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Periodic folding of viscous sheets
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The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical
instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations
for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to deter-
mine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall,
and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven
kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by
buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with labo-
ratory experiments.
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A sheet of viscous fluid poured from a sufficient height The equations governing the dynamics of the sheet com-
approaches a surface not directly, but rather in the form ofrise a set of six equations that describe its mechanical re-
periodic folds(Fig. 1). In a home kitchen, the phenomenon is sponse to applied loads, together with kinematic equations
easily reproduced using honey, cake batter, or molten chocdhat describe how the sheet's geometry and thickness change
late. The same instability is observed during the commercialvith time. Under the assumption that fluid inertia is negli-
filling of food containerd1] and in polymer processin@],  9ible, the mechanical equations 4fet,15
and may occur in the earth when subducted oceanic lithos-
phere encounters discontinuities in viscosity and density at ﬁzKQergH sin, (18
660 or 2900 km depth3]. Yet despite its importance, peri- dJs
odic folding of viscous sheets has proved surprisingly resis- o
tant to theoretical explanation. The first major step forward Q
was Taylor’s suggestiof#] that fluid folding, like its elastic 9s KN+ pgH cos—2yK, (1b)
analog, requires a longitudinal compressive stress. Subse-
quently, systematic experiments were carried out on the pe- oM
riodic folding of sheets incident on rigid surfacgs6] and 75~ Q (10
on density-viscosity interfacd8]. Additional theoretical in-
sight has been provided by linear stability analysis of incipi- IW
ent folding [7,8] and by numerical simulations of finite- ——=w—KU, (1d)

. . . Js
amplitude folding using a marker-and-cell approadh or
inextensible thin-layer theory@]. Finally (nontime periodit
viscous folding has been studied in a variety of other geom-
etries, such as shear-induced buckling of flat layé&@s11]
and axisymmetric folding of sphericdl2] or conical[13]
sheets. The present study extends earlier work on periodic ’9_“’: _ ﬂ (1)
viscous folding by identifying a previously unrecognized bi- Js pH®’
furcation, proposing a complete scaling law for the folding
frequency, and Comparing the predictions of the latter WithHereUS+ Wz is the local VE|0City of the sheet’s midsurface
experimental observations. andw is its local rate of rotation. The stress resultadtand

In this paper we study a simple model for periodic viscousQ and the bending momeM are defined by
folding that corresponds as closely as possible to the stan-
dard laboratory setufb]: a two-dimensional sheet with con- (N,Q M):f
stant viscosityu, buoyancypg, and surface tension coeffi- e
cienty, extruded downward at speél) from a slot of width
H, toward a rigid plate a distande below the slot. Let the whereo.sando, are the extensional and shear components
sheet’s thickness bE (s,t), wheres is arclength along the of the stress tensor, respectively. Equati¢hs comprise a
sheet’'s midsurface andis time. If r(s,t) be the Cartesian sixth-order system of ordinary differential equations, which
coordinates of a point on the midsurface, tleendr/ds is @  describes the instantaneofegiasistatit response of a sheet
unit vector parallel to the midsurface. Lebe the unit vector with a given geometry to applied loads. Equatidfhg) and
normal tos, 6(s,t) be the inclination of the midsurface (1b) describe the globalintegrated across the sheébrce
from the horizontal, an&K(s,t)=96/ds be the midsurface balances in the andz directions, respectively, and E€lLc)
curvature. describes the global torque balance. Equatibd) is just a

KW+ ——

u 1
ds 4uH

S|
N= KM, (18

H/2

(0s5,057,2059)dZ, (2
—H/2
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is a convective derivative that follows the motion of material
points on the sheet’'s midsurface and

A=—o—KW (5)

is the rate of stretching of the midsurface.

The six boundary conditions at the ends of the sheet are
obtained from the assumption that the sheet is “clamped” at
both ends, i.e., its rotation rate and its veloditglative to
that imposed at the end in questioare zero there. This
requires

U0 —Up=W(0)=w(0t)=U(£,t)=W({,1)
—Lcoso(¢,HH(L,H)=w(£,t)=0. (6)

where the extrusion slot is at= 0 and{(t) is the(unknown
length of the sheet. The condition &M(¢,t) takes into ac-
count the component of vertical velocity due to changes in
the sheet’s thickness at the contact line, where the dot de-
notes thgtotal) time derivative. Appendix | shows that three
types of contact line are possible, depending on the curvature
K(¢,t)=K, at the contact and its rate of change. When
#0, the contact line is fixed; but two distinct cases must be
distinguished. The contact line is “pinned” when tkabso-
lute) curvature there is increasing|K|/dt>0), which will
occur when the forces acting on the sheet are such as to tend
to peel it away from the plate. The contact line does not
move in this case because a portion of the sheet already laid
down adheres to the plate and cannot be peeled off again.
®) The contact line is “relaxing” when the curvature there is
decreasing q|K.|/dt<0), which will occur if the applied

FIG. 1. Periodic folding of a sheet of glucose syrup with vis- forces push the portions of the sheet near the contact towards
cosity 4=120 Pa s, viewed parallel t@ and normal to(b) the  the plate. Finally, if the relaxation continues urkil van-
sheet. The height of fall is 7.0 cm, and the dimensions of the &Xishes, the contact line becomes a “mobile” one, maintaining
trusion slot are 0.7 cxi5.0 cm. Photographs by the author. zero curvature while moving laterally with a velocity

definition of the rotation rata. Equations(1e) and (1f) are dow
constitutive relations foN and M, respectively. — - (£, 0)s(€,1)=U s(€,1). (7)
. i ) ; , dK
The kinematic equations governing changes of the sheet’s

geometry ar¢14,16 The numerical code used in this study was specially designed

Dr to track accurately through time the changing character of
—=Us+Wz, (3a)  the contact line.

Dt By nondimensionalizing the governing equations and end
conditions usind., Uy, andL/Ug as scales for length, ve-

—=o, (3b) locity, and time, respectively, one finds that the sheet’s dy-
Dt namics are controlled by the values of three dimensionless
groups: the slendernegs=H,/L; the buoyancy numbeB
%: ‘9_“’ _ (30) =pgL?/ nU, (buoyancy/viscous forggand the inverse cap-
Dt Js ’ illary number S=vy/uU, (surface tension/viscous forge.

Consider first what the governing equations imply about the
DH scaling of periodic folding in the absence of surface tension
o~ HA, (3d) (S=0). Figure 1a) shows that the sheet generally exhibits a
bipartite structure comprising a nearly vertical “tail” above a
where smaller region in which the folding occurs. Deformation in
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the tail is by steady-state extension under gravity, which re- x/L
duces the sheet's thickness frdty at the extrusion slot to g 09 03
some smaller valuél, (say where the fluid enters the fold- 5.58 5.91 6.17 6.18

ing region. The fluid velocity at the latter point is just that
required by steady-state volume conservation in the tail, or
U]_: H()UO/H 1- <|

Neglecting for the moment th@elatively small effect of >
surface tension, we anticipate the possibility of two distinct
scalings for the folding amplitudeS and frequencyf
~U4/6, depending on the importance of buoyancy forces.
The first occurs when buoyancy is negligible, and folding is
driven entirely by extrusion of fluid from the sl¢tforced” 4.5 .
folding). Because stretching is negligiblelo~H; and U R M
~U,. Moreover, the governing equations are homogeneous " M
so neithers norf can depend on either or H, (although the ol

force required to extrude the fluid will still depend on these

Dimensional considerations then require e 8 7 8 3 10
tU, /L
Uy
o~L, f~1 tS) FIG. 2. Forced folding withe 1=20, B=0.1, andS=0 (no

surface tension The four upper panels show the changing shape of
The second scaling is for “free” folding, in which bend- the sheet over a half-period of the oscillation, at the dimensionless

ing resistance in the folding region is balanced by buoyancyt.imeswll'- indicated at upper left in each panel. Colors denote the

This balance is expressed by eliminati@gnd M from Eq. type of deformation that accounts for50% of the local energy
(1b), using Egs.(10) and (1) and noting thatH~H, is dissipation rate: extensiofgray), shortening(whi.te), and bending
nearly constant in the folding region, which implies (black) The lower panel shows the lateral positiqnof the contact

’ line as a function of time. Relaxing and mobile contact lines are

,U«Hi PBo y , © denoted byR andM, respectively.
— ~ cosé.
3 os® 19 forced folding withe *=20 andB=0.1 (Fig. 2), and free

1 o folding with e =10 andB=50 (Fig. 3). Values of the di-
Because)/ds~ 6" andw~U,/4, Eq.(9) implies mensionless timéU, /L are shown at the upper left of each
1/4 of the four panels in the top row, which span a half-period of

H2U 1/4 gU3
N Eadld 1) f~ p_; (10)  the oscillation. The third panel in each figure shows the for-
P9 mH7 mation of a new contact point and the fourth shows the sheet

_ _ just after the portion downstream from the new contact has
The above scaling was previously proposed by R&if. been removed. Colors indicate the type of deformation that

To demonstrate the existence of the above limits and teccounts for 50% or more of the local rate of viscous dissi-
map out the transition between them, | have written a La-

grangian numerical code that follows the motion of material x/L
points on the sheet’s midsurface. Each numerical time stef ;%3 00 i . .
comprises two distinct parts. Given a sheet with a specified 0.214 0.250 0.285 0.286

geometry, the code first solves a sixth-order two-point
boundary-value problefEqgs.(1)] for the instantaneous flow
within the sheet using thesecond-order accurateelaxation  _j
algorithm of Ref.[17]. Kinematic equationg3) are then >
solved using a second-order Runge-Kttadpoint) method
to advance the geometry forward in time. The initial geom-
etry of the sheet comprises a vertical tail of adjustable length
above a small arc-shaped part whose end is tangent to th - ! ; !
plate. Time stepping is continued until a steady periodic state : .
is reached. To avoid fold “pile-up,” the portion of the sheet % M
downstream of the contact line is instantaneously removed
each time a new contact is formgd]. The total number of
material points in the sheet thus changes continuously: a nev
point is added at the extrusion slot at each time step, wherea o1 ;).1 =% F =
points are removed when a new contact line forms or an ' ' tU,/L
existing one moves.

Figures 2 and 3 show the evolution of the sheet's geom- FIG. 3. Same as Fig. 2, but for free folding with =10 and
etry and the positiox.(t) of its contact line for two cases: B=50.

x(b.o 1 R

0.5
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FIG. 4. Dimensionless folding frequenéy/U, as a function of FIG. 5. Hy/H, vs B for the 29 numerical solutions of Fig. 3.

IT [Eqg. (11)], for 29 numerical solutions of the thin-sheet equations
(1) and (3) with S=0 (no surface tensiopResults are shown for

e 1=10 (square} 20 (circles, and 40(triangles, with 0.005<B . . . .
<100. Solid lines arefL/U,=0.821 (left) and fL/U,=0.1341 It remains to determine how the sheet thicknidgsn the

(right). folding region depends on the external parametessd B.
The thicknes#; is a measure of the total amount of stretch-

ing that occurs in the tail of the shefgfray portion of Fig. 3.
d- While the lower part of the sheet undergoes periodic folding,

ing everywhere except at inflexion points. In free folding, by (€ tail remains nearly vertical and in a steady state, deform-
contrast, the sheet consists of a long extensional tail above!39 PY stretching alone with negligible bending. The flow in
smaller bending-dominated region. Forced and free foldindN€ til is thus governed by Eqela) and (1€) with W=Q

are also distinguished by the behavior of the respective con- M =0, =372, andU=UgHo/H, or

tact lines. In forced folding in the limiB=0, the contact .

line is always a relaxing oneR). In Fig. 2, however, the (H_) __ P9 H (12)
small amount of buoyancy prese € 0.1) causes the con- H 4duUgHy

tact line to relax faster and eventually to become mobile

(M). In free folding, by contrast, buoyancy is so strong thatwhere primes denote differentiation with respectstdrhe
the contact line is mobile most of the time, with only short boundary conditions arél(0)—H,=H’(s;)=0, wheres,;
periods of relaxation after the formation of new contacts.<[L is the total length of the tail. The solution of E(L2)
Pinned contact lines never occurred in any of the numericathat satisfied’(s;)=0 is

Solid line is the exact solution of E¢12) with s,=0.88.

pation: extension(gray), compression(white), or bending
(black). Deformation in forced folding is dominated by ben

solutions.
The control parameter that governs the transition from BH,\Y?s—s,
forced to free folding is obtained by noting that their respec- H(s)=H,sec¢ (ﬂ) (T) , (13
tive frequencieg8) and(10) are of the same order when the 0
dimensionless parameter ) ) ]
from which H,; can be found by solving numerically the
( pgl? |\ V4 transcendental equatidt(0)=H,. In the limit B>1,
i #UoHoH; -

_ _ _ . mzzwzéﬂ[lwﬁ@l’% 24871+ 0(B~*9)],

is of order unity. If the scaling analysis is correct, a log-log Ho

plot of fL/U; vs II should define straight lines with slopes (14)

of either zero(forced folding or unity (free folding. Figure A

4 shows such a plot for 29 numerical solutions wBk0  where B=B(s;/L)?. Note that the functiorH,(B) is a
and various values of andB. Forced folding occurs when power law H;~HB 1) only in the limitB—; this result
the buoyancy is less than a critical vallle=3.92+0.04, at  will be seen below to explain a significant feature of Cruick-
which point a bifurcation to a state of free folding occurs. shank’s experimental daf®]. Figure 5 shows that the cal-
The free-folding branch achieves its “pure” asymptotic form culated dependence ¢i,/H, on B for the 29 numerical
fL/U,~0.1341 for 11=10. The single-valuedness of the solutions agrees closely with the analytical solution for
curve in Fig. 4 was tested by varying the initial conditionss; /L =0.88 (solid line). This implies that the height of the
for fixed values ofe andB. In all cases, the same final state folding portion of the sheet is about 0l12n average.

was reached, suggestirigut admittedly not provingthat Combining the results of Figs. 4 and 5, one obtains a
other stable forced- and free-folding branches with differenttomplete scaling law for the folding frequency in terms of
frequencies do not exist. the known input parameters:
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2 ' ' ' ' ' ' pret numerical results witlf§>0. The initial decrease of
a) b) f(Ho/g)Y? with €1 is a direct consequence of the forced-
folding scaling f~U,/L~Uy/L, which is equivalent to
f(Ho/g)Y?~ B2, where B=gp?H3/u? (=7.6X10* in

all experiments and numerical solutions in Fig. Similarly,
the rightward shift of the minimum with increasiigyis due

to the fact that the forced-free transition poidt=3.92 is

21 P - equivalent toe~ *~3.92Q0Y. Finally, curves with differen@
Q<41 o . cross because the dependence of the thickibssn the
01d o Ll Q folding region on the buoyancy numbBiis not a power law
o © when B is finite. Using Eq.(14) with B=¢ 2Q ! and s,
0.05 : : : : : : =0.88 to rewrite the free-folding frequenc%0), one finds
10 20 50 100 10 20 50 100
L/H, L/H,

f(Ho/g)' %~ BYQ™ 1% %9 1-6.15Q"?+28.4¢’Q
+o ] (16)

Uo

f= F
LF,(B) *

As extrusion proceeds, the sheet repeatedly comes into
contact with the plate, forming a series (@iked or mobilg
contact lines. For the initial conditions | used, all contact
lines are “tangent” ones for which the sheet’s midsurface is
locally horizontal. Let the position of the contact line be

—L+ H(e’t))y. (A1)

viscous sheets witls*=y/pgH35=0.59 andQ=uU,/pgH3=41
lines for Q=144). The rightmost circles are at the largest values ofli€ lower, as seen in the rightmost portion of Fighp For

, (15 Although the trends of the numerical and experimental
5, respectively. The “nested” structure of E(LS) reflects  of fluid inertia, which was neglected in the numerical code.
curs elsewheréin the tai. odic folding of sheets. However, a more important cause is
of the dimensionless height of fell Ho=¢"* for fixed val-  from top to bottom[Fig. 1(b)]. The effective values o0& *
and Q=144 (solid circles from his Fig. 24m). Because more general set of viscous sheet equations, but that is be-
trends of the original(dimensiongl measurements. Three
increasingQ; and curves for differen® cross each other.
with those predicted by the scaling 1a/5) without surface re(€,0) =X(t)X+ 5
folding. The difference between tlisolid, open circles and  extrusion slot, so that the plate isyat —L; the midsurface

FIG. 6. (a) Experimentally measured folding frequencjé&s for
(open circlesandQ= 144 (solid circles. (b) Numerically predicted o 12 1 .
folding frequencies for the same values$f and Q (circles, to- N the limit e—0, curves off(Ho/g)~“ vs e~ are straight
gether with the scaling lal5) (dashed lines fo=41 and solid  lines with slope 5/2 on a log-log plot, and curves for larQer
e~ for which numerical solutions could be obtained. larger e, however, curves for large are higher but have a
smaller slope, due to the factpr- - ]1~%*in Eq. (16). Curves
B 14 for different Q therefore intersect at some value of*.
(62,: (B)) . . . . L .
2 frequencies are quite similar, there remain quantitative dif-
. o ~ ferences between them of up to a factor of 2. There are at
whereF; andF, are the functions shown in Fig. 4 and Fig. |east two likely causes for this discrepancy. One is the effect
the fact that the sheet thicknesk in the folding region, |nertia is known to be important in the analogous phenom-
upon which the folding frequenclydepends by Eq(10), is  enon of the coiling of a viscous filament in the high-
itself controlled by a different procegstretching that oc-  frequency limit[18,19, and may play a similar role in peri-
The numerical predictions can be compared directly withprobably the significant three dimensionality of the labora-
the experimental observations of CrUWkSDé@ﬁ]ﬁ who mea-  tory experiments, where surface tension acting on the edges
sured the dimensionless frequerfiH,/g) ™~ as a function  of the finite sheet causes its width to decrease substantially
ues of Hy, the dimensionless flow rat®=uUo/pgHi  andQ in the folding region are therefore not the same as the
=1/e’B, and S*=1vy/pgH3=S/e’B. Figure Ga) shows nominal values at the top. Both inertial and three-
Cruickshank’s data foS*=0.59 andQ=41 (open circles  dimensional effects could in principle be modeled using a
Cruickshank nondimensionalized frequency and height usingond the scope of this study.
scales that did not change during the experiments, the trends
of the points in Fig. ) reflect directly the corresponding APPENDIX: MOTION OF THE CONTACT LINE
features of the data are noteworthy: the folding frequency
varies nonmonotonically with the height of fall; the mini-
mum of the frequency-height curves shifts rightward with
All three features are explained by the scaling I&hg).
Figure &b) shows the frequencies predicted numerically for
the same values & andQ as in Fig. &a) (circles, together
tension (dashed lines foQ=41, solid lines forQ=144.)
The left segments of the lines in Fig(k$ correspond to
forced folding and the right segments correspond to fred’he vertical coordinate is measured downward from the
the (solid, dasheglines is a measure of the effect of surface is a distanced (€,t)/2 above this. The lateral velocity of the
tension, which is relatively small in all numerical solutions. contact point in the direction of the unit vecti ,t) parallel
The scaling law(15) for S=0 can therefore be used to inter- to the plate is
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Ue=X(1)X- S(£,t) =X, (t)cos({, 1), (A2)  Because the curvature of the sheet is nonzero at a newly
formed tangent contact line, such a contact line will not
where 6(¢,t)=0 or 7 depending on which wayright or ~ move initially. Two separate cases must be distinguished,
left) the vectors(¢,t) points. By evaluating evolution equa- depending on whether the absolute curvatié(,t)| at the
tion (3a) for r ats=¢ and applying end condition®), one  contact point is increasing or decreasing. A general expres-

obtains sion for the rate of change of the curvature at the contact line
can be found using EqA4) and evolution equatiofBc) for
ar 1. K, and is
E(&t)+V(€,t)s(€,t)—§H(€,t)=O. (A3)
. . . . . . K Jw
By differentiating Eq.(A1) with respect to time and combin- K(e,t)= ch(&t)Jr E(“) —K(€,)A(L,1).

ing the result with Eqs(A2) and (A3), one obtains A8)

'€:V(€,t)+UCEU0+J’€A(s,t)ds+uc. (A4) .
0 If K(¢,t) and K(¢,t) have the same sign, the absolute
curvature at the contact line is increasing, i.e., the portion of
She sheet near the contact line is bending away from the
plate. Such a contact line is “pinned,” because the sheet once
laid down cannot be peeled away from the plate again. If,

howeverK (¢,t) andK(¢€,t) have opposite signs, the sheet is
bending towards the plate and the absolute curvature is de-
creasing. Such a “relaxing” contact line will eventually be-
come a “mobile” one when the curvature drops to zero. The

Equation(A4) shows that the sheet’s length changes due t
extrusion of fluid at speetlly, distributed stretching along
the sheet, and motion of the contact line at spded which
lengthens the sheet Il.>0 (advancing contact lineand
shortens it ifU,<O0 (retreating contact line

Consider now evolution equatigBb) for #, which when
evaluated as={ yields

90 subsequent speed of the contact line is given by (B8)
ot (GO FVILDKEH=0. (RS with K(€,)=K(¢,t)=0, or
However, becausé({,t) is a constant£0 or ), do
UC:_W((M)' (A9)

a0 .40 90 . 3
E({f,t)+€£(€,t)=E(K,t)-l%K(f,t)—O, (AB)

: . A This research was supported by the Centre Nationale de la
which together with EqsiA4) and (A5) implies Recherche ScientifiquéFrancg. | thank A. Boudaoud, M.
UK (€,1)=0. (A7)  Brenner, A. Davaille, H. Huppert, J. Lister, L. Mahadevan,
H. Stone, and M. G. Worster for helpful discussions. The
Therefore the contact line can move if and only if the sheet'sapparatus used in the preparation of Fig. 1 was constructed
curvature vanishes there. Consider first the da6et) #0. by Y. Gambelin.
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