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Periodic folding of viscous sheets

Neil M. Ribe
UMR 7579 CNRS, Institut de Physique du Globe, 4 place Jussieu, 75252 Paris Ce´dex 05, France

~Received 28 April 2003; published 9 September 2003!

The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical
instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations
for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to deter-
mine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall,
and the fluid properties. As the buoyancy increases, the system bifurcates from ‘‘forced’’ folding driven
kinematically by fluid extrusion to ‘‘free’’ folding in which viscous resistance to bending is balanced by
buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with labo-
ratory experiments.

DOI: 10.1103/PhysRevE.68.036305 PACS number~s!: 47.20.Gv, 47.15.Gf, 47.20.Bp
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A sheet of viscous fluid poured from a sufficient heig
approaches a surface not directly, but rather in the form
periodic folds~Fig. 1!. In a home kitchen, the phenomenon
easily reproduced using honey, cake batter, or molten ch
late. The same instability is observed during the commer
filling of food containers@1# and in polymer processing@2#,
and may occur in the earth when subducted oceanic lith
phere encounters discontinuities in viscosity and densit
660 or 2900 km depth@3#. Yet despite its importance, per
odic folding of viscous sheets has proved surprisingly re
tant to theoretical explanation. The first major step forwa
was Taylor’s suggestion@4# that fluid folding, like its elastic
analog, requires a longitudinal compressive stress. Su
quently, systematic experiments were carried out on the
riodic folding of sheets incident on rigid surfaces@5,6# and
on density-viscosity interfaces@3#. Additional theoretical in-
sight has been provided by linear stability analysis of inci
ent folding @7,8# and by numerical simulations of finite
amplitude folding using a marker-and-cell approach@1# or
inextensible thin-layer theory@9#. Finally ~nontime periodic!
viscous folding has been studied in a variety of other geo
etries, such as shear-induced buckling of flat layers@10,11#
and axisymmetric folding of spherical@12# or conical @13#
sheets. The present study extends earlier work on peri
viscous folding by identifying a previously unrecognized b
furcation, proposing a complete scaling law for the foldi
frequency, and comparing the predictions of the latter w
experimental observations.

In this paper we study a simple model for periodic visco
folding that corresponds as closely as possible to the s
dard laboratory setup@5#: a two-dimensional sheet with con
stant viscositym, buoyancyrg, and surface tension coeffi
cientg, extruded downward at speedU0 from a slot of width
H0 toward a rigid plate a distanceL below the slot. Let the
sheet’s thickness beH(s,t), wheres is arclength along the
sheet’s midsurface andt is time. If r (s,t) be the Cartesian
coordinates of a point on the midsurface, thens[]r /]s is a
unit vector parallel to the midsurface. Letz be the unit vector
normal to s, u(s,t) be the inclination of the midsurfac
from the horizontal, andK(s,t)[]u/]s be the midsurface
curvature.
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The equations governing the dynamics of the sheet c
prise a set of six equations that describe its mechanica
sponse to applied loads, together with kinematic equati
that describe how the sheet’s geometry and thickness ch
with time. Under the assumption that fluid inertia is neg
gible, the mechanical equations are@14,15#

]N

]s
5KQ1rgH sinu, ~1a!

]Q

]s
52KN1rgH cosu22gK, ~1b!

]M

]s
5Q, ~1c!

]W

]s
5v2KU, ~1d!

]U

]s
5KW1

1

4mHS N2
5

2
KM D , ~1e!

]v

]s
52

3M

mH3 . ~1f!

HereUs1Wz is the local velocity of the sheet’s midsurfac
andv is its local rate of rotation. The stress resultantsN and
Q and the bending momentM are defined by

~N,Q,M !5E
2H/2

H/2

~sss,ssz,zsss!dz, ~2!

wheresss andssz are the extensional and shear compone
of the stress tensor, respectively. Equations~1! comprise a
sixth-order system of ordinary differential equations, whi
describes the instantaneous~quasistatic! response of a shee
with a given geometry to applied loads. Equations~1a! and
~1b! describe the global~integrated across the sheet! force
balances in thes andz directions, respectively, and Eq.~1c!
describes the global torque balance. Equation~1d! is just a
©2003 The American Physical Society05-1
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NEIL M. RIBE PHYSICAL REVIEW E 68, 036305 ~2003!
definition of the rotation ratev. Equations~1e! and ~1f! are
constitutive relations forN andM, respectively.

The kinematic equations governing changes of the she
geometry are@14,16#

Dr

Dt
5Us1Wz, ~3a!

Du

Dt
5v, ~3b!

DK

Dt
5

]v

]s
2KD, ~3c!

DH

Dt
52HD, ~3d!

where

FIG. 1. Periodic folding of a sheet of glucose syrup with v
cosity m5120 Pa s, viewed parallel to~a! and normal to~b! the
sheet. The height of fall is 7.0 cm, and the dimensions of the
trusion slot are 0.7 cm35.0 cm. Photographs by the author.
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DdsD ]

]s
[

]

]t
1V

]

]s
~4!

is a convective derivative that follows the motion of mater
points on the sheet’s midsurface and

D5
]U

]s
2KW ~5!

is the rate of stretching of the midsurface.
The six boundary conditions at the ends of the sheet

obtained from the assumption that the sheet is ‘‘clamped
both ends, i.e., its rotation rate and its velocity~relative to
that imposed at the end in question! are zero there. This
requires

U~0,t !2U05W~0,t !5v~0,t !5U~,,t !5W~,,t !

2 1
2 cosu~,,t !Ḣ~,,t !5v~,,t !50. ~6!

where the extrusion slot is ats50 and,(t) is the~unknown!
length of the sheet. The condition onW(,,t) takes into ac-
count the component of vertical velocity due to changes
the sheet’s thickness at the contact line, where the dot
notes the~total! time derivative. Appendix I shows that thre
types of contact line are possible, depending on the curva
K(,,t)[Kc at the contact and its rate of change. WhenKc
Þ0, the contact line is fixed; but two distinct cases must
distinguished. The contact line is ‘‘pinned’’ when the~abso-
lute! curvature there is increasing (duKcu/dt.0), which will
occur when the forces acting on the sheet are such as to
to peel it away from the plate. The contact line does n
move in this case because a portion of the sheet already
down adheres to the plate and cannot be peeled off ag
The contact line is ‘‘relaxing’’ when the curvature there
decreasing (duKcu/dt,0), which will occur if the applied
forces push the portions of the sheet near the contact tow
the plate. Finally, if the relaxation continues untilKc van-
ishes, the contact line becomes a ‘‘mobile’’ one, maintain
zero curvature while moving laterally with a velocity

2
dv

dK
~,,t !s~,,t ![Ucs~,,t !. ~7!

The numerical code used in this study was specially desig
to track accurately through time the changing character
the contact line.

By nondimensionalizing the governing equations and e
conditions usingL, U0, andL/U0 as scales for length, ve
locity, and time, respectively, one finds that the sheet’s
namics are controlled by the values of three dimension
groups: the slendernesse5H0 /L; the buoyancy numberB
5rgL2/mU0 ~buoyancy/viscous force!; and the inverse cap
illary number S5g/mU0 ~surface tension/viscous force!
Consider first what the governing equations imply about
scaling of periodic folding in the absence of surface tens
(S50). Figure 1~a! shows that the sheet generally exhibits
bipartite structure comprising a nearly vertical ‘‘tail’’ above
smaller region in which the folding occurs. Deformation

-
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PERIODIC FOLDING OF VISCOUS SHEETS PHYSICAL REVIEW E68, 036305 ~2003!
the tail is by steady-state extension under gravity, which
duces the sheet’s thickness fromH0 at the extrusion slot to
some smaller valueH1 ~say! where the fluid enters the fold
ing region. The fluid velocity at the latter point is just th
required by steady-state volume conservation in the tail
U15H0U0 /H1.

Neglecting for the moment the~relatively small! effect of
surface tension, we anticipate the possibility of two distin
scalings for the folding amplituded and frequency f
;U1 /d, depending on the importance of buoyancy forc
The first occurs when buoyancy is negligible, and folding
driven entirely by extrusion of fluid from the slot~‘‘forced’’
folding!. Because stretching is negligible,H0'H1 and U0
'U1. Moreover, the governing equations are homogeneo
so neitherd nor f can depend on eitherm or H1 ~although the
force required to extrude the fluid will still depend on thes!.
Dimensional considerations then require

d;L, f ;
U1

L
. ~8!

The second scaling is for ‘‘free’’ folding, in which bend
ing resistance in the folding region is balanced by buoyan
This balance is expressed by eliminatingQ andM from Eq.
~1b!, using Eqs.~1c! and ~1f! and noting thatH'H1 is
nearly constant in the folding region, which implies

mH1
3

3

]3v

]s3 ;H1g cosu. ~9!

Because]/]s;d21 andv;U1 /d, Eq. ~9! implies

d;S mH1
2U1

rg D 1/4

, f ;S rgU1
3

mH1
2 D 1/4

. ~10!

The above scaling was previously proposed by Ref.@9#.
To demonstrate the existence of the above limits and

map out the transition between them, I have written a
grangian numerical code that follows the motion of mate
points on the sheet’s midsurface. Each numerical time s
comprises two distinct parts. Given a sheet with a speci
geometry, the code first solves a sixth-order two-po
boundary-value problem@Eqs.~1!# for the instantaneous flow
within the sheet using the~second-order accurate! relaxation
algorithm of Ref. @17#. Kinematic equations~3! are then
solved using a second-order Runge-Kutta~midpoint! method
to advance the geometry forward in time. The initial geo
etry of the sheet comprises a vertical tail of adjustable len
above a small arc-shaped part whose end is tangent to
plate. Time stepping is continued until a steady periodic s
is reached. To avoid fold ‘‘pile-up,’’ the portion of the she
downstream of the contact line is instantaneously remov
each time a new contact is formed@9#. The total number of
material points in the sheet thus changes continuously: a
point is added at the extrusion slot at each time step, whe
points are removed when a new contact line forms or
existing one moves.

Figures 2 and 3 show the evolution of the sheet’s geo
etry and the positionxc(t) of its contact line for two cases
03630
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forced folding withe21520 andB50.1 ~Fig. 2!, and free
folding with e21510 andB550 ~Fig. 3!. Values of the di-
mensionless timetU1 /L are shown at the upper left of eac
of the four panels in the top row, which span a half-period
the oscillation. The third panel in each figure shows the f
mation of a new contact point and the fourth shows the sh
just after the portion downstream from the new contact
been removed. Colors indicate the type of deformation t
accounts for 50% or more of the local rate of viscous dis

FIG. 2. Forced folding withe21520, B50.1, andS50 ~no
surface tension!. The four upper panels show the changing shape
the sheet over a half-period of the oscillation, at the dimension
timestU1 /L indicated at upper left in each panel. Colors denote
type of deformation that accounts for.50% of the local energy
dissipation rate: extension~gray!, shortening~white!, and bending
~black.! The lower panel shows the lateral positionxc of the contact
line as a function of time. Relaxing and mobile contact lines
denoted byR andM, respectively.

FIG. 3. Same as Fig. 2, but for free folding withe21510 and
B550.
5-3
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NEIL M. RIBE PHYSICAL REVIEW E 68, 036305 ~2003!
pation: extension~gray!, compression~white!, or bending
~black!. Deformation in forced folding is dominated by ben
ing everywhere except at inflexion points. In free folding,
contrast, the sheet consists of a long extensional tail abo
smaller bending-dominated region. Forced and free fold
are also distinguished by the behavior of the respective c
tact lines. In forced folding in the limitB50, the contact
line is always a relaxing one (R). In Fig. 2, however, the
small amount of buoyancy present (B50.1) causes the con
tact line to relax faster and eventually to become mob
(M ). In free folding, by contrast, buoyancy is so strong th
the contact line is mobile most of the time, with only sho
periods of relaxation after the formation of new contac
Pinned contact lines never occurred in any of the numer
solutions.

The control parameter that governs the transition fr
forced to free folding is obtained by noting that their resp
tive frequencies~8! and~10! are of the same order when th
dimensionless parameter

P5S rgL4

mU0H0H1
D 1/4

~11!

is of order unity. If the scaling analysis is correct, a log-l
plot of f L/U1 vs P should define straight lines with slope
of either zero~forced folding! or unity ~free folding!. Figure
4 shows such a plot for 29 numerical solutions withS50
and various values ofe andB. Forced folding occurs when
the buoyancy is less than a critical valueP'3.9260.04, at
which point a bifurcation to a state of free folding occu
The free-folding branch achieves its ‘‘pure’’ asymptotic for
f L/U1'0.132P for P>10. The single-valuedness of th
curve in Fig. 4 was tested by varying the initial conditio
for fixed values ofe andB. In all cases, the same final sta
was reached, suggesting~but admittedly not proving! that
other stable forced- and free-folding branches with differ
frequencies do not exist.

FIG. 4. Dimensionless folding frequencyf L/U1 as a function of
P @Eq. ~11!#, for 29 numerical solutions of the thin-sheet equatio
~1! and ~3! with S50 ~no surface tension.! Results are shown fo
e21510 ~squares!, 20 ~circles!, and 40~triangles!, with 0.005<B
<100. Solid lines aref L/U150.821 ~left! and f L/U150.132P
~right!.
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It remains to determine how the sheet thicknessH1 in the
folding region depends on the external parameterse andB.
The thicknessH1 is a measure of the total amount of stretc
ing that occurs in the tail of the sheet~gray portion of Fig. 3.!
While the lower part of the sheet undergoes periodic foldi
the tail remains nearly vertical and in a steady state, defo
ing by stretching alone with negligible bending. The flow
the tail is thus governed by Eqs.~1a! and ~1e! with W5Q
5M50, u53p/2, andU5U0H0 /H, or

S H8

H D 8
5

rg

4mU0H0
H, ~12!

where primes denote differentiation with respect tos. The
boundary conditions areH(0)2H05H8(s1)50, wheres1
,L is the total length of the tail. The solution of Eq.~12!
that satisfiesH8(s1)50 is

H~s!5H1sec2F S BH1

2H0
D 1/2S s2s1

2L D G , ~13!

from which H1 can be found by solving numerically th
transcendental equationH(0)5H0. In the limit B@1,

H1

H0
52p2B̂21@124A2B̂21/2124B̂211O~B̂23/2!#,

~14!

where B̂5B(s1 /L)2. Note that the functionH1(B) is a
power law (H1;H0B21) only in the limit B→`; this result
will be seen below to explain a significant feature of Cruic
shank’s experimental data@5#. Figure 5 shows that the cal
culated dependence ofH1 /H0 on B for the 29 numerical
solutions agrees closely with the analytical solution
s1 /L50.88 ~solid line!. This implies that the height of the
folding portion of the sheet is about 0.12L on average.

Combining the results of Figs. 4 and 5, one obtains
complete scaling law for the folding frequency in terms
the known input parameters:

FIG. 5. H1 /H0 vs B for the 29 numerical solutions of Fig. 3

Solid line is the exact solution of Eq.~12! with ŝ150.88.
5-4
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PERIODIC FOLDING OF VISCOUS SHEETS PHYSICAL REVIEW E68, 036305 ~2003!
f 5
U0

LF2~B!
F1F S B

e2F2~B! D
1/4G , ~15!

whereF1 andF2 are the functions shown in Fig. 4 and Fi
5, respectively. The ‘‘nested’’ structure of Eq.~15! reflects
the fact that the sheet thicknessH1 in the folding region,
upon which the folding frequencyf depends by Eq.~10!, is
itself controlled by a different process~stretching! that oc-
curs elsewhere~in the tail!.

The numerical predictions can be compared directly w
the experimental observations of Cruickshank@5#, who mea-
sured the dimensionless frequencyf (H0 /g)1/2 as a function
of the dimensionless height of fallL/H0[e21 for fixed val-
ues of H0, the dimensionless flow rateQ5mU0 /rgH0

2

[1/e2B, and S!5g/rgH0
2[S/e2B. Figure 6~a! shows

Cruickshank’s data forS!50.59 andQ541 ~open circles!
and Q5144 ~solid circles! from his Fig. 24~m!. Because
Cruickshank nondimensionalized frequency and height us
scales that did not change during the experiments, the tre
of the points in Fig. 6~a! reflect directly the correspondin
trends of the original~dimensional! measurements. Thre
features of the data are noteworthy: the folding freque
varies nonmonotonically with the height of fall; the min
mum of the frequency-height curves shifts rightward w
increasingQ; and curves for differentQ cross each other.

All three features are explained by the scaling law~15!.
Figure 6~b! shows the frequencies predicted numerically
the same values ofS! andQ as in Fig. 6~a! ~circles!, together
with those predicted by the scaling law~15! without surface
tension ~dashed lines forQ541, solid lines forQ5144.!
The left segments of the lines in Fig. 6~b! correspond to
forced folding and the right segments correspond to f
folding. The difference between the~solid, open! circles and
the ~solid, dashed! lines is a measure of the effect of surfa
tension, which is relatively small in all numerical solution
The scaling law~15! for S50 can therefore be used to inte

FIG. 6. ~a! Experimentally measured folding frequencies@5# for
viscous sheets withS![g/rgH0

250.59 andQ[mU0 /rgH0
2541

~open circles! andQ5144~solid circles!. ~b! Numerically predicted
folding frequencies for the same values ofS! and Q ~circles!, to-
gether with the scaling law~15! ~dashed lines forQ541 and solid
lines forQ5144). The rightmost circles are at the largest values
e21 for which numerical solutions could be obtained.
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pret numerical results withS.0. The initial decrease o
f (H0 /g)1/2 with e21 is a direct consequence of the force
folding scaling f ;U1 /L'U0 /L, which is equivalent to
f (H0 /g)1/2;b1/2e, where b5gr2H0

3/m2 (57.631024 in
all experiments and numerical solutions in Fig. 6!. Similarly,
the rightward shift of the minimum with increasingQ is due
to the fact that the forced-free transition pointP'3.92 is
equivalent toe21'3.92Q1/4. Finally, curves with differentQ
cross because the dependence of the thicknessH1 in the
folding region on the buoyancy numberB is not a power law
when B is finite. Using Eq.~14! with B5e22Q21 and ŝ1
50.88 to rewrite the free-folding frequency~10!, one finds

f ~H0 /g!1/2;b1/2Q21/2e25/2@126.15eQ1/2128.4e2Q

1•••#25/4, ~16!

In the limit e→0, curves off (H0 /g)1/2 vs e21 are straight
lines with slope 5/2 on a log-log plot, and curves for largerQ
lie lower, as seen in the rightmost portion of Fig. 6~b!. For
largere, however, curves for largerQ are higher but have a
smaller slope, due to the factor@•••#25/4 in Eq. ~16!. Curves
for different Q therefore intersect at some value ofe21.

Although the trends of the numerical and experimen
frequencies are quite similar, there remain quantitative
ferences between them of up to a factor of 2. There are
least two likely causes for this discrepancy. One is the eff
of fluid inertia, which was neglected in the numerical cod
Inertia is known to be important in the analogous pheno
enon of the coiling of a viscous filament in the hig
frequency limit@18,19#, and may play a similar role in peri
odic folding of sheets. However, a more important cause
probably the significant three dimensionality of the labo
tory experiments, where surface tension acting on the ed
of the finite sheet causes its width to decrease substant
from top to bottom@Fig. 1~b!#. The effective values ofe21

andQ in the folding region are therefore not the same as
nominal values at the top. Both inertial and thre
dimensional effects could in principle be modeled using
more general set of viscous sheet equations, but that is
yond the scope of this study.

APPENDIX: MOTION OF THE CONTACT LINE

As extrusion proceeds, the sheet repeatedly comes
contact with the plate, forming a series of~fixed or mobile!
contact lines. For the initial conditions I used, all conta
lines are ‘‘tangent’’ ones for which the sheet’s midsurface
locally horizontal. Let the position of the contact line be

r c~,,t !5xc~ t !x1S 2L1
H~,,t !

2 D y. ~A1!

The vertical coordinatey is measured downward from th
extrusion slot, so that the plate is aty52L; the midsurface
is a distanceH(,,t)/2 above this. The lateral velocity of th
contact point in the direction of the unit vectors(,,t) parallel
to the plate is

f

5-5
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Uc5 ẋc~ t !x•s~,,t ![ ẋc~ t !cosu~,,t !, ~A2!

where u(,,t)50 or p depending on which way~right or
left! the vectors(,,t) points. By evaluating evolution equa
tion ~3a! for r at s5, and applying end conditions~6!, one
obtains

]r

]t
~,,t !1V~,,t !s~,,t !2

1

2
Ḣ~,,t !50. ~A3!

By differentiating Eq.~A1! with respect to time and combin
ing the result with Eqs.~A2! and ~A3!, one obtains

,̇5V~,,t !1Uc[U01E
0
,D~s,t ! ds1Uc . ~A4!

Equation~A4! shows that the sheet’s length changes due
extrusion of fluid at speedU0, distributed stretching along
the sheet, and motion of the contact line at speedUc , which
lengthens the sheet ifUc.0 ~advancing contact line! and
shortens it ifUc,0 ~retreating contact line!.

Consider now evolution equation~3b! for u, which when
evaluated ats5, yields

]u

]t
~,,t !1V~,,t !K~,,t !50. ~A5!

However, becauseu(,,t) is a constant (50 or p),

]u

]t
~,,t !1 ,̇

]u

]s
~,,t ![

]u

]t
~,,t !1 ,̇K~,,t !50, ~A6!

which together with Eqs.~A4! and ~A5! implies

UcK~,,t !50. ~A7!

Therefore the contact line can move if and only if the she
curvature vanishes there. Consider first the caseK(,,t)Þ0.
ss

0.

03630
o

’s

Because the curvature of the sheet is nonzero at a ne
formed tangent contact line, such a contact line will n
move initially. Two separate cases must be distinguish
depending on whether the absolute curvatureuK(,,t)u at the
contact point is increasing or decreasing. A general exp
sion for the rate of change of the curvature at the contact
can be found using Eq.~A4! and evolution equation~3c! for
K, and is

K̇~,,t !5Uc

]K

]s
~,,t !1

]v

]s
~,,t !2K~,,t !D~,,t !.

~A8!

If K̇(,,t) and K(,,t) have the same sign, the absolu
curvature at the contact line is increasing, i.e., the portion
the sheet near the contact line is bending away from
plate. Such a contact line is ‘‘pinned,’’ because the sheet o
laid down cannot be peeled away from the plate again.
however,K̇(,,t) andK(,,t) have opposite signs, the sheet
bending towards the plate and the absolute curvature is
creasing. Such a ‘‘relaxing’’ contact line will eventually be
come a ‘‘mobile’’ one when the curvature drops to zero. T
subsequent speed of the contact line is given by Eq.~A8!

with K(,,t)5K̇(,,t)50, or

Uc52
dv

dK
~,,t !. ~A9!
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