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Effective dispersion in temporally fluctuating flow through a heterogeneous medium
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In this paper we investigate the effective transport of a passive solute in temporally fluctuating flow through
a spatially heterogeneous medium. The Darcy equation for an incompressible fluid in the heterogeneous
medium is solved with temporally fluctuating boundary conditions using perturbation theory. We distinguish
between a spatial random process reflecting the medium heterogeneities and a temporal random process which
models the fluctuations of the boundary conditions. By appropriately averaging over the corresponding random
fields, we evaluate the second-order perturbation approximation to the time evolution of the “effective” and
“ensemble” dispersion coefficients. Both quantities consist of three terms refle¢lintncal dispersionf2)
dispersion caused by spatial heterogeneiiigsntical to the corresponding dispersion in steady random)flow
(3) dispersion linked to the enhanced solute spreading caused by the interactions between temporal fluctua-
tions, local dispersion, and spatial heterogeneity. The behavior of this latter contribution is complex due to the
interplay of three different time scaléset by fluctuating boundary conditions, local dispersion, and advection
Temporal fluctuations of the velocity field lead to effective transverse dispersion coefficients that evolve in
time to macroscopic valudse., independent of the local dispersjpwhich is consistent with observations in
the field but was not predicted by theories based on steady flow. Due to their perturbative nature, the derived
results are intrinsically limited to moderately fluctuating random velocity fields. However, numerical transport
simulations indicate a wide range of applicability. The reported results support remediation techniques that
attempt to enhance the mixing of injected reactants with contaminated ground water by temporal variations of
injection and pumping rates.
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[. INTRODUCTION shown by Rehfeldt and Gelhff] that temporal fluctuations
of the flow through a heterogeneous medium represent a pos-

We investigate the transport behavior of a passive solutsible source of macroscopic transverse spreading. Ackerer
in an incompressible temporally fluctuating velocity field and KinzelbacH7] noticed the importance of temporal fluc-
through a heterogeneous porous medium in a stochastioations of ground water flow on the large scale transport
modeling framework. The study is motivated by the applica-behavior and analyzed the influence of temporally fluctuating
tion to contaminant movement in saturated ground wateflow in a homogeneous porous medium by random walk
aquifers, where the flow always fluctuates spatially and temsimulations. A similar flow and transport model has been
porally. investigated in Ref[8]. Transport in a time-periodical het-

It is well known that medium heterogeneities on a localerogeneous flow field has been investigated in Ffusing
scale have an important impact on the effective large scalan effective transport framework. Exact averaging of the sto-
behavior of solute transport. The dominant influence of me¢hastic transport equations for time-dependent flow in a ho-
dium heterogeneities has been studied extensively during theogeneous medium was investigated in R&€]. Effective
last two decades within a stochastic framework, e.g., Refamacrodispersion coefficients in transient ground water flow
[1-3]. Here we investigate the effective large scale transporére considered in Ref11].
behavior due to the interplay between spatial heterogeneities The transport of a passive scalar in time-dependent and
of the porous medium, local dispersion and time fluctuationsteady random flow fields has been frequently addressed in
of the flow field, as observed in realistic subsurface flowsthe physics literature in the context of turbulent diffusion and
e.g., Refs[4-6]. for the study of random walks in random environments, e.g.,

The stochastic analysis of transport in steady heterogeRefs. [12—23. However, application to flow and solute
neous ground water flow describes well the longitudifial  transport in the subsurface displays two important features
direction of the mean floyveffective spreading of solute that have to be taken into account. First, the velocity field is
found on the field scale while the effective transverse spreadderived from the continuity equation and Darcy’s |424]
ing is underestimated by theoretical findings by at least on¢contrary to the more frequent derivation of the incompress-
order of magnitude, e.g., Rg®2]. One objective of this study ible velocity field from a general Gauss distributed vector
is to systematically investigate the influence of temporalpotential, e.g., Ref$16,20,21). Second, in contrast to many
variations of the flow velocity on the transverse spreading ilmodels investigating transport in turbulent flow or steady
a typical realization of the heterogeneous medium. It wasandom flow, e.g., Ref$15,16,19—22 which assume a zero

mean velocity, the mean flow is necessarily non-zero, which

leads to qualitatively and quantitatively different transport
*Electronic address: marco.dentz@upc.es behavior, e.g., Ref$12,23. Diffusion in biased random ve-
TElectronic address: jesus.carrera@upc.es locity fields[23,25,24 finds application also, e.g., in plasma
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turbulence, meteorology, or oceanograpBy—29. coefficients converge to the same asymptotic value for times
Neglecting compressibility is a good approximation for that are large compared to the dispersion time segle
flow in the subsurface because the compressibility time=1%/D, which measures the time for the dispersive transport
scales tend to be much smaller than the time scales of flu®f the solute over one correlation length scale of the medium
tuations, e.g., Ref[5]. The flow equation is then derived by local dispersiorD. The effective dispersion coefficient
from the Darcy equation by applying the incompressibility €volves on the dispersion time scalg while the time evo-
condition for the fluid. In the approach used here, the flowlution of the ensemble dispersion coefficient is dominated by
field is given by the linearized solution of this flow equation the advection time scale,=1/u, which measures the time
[2,5] for time-fluctuating boundary conditions for the hy- for advective transport by the mean veloaitpver a typical
draulic headpressurg The time fluctuations are not erratic (correlation length scale of the medium. For realistic aqui-
and can be characterized by a short range correlation funder situations the advection and dispersion time scales are
tion [5] with a finite correlation time. well separatedr,<p [2]. _ .
The objective of this work is to quantify the influence of ~For the time-dependent random flow field under consider-
space and time fluctuations of flow through a heterogeneowfion here we deal with a spatial and a temporal random
medium on the effective transport behavior of a contaminanProcess, which represent the spatial fluctuations of the het-
by studying the effective center of mass velocity and effec€rogeneous medium and the time fluctuations of the flow

tive dispersion coefficients, which are defined in one realizaboundary conditions, respectively. This causes a third time
tion of the random medium by scale(namely, the correlation time of temporal fluctuations,

7) to arise. The magnitude of this scale is compared to the

d advection time scale by means of the Kubo numfgs],
ufi(t)= ami(l)(t)’ (D defined asx=1/7, .
A straightforward generalization of the concepts devel-
1d oped for steady state flow fields leads to an effective disper-
Dii(t)= > §{mi(,-2)(t)—mi(l)(t)m,-(l)(t)}, (2 sion coefficientDf", which is defined as the average of the

dispersion coefficien2) in a typical realization, over both
respectively, where the first and second moments of th&1e spatial and temporal ensembles. As for transport in a
concentration distribution are defined bym®(t)  Steady random flow field, this quantity characterizes the
= [d9%x,c(x,t) and m(z)(t)=fddxx~x~c(x t) ' spreading in a typical realization of the spatial and temporal
= iCLX, ij U= iXjC(X,1).

In a stochastic model these observables are defined é%ndom ensembles. Furthermore, in“analogy t?, transport in
averages over all typical realizations of the stochastic pro-S ead.y. ra”dSnT flow, we define an “ensemble d|sperS|9n
cesses under consideration. It is essential to consider appro?€fficientDj; ~as the time ensemble average over the dis-
priately defined averages in order to assure that the choséifrsion coefficient derived from the space ensemble aver-
observables characterize the spreading of the solute in a typﬁ,‘—qed conc_entratlon distribution. These qbservables.arellnves—
cal realization rather than the spreading properties of the erfigated using a second-order perturbation expansion in the
sembles under consideration: The observables should be seffgfiance of the random flow field. As such the presented
averaging. This important issue has been recognized for tHEesults are.|_ntr|n5|cqlly limited to moderate_ly quctuatmg ran-
transport in turbulent flow field§30,31] as well as for the om velocm.es. A§ it turns.olut, the so defined gﬁectlve and
transport in time-independent random flow fie[@®?]. The ensemble dispersion coefficients converge for times that are
importance of an appropriate choice of dispersion coeffilarge compared top .
cients for the correct representation of reactive transport has

been addressed receni33,34.

In this context, one distinguishes between the “effec- A. Local scale transport description
tive” and “ensemble” dispersion coefficients, e.g., Refs.
[32,35-31, for transport in steady random flow fields. The
effective dispersion coefficient is defined by the average o
Eq. (2) over all typical realizations of théspatia) random
process and is a measure of spreading in any typical realiza- ,
tion of the medium. As such, it reflects the actual spreading EC(X,IHU(X,t)-VC(X,t)—VDVC(X,t)= 8(x)4(t).
of the solute. The ensemble dispersion coefficient, in con- 3
trast, is derived from the ensemble averaged concentration
distribution and reflects the dispersion properties of the enThe solute concentration is denoted d{,t); u(x,t) andD
semble of all realizations. As such, it reflects not only theare the incompressible local flow velocity and tleenstan
solute spreading but also the uncertainty in the displacemenlispersion tensor, respectively. The local dispersion tensor in
of the center of mass of the solute distribution, which reprethe following is assumed to be diagon&;=D;; ;. As
sents an additionalartificial) spreading effect. The differ- boundary conditions we assume a vanisha{g,t) at the
ence between the effective and ensemble dispersion coeftboundaries at infinity. The initial condition for the concentra-
cients has been discussed quantitatively in Refstion distributionc(x,t), represented by the right side of Eq.
[35,36,38,39for the disorder-induced contributions due to a(3), is given by c(x,t=0)=8(x). This transport problem
time-independent random flow field. These two dispersiorwill be dealt with in a stochastic modeling framework using

Il. BASICS

Transport of a passive solute in the nonsteady, nonuni-
orm flow through a heterogeneous medium can be described
t a mesoscopidocal) scale by, e.g., Ref5]:
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a perturbation expansion @f(x,t) in terms of the fluctua- f/(x)f'(x')=C"(x—x"), (10)
tions of the random fieldi(x,t).

For the following derivations, it is convenient to perform j.e., depend only on the differencetst’) and (x—x'). The
a spatial Fourier transform. The spatial Fourier transformgorrelation function<C}%(t) andCf(x) here are assumed to

here is defined by: be short range, i.e., to decrease sharply for times larger than

the correlation timer and for distances larger than the cor-
E(k,t)=J dx explik-x)c(xt), rglation lengthd;, i_= 1,...d, (espectively. These defi_ni—
tions allow us to write the velocity autocorrelation functions
as:
c(x,t):fexp(—ik-x)E(k,t), (4)
- u{(x)u;(x'>=u2fkexq—ik-(x—x')]pu(k)pjl(k)cff(k),
where we use the shorthand notationfy:- - - (12)
= [d%/(27)Y- - -. Fourier transformed quantities here and

in the following are denoted by a tilde.
<Ui’(x,t)uj’(X’,t’)>=u2f exgd —ik-(x—x")]
k

B. Stochastic model and ensemble average

We consider the heterogeneous medium as one realization X Cﬁﬁ(t—t’)pn(k)Djm(k>C”(k>1
of a spatial random process, the fluctuations of the hydraulic (12)
head at the boundaries of the flow domain are modeled as
one realization of a temporal random process. The incomyhere we sum over identical indicesj=1, . . . d.

preSSibIe flow field, which is apprOXimated by the linearized For the stochastic ana|ysis of transport in an incom-
solution of the Darcy equation, see Appendix A, can then bgyressible turbulent flow field or transport in “frozen”
decomposed into turbulence one wusually derives the velocity from a
_ / , Gauss distributed random vector potentia(x,t), e.g.,
Ui (%) = u; (1) = [ui () +u (x, )], (5) Refs.[12,15-17,20,21,23and does not distinguish between

. I ' temporal an tial random pr ,
where the different contributions are defined by, see F&f. a temporal and a spatial random process

and Appendix A, u(x,t)=VxA(xt). 13
ui(t)=uldis = wi(1)], ©® " The structure of this flow field is different from the one de-
rived for the flow through a heterogeneous medium in Ap-
Ui'(X)ZUf exp(—ik-x)pi1 (KT (K), (7) pen.d|x A. The autocorrelation function of the velocity .fluc-
k tuationsu’ (x,t) =u(x,t) —u(x,t) for the flow model(13) is
given by

u{(x0=—u [ e-ik-0np KT 0, @
‘ Ui'(X,t)Uj'(X',t’)Zfkexr[—ik~(x—x’)]

where we sum over repeated indices, and phék)= &

—kik, /k?. The stationary random fiela(t) quantifies the iKj
normalized time fluctuations of the spatial mean hydraulic x| 8~ F
(pressurg gradient. The time average is zero by definition

(v(t))=0. The stationary random fielff (x) quantifies the . . ~ L ,
spatial fluctuations of the log-hydraulic conductivity and hasWith the autocorrelation spectrugf (k’t._t ) The overbar
here denotes the average over all realizations of the random

zero mean as welf’ (x)=0. Here and in the following, the . . . . i
ensemble average over all realizations of the temporal rarBOtem'alA(X't)' In this paper, we investigate instead trans-
8rt in the flow model defined by Eq) to (12).

dom process is denoted by the angular brackets, the averaB
over all realizations of the random medium is denoted by the
overbar. Without loss of generality the ensemble mean veloc- C. Observables

ity (u(x,t))=u is assumed to be aligned with the one- As the simplest characteristics for the spatial evolution of

direction of the coordinate systemy;=g;;u. The spatial the solute, we consider the center of mass velocity and the
mean velocity is given by Ed6), u(x,t)=u(t), and in gen- macroscopic dispersion coefficients of the solute distribution.

eral varies in magnitude and direction with time. Owing to These are derived from the first and second moments of the
the stationarity of the random fieldgt) andf’(x), the re- concentration distribution,

spective correlation functions read as

Cuuk,t—t’) (14

m-(l’(t):f ddxx;c(x t)=—ii"é(k t)] (15)
(M) vm(t"))=Cin(t—t"), 9) i iC(X, 7k ekDlk-o.
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P - 1d
mi(jz)(t)=J dxxX;C(X,t) = — o CkDlo, (16) D{M(t)= > &{(mi(jz)(t»—(mf”(t))(m}l)(t))}
7%
L 1d & =
where the second equalities in Eq45) and (16), respec- =— = ———In{{c(k,t))}x=0. (20)
2 dt gk;ok;

tively, follow from definition (4) of the Fourier transform.
The dispersion coefficients in one realization of the medium

are derived from the second centered momexifs of the which is investigated in Ref[5]. For completeness we
concentration distribution. which are defined b)I/] present another average dispersion coefficient, which is de-

fined by the space ensemble average over the dispersion co-
efficients derived from the time ensemble averaged concen-

w0 =m{E(t) —mD(mit(t) tration distribution:
T Gk 1 1d
= Gk, Mtk Do 47 DP(t)= 5 < {(mP(0)— (M) (1))}
In the stochastic modeling framework, the observables are _ E g 2 ek t 21
defined as averages over all realizations of the spatial and ~2.dt dkjdk; nt{e(k,H)}H=o- (22)

temporal random processes. For transport of a solute in a
steady random velocity field, there are two different averagin the following we will critically discuss definition§18)—

ing procedures which lead to the definition of the effective(21) for the case of transport in the time-dependent flow
and ensemble dispersion coefficief82]. We adopt these through a homogeneous medium, i.e., in a time varying spa-
definitions here for transport in a nonsteady heterogenousally constant flow field.

flow field. However, note that the order of the averages over

the temporal and spatial ensembles gives rise to the defini-  p. Transport in a time-dependent flow field through

tion of four conceptually different dispersion quantities. Re- a homogeneous medium

call that the ensemble average over the spatial ensemble is

denoted by an overbar, the average over the temporal en- . i -
y g P rgor the ensemble averaged dispersion coefficiéb®—(21)

semble is denoted by angular brackets. i
We define the effective dispersion coefficient by the time"Ve consider the exactly solvable case of transport of a solute

and space ensemble average of the dispersion coeffigent N the time-dependent flow(t) through a homogeneous po-
in one typical realization of the two random processes: rous medium in the framework of a stochastic model. We

consider the fluctuating velocity fiela(t) as one realization
of a stationary stochastic procgsgt)}, characterized by its

In order to illustrate and evaluate the different definitions

1d . .
Dﬁ-ﬁ(t)z Ea<mi(j2)(t)_mi(l)(t)mj(l)(t» me,an ’value (ugtu)) and the autocor.relatlon function
(uf (Duj(t"))=Cjj"(t—t’), where we definedi(t)=(u(t))
1d ¢ — —u’(t). In this case quantitie€l8) and (19) are equal, and

=->q W(|r1{E(|<,t)}>|k=0_ (19 Egs.(20) and(21), because the respective definitions differ
t okidk; only in the way the spatial average is taken. The transport

) ) ) - ) equation(3) in this case reduces to
A meaningful ensemble dispersion coefficient is defined by

the time average of the spatial ensemble dispersion coeffi-

J
cient in one typical realization of the time random process, g €D+ u(t)- Ve(x,t)=VDVe(x,t) = 6(x) 5(1).

i.e., the time average of the dispersion coefficient, which is (22)
derived from the space ensemble averaged concentration dis-
tribution: The exact solution of Eq(22) for the concentration of a
solute evolving from a pointlike injection at=0 in one
1d 5 . . realization ofu(t) can be easily derived by a spatial Fourier
D=3 &(mi(j () —m®Bt) mY()) transform of Eq(22). We obtain
=— 1 ia_zan{g(k ko (19) c(x,t)= f exp(—ik-x)c(k,t)
2 dt dk;dk; /1 71k=0 k
t
Note that we did not straightforwardly generalize the con- = f exp(—ik~x)exr( —kDkt+ik- f dt’u(t’)).
cepts for steady random flow to transient random flow, as the K 0
ensemble dispersion coefficients for steady random flow are (23

derived from the ensemble averaged concentration distribu-

tion. From the space and time ensemble averaged concentrBhe center of mass velocity and the dispersion coefficients
tion distribution one derives the following alternative disper-derived from the concentration distributi¢23) are given by
sion quantity: u(t) and the local dispersion coefficieriy;, respectively.
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The ensemble and effective dispersion Coefﬁciemﬁg and tration distribution in a typical realization of the random pro-
D™, Egs.(18) and (19), respectively, are derived from the C€SS. ;?Sthe.following, we will focus on the a.nalysisifjﬁ
time average of the dispersion coefficients in one realizatio@ndDj;" defined by Eqs(18) and(19), respectively.

of u(t) and, accordingly, are given by the local dispersion

coefficients, E. Integral equation and perturbation series
1d 2 B Now we will derive an integral equation for the concen-
Dﬁ“(t)zDﬁ-”s(t):—E& m(_&k_<In{c(k,t)})|k:0 tration distributionc(x,t) using decompositior(5) of the
190 random velocity field into the constant mean value and fluc-
=(Dyj)=Dj;. (24)  tuations about it. The transport equati@® can be rewritten
as

The dispersion coefficients defined by E¢&0) and (21) )

in contrast are derived from the ensemble averaged concen-

—c(x,t)+u(t)-Ve(x,t)—VDVe(x,t
tration distribution. We assumgt) to be a Gaussian random at (x.t)+u(t) (x.t) (x.t)
field for simplicity. In this case it is possible to perform the o ,
ensemble average of E@®3) and give an explicit expression =W ) Fu (D] Vexb). (28)
for (c(x,t)). Averaging Eq.(23) over the Gaussian random o technical convenience we perform a spatial Fourier
field u(t), we obtain transform(4). Equation(28) reads in Fourier space

t
_ i _ ' Jd~ ~
<C(X,t)>_ jkexr( |kiXi)eX% ki D|Jt+ Jodt Ec(k,t)_{”(U(t)_ka}C(k,t)
t/ N , - - _
XJO dt"Cji"(t _t’)+kj+|kiJ’0dt (ui(t )>), =—fk,ik-[u’(k’)+u’(k’,t)]c(k—k’,t). (29)
(25 The transport equatiori29) can be transformed into an
where we sum over identical indices. Thus, Bff”) andD (P equivalent integral equation:
we obtain t
c(k,t)=Co(k,t —f fdt'E k,t—t")ik-[u’ (k'
N o 1d 2 B ()0()k’0 of Jik-[u(k")
DI (M=Di"() =5 5t 7z MCK )} =0 _ _
e +u’(k’,t")Jc(k—k',t"). (30)
t
=Dy+ Jodtlcﬂu(t')- (260 The propagatoty(k,t) is given by
Using Egs.(6) and (9) for the temporally fluctuating flow Eo(k,t)zexp‘ —kDkt+ik- ftdt'u(t')]* (31)
field (in this case:i“j”EuzciVj”), we obtain for Eq(26) in the 0
limit t—oo,
i.e., we expand about the solution of E@8) for u’(x)
lim Di(jl)(t):Dij +U2ffi2,' Ti (27)  =0. Equation(30) is the starting point for the perturbative
t—oo solution of the transport problem.

By iteration of the integral equatiof80), we obtain the

wherecrizj is the variance of the time fluctuationswft) and  perturbation series:
7;j is the correlation tim@rijzfgdtCﬁ”(t)/aﬁ]. Expression
(27) is identical to the result derived in Ré¢b] for the mac-
rodispersivity in a time-fluctuating flow field and was iden-

tified as the leading disorder contribution due to a temporally

~ ~ t —~ —~
c(k,t)=co(k,t)—fk,fodt’co(k,t—t’)ik-[u’(k’)

fluctuating flow field. However, as we see by comparison to +0' (K", t")]co(k—k',t")

the dispersion coefficients in one single realization of the . /

_random flow fleldu_(t), this co_ntrlbutlon does not chara_cter- +J f f dt’Jt dt"Co(k,t—t")ik-[U’ (k")

ize the true effective spreading of the solute plume in one "Jk"Jo 0

realization of the medium. Thus, the dispersion coefficients ~ - ~
defined by Eqgs(21) and (20) are not self-averaging observ- +u' (k' t")Jeo(k—=K",t" =t")i(k—=k")-[u’ (k")
ables. They do not represent dynamic quantities which char- ~ ~

acterize the effective large scale transport behavior but rather U (Kt Jeo(k—k =K' t") + - - - (32

serve as an uncertainty estimate for the concentration in . o

time-fluctuating flow fields. Thus, also the time ensembleThis perturbation series fa(k,t), truncated after the second
averaged concentration distributig@5), which has been order in u’, is the basis for the following perturbative
considered in Ref[10] is not representative for the concen- analysis.
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In the following we focus on the contributions to the en- 5“){Dﬁ“}(t)=ull[MiT(t,A)l(A =1 )
semble and effective dispersion coefficients due to temporal b
and spatial fluctuations of the velocity field. The ensemble
averaged center of mass velocity is given by the ensemble
mean flow velocityu,

-M ﬁ(t:A)|(AI=1+4t/TDI,|=1 ol (40

The auxiliary functiondM;; (t,A) are defined by
cm d (1)
Uj (t):a<mi (H))=udis. (33

. tlTy kl2
Mﬁ(t,A)=(27-r)d’2f f dt’exp( — > (Ax2et'-1)
This can be easily seen by inserting Eg2) into Eq. (15) kJo
and averaging the resulting expression. The effective and en-
semble dispersion coefficients are obtained by substituting +ik1t’>C,”n’;(t’Tu)é?f(k)pﬁ(k)p?m(k), (41)
Eq. (32 into Egs.(18) and(19), respectively. Expanding the
resulting expression consistently up to second ordeu’in
leads to where we sum over repeated indices. We defined here the
vectorA in order to unify the notation. Whel = is used in
D(t) =Dy + 6D (1) + 6O{DEM(1), (34 the expression fos{D{"}, the coefficients of\ are given
o ©rmen Oy men by Aj=1. When used in the expression fa"{Df",
D {)=D;i+ D)+ DI, (3D  they are given by Ai=1+4t/7,. For compactness

where s{D{"H(t) and 8{Df"}(t) denote the second- W€ defined Cfy(k)=Crs(ky/l1, - kqllg) and pfj(k)
order contributions to the effective and ensemble dispersiofm Pij(ki/ly, ... Ky/lg). We defined the advection time
coefficients, respectively, due to a time-independent hetergic@le 7y=I1/u which measures the time for the advective

geneous flow field. They are well known. The asymptotictransloort of the solute over one correlation length of the me-
limit of 69{DE"(t) has been determined in RéR]. The dium. Furthermore, we defined the dispersion time scales
1 -

time evolution of both quantities has been determined inTDlzlllell' I=1,...d, which characterize the time for

Refs.[36,38,39 for d=2 andd=3 spatial dimensions. The dispersive solute transport over the respective correlation
contributions due to temporal and spatial fluctuations ardéength[36]. The 6|ETU/TD|=D|||1/(U||2), I=1,...d, de-

given by note the inverse Peclet numbers which for realistic aquifer

Dy men situations are much smaller thanel<1 [2]. The nondimen-

& {Dj 30 sional Kubo numbek=ur/I, [23] characterizes transport in
¢ time-dependent heterogeneous flow fields. It compares the

= fkfodt’"gjo(k,t’)Cl”nﬁ(t’)pi,(k)pjm(k)éff(k), distanced ,=ur (“Kubo distance”) the solute is advected by

the mean flow during the correlation timeo the correlation
(36)  length in mean flow directiom;, «=1,/l; it equivalently
compares the correlation timeto the advection time scale
Ty, k=1l7,.

t ~ ~
SODF ()= 6D () - kaodt’go( —k,1)go(k,t")

. s lIl. CONTRIBUTIONS TO THE
X Cin(t=t")pi (k) pjm(k)C" (k), (37 DISPERSION COEFFICIENTS

where the propagatago(k,t) is defined by the ensemble For simplicity, in the following we investigate a scenario
mean velocity equivalent of E¢31) in which the direction of the spatial mean velocitft), Eq.

(6), does not vary in time, i.e.,

9o(k,t)=exp(— kDkt+iuk;t). (38)
vi(t)=&ip(t). (42)
We disregard contributions to E1) of orderv for consis-
tency.
The effective and ensemble dispersion coefficigii®
and (19) do not have contributions due to temporal fluctua-

Note, however, that, as implied by E@), time fluctuations
of the spatial mean velocity in the one direction drive tem-
poral fluctuations of the transverse velocity components. The

':lons ontlyk.) ﬁppgrentfly thel (t:ontnbul':u]zns t(:hthg teﬁeICt'Veftime behavior of the contributions due to random variations
ransport behavior ot a solute result from the interplay Oly¢ yha girection ofu(t) is similar to the time behavior that

spatial qnd temporal fluctuatio_ns as a consequence of trWill be presented in the following for assumptiof2).
assumption of constant local dispersiitefs.[7,8)). Using Eg. (42), the correlation matrix(9) reduces to

Using Eq.(38) for go(k,t) in Egs. (36) and (37), we Clr(t)=816mC""(1). Inserting this expression into Egs.
obtain (36) and(37), we obtain the following simplified expressions

for the contributions to the effective and ensemble dispersion

gt){Dﬁns}(t) =ul;M iT(t’AH(A.:lJ =1,...4)> (39 coefficients:
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i d (48) in d=2 dimensions for the limiting case & ;=D,
5<‘>{Dﬁ“i~(t)=f dt’C”(t")— 69D (t"), (43) =0 are given in Appendix B 2 b.
0 dt’ In the following all results for the dispersion coefficients
are normalized byr?,o2 ul;.

t ~ ~
SO[DE 0 =505 - | [ at G~k 0Gatkt)
0 A. Asymptotic behavior

x pi1(K)2CHf(k)Cr(t—t"), (44) It is well documented in the literature, e.g., REf], that
) o ) the contributions to the asymptotic transverse dispersion co-
where the nondiagonal coefficients vanish because of symstficients due to a steady spatially varying flow field are of
metry. Time fluctuations of the direction aft) may induce  the order of magnitude of the local dispersion coefficients in
nonvanishing contributions to the off-diagonal dispersion co{owest-order perturbation theory. This is in contradiction to
efficients. experimental results. Numerical simulatid@8] have shown
The correlation functiorC*’(t) decays sharply for times that ind=3 spatial dimensions there are macroscopic con-
large compared to the correlation time scaland thus has triputions resulting from higher-order terms of the perturba-
the effect of a cutoff for the time integrations in expressionstion series(32). In d=2 spatial dimensions, however, there
(43) and(44). In the following we employ a Gaussian shapedare no macroscopic contributions to the asymptotic trans-

time correlation function, verse dispersion coefficients, which has been shown numeri-
) cally [39] as well as analytically without invoking perturba-
C"(t) = 02 exp( _ t_) (45) tion theory for the general case of an mcqmpresa_ble steady
vy 2.2/’ random field[40]. For a temporally fluctuating flow field the
situation is different.
whereo?, denotes the variance of time fluctuations. We consider the asymptotic behavior of the contributions
Furthermore, we also assume a Gaussian shaped corref@-the dispersion coefficients for isotropic local dispersion,
tion function for the fluctuations of the log-hydraulic con- D11=---=Dgq=D as a function of the Kubo number. As
ductivity, for a steady velocity field36], in the limit t— the contri-

butions to the ensemble and effective dispersion coefficients

d converge to the same asymptotic value:

c'x=o% ]l exd —x/(212)], (46)
=1 lim sO{DEM (1) = lim sV{D"} (1) = 6{D}(x).
t—oo t—oo

whereo?; denotes the variance of the spatial fluctuations; the (49)
[, are the correlation lengths indirection. The autocorrela-

tion spectrumC'’(k) of the log-hydraulic conductivitf(x)  Because the contributions to the transverse dispersion coef-
then is given by ficients are equal for the considered scenario we define for
d the following 6M{D;}(x)=6M{D7}(x) and 5{D7F}(k)
oy 2 212y — 11212 =5{D k), i#1.
) foiljl (2mli)exp—kili12). @) Fig;{urgi( )Ia) and 1b) illustrate the behavior of
, _ , o sO{D{} (k) andsM{DT}(x) in d=3 andd=2 dimensions,
In the following, we will focus on isotropic disorder sce- respectively, for fe=10"2 ande=0. Analytical expressions

narios, i.e.l3=---=lg. for S0{D"} (k) and 5V{D%}(x) for e=0 are given in Ap-
Using Eq.(42) and inserting Eqs(45) and (47) into Eq. pendix{B Ll}_(K) {Dr}(x) for e given in Ap
(41), we obtain for the auxiliary functionsl;; (t,A): In the limit k—0, O{D}(x) and 50{DZ}(x) tend to

tr K2 zero because the fluctuations of the velocity field are too fast
Mﬁ(t,A):(zw)d/%iﬂffJ f udt’exr{ — —'(A|t26|t’) to contribute rgmarkably to thg mixing of the_ s_olute_. From
kJo 2 there, the contributions to the dispersion coefficients increase
) linearly with « for k<1,
i ) p( . ) 2 (48)
+ikyt’ Jexg — ——— | pli(k)?,
2(l7)?) " sSDI k) =ajo0? Juk+---, (50)

v

where we sum over repeated indice}. (

In Appendix B2 we give integral expressions for the i=L.T, where the slop@, =42/15, ar=27/30 in d
M, (t,A) for d=3 andd=2 spatial dimensions, which are =3, anda,=327/16, a;=27/16 ind=2, respectively.
evaluated numerically in order to investigate the completelhe dots in Eq.(50) denote subleading contributions. The
time behavior of the lowest-order contribution due to a tem{ongitudinal coefficient tends to its maximum of about
porally and spatially fluctuating flow field. Furthermore, we \7/20% 02, lu asymptotically ~« @~ in the limit «
give approximate analytical expressions in Appendix B 2 a—o, but is close to this limit already fat~10. The trans-
for Eq. (48) applying the approximation for<1 and verse coefficient reaches its maximum fer<1 and is
t>r, presented in Ref[36]. Explicit expressions for Eq. ~0.050%02 Ju in d=3 and~0.120%¢? u in d=2. From
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B. Time behavior

In the following, we consider the contributions to the ef-
fective and ensemble dispersion coefficients due to the inter-
action of spatial and temporal fluctuations of the random
flow field for different scenarios. At first we investigate an
isotropic scenario with isotropic local dispersion in order to
systematically study the differences between the effective
and ensemble dispersion coefficients for different Kubo
numbers ind=2 andd=3 dimensions. Then we study the
behavior for various anisotropic local dispersion scenarios in
d=2 andd=3 dimensions. Note that far 7,<<max(,1),
the dispersion coefficients, which are determined as en-
semble averages, have only a limited formal meaning. For
t/7,<k, the flow field is quasisteady while the sample to
sample fluctuations of the temporal stochastic process, of

dispersion coefficients

2 course, are large. Fafr,<1, the solute plume has not yet
g been advectively transported over one correlation length of
! the medium and thus the medium looks homogeneous. But
§ of course there are large fluctuations from realization to re-
g alization of the spatial random process, which models the
‘@ medium heterogeneitid$86].
[P
o
;§ 1. Isotropic local dispersion
10° , , , , , We consider here a scenario with isotropic local disper-
10'2 10‘1 100 101 102 103 104 Sion, i.e.,Dll: s :Ddd:D The different inVerse PeC|et
" numberse; and dispersion time scaleﬁDi reduce toe;
=...=¢=D/(ul) and m =---=7, =I%/D, respec-

FIG. 1. Behavior of the second-order contributions to the longi-
tudinal and transverse asymptotic dispersion coefficiestaled by
ulg02,) as a function of the Kubo number (=7/7,) in (a d
=3 and(b) d=2 for an inverse Peclet number10"3. Note that,

tively. Furthermore, for this scenario the contributions to the
transverse dispersion coefficientsdrdimensions are equal
and we definesV{DEM(t)=6W{DM(t) and 6V{DEM (1)

when 7<7,, i.e., ur<l, s9{D7}=1/869{D7} for d=3 and %é(t){D$ﬁ}(t), i#1, and for the ensemble dispersion coef-
s0{DZ}=1/36"{D}’} for d=2. The dashed lines ife) and (b)) ficients accordingly. _ . .
describe the behavior af9{D?"} and 5V{D?} for e=0 according Figures 2 and 3 illustrate the time evolution of the contri-

to Egs. (B1)—(B4), respectively. For the longitudinal coefficients butions to the longitudinal and transverse effective and en-
the curves fore=0 ande=10"2 are practically indistinguishable. Semble dispersion coefficients fdr=3 andd=2, respec-
The dotted lines are the respective approximati@®s for small «. tively, and the corresponding approximations teg1 and
t>7,, Appendix B2a. The dispersion time scale g
there, 59{D7} tends to a value of the order of tffmicro- =10°7,, the inverse Peclet number is given by-10"°.
scopig local dispersion coefficient-x(4~1) for x—oo. The advection and dispersion time scalgsand m, are
Note that here the order of the limits is important, we firstclearly separated. The quality of the approximate expressions
take the limitt—o and then we look at the behavior far  is very good fort/ 7>k, where the stochastic approach is
—o. In the hypothetical case—c and finite times, the assumed to be valid. For large Kubo numbers, the transverse
ensemble averaged quantities have only a restricted formalffective and ensemble coefficients, Figs&a)3and 3b), are
meaning because fdr r,<« the flow field is quasisteady only poorly described by the approximate expressions, be-
but the fluctuations from realization to realization are large.cause the approximations disregard contributions of oeder
Note that the contributions to the longitudinal as well asFor largex, however, the long-time values themselves are of
to the transverse dispersion coefficients are of macroscopibe order ofe and so terms of this order of magnitude be-
order of magnitude, iml=3 andd=2. It is worth noticing come important.
the sizable contribution of the temporal fluctuations to the The contributions to the longitudinal dispersion coeffi-
transverse dispersion coefficients, despite the fact that theients are shown in Figs(&® and 2b). As for steady random
spatial mean velocityi(t) does not fluctuate laterally. For flow [36], one observes a qualitatively and quantitatively dif-
k=<1, i.e., 7<7,, which is important for field applications ferent time behavior fos"{D&"} and sO{D"Y for finite
[5], the transverse coefficients have values of aboutimes.
sW{D{}1/8 and sM{D[’}/3 for d=3 andd=2, respectively. In the long-time limit, the effective observables converge
It is worth pointing out that the empirical ratio between theto the ensemble values and assume th&pnstant
transverse and longitudinal dispersion usually adopted by hyasymptotic long-time values, which depend on the Kubo
drogeologists falls in this randd1]. number as discussed in the preceding section. The interaction
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FIG. 3. Time behavior of the contributions to the transverse

FIG. 2. Time behavior of the contributions to the longitudinal . . ) - X
g ensemble and effective dispersion coefficientddin3 andd=2

ensemble and effective dispersion coefficientgand=3 and(b
P $an ® spatial dimensions forp=10°7,, e=10"3%, k=0.1, k=5, and«

d=2 spatial dimensions foe=10"3, k=0.1, k=0.5, andx=5. 100, The dash-dotted li h di N
The dash-dotted lines are the corresponding approximations fog_ - The dash-dotted lines are the corresponding approximations
or small e andt> 7.

small e andt>7,,.

of the time fluctuations and the sample to sample fluctuationﬁ"Ie effective coefficients is more subtle. The time fluctua-

H en
of the center of mass leads to a fast mcreasé%{DL } to tions affect the evolution of the effective quantity by both the

its long-time value on the correlation time scale. The ﬂuc'interplay with the spatial heterogeneities and local disper-
tuations of the center of mass are an atrtificial, purely advec-

tive, and nonphysical ensemble dispersion effgé{, which sion. In Figs. %3 and 2b) we observe that fot=r, the

is visible also in the hypothetical situation of zero local dis-eﬁeCt'Vtet_ coeIff|C|ents_ evolve slllg?tlyt fSlOWi: to the_|r
persion, see the explicit expression @0 given in Ap- asymplolic values as Increases. 1n fact, from the approxi-

pendix B 2 b. For zero local dispersion, the effective disperNate expressions given in Appendix B 2, we identify a new
sion coefficients are zero by definition, because thdime scaler,=mpk=I./D, which measures the time for the
dispersion coefficients in one realization are zero. Howeverocal dispersive spreading of the solute over the typical dis-
in the presence of local dispersion as a transverse mixintncel ,=ur (“Kubo distance”) the solute is advected dur-
mechanisms both quantities converge, Figs. 2 and 3, and theg one correlation timer. If the Kubo numberx>1, i.e.,
macroscale dispersion due to advective fluctuations becomég>11, the effective coefficient evolves approximately as
a real effect. The local scale transverse mixing here is ert (4~ for mp<t<7,, which is identical to the behavior
hanced by the time fluctuations of the velocity field, which observed in steady random flq86]. Apparently, the trans-
leads to a behavior that is quantitatively different from theport times inTp<t<r, are so small that the temporal fluc-
one observed for steady random flow fields. tuations, which are characterized by the Kubo length
The contribution to the longitudinal ensemble dispersion>1,, have no effect yet on the local spreading of the solute
coefficient approaches its asymptotic long-time value expoand the transport behavior is similar to the one observed for
nentially on the correlation time scate see Appendix B 2 b. a steady flow field.
In a steady random field, the ensemble coefficient evolves For the long-time regimé> 7, (for x>1) the approxi-
algebraically on the advective time scéB6]. The influence mate expressions given in Appendix B 2 for the effective
of the temporal variations of the flow field on the behavior oflongitudinal dispersion coefficient lead to
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sO{D}— sW{DEM~t~ 972, (51) 2 10 : : : : :
g s _
For « of the order of or smaller than 1, the asymptotic long- % 10° . = ::)
time regime is reached according t0%? already fort 3 =1
>7p. Thus, the relevant time regimes and the exponents by g 3
which the effective quantity evolves asymptotically depend %
on the Kubo numbek. This explains the slightly different ‘;& 3
asymptotic behavior observed in FiggaRand Zb) for dif- < ]
ferent k. ES
Figures 3a) and 3b) display the behavior of the contri- § ]
butions to the transverse dispersion coefficientd 43 and B
d=2, respectively. The behavior of the effective and en- § 107 ' . A
semble coefficients is qualitatively and quantitatively differ- ™~ 10l 10° 100 102 10° 104 10°
ent from the one observed in steady random flp8&]. The t/1
effective and ensemble quantities evolve to a macroscopic "
asymptotic value that depends on the Kubo numkeas k2]
discussed in the preceding section. As observed for the lon- §
gitudinal ensemble coefficient, the transverse ensemble coef- é s")Dg’;S
ficients approach their asymptotimacroscopit long-time g 1 =1
values exponentially on the correlation scalesee Appendix : 107 ¢ =10 ]
B2b. 2
For k>1, the effective coefficients approach théinac- g
roscopig asymptotic long-time values fde> 7, as 2
o0 S —d/2 é il
SO[DZY— sOpef -2 (52 - 1072 et T ]
22 T
For k of the order of or smaller than 1, the long-time value is § : - i . s b
reached according to E¢52) already fort> 5, which ex- 100 100 100 102 100 100 10°
plains that the effective coefficients in FigsaBand 3b) t/1,

evolve earlier to their asymptotic value for decreasing

Note that the longitudinal and effective coefficients show the FIG. 4. Time behavior of the contributions to tt@ longitudi-

same asymptotic long-time behavior, which indicates that th@al and(b) transverse ensemble and effective dispersion coefficients

same local spreading mechanisms activate the macroscopicd=2 dimensionsx=1,10%, €;=0, €,=10"2.

advective spreading. For steady random flow the spatial con-

trasts of the transverse velocity components are not sufficieRfanishing longitudinal local dispersione;=0 and e,

to lead to macroscopic transverse dispersion coefficients- 19-2 j5 g=2. The behavior id=3 is qualitatively the

Temporal fluctuations, however, amplify these contrasts andame and not displayed here.

as a consequence macroscopic transverse spreading is acti-ror Jarge times, the effective longitudinal coefficients

vated by local dispersion mechanisms. evolve to their asymptotic long-time value and the behavior

) ) ) ) ) o ) is similar to the one observed for isotropic local dispersion in

2. Anisotropic local dispersion and isotropic disorder correlation o preceding section. As observed there, the long-time be-
In this section, we study the time behavior of the disorder-havior depends on the value of the Kubo numlerFor

induced contributions to the effective and ensemble disperarge «, the behavior of the longitudinal effective coefficient

sion coefficients for anisotropic local dispersion. The inversen the intermediate regime, <t<r, , with 7, = TDZKZ, Is
Peclet numbers are given ky=D;; /(ul), and the disper- given by
sion time scales byDizlz/D“ fori=1,...d.

In a steady random field, the evolution of the longitudinal 5(t){D°L°}_ 5(t){DEff}Nt—(d—1)/2, (53)

effective dispersion coefficient is determined by the trans-
verse local dispersion time scales, , i #1 [36]. The trans-
| . . .

verse spreading by local dispersion makes the solute samp¥éich is the same as for transport in a steady flow fig@l
the heterogeneities in one medium and activates the “adve@nd observed for isotropic local dispersion in the preceding
tive” spreading due to the complicated streamline structureSection. In the long-time reginte> 7, (for «>1) the effec-
which then leads to macrodispersion. These mechanisms céive longitudinal coefficient then evolves algebraically
be observed for transport in a time-dependent velocity field~t~ %2 as in the isotropic case. For of the order of or
as well. smaller than 1 the longitudinal coefficients approach their

a. Vanishing longitudinal local dispersion coefficieRlg-  asymptotic long-time values already for rp . Thus, forx
ures 4a) and 4b) illustrate the contributions to the longitu- =1 the effective coefficient reaches its asymptotic long-time
dinal and transverse dispersion coefficients, respectively, foralue faster than fok=10 as illustrated in Fig. ).
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A similar time behavior is observed for the transverse
effective coefficients, Fig. ). For k=1, the evolution is
faster than fork=10. In the asymptotic long-time regimes
t>7, (for k>1) andt> 1 (for « of the order of or smaller

than 1), respectively, the effective coefficient evolves like the
longitudinal coefficient~t~ 2.

b. Vanishing transverse local dispersion coefficieNsw
we consider a scenario characterized by a vanishing trans-
verse local dispersion coefficient, i.e;=0, and a finite
longitudinal local dispersion coefficient so thaf=10" 2,
which corresponds tap, = 10%7,. For transport in a steady

random field, it has been shoW86] that in the absence of
transverse local dispersion the effective longitudinal disper-
sion coefficient is of the order of magnitude of the local
dispersion coefficient and the ensemble and effective coeffi-
cients do not converge in the limit of infinite times implying
that longitudinal local dispersion only is not sufficient to
activate advective spreading. The solute is spread out parallel
to the mean flow by longitudinal local dispersion and so
samples the contrasts of the transverse velocity components.
This mechanism, however, is not sufficient to activate mac-
roscopic advective spreading.

For transport in a time-dependent random field the situa-
tion is different. Due to the time variation of the flow field,
spatial velocity contrasts are amplified and as soon as the
solute is spread out sufficiently, i.e., over more than one lon-
gitudinal correlation length,, advective spreading due to
the complicated streamline structure is activated. This can be
observed in Fig. &), where we plotted the contributions to
the longitudinal dispersion coefficients fdr=2 dimensions.

The behavior ford=3 is qualitatively the same and is not £ 5 Time behavior of the contributions to the longitudi-
displayed here. In théhypothetical limit of infinite correla- 3y and(b) transverse ensemble and effective dispersion coefficients
tion time, i.e., infinite Kubo number, the contributions due t0j, =2 dimensionsx=1,10%, €,=0, ;=102

spatial and temporal fluctuatioriscaled byo% o2 ul;) are

formally id_enti_cal to the contzributions due to a stgady AN The behavior of the contributions to the transverse disper-
dom velocity fle_ld_(scaled by"”“'_l)' Thus Fhe (_affectwe and  gjon coefficients is displayed in Fig(l9. For infinite Kubo
ensemble coefficients for=cc, displayed in Figs. @ and  \ymper, which corresponds to the conditions for a steady
5(b) illustrate the time behavior for transport in a steadyangom field, the effective and ensemble coefficients con-
random velocity field. The longitudinal effective coefficient verge in the long-time limit to a common microscopic

for(;f:jls case is of the order orf] the local dlsg)_ersmn Coegfl'c'enpbsymptotic value. For finite, 5(t){Dgf2f} and 5(‘){D‘§25} con-
and does not cross over to the corresponding ensemble co erge fort> Te, 1O their k-dependent macroscopic value.

ficient but approaches a microscopic asymptotic value of theh frocti fici hthe | . limit al
order of the longitudinal local dispersion coefficient. With '€ € ecu;n_ads:zoe icients approach the long-time limit alge-

finite Kubo number the behavior changes. or1, the ef-  Praically

fective coefficient evolves to a macroscopic value and con- C. Finite_longitudinal and tra_nsverse Iocal_dispersion_ co-
verges eventually to the ensemble coefficient. efficients Figures §a) and &b) illustrate the time behavior

In the long-time regime fot> 7, , with 7, =75 &2, the o_f the con_tri_butions to thg longitudinal Qnd transverse disper-
. o - L 1o . sion coefficients, respectively, for varying values of the lon-
effective longitudinal coefficient approaches its asymptoncgitudinal local dispersion coefficient and finite transverse lo-
value as cal dispersion ird=2.
For €;=0.1, the effective longitudinal coefficient, Fig.
SO[D*}— sO{DEM 12 (54)  6(a), evolves algebraically~t~ Y2 in the time regimer,
<t<rp,. This behavior has been already observed in Fig.

The time scale defining the asymptotic long-time regime is2(@) for the casee;,=0, whererp,=%. In this time regime
given berl, which increases quadratically withy and thus, longitudinal local dispersion, enhanced by the temporal fluc-
in Fig. 5(a), the effective longitudinal coefficient fox=1  tuations of the velocity field, represents the only active local
converges much faster to its asymptotic value than#or transverse spreading mechanism. Berr,,, the asymptotic
=10. value then is approached in leading order according #.

l(t) cns' I
o Dy, L3

]
8

longitudinal dispersion coefficients

transverse dispersion coefficients

t/ T,

036310-11



M. DENTZ AND J. CARRERA
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FIG. 7. Time behavior of the contributions to tt@ longitudi-

nal and(b) transverse ensemble and effective dispersion coefficientsal and(b) transverse ensemble and effective dispersion coefficients
in d=2 dimensions,k=10, e,=10"4, ¢,=10"%, 1072, 103, in d=3 dimensions fore;=10"2, €,=10 3, ande;=10"*.

1074,

ande;=10"*. The behavior is similar to the one observed in
d=2. Here, however, we distinguish three dispersion time
scales. The longitudinal effective coefficient fee=1, Fig.
7(a), evolves already foit> o, tO its asymptotic value,

For decreasing,, i.e., increasinngl, the long-time be- faster than the coefficient foe= 10 (i.e., Try= TDS)' which
havior “saturates” and becomes independent of the longitu€VCIVeS ON7o,. Apparently, the second, largest transverse
dinal dispersion time scale. The effective coefficients evolvedispersion time scalep, has no remarkable influence on the
~t~9 already fort> o, time evolution of the effective coefficients. The local spread-

The transverse effective coefficients, Figb)s show the ing of the solute due to the local dispersion in the other two
same long-time behavior and evolve asymptotically accorddirections enhanced by the temporal fluctuations of the flow
ing tot 9. However, the relevant asymptotic time scale var-field is efficient enough to activate the macroscopic spread-
ies with the value of the Kubo number Thus, the effective iNg due to the complicated streamline structure already for
transverse coefficients evolve on different time scales tot=7p,. This behavior is different from that observed in
wards their long-time values, see Fighp Forr, <7p, the  steady random flow, where the time behavior changes quan-

asymptotic regime is defined by>7, , while for 7, fitatively for t>rp [36]
=7p,, Tp, defines the relevant asymptotic time scale. Thus, The transverse effective dispersion coefficients for

for the evolution of the transverse effective coefficients ei-zl' F|g_. Ab), increase monotonously towards the
ther local dispersion mechanisms together with the temporefrsymptOtIC value, which they approach for Dy The
fluctuations of the flow velocity is equally efficient to acti- transverse dispersion scales have no remarkable effect on the
vate macroscopic advective Spreading_ asymptotic behavior. Foe=10 (i.e., Ti, = TD3) the behavior
Figures Ta) and qb) illustrate the time behavior of the of the effective coefficients is nonmonotonic forr,< «.
contributions to the longitudinal and transverse dispersiorHowever, the behavior in this time regime has only a formal
coefficients, respectively, id=3 for e;=10"%, €,=10"3, meaning because the stochastic approach cannot be assumed

For e,=102, we haverKlzrDzzlo“ru. The effective
coefficients reach their asymptotic values f@erz accord-
ing tot 9.
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to be valid for such times due to large sample to samplehe exactly solvable case of transport in a time-dependent
fluctuations of the temporal stochastic process. tfaf>«  flow through a homogeneous medium. There, the concentra-
the transverse effective coefficients cross over towards thetion distribution in one realization is given by a Gaussian
macroscopic asymptotic values, which they approacht for function characterized by theonstank local dispersion and
>7p,. Again, the much larger time scaleg_ and 7, play  the time-dependent center of mass velocity, which is identi-
only a minor role for the time evolution of the effective cal to the flow velocity. For a Gaussian distributed random
coefficients. Longitudinal local dispersion is effective only flow field, the ensemble averaged concentration was deter-
due to the interplay with the time fluctuations of the velocity mined explicitly. The “macrodispersion” coefficients derived
field. from this averaged concentration are given in terms of the
temporal correlation of the flow field and are for all times
V. SUMMARY quantitatively different from the local dispersion coefficients,
which measure the spreading in a typical realization. These
We investigated the effective transport behavior of a pasmacrodispersion” coefficients are not self-averaging and as
sive solute evolving from a point-like injection in the incom- such are not representative of the spreading in a typical dis-
pressible flow through a heterogeneous porous medium sulerder realization. Thus, in order to study the effective trans-
ject to temporal fluctuations of the boundary conditions ofport behavior in transient flow through a heterogeneous me-
the flow equation. We used a stochastic approach to analyzum we focused on the effective and ensemble dispersion
the interplay of local scale spatial heterogeneities, local diseoefficients.
persion, and temporal fluctuations of the flow field and its The complete time evolution of the large scale dispersion
effect on the large scale transport behavior. In this approacboefficients was investigated by numerical and analytical
the medium heterogeneities are represented by a spatial ragvaluation of the resulting second-order perturbation theory
dom process while the fluctuations of the boundary condiexpressions. It was found that the transport behavior in a
tions are modeled as a temporal random field with finitetime-dependent heterogeneous flow field is qualitatively
correlation time. The incompressible velocity field for flow similar, quantitatively different, though, from the one ob-
in a heterogeneous porous medium is given by the Darcgerved in steady random flow. The stochastic perturbative
equation, which is solved by perturbation theory in the fluc-analysis of transport in a steady flow field yields transverse
tuations of the random fields. The obtained perturbation soasymptotic dispersion coefficients of the order of timécro-
lution consists of three contribution$l) A spatially con-  scopig local dispersion coefficient and is in contradiction to
stant, time-dependent part2) a temporally constant, experimental findings. In a temporally fluctuating heteroge-
spatially fluctuating part, and3) a space- and time- neous flow field, however, the contributions to the longitudi-
dependent contribution. We focused on the transport relevamal and transverse effective dispersion coefficients evolve on
contributions due to the third term whereby we took intosufficiently large scales t@constant macroscopic long-time
account only temporal variations of the magnitude of thevalues. Apparently, the interaction between local scale dis-
spatial mean velocity. The effect of the second term on theersion and time fluctuations of the flow velocity enhance
large scale transport behavior is already well investigated ithe mixing of the solute and so activate advective spreading
the stochastic perturbative framework. It turned out that thelue to the complicated streamline structure.
first, only temporally varying contribution has no influence In the long-time limitt—c the ensemble and effective
on the effective spreading of the solute. dispersion coefficients converge to the same asymptotic val-
In the stochastic approach, the observables are defined ass. Both the contributions to the longitudinal as well as to
averages over all typical realizations of the underlying ranthe transverse asymptotic dispersion coefficients are of mac-
dom fields and have to be carefully chosen in order to reproscopic order of magnitude, which is consistent with field
resent the actual spreading in a typical realization of the hetebservations. The longitudinal asymptotic values increase
erogeneous medium. In analogy to transport in a steadgnonotonically with increasing Kubo numbek=7/7,,
random flow field, we defined the effective dispersion coef-which measures the correlation time scale in units of the
ficienth’}ff (18), which characterizes the spreading in a typi-advection time scale. In théypothetical limit «—oo it
cal disorder realization. The conceptually different ensembléends to a macroscopic asymptotic valsec™(@~Y. The
dispersion coefficientD™ (19) quantifies the artificial ~transverse asymptotic contributions assume a maximum for
spreading due to the sample to sample fluctuations of the~1, and decrease in the hypothetical casg-efe accord-
center of mass velocity. Both dispersion coefficients coning to ~«~ (=) to a value of the order of the local disper-
verge on sufficiently large scald@set by the local disper- sion coefficient. Fok around 1, the ratio between the trans-
sion), where the advective macroscale spreading becomesw&rse and longitudinal contributions is of the order of
real effect as a consequence of transverse spreading due r@gnitude of the ratio usually adopted by hydrologists.
local dispersion and the interaction with temporal fluctua- The longitudinal and transverse ensemble quantities
tions of the flow field. evolve on the correlation time scale exponentially to their
Other definitions for the large scale dispersion coeffi-asymptotic value. The effective coefficients evolve on time
cients, which are derived from the time ensemble averagescales set by the local dispersion coefficients and the Kubo
concentration distribution(e.g., Refs.[5,10) have been numberx=r/7,. For large Kubo numbers, the longitudinal
shown to be inappropriate for the characterization of soluteffective coefficients evolve in an intermediate time regime
spreading in a typical heterogeneity realization: We studiedp<t<r, as~t ("2 Jike in a steady random flow. The
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time scaler,=1%/D, with | .=ur, characterizes the time for APPENDIX A: LINEARIZED SOLUTION
the local dispersive spreading of the solute over the distance OF THE DARCY EQUATION

which the solute is transported advectively during one corre- The following perturbative solution of the Darcy equation

lation time. As such it characterizes the time after which the ;0\ < the derivation given in Ref§2,5]. The Darcy equa-
interplay betwqen temporal f!qctuatlons and local d|sper5|q@i0n represents an effective flow law ,on a mesoscopic length
becomes effective as an additional transverse local spreading. .o and relates the flow velocityx.t) in the porous me-

mechanism. Then, fot>r, due to the influence of time . : .
. ' Ko . L dium to the hydraulic gradienVh(x,t), whereh(x,t) de-
fluctuations of the flow velocity, the effective coefficients notes the hydraulic head, e.g., REZA]:

evolve faster than for steady random flow according to
~t~92 The transverse effective coefficients evolve for u(x,t)=—exg f(x)TVh(xt) (A1)
>r,. in the same way. The same long-time behavior is ob-
served for transport with zero local longitudinal dispersion. with f(x) being the log-hydraulic conductivity. In the sto-
For vanishing transverse local dispersion, however, thehastic frameworkf(x) is assumed to be a stationary Gauss-
behavior is different. In this case the effective longitudinalian distributed spatial random function characterized by the
coefficient approaches its macroscopic asymptotic value alnean value f(x)=f and its autocorrelation function
gebraically~t~for t>r, , with 7, =17/Dy. Aninterme- £ () f (x')=C'f(x—x), wheref’(x) denotes the fluctua-
diate time regime forx>1 is not observable. In a steady tijons about the mean valué(x)=f—f’(x). The mean of
random flow the effective longitudinal coefficient evolves to t/(x) vanishes by definition. Neglecting compressibility of
a macroscopic value solely due to the transverse mixing infiyid and solid matrix, mass conservation impl@su(x,t)

duced by local transverse dispersion. Thus, for zero trans= g, which can be rewritten using E¢A1) as an equation
verse local dispersion it remains of the order of the locako the hydraulic head:

dispersion coefficient. By longitudinal local dispersion, the
solute experiences the contrasts of the transverse velocity Ah(x,t)=V{f’(x)-Vh(x,t)=0. (A2)
components along the 1-direction, which, however, is not N )
sufficient to activate advective spreading in steady randonyVe assume that the boundary conditions for the hydraulic
flows. Temporal fluctuations enhance these velocity contrastdead lead to a temporally fluctuating space independent hy-
and |ead to the Observed macrosca'e advective Spreading_ draUIiC gradient in the absence Of Spatia| f|uctuati0nS Of the
The results presented in this paper are inherently pertufdydraulic conductivity, i.e.,f’(x)=0. The realization of
bative, i.e., strictly valid only for moderate fluctuations of the Such boundary conditions is outlined in Rg8]. The head
medium properties and the boundary conditions of the flowsolution for the homogeneous flow problem(x,t), then is
equations. It is not clear up to which variances of the randon linear function of the coordinates so that the hydraulic gra-
fields this approach is valid. The application of nonperturbad'ent
tive solution methods and the comparison to numerical simu-
lations can give further insights into this important questions.

In fact, the comparison to numerical Monte Carlo simula-  \yo separate the solutidn(x,t) into he(x,t) and spatial
tions [42] indicates that the presented results are still Va"drandom fluctuations about it, which var,1i5h in the case
for an increasing variance of the random flow field. Workf,(X)EO ’

along this line is in progress.
The local dispersion tensor has been set constant in this h(x,t) =ho(x,t) —h'(x,t). (A4)

study. In general, however, it is also dependent on the locally

fluctuating flow velocity{43]. Moreover, in field experiments By inserting this expression into E¢A2), we obtain for

it is observed, e.g., Reff4—6], that not only the magnitude h’(x),

but also the direction of the spatial mean flow velocity)

=u(x,t) varies with time. The method used in this paper

aIIovys for.a systematic e}naly3|s of these cases as well as.f%hereh’(x,t) vanishes on the boundaries by definition. The
the investigation of the influence of extended initial condi-

tions on the macroscale transport behavior, which is imporlntegral equation equivalent to E(S) reads

tant for the comparison to field scale experiments. Further-
more, the consequences of these results for remediation h’(x,t)=J dIx @o(x,x)[V'f'(x")-V'h" (X' 1)
techniques, which rely on the mixing of injected reactants @

J(1)=Vhe(x,t). (A3)

Ah'(x,H) =V’ (x)-Vh'(x,t)=J(t)- V' (x), (A5)

with contaminated ground watg44], have to be explored. +J(1)- V' (x')] (AB)
where() denotes the flow domair¥ ' denotes the gradient
ACKNOWLEDGMENTS with respect tax’. The Green functiorpy(x,x’) solves
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we now consider the limiting case of an infinite flow domain. APPENDIX B: SOLUTIONS
For convenience we perform a spatial Fourier transform. The

- - . . . 1. Asymptotic behavior
spatial Fourier transform of the integral equatioht) is ymprot .

given by Here we present analytical solutions for the asymptotic
ik-J(t), i behavior of the longitudinal and transverse macrodispersion

h(k,t)= “f"(k)__f (k—k")-k"F'(k")R'(k',1), coefficients as a function of the Kubo numbes 7/ 7, for
k? k?Jk isotropic spatial disorder and an isotropic local dispersion

(A8)  tensor. For vanishing local dispersion and isotropic disorder
correlation, we obtain for the asymptotic longitudinal and
transverse dispersion coefficients as a functionkoin d

=3 dimensions:

because the Green functian(x,x’) in Fourier space reads
(e.g., Ref[45])

Eo(k,k’):%(ZW)dé(kJrk’). (A9)
3

Iterating Eq. (A8) one obtains a perturbation series for S{DT} (k) =ofro),ul \@K4[ Kt 4
h’(k,t). We truncate after the first-order termfin(k), i.e.,
we take into account only the first term of the right side of — k+ 1+ k? 5[ 5. 3
Eq. (A8). We then insert this expression into Hé&l). We XIn AT NI Sk ]
expand the resulting expression consistently up to first order
in T/ (k) and obtain for the flow velocity: (B1)

ui(x,t)=KgJi(t)—KgJ exp(—ik-x) J

X 5<t>{D.°;}(K)=af2fa§Vu|—4{(2@&3@
Kik-J(1) 16«
x| Jit) = ———[F'(k)+---, (A10)

k++1+k

S —e@ﬁmz],
where KgEexpﬂ Starting from this expression, we con- “ “

sider the temporal fluctuations of spatial mean hydraulic gra- (B2)
dientJ(t). The time stochastic process is assumed to be sta-

tionary so that the mean gradiert)(t))=J is time

independent. We consider here transport situations where tihe maximum ofs("{D7}(«) is reached forx~1, i.e., at
mean hydraulic gradient is parallel to the mean flow velocity,correlation times of the order of the advection time segle
i.e., mean flow parallel to the bedding, e.g., R&f. Thus, In d=2 dimensions we obtain
without loss of generality, we assundeto be aligned with

the one direction of the coordinate system. The results de-

rived here can be generalized straightforwardly to the case of T
complete anisotropy. We now dividét) into its mean value ~ 6{D[}(x)=ofa?,ul \[EK_B
and fluctuations about it, (B3)

Ji(t)=J3(5i1— vi(1)), (A11)

i=1,...d, where they;(t) denotes the normalized fluctua- MR 2 2 \/E _3 } 2 A2
tions about(J;(t)). Inserting Eq.(A1l) into Eq. (A10) we FHBrH) =, ul 2% 2% I+ettdy

obtain contribution$6)—(8) of decompositior(5) of the flow (B4)
field in terms of the perturbative mean velocity=KJ. Us-

ing a flow factory [2] u can be written in the form of the

experimentally accessiblénonperturbative mean velocity The maximum of §{D7}(«x) in d=2 is given by
u‘?Xp, u=u®Py 1 T_he flow fac_tor is definec_i _by/z Ki1/Kg SOIDTY (Kma) =12 77/60'f2f0'ivu|, and reached at,,=/3.
with K4, the experimentally given 11-coefficient of the mac-

roscopic hydraulic conductivitylf the flux is prescribed at

the inflow boundary the flow factor drops since the mean 2. Time behavior

flow is imposed by the boundary condition. For the pertur-

bative solution of this boundary value problem, one consid- The time behavior of the ensemble and effective disper-
ers an equation for the vector potential of the incompressiblgion coefficients is determined by the numerical evaluation
flow, A(x,t) with u(x,t)=V XA(x,t), instead of the scalar of the auxiliary functions(41), which in d=3 dimensions
potentialh(x,t), see Ref[46].) can be simplified to
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) NA 2|3J“t/7u

1
Mu(t,A) =02, 05— dt’f dxBy(t’,A)¥%?
411 0

0
x(l—xz)exp(—ﬂ trz
4B,(t'A) 242

X{312B(t",A)+AB,(t",A)x?] Y B,(t',A)
+AB(t',A)x%] 52+ [By(t',A)
+AB,(t', A)XP] ¥ By(t',A)
+ABg(t", A)x?] Y2+ [By(t',A)

)X

)X

+AB,(t',A)x?] 3 B(t',A)
+AB3(t',A)x%] %3, (B5)

2151 /T, 1
Mzz(t,A)=0',2,V0'f2f\/— 2 3f dt’f dx(1—x?)
8l7 Jo 0

Xt 2 t/2
Xexp( - ¥__) ( B (t',A) Y22
4B(t",A) 2k?

1
—EBl(t’,A)‘”Zt’zx“ [By(t",A)

+AB,(t",A)x?] ¥ B, (t',A)
+AB5(t',A)x?] 2, (B6)

2151 t/Tu 1
Mas(t,A)=0?,0 ff\/_z 3J 'f dx(1—-x?)
0

2
87 Jo

xt’ 2 t/2
Xex% _ ¥__ (Bl(t!,A)UZXZ
4B,(t',A) 2k?

1
_EBl(t/,A)*llztllel

[Bi(t",A)

+AB5(t',A)x?] ¥ B(t',A)
+AB,(t',A)x?] "2, (B7)

where we defined for compactness of notation:
1
Bi(t,A)= E(AiiZEit)y (B8)

AB;(t,A)=1%/17B;(t,A)—By(t,A), j#1. (B9

In d=2 dimensions, we obtain

PHYSICAL REVIEW E68, 036310(2003

| t/Ty,
Mn(t,A)=cr§Vo?f| Zf dt’j dxB(x,t',A)" 1
17
t/2
xXexp ——||1—
2k2

xt’
XD( 2VB(x,t",A)

!

Xt
B(X,t’ ’A)1/2

(B10)

where the functionD(x) denotes Dawson’s integral as de-
fined in Ref.[47]. We defined for compactness of notation:

(1-x%% i=1

hi(x) = X2(1—-x2)¥2 =2

(B11)

and

1
B(x,t,A)=5[(As* 2e,t2)x2+15/12(Ay+ 26,t?) (1—x2)].
(B12)

a. Approximation for small inverse Peclet numbers angktr,

For isotropic spatial disordel;=--- =14, the auxiliary
functions (41) can be evaluated explicitly fore <1,
I=1,---,d, andt>7,. We consider a situation with isotro-
pic disorder correlatiod;=---=14 and anisotropic local
dispersion withD;=D, andD;;=D+, i# 1. Therefore we
define ford=2 andd=3 dimensionsM; =M , andM;"
=Mj fori#1 andA;=A_, A=A fori#1. The approxi-
mate behavior is obtained by settirg=0 in Eq. (41 and
extending the upper bound of the time integration to infinity
[36]. This yields ford=3 dimensions:

ME(CA) \/E S 1 5
’ = 50,0
- 27 A+ K2\ AT 2(AA+ k)

3A;
+ e —
2(AA+ K?)?

K . y( (AA+ k%)
(AA+K2)3/2arCS|n \/ A

x Lu) (B13)
2(AA+ k?) '
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M7 (t,A) t
erf] \/_T\ll'i‘K
_ 7T o K ] (AA+ k) sSOIDE ) = o2 o2ul \/E T
- \/;Uvuo'ff —(AA+ K2)3/2arCS|n?‘( \/—AT {DI1O}=0%,0% 2 it <2
T t
X L.}.E _ K 3 X{K71+2K73+K75}— \/;erf(—)
4AA+K?) 2] A+ P\ A(AA+KP) V27
2
3Ar {3 1, -3 p( t 2
+— =t | B14 X{=k ~+k p+exp ———(1+«°)
4(AA+K2)2) (B14) 2 2.2
In d=2 dimensions, we obtain A . t?
><{t‘1+t‘1;<_2—t‘3}+exp(—;)
M= (EA) \ﬁ » o] 1 k(ALK T
L (L = 50,0
- 27771 JAr (AA+ k)2
A - 3.
K Ar 3 (B15) X1 83—t 12— Etl] . (B17)
AA+ 2\ AA+K2 2]
= T2 o2 K Ar 1 For the time behavior 06(Y{D$5{t)} we obtain
M1 (t,A)= 2000 5 2+§ 22
AA+k“\ AA+k
K VAT(A+ k)12 .
 (AA+ D)2 (816 erf(—z T
au T
SID) =02 g ul| — \/:
where for compactness of notation we definddh=A_ {D22 (0} = 00,05 2 V1t K2

—A+. For isotropic local dispersiod A=0. Note that the

M;; have no explicit time dependence but vary onlyifis s s \/} t
time-dependent. X{k P+ kT merfl —

2
b. Closed expressions in=€2 spatial dimensions for the limiting X %K’lJr k3 +ex;{ - —(1+ K2)
case of zero local dispersion
For the contributions to the longitudinal and transverse R R 2
dispersion coefficients we obtain explicit expressions in ><{t3—t1;<2}+exp( - —2>
d=2 spatial dimensions in the limiting case of vanishing T
local dispersionD=0 and isotropic disorder correlation
[,=---=I4=I1. We define here the dimensionless time
t=t/r,. For the time behavior ob{D{t)} we obtain y 1{*1+f*1 , "3]
- . = Kk =t . (B19)
from theM;; , Eq. (48) according to Eqs(43) and(44): 2
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