
chede,

PHYSICAL REVIEW E 68, 036307 ~2003!
Smooth and rough boundaries in turbulent Taylor-Couette flow
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We examine the torque required to drive the smooth or rough cylinders in turbulent Taylor-Couette flow.
With rough innerandouter walls the scaling of the dimensionless torqueG is found to be consistent with pure
Kolmogorov scalingG;Re2. The results are interpreted within the Grossmann-Lohse theory for the relative
role of the energy dissipation rates in the boundary layers and in the bulk; as the boundary layers are destroyed
through the wall roughness, the torque scaling is due only to the bulk contribution. For the case of one rough
and one smooth wall, we find that the smooth cylinder dominates the dissipation rate scaling, i.e., there are
corrections to Kolmogorov scaling. A simple model based on an analogy to electrical circuits is advanced as a
phenomenological organization of the observed relative drag functional forms. This model leads to a qualita-
tive prediction for the mean velocity profile within the bulk of the flow.
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The relation between global transport properties and
external driving forces is the focus of interest for vario
turbulent flows. Examples include Rayleigh-Be´nard convec-
tion where the heat flux is studied as a function of the te
perature difference between top and bottom walls, pipe fl
where the mean flow is studied as a function of the press
drop, and Taylor-Couette flow where the required torque
studied as a function of the cylinder rotation speed. For m
of these examples strict upper bounds exist~see, e.g., Ref.
@1# for Rayleigh-Benard flow or Ref.@2# for Taylor-Couette
flow!, but no exact calculation yields the flux-forcing depe
dence.

To better understand the relation between the global tra
port properties and the driving forces, it is important to e
amine the role of the flow structure and boundary conditio
For Rayleigh-Be´nard convection this has been done by e
ploying rough boundary conditions@3–9# or by varying the
aspect ratio or the Prandtl number@10–12#. Also for pipe
flow the effect of rough boundary layers on the global tra
port efficiency has long been studied and parametrized in
roughness dependence of the skin friction coefficient@13,14#.

For Taylor-Couette flow the effect of two rough walls h
been examined by Cadotet al. @15#. Their main finding is
that the total energy dissipation ratee scales as

e;
U3

~b2a!
, ~1!

whereb is the outer radius,a is the inner radius, andU is the
velocity of the inner cylinder. This rough-wall result is co
sistent with Kolmogorov’s expectation of a residual dissip
tion at zero viscosity for fully developed turbulence@16#, but
in contrast to the smooth-wall result, where corrections
Eq. ~1! are known to occur@17–19#.

The aim of the present study is to extend the results
Cadotet al. to the situation when onlyoneof the cylinders is
rough. An informal survey of some knowledgeable c
leagues showed a lack of consensus on the answer to
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following question: which boundary layer dominates t
scaling, i.e., would the dissipation dependence show cor
tions to the Kolmogorov expectation~1! for one rough and
one smooth wall? The analysis in Ref.@20# shows that the
turbulent Kolmogorov scaling in Eq.~1! is an upper bound
for smooth walls, but it can also be extended to prove tha
is also a rigorous upper limit one for one rough and one
smooth wall@21#. Hence this experimental question is also
interest to interpret the upper bound results.

One argument considered prior to our empirical resu
involved the fluctuations. The level of velocity fluctuation
in the system might be set by the boundary generating
largest disturbances. The resulting fluctuations would eff
Reynolds stresses which would dominate the momen
transport, and therefore the dissipation. The rough w
would generate the largest level of the fluctuations, so
could be used to argue that it dominates and no logarith
corrections might result.

That view turns out to be empirically incorrect, whic
may be understood using the Grossmann-Lohse theory
the relative role of energy dissipation rate into the bound
layers and in the bulk. This theory has not only been dev
oped for Rayleigh-Be´nard convection@22–24#, but also ap-
plied to Taylor-Couette and pipe flow@25#. The central idea
is to split the total energy dissipation ratee ~and for the
Rayleigh-Bénard case also the thermal dissipation rate! into
a boundary layer~BL! and a bulk contribution,

e5eBL1ebulk . ~2!

The total energy dissipation ratee in Taylor-Couette flow can
be rigorously related with the dimensionless torqueG,
namely@19#,

e5
n2GV

2p~b22a2!
. ~3!

HereG5T/rn2L is the dimensionless torque,T the torque,
r the fluid density,n its kinematic viscosity,L the length of
©2003 The American Physical Society07-1
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the cylinders, andV the angular rotation rate. The Reynold
number Re is defined as Re5Va(b2a)/n. Following Ref.
@22#, the energy dissipation rate in the bulk is estimated

ebulk;
U3

~b2a!
~4!

and that in the BL as

eBL;n
U2

lu
2

lu

b2a
, ~5!

wherelu;(b2a)/ARe is the thickness of a laminar boun
ary layer assumed to be of Blasius-Prandtl type.1 With these
two estimates we obtain

G5c1Re3/21c2Re2. ~6!

The first term originates from contribution of the lamin
boundary layers, the second one from that of the bulk.
the smooth-wall case, the Grossmann-Lohse theory acco
for the Rayleigh Ra~and Prandtl! number dependence of th
experimentally found Nusselt Nu~and Reynolds! number for
the Rayleigh-Be´nard case. For the Taylor-Couette case
gives the Reynolds number dependence of the dimension
torqueG.

How do these considerations in convection extend to
rough-wall cases? In Rayleigh-Be´nard flow, for large enough
roughness and Ra, the laminar boundary layers are expe
to break down and become turbulent. This results in the
timate scaling regime, Nu;Ra1/2Pr1/2, in which the total dis-
sipation rate scales solely with the dissipation rate in
bulk, due to the lack of laminar boundary layers@22#. The
scaling exponent 1/2 in the Ra-Nu dependence had been
dicted earlier@26,27# for thermal convection. The 1/2 scalin
exponent is also found@28# in numerical simulations in
which the boundary layers have been eliminated and
placed by periodic boundary conditions. Rough-wall expe
ments on Rayleigh-Benard convection by Rocheet al. @9#
also find a transition towards the Nu;Ra1/2 scaling law, the
upper bound result@1#.

For the rough-wall Taylor-Couette experiment the cor
sponding expectation isG;Re2 for large enough roughnes
or Reynolds number, yielding again the upper bound re
@2#. This has been observed experimentally by Cadotet al.
@15#. We expect the boundary layer influence to become r
tively smaller when one of the walls is roughened. That
the ratio of the bulk to boundary layer contributions to t
energy dissipation rate should increase and this is obse
in the data.

The experimental apparatus consists of a rotating in
cylinder of radiusa516 cm, and a stationary outer cylinde

1Reference@25# distinguishes between the imposed velocityU and
the typical velocity differenceUw between the turbulent and th
laminar~linear! profiles, in order to better describe the experimen
data. There a power law relationUw /U;Rej was assumed, with a
best fit of j520.051. Here, we drop this distinction and assum
U;Uw , for simplicity and asj50 seems to satisfactorily describ
the present data.
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of radius b522 cm, yielding a radius ratio ofh5a/b
50.73. The height of the gap wasL569.5 cm, giving an
aspect ratio ofG5L/(b2a)512. The inner cylinder was
especially instrumented to measure the torque on a 40.64
central section using strain gauges. This apparatus is
scribed in more detail in Refs.@17,19#. Our measurements
span a Reynolds number, Re5Va(b2a)/n, range of 104

,Re,106, where V is the inner cylinder rotation rate
Three fluids were used: water and water-glycerin mixtures
viscositiesn50.01, 0.10, and 0.26 cm2/s, respectively. Ei-
ther the inner, the outer, or both of the cylinders were rou
ened by attaching 16 vertical strips of square cross sec
~0.3 cm on edge! which were equally spaced in azimuth
angle, similar to the procedure used in Ref.@15#.

Four cases are analyzed:~ss! smooth inner and outer wall

l

FIG. 1. ~a! The dimensionless torqueG5T/rn2L shows a de-
pendence on Reynolds number@dimensionless forcing Re5Va(b
2a)/n] close to Kolmogorov scalingG;Re2. The four cases
shown differ on the condition of the cylinders:s ~ss! both cylin-
ders smooth;1 ~sr! smooth inner, rough outer;L ~rs! rough inner,
smooth outer; andh ~rr! both walls rough. The deviations from tha
scaling indicate the importance and structure of the boundary
ers. ~b! Compensated plotsG/Rea dependence on Reynolds num
ber, using the valuesa from Table I.
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SMOOTH AND ROUGH BOUNDARIES IN TURBULENT . . . PHYSICAL REVIEW E 68, 036307 ~2003!
~sr! smooth inner and rough outer wall,~rs! rough inner and
smooth outer wall, and~rr! rough inner and outer wall. The
maximum rotation rate achieved in each case was de
mined approximately by the available motor torque.

Figure 1~a! showsG vs Re for the four cases. Fitting
power law

G5cRea ~7!

gives the exponents shown in Table I. It is clearly seen t
the approximate power law exponenta increases with the
roughness of the walls and is consistent witha52 in the rr
case.

The alternative way to represent the data is that accord
to the Grossmann-Lohse theory, namely,G/Re3/2 vs Re1/2,
see Fig. 2. From a linear regression to those data the co
cientsc1 andc2 of Eq. ~6! can directly be obtained, see Tab
II. The expectation discussed above that ratio of the lam
BL contribution c1Re3/2 and the turbulent bulk contribution
c2Re2 becomes less when one wall is roughened and
comes close to zero when both walls are roughened is
served. As for the rr case the laminar BLs should be co

TABLE I. Results from a power law fitG5cRea. In the last
line we have fixed the exponenta52.

Case c a

ss 2.14 1.67
sr 0.79 1.81
rs 0.48 1.88
rr 0.21 2.08
rr8 0.57 2

FIG. 2. A test of the scaling prediction Eq.~6!; G/Re3/2 vs Re1/2

for the four cases (s) ss, (1) sr, (L) rs, and (h) rr, bottom to
top. A linear regression to these data gives the coefficientsc1 andc2

in Eq. ~6! as shown in Table II.
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TABLE II. Results from a linear regression to the experimen
data of G/Re3/25c11c2Re1/2. In the last line we have enforce
c150. In the second but last line there is hardly any contribut
from the laminar BL, soc1 gets an ill-defined value.

Case c1 c2 ebulk(105)/eBL(105)

ss 6.69 0.0201 0.95
sr 14.1 0.0493 1.11
rs 12.4 0.100 2.55
rr 212.8 0.76 218.8
rr8 0 0.571 `

FIG. 3. ~a! Skin friction coefficientf vs Reynolds number Re fo
the four cases (s) ss, (1) sr, (L) rs, and (h) rr, bottom to top.
For the ss case the data are well described by the skin friction
~8! ~solid line, see also Table III!, as extensively discussed in Ref
@17–19#. In the rr case,f becomes independent of Re for larg
enough Re. The cases rs and sr with one rough wall only ar
between these extreme cases. Due to the persistence of one sm
wall and the corresponding boundary layer,f still depends on Re for
large Re. ~b! Same data as in~a!, but now plotted as 1/Af
5Re/AG vs log10(ReAf )5 log10G

1/2. If Eq. ~8! is right, this type of
plot results in a straight line.
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van den BERGet al. PHYSICAL REVIEW E 68, 036307 ~2003!
pletely vanished for large enough Re number, we also t
the one-parameter fitG5c2Re2 which well describes the
data.

We also test the Prandtl–von Ka´rmán skin friction law for
this data. For the friction coefficientf 5G/Re2 it holds for
smooth boundaries@13,18,19,25#

1

Af
5c18log10~ReAf !1c28 . ~8!

This friction law~8! well fits the data for the ss case~see Fig.
3!. For the case with rough walls a roughness length sc
must be introduced, see Sec. 7.2 of Ref.@14#. For large
enough roughness and large enough Re the skin friction
efficient f then becomes independent of the Reynolds nu
ber, as indeed observed from Fig. 3~a!.

How can one rationalize the observed dependences o
torques in the four different cases~rr, sr, rs, and ss!? We have
attempted to do so by employing a circuit analogy. Althou
this analogy is imperfect, we hope this will stimulate mo
progress on the special problems associated with situat
where the momentum must flow through several subcom
nents in series.

The torque, and therefore dissipation, is determined by
flux of angular momentum transported radially through
fluid from the inner cylinder to the outer cylinder. The co
served quantity is the torque, i.e., the torque on b
cylinders—or through any concentric cylinder
between—is the same. This is analogous to the current
series circuit, where the resistors are analogous to the bo
ary layers, and the voltage is analogous to the extern
applied velocity difference between inner and outer cyl
ders.

The smooth boundaries are poor conductors~or large re-
sistors! for angular momentum relative to rough walls.
this analogy, it is clear that the larger resistance domina
the total resistance in a series circuit.

The implication is that the smooth wall sustains a re
tively large angular momentum gradient while only comm
nicating a relatively small torque. Those cases with o
rough and one smooth wall should therefore have the fl
coupling strongly to the rough wall whether it is rotating
not. The angular velocity~say at mid gap! would be biased
toward the rough wall relative to the smooth-smooth ca
Although we did not observe the mean angular velocity
this experiment, this hypothesis could be tested in future
periments.

TABLE III. Results from fitting the Prandtl-von Ka´rmán friction
law ~8! to the experimental data. The cases with rough walls hav
poor correlation coefficient, as this model is least suitable for t
case.

Case c18 c28 Correlation coefficient

ss 1.51 21.66 0.99
sr 0.920 20.917 0.99
rs 0.457 0.575 0.99
rr 20.0792 1.57 0.95
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The circuit analogy leads to a simple analytical model
the coupling of multiple boundaries in series. We propos
hydrodynamic Ohms’ law

Z~R!T5DU, ~9!

where the velocity differenceDU designates the~angular!
momentum drop across the layer,T the communicated
torque, andZ the impedance of the boundary layer. The im
pedanceZ depends not only on the Reynolds number b
also on the nature, smooth or rough, of the wall. We th
calculate the total velocity drop between cylinders as
drop across the inner boundary layer plus the drop across
outer boundary layer, ignoring any core region:

DUin1DUout5DUtotal ~10!

so that

TZin~R!1TZout~R!5TZtotal~R!. ~11!

The torques are equal between the two layers so we ob
Ztotal5Zin1Zout as in series resistances.

The characteristic impedances of the outer and in
boundaries would be different, even if both smooth or rou
due to geometric differences. Still, we can test this hypo
esis of additive impedances by examining the following fo
cases:

Zss5Zs,inner1Zs,outer , ~12!

Zsr5Zs,inner1Zr ,outer , ~13!

Zrs5Zr ,inner1Zs,outer , ~14!

FIG. 4. A test of the impedance model for the boundary laye
(Zrs1Zsr)/(Zrr 1Zss) and (Zrs2Zsr)/(Zrr 2Zss) vs G. Both ratios
would be one if the impedance model would exactly work. The d
used for this test come from the fitted Prandtl-von Ka´rmán forms
shown in Fig. 3~as data are needed at precisely the same Torq
for each case!.
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Zrr 5Zr ,inner1Zr ,outer . ~15!

These four equations result in the two expressions wh
contain measurable quantities only, namely,

Zss1Zrr 5Zrs1Zsr , ~16!

and

Zrr 2Zss5Zrs2Zsr . ~17!

These relationships indicate how the rough and smo
boundary layers may be combined in arbitrary series circ
of momentum transfer if the involved impedances a
known. Note that expression~17! would even holdwith the
bulk contribution to the impedance in Eqs.~10!–~15!, as this
bulk contribution would cancel out.

We test the relationships in Eqs.~16! and ~17! with the
experimental data in Fig. 4. We plot the ratios of the le
hand side and the right-hand side of these equations.
ratio of the sums (Zrs1Zsr)/(Zss1Zrr ) falls less than 10%
below the theoretical expectation 1 over nearly three ord
of magnitude in the Reynolds number. The residuals sho
deviation diminishing at higher Reynolds numbers~smaller
total impedances! possibly indicating that some communic
tion between the boundary layers is not captured in
simple model. The ratio of the difference (Zrs2Zsr)/(Zrr
2Zss) is increasing with Re, but still is about a factor of
smaller than 1, showing quantitative shortcomings of o
simplistic model.

Nevertheless, this circuit analogy could be used to m
predictions for systems with different combinations of rou
and smooth walls where the momentum must pass throu
series of such boundary layers. One could even extend
model to make predictions about nested cylindrical syste
hy

-
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whose interior cylinders could rotate freely. How this mod
could be extended to systems with the momentum pas
through heterogeneous boundary layers in parallel
uncertain—and would likely only be possible in quite simp
geometric situations.

In conclusion, we have measured the Reynolds num
dependence of the dimensionless torqueG in turbulent
Taylor-Couette flow with rough and/or smooth walls. W
have reported results for the four cases of two smooth wa
smooth-inner/rough-outer, rough-outer/smooth-inner, a
two rough walls. The data are interpreted within t
Grossmann-Lohse theory, strengthening the analogy betw
Taylor-Couette and Raleigh-Benard flows~also explored for
turbulent flows in@29#!. Perhaps surprisingly, we conclud
that it is the smoothest wall that dominates the obser
scalings, acting as the rate-limiting step for momentum tra
fer.
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