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Forced stratified turbulence: Successive transitions with Reynolds number
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Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds
number Re keeping fixed a strongly stable, volume-mean density stratification. At smaller values of Re, the
turbulent velocity is mainly horizontal, and the momentum balance is approximately cyclostrophic and hydro-
static. This is a regime dominated by so-called pancake vortices, with only a weak excitation of internal gravity
waves and large values of the local Richardson number Ri everywhere. At higher values of Re there are
successive transitions to~a! overturning motions with local reversals in the density stratification and small or
negative values of Ri;~b! growth of a horizontally uniform vertical shear flow component; and~c! growth of
a large-scale vertical flow component. Throughout these transitions, pancake vortices continue to dominate the
large-scale part of the turbulence, and the gravity wave component remains weak except at small scales.

DOI: 10.1103/PhysRevE.68.036308 PACS number~s!: 47.20.2k, 47.27.2i, 47.55.Hd
at
le

n
e
u
ic
a

de
,

is-
it
at
ic
io

r-
v

ar
ur
t
ge

t i
F

s
l
o

h
b

-

ti-
rm
-
that
ct a

tory
e
by
e

than
u-

pre-
rge
ke

rn-

ed
r Ri

a-
an
i-

-

ar
a-
ri-

Re
I. INTRODUCTION

Most atmospheric and oceanic flows on intermedi
scales of;12103 m are strongly influenced by the stab

vertical density stratification,dr̄(z)/dz,0 ~with ẑ5e3 anti-
parallel to gravity!, but are less influenced by earth’s rotatio
than flows on larger scales. Consequently, the turbulenc
this regime is quite different from unstratified shear turb
lence, convection, and geostrophic turbulence, all of wh
have been more extensively studied and their behaviors
now relatively familiar. It has been argued@1# that the main
effect of strongly stable stratification — i.e., small Frou
number Fr5V/NLv , whereV is a horizontal velocity scale

N52(g/ro)dr̄/dz is the Brünt Väı̈säla frequency, andLv is
vertical length scale — is to organize the flow into two d
tinct, noninteracting classes: nearly linear internal grav
waves and fully nonlinear stratified turbulence. The flow p
terns of stratified turbulence are often called pancake vort
@2# or vortical modes@3# because of their small aspect rat
H/L ~where L is a horizontal length scale! and significant
vertical vorticity, neither of which is generally true for inte
nal gravity waves. Pancake vortices have an anisotropic
locity ~primarily horizontal! and shear field~primarily verti-
cal!, and they evolve principally under the nonline
influence of horizontal advection as in two-dimensional t
bulence. These motions cause little vertical turbulent hea
mass flux, and they have a highly anisotropic, inhomo
neous energy cascade to small scales and dissipation@4#. At
moderate values of Reynolds number Re5VLh /n, wheren
is the kinematic viscosity andLh is a horizontal length scale
— stratified turbulence evolves self-consistently, at leas
freely decaying flows, in the sense that a bulk value for
does not increase with time as energy dissipation cause
to decrease@5#. At leading order in Fr, the inviscid dynamica
balances for stratified turbulence are equivalent to tw
dimensional turbulence@1# evolving independently at eac
vertical level. The energy dissipation may be modeled
adding a vertical eddy diffusion@6# that acts to couple verti
1063-651X/2003/68~3!/036308~8!/$20.00 68 0363
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cally adjacent levels and diffusively selects a limiting ver
cal length scale. However, with the assumption of unifo
asymptotic validity as Fr→0, stratified turbulence is con
strained by hydrostatic and cyclostrophic force balances
also act to couple adjacent layers and may internally sele
finite vertical scale as Re→` without inducing any vertically
overturning motions@7#.

These behaviors have been studied both with labora
experiments@8,9# and with numerical simulations up to R
;100; a review of this subject has recently been made
Riley and Lelong@10#. In the ocean and atmosphere, R
values are generally several orders of magnitude larger
those commonly reached in experiments or numerical sim
lations. Thus, an important open question is whether the
ceding wave-turbulence partition remains valid at very la
Re. A central part of this question is whether the panca
vortices persist and remain ‘‘stable’’ with respect to overtu
ing motions.

The dynamical stability properties of a stably stratifi
shear flow are usually related to the Richardson numbe
locally defined by

Ri52
g

ro

]r

]z S ]uh

]z D 22

5S N21
]u

]zD S ]uh

]z D 22

, ~1!

whereuh is the horizontal velocity andu52gr8/ro is the
normalized ‘‘temperature’’ associated with density fluctu
tionsr8. Alternatively, Ri is defined as a bulk measure in
analogous fashion withN2 in the numerator and shear var
ance in the denominator~i.e., a bulk Ri;Fr22). In the invis-
cid limit, a sufficient condition for stability of a parallel ver
tically sheared flow~i.e., a Kelvin-Helmholtz flow! is that
the local Ri exceed 0.25 throughout the flow@11,12#. Gage
@13# refined this criterion for several simple viscid she
flows and obtained values of the critical Ri for linear inst
bility between about 0.05 and 0.11 for large Re. In a nume
cal simulation at very high resolution~i.e., with a maximum
Reynolds number based on the shear layer thickness,H
524 000) and moderate stratification, Werne and Fritts@14#
©2003 The American Physical Society08-1
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show that the turbulence organizes itself so that Ri ne
exceeds 0.25. In the more complex natural environment,
locity variance and estimates of the vertical mixing ef
ciency increase rapidly as Ri decreases through the ra
between about 0.5 and 0.0@15#. On the other hand, Majda
and Shefter@16# stress the importance of temporal behav
on flow stability by constructing a family of time periodi
solutions that are unstable at arbitrarily large Ri.

In this paper, we examine the behavior of stratified turb
lence at large Re values by means of numerical simulat
of the Boussinesq equations with forcing at the larger sc
of the computational domain. Some simulations of forc
stratified turbulence have been performed previously by H
ring and Métais @17#, but the available resolution did no
allow clear conclusions for flows at high Re. Most expe
ments and simulations for stratified turbulence have b
conducted on decaying turbulence, with many focused s
cifically on the transition from isotropic to stratified turbu
lence after an initial high-energy excitation event@5,9,18#.
Because of the large energy dissipation rate in both isotro
and stratified turbulence, this evolutionary path starts w
large Re and Fr and only briefly resides in a fully develop
regimeen routeto small Re and Fr; this situation therefo
provides a limited view of the equilibrium geophysical r
gime. One of our main purposes here is to analyze the fl
regimes of stratified turbulence in terms of Re and Fr var
independently in a controlled fashion.

II. DESCRIPTION OF THE CALCULATION

A. Governing equations

A pseudospectral code is used to integrate the Boussi
equations on a triply periodic domain@19#; viz.,

] tu1u•“u52“p1ue31nDu1F,

] tu1u•“u52N2u•e31kDu,

“•u50. ~2!

In these equations,u is the three-dimensional velocity,p is
the pressure divided byro , k is the conductivity, andF is
the imposed forcing. The equations have been nondim
sionalized using the horizontal domain width and by adju
ing the forcing so that the energy at equilibrium is of t
order of unity. Consequently, all the plotted quantities
nondimensional. In Fourier space the equations for the F
rier components of velocity and the temperature,û(k) and
Q(k), are

~] t1nk2!ûi~k,t !2Pi3~k!Q~k,t !

52 ik l Pin~k!E
k1p1q50

ûn~p,t !ûl~q,t !d3p1F̂ i~k,t !,

~] t1kk2!Q~k,t !1N2û3~k,t !

52 iknE
k1p1q50

ûn~p,t !Q̂~q,t !d3p. ~3!
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Pi j 5d i j 2kikj /k2 is the projection operator onto the plan
orthogonal toû(k); d i j is the Kronecker tensor, repeate
indices indicate summation; andi 2521 when i does not
appear as an index.

B. Energy decomposition

As a simple means of separating turbulence~vortices! and
waves, as well as a horizontally uniform shear flow that
neither of these, we use Craya’s decomposition@20# for the
incompressible velocity field in Fourier space into orthog
nal componentsûv , ûw , andûs :

û~k,t !5ûv~k,t !1ûw~k,t ! if khÞ0,

û~k,t !5ûs~k,t ! if kh50, ~4!

where

ûv~k,t !5f̂v~k,t !wv~k!, ~5!

ûw~k,t !5f̂w~k,t !ww~k! ~6!

and

wv~k!5@~k3e3!#/u~k3e3!u, ~7!

ww~k!5@k3~k3e3!#/uk3~k3e3!u. ~8!

k35(k•e3)e3 and kh5k2k3 are the components of th
wave number perpendicular and parallel to gravity. The co
ponents (f̂v ,f̂w) were previously used by, e.g., Riley an
Lelong@10# and Lilly @21#, and they are usually referred to a
‘‘vortical’’ and ‘‘wave’’ components. The emergence of th
‘‘shear’’ componentûs was emphasized by Smith and Wa
effe @22#. Associated withf̂v , f̂w , and ûs , we define the
kinetic energy spectra by

Fv~k!5
1

2 (
p

f̂v* ~p!f̂v~p!, ~9!

Fw~k!5
1

2 (
p,phÞ0

f̂w* ~p!f̂w~p!, ~10!

Fs~k!5
1

2 (
p,ph50

ûs* ~p!ûs~p!, ~11!

where the sum( is done over a shellk21/2,upu,k11/2.
We further define the ‘‘available potential energy’’ spectru
by

Fp~k!5
1

2 (
p

Q̂* ~p!Q̂~p!

N2
, ~12!

and the ‘‘total kinetic energy’’ spectrum by

F~k!5
1

2 (
p

û* ~p!û~p!. ~13!
8-2
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Total component energies (Ev , Ew , Es , Ep , and E) are
obtained by summing over all shellsk. In addition to this
decomposition, we define the ‘‘vertical kinetic energy’’Ez as
half the area-averaged square of the vertical velocity,u•e3,
andFz as the vertical kinetic energy spectrum.

C. Posing the problem

Our analysis is based on a single numerical solution~de-
signed after calculating many more exploratory solutio
than we wish to admit!. An anisotropic grid resolution is
used to take advantage of the anisotropy of the flow t
arises in response to the stable stratification~i.e., a small
aspect ratio!. The calculation is performed over a vertic
fraction of a cubic domain by imposing a 2p/M vertical
periodicity of the velocity (M58 in the present case!. For a
given number of grid points, this increases the achievable
value without loss of generality as long as the typical verti
scale is much smaller than the horizontal periodicity leng
The level of stratification is controlled by adjusting the sp
tially uniform value ofN in time. The forcingF is defined by
F(k,t)dt5b(k,t)u(k,t), with b chosen so that the differ
ence F f(k,to) of the energy spectra before and after t
forcing ~i.e., the energy injection rate! is constant in time:

F f~k,to!5
1

2 (
p

$uû~p,t !1dtF̂~p,t !u2%2F~k,t !

5@11b~k,t !#2F~k,t !. ~14!

The coefficientb(k,t) is obtained from Eq.~14! as

b~k,t !5AF~k,t !1F f~k,to!

F~k,t !
21. ~15!

We choose to force only the first vertical and horizon
modes@i.e., F f(k,to)Þ0 for k5kv

o5M and k5kh
o51]. In

order to reach a high enough Re value, a hyperdiffus
@(21)pnpDh

p , with p54 and a small coefficient ofnp

510212] is added to the Newtonian diffusion in the horizo
tal direction. Several additional simulations at higher ho
zontal resolution demonstrate that this modification does
qualitatively affect the results presented here. Since mos
the dissipation occurs in association with shear in the vert
direction ~about 99.5% in the stable pancake regime;
below!, we use ordinary Newtonian diffusion in this dire
tion to have a clean definition of Taylor’s Reynolds numb
Rl5Urmsl/(e/D)52ADE/e, whereUrms5A2E is the rms
velocity, D is the enstrophy ~i.e., vorticity variance!,
l5A2E/D is the Taylor scale, ande the dissipation rate
The Prandtl numbern/k is set to 1. The bulk Froude
number is defined by Frv5Urms /(HN), where H
53p/4E@(k3

k3
21Fv(k3)# is the typical vertical scale.

The primary simulation is adjusted in time to follow
given experimental path in terms ofRl and Frv by adjust-
ment in time ofN andn. The evolution of these two param
eters is shown in Fig. 1. Frv is maintained at a small value o
0.08, andRl is changed from 200 to 1000 by steps of 1
after integration periods of 100 turnover times„i.e., T
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5L/Urms with L the integral scale defined byL
53p/4E@(kk

21F(k)#…. This period is approximately long
enough to adjust to an equilibrium state for eachRl . This
experimental path is designed to expose a sequence o
gime transitions with increasing Re. We chose a flow initia
at rest. The timet50 in the results reported here correspon
to a time when the solution has reached an equilibrium
the first set of parameters in the primary simulation. Beca
of the sensitive dependence of turbulent flows, there is
meanful dependence upon the initial conditions in t
lengthy integration over many hundreds of eddy turno
times. A different realization with different initial condition
would be statistically indistinguishable from the prima
simulation. The equations are solved on a 2p32p32p/M
domain with a spatial grid size of 2563256364 for Rl

,500 and 25632563128 for higherRl . The simulation
appears to be slightly under-resolved for the highest R
nolds number in the sense that the dissipation range is
extensive inF(k). The ratios of the highest resolved (kh

m

596 andkv
m5341) to the corresponding Kolmogorov wav

numbers@kh
h5(n3/eh)21/4 andkv

h5(n3/ev)21/4] are 1.1 and
0.92, respectively, forRl5500, and they are 0.4 and 0.2 fo
Rl51000. The under-resolution in the horizontal direction
compensated by the hyperviscosity. In the vertical directi
the kinetic energy at the resolution scale is much sma
than at the largest scales in the dissipation range~by a factor
of 1025 at the highestRl). The Ozmidov scale@Lo
5(e/N3)1/2.431024 for Rl5700] is more than one orde
of magnitude smaller than the smallest resolved vert
scales. This ratio means that all the resolved scales are
nificantly influenced by stratification.

The simulations were done on one processor of a N
SX-5. The code uses optimized ASL libraries of fast Four
transforms and requires approximately 4 sec per time ste
the highest resolution. The time step is chosen to sufficie
resolve the fastest wave oscillations with period 2p/N. The
simulation is integrated over a total of 360 000 time ste
and takes about 200 h.

FIG. 1. Experimental path for the primary simulation: the tim
evolution of Taylor’s Reynolds numberRl ~thick line!, the resulting
Brünt Väı̈ssäla frequencyN ~thin line!, and the viscosityn ~dashed
line!. N and n are adjusted to maintain the Froude number at
constant value of 0.08 and makeRl follow the indicated history.
t5t/T is the nondimensional time.
8-3
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III. SOLUTION ANALYSIS

The experimental path for the primary solution is demo
strated in Fig. 1 as a function of the nondimensional tim
t5t/T, normalized by the turnover timeT. The correspond-
ing histories of the energy components are shown in Fig
As Rl increases, we see a sequence of regime transition

At moderateRl , less than;400, the pancake motion
are stable~i.e., the local Ri is everywhere large!, and the
vortical energy dominates all other energy components a
wave numbers~Fig. 2!. The first transition occurs forRl

'400, and it is evident in the significant growth of energy
the shear component,Es ~Fig. 3!. The next transition, for
Rl'500, is evident in the intermittent occurrence of regio
with small local values of Ri below the Kelvin-Helmholt
critical inviscid stability value of 0.25~Fig. 4!. A further
transition, forRl'700, is evident in local violations of the
inviscid gravitational stability critical value of Ri50.0 ~Fig.
4!. Finally, we see yet another transition forRl'900, evi-
dent in the growth of vertical kinetic energyEz ~Fig. 3!.
Interestingly, throughout all these transitions, the princi
measures of the internal-wave energy,Ew and Ep , show
little change relative to the vortical-mode energyEv . Since

FIG. 2. Energy spectra with respect to horizontal and vert
wave numbers averaged over more than 100 times atRl5200 for
the primary simulation.

FIG. 3. History of the energy components in the primary sim
lation.
03630
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Ev itself remains reasonably constant with time and its ho
zontal spectrumFv(kh) maintains a similar shape and ma
nitude at low wave numbers, we conclude that pancake
tions are indeed persistent throughout theRl range we have
been able to explore, even though the structure and inten
of the flow changes substantially at high wave numbers
the horizontally uniform vertical shear and in the vertic
velocity.

A. Growth of the vertical shear component

In Fig. 3, the vortical energy is nearly steady over t
entire simulation. The wave energy is more variable, but
average it is steady asRl increases. However, the shear e
ergy is a growing function of time. It represents an inver
horizontal cascade of kinetic energy intokh50. The inten-
sity of the inverse cascade of shear energy is probab
function of the location of the energy peak in the horizon
direction; in the present case, the forcing is imposed atkh
51, and a substantial part of the energy is transformed
pure vertical shear. To assess the degree of equilibration
this inverse cascade, two additional simulations are ma
Both start from the primary simulation and thereafter ho
Rl constant for several hundred turnover times, but th
starting (t,Rl) values differ. Figure 5 shows thatEs does
indeed equilibrate over a period of less than 100 turno
times at a level that increases systematically withRl .

This growth of shear kinetic energy has been seen pr
ously when the Froude number is below a critical value@22#.
For the alternative Froude number defined by Fs

5(ekv
o2)1/3/N, our simulations have a value of approx

mately 0.025, more than an order of magnitude below
identified critical value of 0.42. In this previous study, th
shear kinetic energy did not equilibrate even after more t
1000 turnover times. This may be due to its reliance on
perdiffusion in all directions, which exerts only a wea
damping on the shear component.

B. Onset of overturning motions

Overturning occurs when an unstable shear layer rolls
pulling high-density fluid above low-density fluid. This in

l

-

FIG. 4. Time evolution ofRl ~solid line! and the volume frac-
tion of the domain with local Ri,0.25 ~filled gray area! and with
local Ri,0 ~filled black area!. There was no occurrence of R
,0.25 for 0,t,300.
8-4
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FORCED STRATIFIED TURBULENCE: SUCCESSIVE . . . PHYSICAL REVIEW E 68, 036308 ~2003!
stability can occur in a fairly localized way. Its occurrence
detected with the local Ri defined in Eq.~1!, and an indica-
tion of the overturning instability is a negative Ri valu
Because of the Miles-Howard condition, we can expect t
this Kelvin-Helmholtz instability only occurs in region
where Ri is initially less than 0.25. The history of the fra
tion of the domain with the local Ri below 0.25 is shown
Fig. 4. More events with Ri,0.25 happen asRl increases,
although they evidently remain intermittent. The regime
overturning events first appears atRl5700 (t.535). Even
at the highest Re value, only a small fraction of the domai
actively overturning at any time, less than 0.7%. The pr
ability density function~PDF! for Ri shows that most of the
domain remains far away from overturning, with only
small tail in the PDF that extends to small and negative
values. Because of the intermittency, long averaging per
are required for stable statistics. Nevertheless, we can
that there is a well-determined value of Re for the onse
overturning events. To demonstrate this, the regime just
fore the first overturning event in the primary simulatio
(Rl5500) is integrated over a longer period~250 turnover
times!, and no overturning occurs despite several events w
Ri,0.25. To characterize more precisely the critical Ri
instability, we follow the history of the global minimum in
local Ri ~Fig. 6!. The minimum Ri value that does not im
mediately lead to local overturning is Ri.0.02. This value is
a bit smaller but of the same order of magnitude than
values computed by Gage@13# for simple shear flows.

The spatial distribution of small Ri events is organiz
into thin sheets with large vertical shear in the horizon
velocity. An example of a region with a negative vertic
density gradient is shown Fig. 7. The vertical size of t
region is very thin~a few grid cells! even though its horizon
tal size at this time (.2p/3) is not much smaller compare
to the domain size. An intense vertical velocity is associa
with domain of negative vertical density gradient~Fig. 8!,

FIG. 5. History ofRl(t) ~solid lines! andEs(t) for three simu-
lations. The primary simulation~with a dashed line for itsEs) has
an increasing Reynolds number by steps of 100 from 200 to 10
and the second and third simulations have constant Reynolds n
bers ofRl5300 ~dash-dotted line! andRl5500 ~dotted line!, start-
ing from the primary simulation att5200 andt5400, respec-
tively.
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but the present simulation has only a marginally adequ
resolution to expose the convective overturning events.

Figure 9 shows the spectra for the energy component
t5521, before any overturning occurs. The spectra with
spect to horizontal wave number are very steep, with a sl
close tokh

25 for Fv , and the shape does not vary much w
Rl in this stably stratified regime without overturning. Th
onset of the overturning instability does not seem to aff
significantly the overall level of wave and vortical energ
~Fig. 3!. However, the overturning events are easily ident
able as a peak in the horizontal spectra att5741 ~Fig. 9!.
The peak is located at the horizontal scaleLh.2p/50 that
matches the typical vertical scaleLv . At this particular time,
the instability is localized in a single region of the domain

The energy at the largest horizontal scales is not affec
by the overturning instabilities that are localized in bo
space and time. In Fig. 10, time-averaged vortical-ene
spectra are compared for four values ofRl . The horizontal
spectra are very similar up to the typical scales of the ov
turnings. However, at both finer horizontal scales and at
vertical scales finer than the forcing scale, the spectrum
plitude increases systematically withRl . At the constant,
small Fr value in this simulation, the vertical spectrum slo
becomes quite shallow asRl increases.

C. Growth of large-scale vertical motions

The energy histories in Fig. 3 expose another transition
an even largerRl.900, viz.,the systematic growth of vert
cal kinetic energyEz . An inspection of the vertical energ
spectrum reveals that the growth ofEz after t5700 occurs
principally at kv50 ~Fig. 11!. This mode of instability is
reminiscent of the ‘‘negative-viscosity instability’’ observe
in a Kolmogorov flow@23#, further investigated by Dubrulle
Frisch, and He´non @24# with a multiscale analysis. This
analysis shows that a parallel flow with a small transve
scale develops a negative-viscosity instability to large-sc
perturbations in the transverse direction when the visco

0,
m-

FIG. 6. History of the global minimum value of local Ri for th
primary simulation. The ordinate scale is split into three intervals
see both large and small values on the same plot. Wheneve
minimum Ri drops below about 0.02, it continues to develop in
overturning in the density profile~i.e., min@Ri#,0); this first occurs
aroundt.400.
8-5
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FIG. 7. Instantaneous isolines of vertical density gradient att5741 (Rl5900) for two perpendicular slices of the whole domain az
5const~upper graph! andy5const~lower graph!.
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becomes less than the rms value of the streamfunction o
primary flow. In our simulation, it is difficult to test precisel
this criterion of instability because the streamfunction is
defined. Crudely, we can expect an instability of this ty
whenn,Fs(,v)1/2,v , where,v is the scale of the vertica
shear andFs(,v) is the shear energy at this scale. In o
simulation this relation is satisfied on average fort.700 if
2p/,v.80. This scale is comparable in magnitude with t
typical vertical wave number 2p/Lv.50. However, due to
the complexity of the forced stratified flow, it is difficult t
prove the nature of this instability pending more apt stabi
analyses.

IV. SUMMARY AND DISCUSSION

In our simulations of forced, equilibrium stratified turbu
lence, we see behaviors somewhat different from many
03630
he

l

r

e-

vious studies of decaying stratified turbulence that were
able to sustain a large value of the Reynolds number
Most often the criteria for the occurrence of pancake vorti
and suppression of overturning motions~i.e., Kelvin-
Helmholtz and gravitational stability! have been linked to the
stratification N but rarely to Re. Indeed, we find that th
stability of a solution is mainly controlled by two paramete
with opposite effects on stability: increasingN ~decreasing
Fr! leads to a more stable solution and decreasingn ~increas-
ing Re! has the opposite effect. For a fixed low value of F
we follow an experimental path of increasing Re far enou
to detect several regime transitions beyond the familiar
of stable pancake vortices. One transition is to the interm
tent occurrence of regions with small or negative Ri. Th
refutes previous arguments@1,7# that stratified turbulence re
mains stable with uniformly small local values of Fr at lar
Re and with uniformly cyclostrophic, hydrostatic diagnos
8-6



e

FORCED STRATIFIED TURBULENCE: SUCCESSIVE . . . PHYSICAL REVIEW E 68, 036308 ~2003!
FIG. 8. Vertical slice~same than in Fig. 7! of vertical velocity att5741 (Rl5900) ~upper graph! and a zoom of the region of intens
vertical velocity with the projection of velocity vectors~lower graph!.
ica
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r
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an

r at
c-
FIG. 9. Energy spectra with respect to horizontal and vert
wave numbers att5521 (Rl5700) ~upper graph! and t5741
(Rl5900) ~lower graph! for the primary simulation. The local en
ergy peaks att5741 for 40,kh,60 are an indication of one o
several overturning events (min@Ri#.0).
03630
l

FIG. 10. Comparison of vortical~upper graph! and wave~lower
graph! energy spectra with respect to horizontal and vertical wa
numbers for four different Reynolds number. Each spectrum is
average over more than 200 times for eachRl . The horizontal
spectra are very similar at large horizontal scales but they diffe
small scales (kh.10). The situation is different in the vertical spe
tra, where the typical scale decreases withRl .
8-7
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momentum balances. This transition may plausibly be as
ciated with inviscid Kelvin-Helmholtz and ensuing gravit
tional instabilities of the pancake vortices, although in o
simulations the viscous effects on the unstable scales
significant. Nevertheless, the pancake vortices continue t
the energetically dominant component of the turbulence e
up to the highest Re values examined here, and visua
tions of the large-scale potential vorticity field~not shown!
show little change in spatial structure withRl .

Two other transitions to large-scale motions other th
pancake vortices do occur: a first one to growth of the sh
kinetic energy at zero horizontal wave number and a sec

FIG. 11. Evolution in time of the total vertical energy~thin line!
and the vertical energy at the zero vertical mode~thick line! for the
primary simulation~parameters of Fig. 1!. The component of the
zero vertical mode is several order of magnitude smaller than
total vertical energy fort,700, and becomes the dominant mo
for t.800.
yn

t-
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one to growth of vertical kinetic energy with its spectru
peak at zero vertical wave number for large Re. The form
has been seen previously in stratified turbulence@22#, and the
latter may be associated with negative-viscosity instabi
seen previously in unstratified shear flow@23#. Each of these
large-scale transitions may be interpreted as an inverse
ergy cascade. However, they behavior is strongly constra
by the domain size in our simulations where the forcing
imposed at the gravest finite wave numbers. We will expl
beyond this limitation in future reports.

In this paper, we choose to focus on simulations at v
small Froude number, and we are able to reach a Reyn
number high enough to destabilize the pancake vortice
several ways. This leads us to advance the following pro
sition about the nature of equilibrium stratified turbulenc
for any Froude number, no matter how small, there are R
nolds numbers large enough so that a sequence of transi
to nonpancake motions will always occur and, convers
for any Reynolds number, no matter how large, there
Froude numbers small enough so that these transitions
suppressed. Obviously, this hypothesis warrants further t
ing, as do our provisional interpretations of the dynami
nature of the transitions.
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@5# O. Métais and J.R. Herring, J. Fluid Mech.202, 117 ~1989!.
@6# P.F. Embid and A.J. Majda, Geophys. Astrophys. Fluid D

87, 1 ~1998!.
@7# J.C. McWilliams, J. Atmos. Sci.42, 1773~1985!.
@8# C.T. Yap and C.W. van Atta, Dyn. Atmos. Oceans19, 289

~1993!.
@9# A.M. Fincham, T. Maxworthy, and G.R. Spedding, Dyn. A

mos. Oceans23, 155 ~1996!.
@10# J.J. Riley and M.-P. Lelong, Annu. Rev. Fluid Mech.32, 613

~2000!.
@11# J.W. Miles, J. Fluid Mech.10, 496 ~1961!.
.

@12# L.N. Howard, J. Fluid Mech.10, 509 ~1961!.
@13# K.S. Gage, J. Fluid Mech.47, 1 ~1971!.
@14# J. Werne and D.C. Fritts, Geophys. Res. Lett.26, 439 ~1999!.
@15# H. Peters, M.C. Gregg, and J.M. Toole, J. Geophys. R

@Oceans# 93, 1199~1988!.
@16# A.J. Majda and M.G. Shefter, J. Fluid Mech.376, 319 ~1998!.
@17# J.R. Herring and O. Me´tais, J. Fluid Mech.202, 97 ~1989!.
@18# C. Staquet and F.S. Godeferd, J. Fluid Mech.360, 295 ~1998!.
@19# A. Vincent and M. Meneguzzi, J. Fluid Mech.225, 1 ~1991!.
@20# A. Craya, Publ. Sci. Tech. Ministe`re de l’air ~unpublished!.
@21# D.K. Lilly, Mon. Weather Rev.93, 11 ~1965!.
@22# L.M. Smith and F. Waleffe, J. Fluid Mech.451, 145 ~2002!.
@23# B. Dubrulle and U. Frisch, Phys. Rev. A43, 5355~1991!.
@24# B. Dubrulle, U. Frisch, and M. He´non, J. Stat. Phys.59, 1187

~1991!.
8-8


