorticity fluctuations at all shear rates,

cut off by interfaces onck’l“=0(1) ork®¢*=0(1).land  \yhjle concentration has the usual CH demixing instability

¢ are roughly comparable for the systems of interest to Us.for p<(. Can coupling influence this instability? In some

An estimate for the selected wave vecldr can be ob-  \yorks[35,47) spinodal shifts have indeed been found. In our

~ NsTd
T

tained by expanding aboui~ wy, to find model this does not occur, for the following reason. By anal-
ogy with the feedback mechanism studied above Kor
K* 4~ — — — ‘i’P' ———, (429 =k§_/, the term in Eq(2.16 that could participate in positive
D&2-D(1+2)1%Dy—G'bWE |4 [Dy feedback isW,,G’(¢)k?8¢. In our model(unlike [35,47)

036313-13



S. M. FIELDING AND P. D. OLMSTED PHYSICAL REVIEW E58, 036313 (2003

T " 1 (see Fig. 8 Although these expressions reduce to €922

- ast—o (so that the total shear stress would then be on the
; intrinsic constitutive curve we show below that in general
20 . the flow becomes unstable before this limit is reached.

y=2.

-1 2. Inhomogeneous fluctuations

In a real system, these homogeneous transients represent

v=16.0 . only a background statg(t) =[ &,V=_V(t),$], which is subject
] to fluctuations induced by noise:

(1) Y Sy(t)
- M 1 ) 1 " 1 2 _ H
10 5 ) 3 3 V=V(£,t) — V=V(t) +§k: 5V=V(t) gikr
FIG. 8. Homogeneous background micellar st@;gy vs t for o(r,1) a - S¢(t) ‘
y=2.0, 4.0, 8.0, 16.Qtop to bottom at right of plot For shear rates ) (5.2

inside the spinodal, this homogeneous background state can go un-
stable well before it would have attained time-independence; SefAs noted above, we are now concerned only with fluctua-

text tionsk=ky.) To investigate the fate of these fluctuations, we
— linearize(as beforg the model’'s dynamical equatioii®.13),

W,,=0 [Eq. (2.22] so the stability of vorticity fluctuations d o :
is unaffected by shear. Accordingly, hereafter we considefﬁél%n(ﬁ‘la' and(2.17) to get a linear stability equation of

only k=ky.
36U (1) =M (1) - ou (1) + 77,(1), (5.3
V. SHEAR START-UP EXPERIMENT -
where the source terny(t) arises from the background
noise. Equation5.3) is the counterpart, in start-up, of Eq.

The stability analysis of start-up flow is more involved, (4.3, with the important additional feature thad () is

because here fluctuations emerge against a background stgige dependent, via its dependence on the homogeneous
that itself evolves, deterministically, in time. We first outline —

these deterministic kinetic§or an idealized noiseless sys-

A. Time dependence and linear analysis

background statea_l(t)=['7,\/=_v(t),g] as the micellar strain

tem) before analyzing fluctuations. W(t) evolves toward the intrinsic constitutive curve.
Experimentally, the emerging fluctuationdu ,(t) are
1. Deterministic “background” kinetics measured in light scattering as the time-dependent static

At time t=0, the rheometer plate gt=L is set in motion structure factor,
with velocity yLX, giving an instantaneous shear rate profile Su(t)=(du () sul () =(su(t)dui(t). (5.4
v(y,0)=y8(y—L). On the Reynolds time scalerg N

=pL?/»=10"°7, this rapidly homogenizes across the cell This obeys

such thaty(y) = y. Then, on the much slower Maxwell time ;

scaler, the micellar strain starts to evolve homogeneously, IS =M () SO+ SK(D)-My() + Ny, (5.9
according to Eq(2.17), as .
which is exact for the fluctuations considered hetek-x

#0, an extra advective term appears alongside the time de-

Y

Wiy(t) = __2{1—9_t[005{ Voyt)—\bysinyby)1},  rivative) The noise matrixN ;= ( 7,(t) 77 (1)). The solu-
1+by tion of Eq. (5.5 is
1 b;Z _ ! ” " ! " Trenm
Wyy(t):_lTa — Si(t)=Tex 0dt M (t") |- Sk(0) - ex 0dt M ((t")
1+by?

t t
cos(@?tw%__sin(@?t) ] +fodt Zex*“t,dt Mt >]ug<t )
by

><{1—e‘t
t
X ex dt’M J(t”
1+a F{ft =K( )
a

Wxx(t) = leyy(t)a

: (5.6)

whereS,(0) is the initial, equilibrium structure factor at the
W, (1) =W, ,(t) =W, ,(t)=0 (5.1) timet=0 that shearing is commence#l.is a time-ordering
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operator that ensures all products of the forvh(ty)
“M(ty_1)- - -M(ty) have ty>ty_;>--->to. This is re-
quired because the matriM , does not, in general, commute
with itself at different times.

Equation(5.6) gives exactly the inhomogeneous fluctua-
tions as they growin the unstable regimeout of the homo-
geneous background state, which is itself evolving toward
the intrinsic constitutive curve. It remains valid as long as the
fluctuations are small enough that the original linearization
of Eqg. (5.3 holds, and so predicts just the initial stage of
fluctuation growth(our stated aim To avoid possible confu- O =T 00 1000
sion, we emphasize that it domet require that the evolution
of the homogeneous background should be slow compared FIG. 9. Cartoon: homogeneous start-up flow going unstable at
with the emergence of the fluctuations. This is perhaps contime ;¢ before it can reach the intrinsic unstable constitutive curve
trary to the immediate intuition that, in general, a fluctuationat time 7.
would be swamped as it attempts to emerge, being “over-
taken” by the growing homogeneous background. Instead, In any start-up experiment, then, the micellar strain
the full state is an independent syiEy. (5.2)] of this evolv-  evolves over a time=O(7) (thus definefitoward the in-
ing background K=0) and the(much smaller emerging trinsic constitutive curve, as described above. The dispersion

fluctuations, which are orthogonal to the base fldw-0Q). relation wy ,(t) correspondingly evolves toward the one
Direct evaluation of the integral in E¢5.6) is very diffi-  given by Eq.(4.4) for an initial condition on that flow curve.
cult, because the matrid =M ,(u(t)) changes over time, For a shear rate in the unstable region, then, at least one
and its eigenvectors correspondingly rotate: dispersion branch must go positive at some tirgre 755 SO
that the homogeneous transi¢nt W(t),¢ goes unstable to
O o DV o) =M (DV  o(1), (5.7 spatial fluctuation§79]. In most regimes we find only one

. o positive branc80] and drop the mode subscript with the
with explicit time dependence of botby ,(t) andv , (t). If  ynderstanding that we mean just this bransj(t). At wave
the eigenvectors wer@pproximately time independent, i.e., yectork, the amplitude of the growing fluctuations at a time
if v .(t)=Vv, V toverthe interval of fluctuation growth, t>t, is approximatelyestimated by
then we could expand in this basis , to find exactly

t
t A k,t)~exp{ dt’ w,(t’ } (5.10
Sﬁ,ag(t)=Sg,aﬁ(0)eXp{ fodt”[wg,a(t”Hw;‘,ﬁ(t”)]} (k to ot

i i [This rough estimate is obtained from a simplified version of
+j dt’ex;{j dt”[wk,a(t”)+w:ﬁ(t”)]} Eq. (5.8 and therefore relies on the eigenvectors not rotating
0 v h N too much over the intervah—t, i.e., all eigenvector com-

X Ny ap(t) (5.9 ponents remainin@(1).] We choose a rough criterion for

detectability by light scattering to be Ak=10. This defines a

(which, we note, still allows arbitrary values of the rate of Wave-vector-dependent time scaigy(k), via

fluctuation growth relative to the evolution of the base flow _
In reality, hOV\_/ever, the _eigenvectors rotate in t_ime, so this J ns dt’ w,(t')=10. (5.11)
mode expansion can strictly be performed only in the differ- t -

ential version:

0

In most regimes, there is a selected wave vektoat which
1S ap(t) = [ @ o(1) T 0F g(1) 1S ap(t) + N ap(t)- fluctuations emerge fastest, as the result of a peak in the
- (5.9  dispersion relatiorw,(t) vs k. In practice, the peak shifts
along thek axis in time, but it is still usually possible to
Although not the full time integral, this result nonethelessobtain a reasonable estimate of the ovetall we justify this
specifies exactly the next small increment3p(t) at any claim below. We therefore define the overall time scale of
time. It doesnot require any separation between the rates oinstability to be
fluctuation growth and of evolution of the base flow. It tells
us thatd, S(t) is dominated byS, rr(t), wherel" denotes Tinst= Tinst K*). (5.12
the most unstable eigenmotlg (t)=Vv (t), with the larg-
estwy. In this paper, therefore, we confine ourselves to giv-By the time 7., then, the system is measurably inhomoge-
ing results for this most unstable mode, which determines theeous and in the nonlinear regime, and our linear calculation
main features of the instability. We defer to a future paperterminates. In general, this occurs well before the intrinsic
[70] calculation of the full start-up structure factor by nu- constitutive curve would have been attained, i< 7ss
merical integration of Eq(5.5). (Fig. 9), so that the instability is determined not by the time-
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FIG. 10. Type A instabilities in a type | system: time-dependent dispersion rel@ipnand eigenvectotbottom) in the uncoupled limit
{—o for ¢=0.11. The rheological model parameters all assume the experimental values of Table I. The thickdirmméthe arrows in

(d), (e), (f) denote the time at which the instability becomes measurable. The discontinuities in the first derivative of the eigenvector

components result from a crossing of eigenvalues, discussed in the text.
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the instability first becomes measurealitee instability occurs beyond the time window(@]. The discontinuities in the first derivative of
the eigenvector components result from a crossing of eigenvalues, discussed in the text. The instabiijty ticveirs beyond the displayed

time window for y=2.0.
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FIG. 12. Type B instabilitiega), (d) and type A instability(b), (c), (e), (f) in a type Il system: time-dependent dispersion relatiop)
and eigenvectofbottom for a coupled model in which all parameters assume the experimental values of T@tdegdt D which is reduced
by a factor of 16. The concentratiogy=0.11. The arrows irfe), (f) show the time at which the instability first becomes measurfihie
instability occurs beyond the time window @f)].

independent dispersion relations of Sec. IV above, but byhat the stability matrix changes discontinuously tat0

their time-dependent counterpafgiven below. _from the stableM (t=0) (with y=W=0) to the unstable
Is the unstable intrinsic constitutive curve ever attained., v M (t=o) for a state on the intrinsic constitutive

before the instability occurs, such that<,s? Anecessary ¢ rye. The instability is then, even in start-up, determined by
condition is that the growth raidr. = w (t=7sJ thatwould ¢ time-independent dispersion relations of Sec. IV.

occur once the flow curve were reachgiven by the dis- We pause to compare our analysis to that of Cahn and
persion relations of Sec. )\obeys[81] Hilliard for a two-component system temperature quenched
at time t=0 into the unstable regio@u(¢,T)/dhp<0,
where u is the chemical potential. A good approximation,
invariably made, is thatt(#) changes discontinuously &t
=0 from its initial stable state to the final one of negative
slope, i.e., that the heat diffuses out instantaneously with
respect to the time scale at which fluctuations grow, so that
the counterpart of Eq5.13 applies. We have just seen that

WieTss< L. (5.13

This isnot usually satisfiedrecall Figs. 4 and Bsincewy, is

itself set by the Maxwell timer (with a prefactor set by the
slope of the flow curve and by concentration coupling
Nonetheless, the conditiofd.13) is satisfied just inside the

spinodal, sincew;.— 0 smoothly at the spinodal. However, th ; ;
. T e . e corresponding assumption for our purpofe back-
this condition is not alwaysufficient In particular, for shear Ponding P PuTp

rates just inside thapperspinodal, the homogeneous micel- 9round statai(t) instantaneously reaching the intrinsic con-
lar strain oscillates strongly in start-up. Correspondingly, the>titutive curvé is not valid in general.
growth rate significantly overshoois,. (Figs. 10—12 below We now present results for the time-dependent unstable

and fluctuations still emerge before the intrinsic constitutived!SPersion branch over the time intenigh 7 for several
curve would be attained. In fact, these oscillations mean thati@/t-UP quenches, indicating in each case the selected wave

fluctuations can becoméemporarily unstable in start-up, VeCtork”. V\ie also give results for the time-dependent eigen-
even for shear rates above the upper spinambefined via Vector (at k™) noting whether separation occurs predomi-
slow shear rate sweepd his upper spinodal is therefore not nantly in the mechanical variables or in concentration.
particularly relevant to start-up flows. In any case, shear
start-up is generally too violent to study experimentally at
such high shear rat¢33].

For shear rates just inside th@ver spinodal, the condi- ] ]
tion (5.13 is necessargnd sufficient, and the intrinsic con- ~ Figure 10(top) shows the numerically calculated start-up
stitutive curveis then attained before the instability develops dispersion relationw,(t) for three different applied shear
appreciably. Here we can assume, to a good approximatiomatesy in this uncoupled limit{—o. The temporal oscilla-

B. Start-up dispersion relations and eigenvectors:
Uncoupled model
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tions arise from the oscillations W/(t) toward the intrinsic ~ the eigenvector encodes the extent to which separation oc-
constitutive curveFig. 8). [The timet~2 in Fig. 10a) cor-  curs in each different order parameter. Experimentally, polar-
responds to a minimum iW/(t), although the instability ac- ized light scattering is sensitive to fluctuations in the micellar
tually develops before thEﬂinst<2 [79].] Despite the time sftrainz while unpolari;ed light scatteri_ng measures fluctua-
dependence, the main features of the time-independent di§ions in the overall micellar concentration. _
persion relation for fluctuations about the intrinsic constitu- For type | systems at allunstable shear rate§Figs.
tive curve[Fig. 4a)] are still apparent: there is a Reynolds 11(d), 11(¢), and 11f)], and for type Il systems at shear rates
regime ak—0, a nonconserved plateau regime at intermehat are not too smalFigs. 12e) and 12f)], the eigenvector
diatek, and interfacial cutoff at largé. As before, then, in is dominated by the mechanical variabléy and SW as
this uncoupled limit there is no selected wave vedtbr expected. In this case, the instability can be thought of as
For each start-up, we estimated the timg, at which the = mechanical shear banding, perturbed by concentration cou-
instability would become measurable, as governed by critepling (type A instability. In contrast, for the type Il system at
rion (5.11) applied to wave vectors in the plateau regime. Itlow shear rategFig. 12d)] the eigenvector is dominated by
is marked by the thick line in Fig. 18) and an arrow in Figs. concentration: here the instability is essentially CH demix-
10(d)—10(f). For each value ofy in Fig. 10, we find 7ing; ing, triggered by flow(type B instability. In this Yvay, our )
o . . model captures a smooth crossover between “mechanical
<714 Instability occurs long before the underlying flow e A )
; . shear banding instabilities and demixing instabilities trig-
curve would have been attained, as described above.

Figure 10(bottom) shows the time-dependent eigenvectorgered by flow.
at wave vectok* = 7 (chosen arbitrarily since the eigenvec-
tor is independent ok in the plateau regime This is domi-

nated byédy, since Wy + 78y=0 in this zero-Reynolds In this paper, we have studied early stage kinetics in a
regime, andz is small. Note also that the normal stress, unified model of shear banding and shear-induced demixing
encoded in5Z, dominates the shear contributiélV,, : con-  instabilities, which combines the nonlocal Johnson-
sistent with the remarks of Sec. IV B 1, the normal stressSegalman model with a two-fluid approach to concentration
plays an important role in this mechanical instability. fluctuations.

The discontinuity in the first derivative of the eigenvector  First we calculated the spinodal onset of instability for
is due to a crossing of two positive eigenvalues: in contrasshear rate sweeps along the underlying constitutive curve. In
to the time-independent dispersion relations for fluctuationshe absence of coupling between flow and concentration,
about the intrinsic constitutive curve, in start-up there isfluctuations in the mechanical variabléshear rate and
sometimes a second positive dispersion branch, now in thetres$ are unstable only when the intrinsic constitutive curve
subspacgik év,,W,,,W,,]. However, this second unstable has negative slope, as expected. Coupling to concentration
mode occurs only at high shear rates 10, and even then €nhances this instability via the feedback mechanism of Hel-
crosses the first only for times well aftef,: consistent fand and Fredrickson, broadening the region of instability. In
with the claim made above, we never observe mode crossin@Pid upward stress sweep experiments, therefore, “top”

in the relevant time regimes 7,,;. This also applies to the JUMPINg should in fact occubefore the maximum in the
coupled model, to which we now turn. intrinsic constitutive curve is reached. This enhancement in-

creases with proximity to an underlyirigero-shearCH de-
mixing instability. Accordingly, we classify systems into two
types. Type | systems are far from a CH instability, and the
mechanical instability is only slightly perturbed by concen-
We now give start-up results for the coupled model. De-tration coupling. Closer to a CH instabilityype Il systemy
noting the experimentdDLS) value of the diffusion coeffi- instability can set in at very low shear rates.
cient D (Table ) by Deyy, Figs. 11 and 12 are foD We then calculated the initial structure that emerges after
= Dexpt (type | system and D =10 °D gy (type I Systen),  a shear start-up quench into the unstable regime. An impor-
respectively. The overall features of these dispersion relatant result is that a length scale is selected for this structure
tions are the same as for their time-independent counterparsly if the mechanical shear banding instability is coupled to
[Figs. 4 and @)]. In particular, there is, at any time, a well concentration. We expect this to be a generic feature of shear
defined peak=K,e,(t). This peak in general shifts along banding models.
the k axis in time. Att=t,, whenw* =0 by definition, we The eigenvector at this length scale encodes the physical
numerically observe thakpe,=0. However, ky.qc VEry — nature of the instability. In type | systems, and type Il sys-
quickly attains a valu&* that is(practically time indepen- tems at high shear rates, it is dominated by strain rate and
dent and well approximated by EG4.24). In this way, the stress. The instability is therefore essentially mechanical
time dependence d,q,0ccurs only at early times>~t, shear bandinda type A instability, triggered primarily by
for which the growth rate is insignificantly small. We argue, the negatively sloping constitutive curve. In type Il systems
therefore, that we can choose the ultimige,~=k* as the at low shear rates, the eigenvector is dominated by concen-
representative wave vector for the instability. tration, so we essentially have a shear-induced onset of the
The time-dependent eigenvector at this selected wavaearby thermodynamic fluid-fluid demixing instabilitiype
vectork* is also shown in Figs. 11 and 12. As noted aboveB), i.e., shear-induced demixing. This crossover is measur-

VI. CONCLUSION

C. Start-up dispersion relations and eigenvectors:
Coupled model
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able experimentally: unpolarized static light scattering meability is the same in practice; i.e., an unstable flow curve in
sures concentration fluctuations, while polarized scatteringvhich the strain rate is coupled to a nonconserved structural
couples to the micellar strain. tensor(respectivelyW and Q).

This unification of mechanical instabilities and shear- Finally, in type Il systems, we found that a lobe of insta-
induced thermodynamic instabilities is an important finding,bility develops at high shear rates, with the character of a
since they are often considered as separate phenof@2ha Hopf bifurcation[74]. This could clearly have dramatic con-

In this work we have demonstrated a smooth crossover besequences for any putative coexistence of low shear and high
tween a shear-induced perturbation of an equilibrium thershear bands, since the high shear band could itself be un-
modynamic instability, governed by a free energy(¢) stable. Indeed, the high shear band is often seen to fluctuate
(whose unstable mode is concentrajicand a flow-induced strongly[85], or to break into smaller band63]. However,
instability whose unstable mode is a combination of thein our model this high shear instability is highly sensitive to
structural variables of the strain rate and various componentshoice of model parameters and could be an unrealistic fea-
of the micellar strain tensdlV. In this case, the flow-induced ture.

instability is due to the nonlinear coupling of flow W. Our study was confined to fluctuations in the flow gradi-

An analogous example is the relation of the shear bandingnt direction and to the qualitative features of the instability
in semidilute wormlike micelles to the shear-inducedthat can be gleaned from the time-dependent dispersion rela-
isotropic-to-nematic I-N) transition in more concentrated tions and eigenvectors. In future work, we will present nu-
systems[20,22,83,84 Theoretically, thel-N transition is merical results for the time-dependent unstable static struc-
usually captured via an orientational free eneff{Q) in  ture factor in start-up, for fluctuations in the entire flow vs
terms of the local orientation tens@ [11,12. Upon=cou- flow gradient pland70]. We also calculate flow phase dia-
pling the I-N transition to flow, the equilibrium unstable grams for the steady shear banded st&&.
mode of orientation couples to strain rate so that the unstable Note addedRecently, Yuan and Jupp numerically studied
mode is now a linear combination of the strain rate and coma similar model of concentration-coupled shear banding.
ponents ofQ; and the unstable region is alsasually asso-
ciated with the classical hallmark of mechanical instability,

i.e., a negatively sloping flow curveX,,/dy<0. Hence,
although the physical origins of the instabilities in the type I  We thank Paul Callaghan, Ron Larson, Sandra Lerouge,
semidilute (non-nematit and more concentrategerturbed and Tom McLeish for interesting discussions and Grant No.
[-N) wormlike micelles are differerin the former case due EPSRC GR/N 11735 for financial support; this work was

to the nonlinear coupling of flow t@&/ and in the latter due to supported in part by the National Science Foundation under
the nonlinear free energy%(Q)], the signature of the insta- Grant No. PHY99-07949.
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