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Forced stratified turbulence: Successive transitions with Reynolds number
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Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds
number Re keeping fixed a strongly stable, volume-mean density stratification. At smaller values of Re, the
turbulent velocity is mainly horizontal, and the momentum balance is approximately cyclostrophic and hydro-
static. This is a regime dominated by so-called pancake vortices, with only a weak excitation of internal gravity
waves and large values of the local Richardson number Ri everywhere. At higher values of Re there are
successive transitions @) overturning motions with local reversals in the density stratification and small or
negative values of Ri(b) growth of a horizontally uniform vertical shear flow component; aydgrowth of
a large-scale vertical flow component. Throughout these transitions, pancake vortices continue to dominate the
large-scale part of the turbulence, and the gravity wave component remains weak except at small scales.
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[. INTRODUCTION cally adjacent levels and diffusively selects a limiting verti-
cal length scale. However, with the assumption of uniform
Most atmospheric and oceanic flows on intermediateasymptotic validity as F~0, stratified turbulence is con-
scales of~1—10° m are strongly influenced by the stable strained by hydrostatic and cyclostrophic force balances that
vertical density stratificatiordp(z)/dz<0 (with 2=e, anti-  &/SO act to couple adjacent layers and may internally select a
parallel to gravity, but are less influenced by earth’s rotation 'INit€ vertical scale as Re < without inducing any vertically

.gverturning motiong7].
than flows on larger scales. Consequently, the turbulence iRY . . .
this regime is quite different from unstratified shear turbu- These behaviors have been studied both with laboratory

experimentd 8,9] and with numerical simulations up to Re

lence, convection, and geostrophic turbulence, all of which™ 100; a review of this subject has recently been made by

have bee_n more e_>$tensively studied and their behaviqrs arﬁiley and Lelong[10]. In the ocean and atmosphere, Re
now relatively familiar. It has _b.een. argué]_i] that the main values are generally several orders of magnitude larger than
effect of strongly stable strguﬁcauop —i.e., sm.aII Fro“dethose commonly reached in experiments or numerical simu-
number Fr=V/NL, , whereV is a horizontal velocity scale, |ations. Thus, an important open question is whether the pre-
N=—(g/po)dp/dzis the Brint Vaisda frequency, andl, is  ceding wave-turbulence partition remains valid at very large
vertical length scale — is to organize the flow into two dis- Re. A central part of this question is whether the pancake
tinct, noninteracting classes: nearly linear internal gravityvortices persist and remain “stable” with respect to overturn-
waves and fully nonlinear stratified turbulence. The flow pat-ing motions.
terns of stratified turbulence are often called pancake vortices The dynamical stability properties of a stably stratified
[2] or vortical modeg 3] because of their small aspect ratio shear flow are usually related to the Richardson number Ri
H/L (wherelL is a horizontal length scaleand significant locally defined by
vertical vorticity, neither of which is generally true for inter-
nal gravity waves. Pancake vortices have an anisotropic ve- .9 dp|[dup 72_ , 06\ [duy) "2
locity (primarily horizonta] and shear fieldprimarily verti- RI___E oz N +E 9z @
y (P y p y Po
cal), and they evolve principally under the nonlinear
influence of horizontal advection as in two-dimensional tur-whereu,, is the horizontal velocity and= —gp’'/p, is the
bulence. These motions cause little vertical turbulent heat onormalized “temperature” associated with density fluctua-
mass flux, and they have a highly anisotropic, inhomogetionsp’. Alternatively, Ri is defined as a bulk measure in an
neous energy cascade to small scales and dissipafJoAt  analogous fashion witN? in the numerator and shear vari-
moderate values of Reynolds number=RéL,,/v, wherev ance in the denominatdgr.e., a bulk Ri~Fr~2). In the invis-
is the kinematic viscosity and,, is a horizontal length scale cid limit, a sufficient condition for stability of a parallel ver-
— stratified turbulence evolves self-consistently, at least irtically sheared flow(i.e., a Kelvin-Helmholtz flow is that
freely decaying flows, in the sense that a bulk value for Fithe local Ri exceed 0.25 throughout the flp®d,12. Gage
does not increase with time as energy dissipation causes R&3] refined this criterion for several simple viscid shear
to decreasgs]. At leading order in Fr, the inviscid dynamical flows and obtained values of the critical Ri for linear insta-
balances for stratified turbulence are equivalent to twoJbility between about 0.05 and 0.11 for large Re. In a numeri-
dimensional turbulencgl] evolving independently at each cal simulation at very high resolutiaime., with a maximum
vertical level. The energy dissipation may be modeled byReynolds number based on the shear layer thickness, Re
adding a vertical eddy diffusiof6] that acts to couple verti- =24000) and moderate stratification, Werne and Ffitt§
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show that the turbulence organizes itself so t_hat Ri nevepij:5”._kikj/k2 is the projection operator onto the plane
exceeds 0.25. In the more complex natural environment, V&;rihagonal tod(k): 8 is the Kronecker tensor, repeated
Ic_>C|ty variance and_esnmateg of the vertical mixing effi- indices indicate summation: arid=—1 wheni does not
ciency increase rapidly as Ri decreases through the rangdénear as an index.
between about 0.5 and 0[@5]. On the other hand, Majda
and Sheftef16] stress the importance of temporal behavior
on flow stability by constructing a family of time periodic
solutions that are unstable at arbitrarily large Ri. As a simple means of separating turbulefeartices and

In this paper, we examine the behavior of stratified turbuwaves, as well as a horizontally uniform shear flow that is
lence at large Re values by means of numerical simulationseither of these, we use Craya’s decomposif2@] for the
of the Boussinesq equations with forcing at the larger scaleicompressible velocity field in Fourier space into orthogo-
of the computational domain. Some simulations of forcedng| componentﬁlv, flw, andﬁs:
stratified turbulence have been performed previously by Her-

B. Energy decomposition

ring and Meais [17], but the available resolution did not uck,t) =0, (k,t) + Uy(k,t) if k,#0,
allow clear conclusions for flows at high Re. Most experi-
ments and simulations for stratified turbulence have been ack,ty=ug(k,t) if k,=0, (4)

conducted on decaying turbulence, with many focused spe-
cifically on the transition from isotropic to stratified turbu- where
lence after an initial high-energy excitation ev¢ft9,18.

Because of the large energy dissipation rate in both isotropic ﬁv(k,t)= &Sv(k,t)gov(k), (5)
and stratified turbulence, this evolutionary path starts with
large Re and Fr and only briefly resides in a fully developed Uy (K, ) = (K, 1) @ (K) (6)

regimeen routeto small Re and Fr; this situation therefore
provides a limited view of the equilibrium geophysical re- and
gime. One of our main purposes here is to analyze the flow

regimes of stratified turbulence in terms of Re and Fr varied e, (k)=[(kxey)]/|(kXe)l, (7)
independently in a controlled fashion.
ew(K)=[kX (kxeg)]/[kx (kX es)l. 8
Il. DESCRIPTION OF THE CALCULATION ko= (k-e3)e; and ky—k—k; are the components of the
A. Governing equations wave number perpendicular and parallel to gravity. The com-

A pseudospectral code is used to integrate the Boussine&pnents ¢, ,#.) were previously used by, e.g., Riley and
equations on a triply periodic domajagJ; viz., LeIong[lO] and Lilly [21], and they are usually referred to as
“vortical” and “wave” components. The emergence of the

dut+u-Vu=—Vp+oe;+vAu+F, “shear” componentu, was emphasized by Smith and Wal-
) effe [22]. Associated withg, , ¢,,, andus, we define the
9tf+u-Vo=—Nu-es+ A0, kinetic energy spectra by
V.u=0. (2 1 - -
(k=52 &5 (P)dy(p), )
In these equations) is the three-dimensional velocitp, is P
the pressure divided by,, « is the conductivity, and- is 1
the imposed forcing. The equations have been nondimen- ®. (K)= = b* (D) & 10
sionalized using the horizontal domain width and by adjust- wtk) 2 p%&o $u(P) bu(p), (10

ing the forcing so that the energy at equilibrium is of the

order of unity. Consequently, all the plotted quantities are 1 A ~
nondimensional. In Fourier space the equations for the Fou- Py(k)= 2 D,EZO us (P)Us(p), (11)
rier components of velocity and the temperaturgk) and
O(k), are where the sunk is done over a shek— 1/2<|p|<k+1/2.
We further define the “available potential energy” spectrum
(3 vk Ui(k, 1) = Pia() O (k,t) by
. T, : 1o 6*(Pop
=—ik,P kf up(p,Hyu(g,t)d3p+Fi(k,t), —Z - PR
| |n( ) Kt p+q0 n(p ) I(q ) p |( ) (I)p(k) 2 % N2 , (12)
(9,+ kk?) O (K, t) +N20s(k,t) and the “total kinetic energy” spectrum by
) - R 3 1 o
= —ikq Un(p.) (0, )dp. (3 ®(k)=5 2 U*(p)u(p). (13)
k+p+q=0 p
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Total component energie€(, E,, Es, E,, andE) are 1000 ' ' ' vy 0-0030
obtained by summing over all shelks In addition to this [

‘ Jo.0025

decomposition, we define the “vertical kinetic enerdy, as gool W, ]
half the area-averaged square of the vertical velooitgs, s ﬁ:‘,“n ]
and®, as the vertical kinetic energy spectrum. % ool o " 0-0020
E S "‘:"- o015 »
C. Posing the problem “: L "" " L 1
& 400 ) oy

Our analysis is based on a single numerical solutaey {o.0010
signed after calculating many more exploratory solutions ]
than we wish to admjit An anisotropic grid resolution is
used to take advantage of the anisotropy of the flow that :
arises in response to the stable stratificatipa., a small 0 200 200 500 500 0.0000

aspect ratip The calculation is performed over a vertical T

fraction of a cubic domain by imposing an2M vertical . . . . .
FIG. 1. Experimental path for the primary simulation: the time

eriodicity of the velocit =8 in the present caseFor a . . N -
given nun):ber of grid poiyng this increaf)ses the ac?lievable Revolutlo"r.l. ot Taylor’s Reynolds numb&, (thick line), the resulting

value without loss of generality as long as the typical vertical
scale is much smaller than the horizontal periodicity length
The level of stratification is controlled by adjusting the spa-
tially uniform value ofN in time. The forcingF is defined by
F(k,t)dt=B(k,t)u(k,t), with 8 chosen so that the differ- =L/U,,. with L the integral scale defined byL
ence ®(k,t°) of the energy spectra before and after the—37/4E[ s,k 1d(k)]). This period is approximately long

J0.0005

line). N and v are adjusted to maintain the Froude number at the
constant value of 0.08 and maky, follow the indicated history.
7=t/T is the nondimensional time.

forcing (i.e., the energy injection ratés constant in time: enough to adjust to an equilibrium state for e®h. This
1 experimental path is designed to expose a sequence of re-
D(k,t%) == > {|U(p,t)+dtF(p, 1|2} —D(k,t) gime transitions with increasing Re. We chose a flow initially
2% at rest. The timé=0 in the results reported here corresponds

to a time when the solution has reached an equilibrium for
the first set of parameters in the primary simulation. Because
of the sensitive dependence of turbulent flows, there is no
meanful dependence upon the initial conditions in this
DD+ D (K1) lengthy integration over many hundreds of eddy turnover
B(k,t)= \/ ! R~ 7 1 (15) times. A different realization with different initial condition
P (k,t) would be statistically indistinguishable from the primary
, . . simulation. The equations are solved on &22 7 X 27/M
We choose to force only the first vertical and honzontaldomain with a spatial grid size of 25@56x 64 for R,
modes[i.e., @¢(k,t*)#0 for k=k,=M andk=k;=1]. In 500 and 256 256x 128 for higherR, . The simulation
order ;0 re';ach a high enough Re value, a hyperdiffusion,nnears to be slightly under-resolved for the highest Rey-
[(—1)"vpAh, with p=4 and a small coefficient ok,  nolds number in the sense that the dissipation range is not
=10"*7 is added to the Newtonian diffusion in the horizon- extensive ind(k). The ratios of the highest resolved(]
tal direction. Several additional simulations at higher hori-_ g andk™= 341) to the corresponding Kolmogorov wave
zontal resolution demonstrate that this modification does no umbers[kv”=(v3/e )~ U4 andk”=(1¥/¢,)~ ¥4 are 1.1 and
qualitatively affect the results presented here. Since most 92 respgctively FoR —500 Uand the)v/ are 0.4 and 0.2 for
the d|_$5|pat|on occurs m_assomatlon with shear in th_e vgrtlc »=1000. The under-resolution in the horizontal direction is
direction (about 99.5% in the stable pancake regime; see ; . . e
: ) e S compensated by the hyperviscosity. In the vertical direction,
below), we use ordinary Newtonian diffusion in this direc- o . .
. L . the kinetic energy at the resolution scale is much smaller
tion to have a clean definition of Taylor's Reynolds number,than at the largest scales in the dissipation rafwyea factor
R\=Ums\/(e/D)=2DE/¢, whereU = \2E isthe rms " =5 " o0 highestR,). The Ozmidov scale[Lo
velocity, D is the enstrophy(i.e., vorticity variancg r

i SR =(e/N®)2=4x10"* for R,=700] is more than one order
A= y2E/D s the Taylor s_cale, and the dissipation rate. of magnitude smaller than the smallest resolved vertical
The Prandtl numbern/« is set to 1. The bulk Froude

) ) scales. This ratio means that all the resolved scales are sig-

number is (_j(lefmed by Fr=Ums/(HN), where H  niseantly influenced by stratification.
=37m/4E[ 2 k3 "®,(Kk3)] is the typical vertical scale. The simulations were done on one processor of a NEC

The primary simulation is adjusted in time to follow a SX-5. The code uses optimized ASL libraries of fast Fourier
given experimental path in terms &, and Fy by adjust-  transforms and requires approximately 4 sec per time step at
ment in time ofN and». The evolution of these two param- the highest resolution. The time step is chosen to sufficiently
eters is shown in Fig. 1. ffiis maintained at a small value of resolve the fastest wave oscillations with period/Rl. The
0.08, andR, is changed from 200 to 1000 by steps of 100simulation is integrated over a total of 360000 time steps
after integration periods of 100 turnover timgse., T  and takes about 200 h.

=[1+ B(k,t)]?D(k,t). (14)

The coefficientB(k,t) is obtained from Eq(14) as
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FIG. 4. Time evolution ofR, (solid line) and the volume frac-

FIG. 2. Energy spectra with respect to horizontal and verticaltion of the domain with local Ri0.25 (filled gray area and with

wave numbers averaged over more than 100 timd®, &200 for
the primary simulation.

IIl. SOLUTION ANALYSIS

local R0 (filled black area There was no occurrence of Ri
<0.25 for 0<7<300.

E, itself remains reasonably constant with time and its hori-

_ ) o zontal spectrumb ,(k,,) maintains a similar shape and mag-
The experimental path for the primary solution is demon-pjtyde at low wave numbers, we conclude that pancake mo-
strated in Fig. .1 as a function of thg nondimensional timegjons are indeed persistent throughout Ryerange we have
7=t/T, normalized by the turnover time& The correspond- peen able to explore, even though the structure and intensity
ing histories of the energy components are shown in Fig. 3pf the flow changes substantially at high wave numbers, in

As Ry increases, we see a sequence of regime transitions.the horizontally uniform vertical shear and in the vertical
At moderateR, , less than~400, the pancake motions yelocity.

are stable(i.e., the local Ri is everywhere largeand the
vortical energy dominates all other energy components at all
wave numbergFig. 2). The first transition occurs foR,
~400, and it is evident in the significant growth of energy in  In Fig. 3, the vortical energy is nearly steady over the
the shear componenE, (Fig. 3. The next transition, for entire simulation. The wave energy is more variable, but on
R,~500, is evident in the intermittent occurrence of regionsaverage it is steady d8, increases. However, the shear en-
with small local values of Ri below the Kelvin-Helmholtz €9y is a growing function of time. It represents an inverse
critical inviscid stability value of 0.25Fig. 4). A further ~ horizontal cascade of kinetic energy irkg=0. The inten-
transition, forR, ~700, is evident in local violations of the Sity of the inverse cascade of shear energy is probably a
inviscid gravitational stability critical value of Ri0.0 (Fig. ~ function of the location of the energy peak in the horizontal
4). Finally, we see yet another transition f&~900, evi- direction; in the present case, the forcing is imposedat
dent in the growth of vertical kinetic enerdy, (Fig. 3. =1, and a substantial part of the energy is transformed into
Interestingly, throughout all these transitions, the principaPure vertical shear. To assess the degree of equilibration for
measures of the internal-wave ener@, and E,, show this inverse cascade, two ad<_j|t|ona_l simulations are made.
little change relative to the vortical-mode enefgy. Since Both start from the primary simulation and t.hereafter holq
R, constant for several hundred turnover times, but their
starting (r,R,) values differ. Figure 5 shows th& does
indeed equilibrate over a period of less than 100 turnover
times at a level that increases systematically viRfh

This growth of shear kinetic energy has been seen previ-
ously when the Froude number is below a critical vdR2).
For the alternative Froude number defined byg Fr
=(ek®?)¥¥N, our simulations have a value of approxi-
mately 0.025, more than an order of magnitude below the
identified critical value of 0.42. In this previous study, the
shear kinetic energy did not equilibrate even after more than

A. Growth of the vertical shear component

101

100

10!

102

10-3

10~ ,‘,,,.,a{_“..,: - :".f.f“;!-\-'f:.!"!?.'/-:‘.'\.fn_ At Ard o, oy 7 1000 turnover times. This may be due to its reliance on hy-
et ;1{'] Uis ot L i ; ; ; ;
o5k Ttk I { : Vi N perdiffusion in all directions, which exerts only a weak
il damping on the shear component.
0 200 400 600 800

T B. Onset of overturning motions

Overturning occurs when an unstable shear layer rolls up,
pulling high-density fluid above low-density fluid. This in-

FIG. 3. History of the energy components in the primary simu-
lation.
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. L . FIG. 6. History of the global minimum value of local Ri for the
_FIG' >. Hlst_ory OfR}(t) (s_olld_llnes) and Es(t_) for th_ree Simu- primary simulation. The ordinate scale is split into three intervals to
Iatlgns. Thg primary simulatiotwith a dashed line for it€;) has  goq poth large and small values on the same plot. Whenever the
an increasing Reynolds number by steps of 100 from 200 to 1000minimum Ri drops below about 0.02, it continues to develop into

and the second and third sim_ulations have constant Reynolds nurBi/erturning in the density profilé.e., mifRi]<0); this first occurs
bers ofR, =300 (dash-dotted lineandR, =500 (dotted ling, start- around = 400.

ing from the primary simulation at=200 and7=400, respec-
tively. but the present simulation has only a marginally adequate
o , , ) . resolution to expose the convective overturning events.
stability can occur in a fairly localized way. Its occurrence is Figure 9 shows the spectra for the energy components at
detected with the local Ri defined in E(), and an indica- . _ 531 pefore any overturning occurs. The spectra with re-
tion of the overtu.rmng instability is a negative Ri value. spect to horizontal wave number are very steep, with a slope
Because of the Miles-Howard condition, we can expect thaf| e tok ® for @, , and the shape does not vary much with
th;]S Keéym-ﬂgl_rnﬁolfz mshtab”c')tésor]% orc]:_curs mf rﬁglfons R, in this stably stratified regime without overturning. The
w eref hl |sd|n|t|a_ y ?f]srt] aln .I R-' b Ie %tc;r%/ 0 the rac- ynset of the overturning instability does not seem to affect
Egn 3 tMe omain with L eR.[%C;S hl elow R IS shown'n significantly the overall level of wave and vortical energy
Ig. 4. More events wit -c> Nappen ax, INcreases, (Fig. 3). However, the overturning events are easily identifi-
although_ they ewdeptly remain intermittent. The regime ofable as a peak in the horizontal spectrarat741 (Fig. 9).
overturning events first appears@{=700 (r=535). Even o peak is located at the horizontal schle=2/50 that

at the highest Re value, only a small fraction of the domain iSfnatches the typical vertical scalg . At this particular time
. : : 0 1 _ | : ,
actively overturning at any time, less than 0.7%. The prObthe instability is localized in a single region of the domain.

Zbi"ty. density_fun?tior‘(PDI:) Ior Ri shows t_hat mo_ts; of tlhe The energy at the largest horizontal scales is not affected
omain remains far away from overturning, with only aby the overturning instabilities that are localized in both

small tail in the PDF that extends to small and negative RLspace and time. In Fig. 10, time-averaged vortical-energy
values. Because of the intermittency, long averaging periodg ’ s

ired for stable statistics. N thel ectra are compared for four valuesRyf. The horizontal
are required for stable stalistics. NEeverineless, We can Sag,q .5 are very similar up to the typical scales of the over-
that there is a well-determined value of Re for the onset o

i s To d trate this. th ime iust b urnings. However, at both finer horizontal scales and at all
overturning events. 10 demonstrate this, the régime JUSt beg. | scales finer than the forcing scale, the spectrum am-

fore the first overturning event in the primary simulation _: ; : ;

(R,=500) is integrated %ver a longer Sri()zsgturnover plitude increases systgmathally WIRR, . At the constant,
A 9 ; ger p ..small Fr value in this simulation, the vertical spectrum slope
times, and no overturning occurs despite several events W'“Becomes quite shallow &, increases

Ri<0.25. To characterize more precisely the critical Ri for
instability, we follow the history of the global minimum in
local Ri (Fig. 6). The minimum Ri value that does not im-
mediately lead to local overturning isRD.02. This value is The energy histories in Fig. 3 expose another transition at
a bit smaller but of the same order of magnitude than then even largeR, =900, viz.,the systematic growth of verti-
values computed by Gadé3] for simple shear flows. cal kinetic energyE,. An inspection of the vertical energy
The spatial distribution of small Ri events is organizedspectrum reveals that the growth Bf after r=700 occurs
into thin sheets with large vertical shear in the horizontalprincipally atk,=0 (Fig. 11). This mode of instability is
velocity. An example of a region with a negative vertical reminiscent of the “negative-viscosity instability” observed
density gradient is shown Fig. 7. The vertical size of thisin a Kolmogorov flow{ 23], further investigated by Dubrulle,
region is very thina few grid cell$ even though its horizon-  Frisch, and Heon [24] with a multiscale analysis. This
tal size at this time £ 24/3) is not much smaller compared analysis shows that a parallel flow with a small transverse
to the domain size. An intense vertical velocity is associatedcale develops a negative-viscosity instability to large-scale
with domain of negative vertical density gradigiftig. 8), perturbations in the transverse direction when the viscosity

C. Growth of large-scale vertical motions
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A4 i

FIG. 7. Instantaneous isolines of vertical density gradient=at41 (R, =900) for two perpendicular slices of the whole domairz at
=const(upper graphandy = const(lower grap.

becomes less than the rms value of the streamfunction of th@ous studies of decaying stratified turbulence that were not
primary flow. In our simulation, it is difficult to test precisely able to sustain a large value of the Reynolds number Re.
this criterion of instability because the streamfunction is ill Most often the criteria for the occurrence of pancake vortices
defined. Crudely, we can expect an instability of this typeand suppression of overturning motionge., Kelvin-
whenv<®(€¢,)Y%,, wheret, is the scale of the vertical Helmholtz and gravitational stabilithave been linked to the
shear andi)s(ev) is the shear energy at this scale. In OurstraﬁﬁcationN but rarely to Re. Indeed, we find that the
simulation this relation is satisfied on average for700 if ~ Stability of a solution is mainly controlled by two parameters
27/¢,>80. This scale is comparable in magnitude with theWith opposite effects on stability: increasig (decreasing
typical vertical wave number 2/L,~50. However, due to FP) leads to a more stable solution and decreasifigcreas-

the complexity of the forced stratified flow, it is difficult to iNg Re has the opposite effect. For a fixed low value of Fr,

prove the nature of this instability pending more apt stabilitywe follow an experimental path of increasing Re far enough
analyses. to detect several regime transitions beyond the familiar one

of stable pancake vortices. One transition is to the intermit-
tent occurrence of regions with small or negative Ri. This
refutes previous argumerlt,7] that stratified turbulence re-
In our simulations of forced, equilibrium stratified turbu- mains stable with uniformly small local values of Fr at large
lence, we see behaviors somewhat different from many preRe and with uniformly cyclostrophic, hydrostatic diagnostic

IV. SUMMARY AND DISCUSSION
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FIG. 8. Vertical slice(same than in Fig. )7of vertical velocity atr=741 (R, =900) (upper graphand a zoom of the region of intense
vertical velocity with the projection of velocity vectotkwer graph.
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10-15 ] it : . 1
1 10 100
10-16 : : kn , kv
1 10 100 . .
Kn , ky FIG. 10. Comparison of vorticgupper graphand wave(lower

graph energy spectra with respect to horizontal and vertical wave
FIG. 9. Energy spectra with respect to horizontal and verticalnumbers for four different Reynolds number. Each spectrum is an
wave numbers at=521 (R,=700) (upper graph and 7=741 average over more than 200 times for edh. The horizontal
(R\=900) (lower graph for the primary simulation. The local en- spectra are very similar at large horizontal scales but they differ at
ergy peaks atr=741 for 40<k,<<60 are an indication of one or small scalesk,>10). The situation is different in the vertical spec-
several overturning events (niiRi]>0). tra, where the typical scale decreases Vith
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w0-1[ ' ' ' ' one to growth of vertical kinetic energy with its spectrum
peak at zero vertical wave number for large Re. The former
10-2L | has been seen previously in stratified turbuld@®, and the
latter may be associated with negative-viscosity instability
10-3L _ seen previously in unstratified shear flp28]. Each of these
large-scale transitions may be interpreted as an inverse en-
104k _ ergy cascade. However, they behavior is strongly constrained
by the domain size in our simulations where the forcing is
1079 4 imposed at the gravest finite wave numbers. We will explore
beyond this limitation in future reports.
10-8L - In this paper, we choose to focus on simulations at very
small Froude number, and we are able to reach a Reynolds
1077 - ! - ! number high enough to destabilize the pancake vortices in
0 200 400 600 800 several ways. This leads us to advance the following propo-

T

sition about the nature of equilibrium stratified turbulence:
FIG. 11. Evolution in time of the total vertical ener@in line)  for any Froude number, no matter how small, there are Rey-
and the vertical energy at the zero vertical maihéck line) for the  nolds numbers large enough so that a sequence of transitions
primary simulation(parameters of Fig.)1 The component of the to nonpancake motions will always occur and, conversely,
zero vertical mode is several order of magnitude smaller than théor any Reynolds number, no matter how large, there are
total vertical energy forr<700, and becomes the dominant mode Froude numbers small enough so that these transitions are
for 7>800. suppressed. Obviously, this hypothesis warrants further test-
d’[]g, as do our provisional interpretations of the dynamical

momentum balances. This transition may plausibly be ass .
yP y nature of the transitions.

ciated with inviscid Kelvin-Helmholtz and ensuing gravita-
tional instabilities of the pancake vortices, although in our
simulations the viscous effects on the unstable scales are
significant. Nevertheless, the pancake vortices continue to be
the energetically dominant component of the turbulence even The primary simulation was calculated on the NEC SX-5
up to the highest Re values examined here, and visualizaf the Institut du Deeloppement et des Ressources en Infor-
tions of the large-scale potential vorticity fie([dot shown  matique ScientifiquélDRIS), and the IBM RS6000/SP of
show little change in spatial structure wily . the Centre de Ressource Informatique of the University of
Two other transitions to large-scale motions other tharLille was used for additional simulations. J.P.L. and J.C.M.
pancake vortices do occur: a first one to growth of the sheaacknowledge support from the Office of Naval Research
kinetic energy at zero horizontal wave number and a secon@Grant No. N00014-98-1-0165
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