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Master equation simulations of a model of a thermochemical system
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Master equation approach is used to study the influence of fluctuations on the dynamics of a model ther-
mochemical system. For appropriate values of parameters, the deterministic description of the system gives the
subcritical or supercritical Hopf bifurcations. For small systef@antaining 100 000 particleslose to the
supercritical Hopf bifurcation, the stochastic trajectories obtained from numerical simulations do not allow to
distinguish between damped oscillations around a stable focus and sustained oscillations around a small stable
limit cycle. This uncertainty disappears if the number of particles in the system is incrggstzil 000 00D
Close to subcritical Hopf bifurcation the stochastic trajectory of the system jumps from the basin of attraction
of a stable focus to the basin of attraction of a stable limit cycle. In this case the time dependencies of
temperature and concentration of reactant in the system are apparently similar to intermittent chaotic oscilla-
tions. The mean first passage time for the transitions from the stable focus to the stable limit cycle show the
characteristic exponential dependence on the number of particles. This passage time depends very strongly on
the bifurcation parametefreaction heat which determines the distance between the stable focus and an
unstable limit cycle.
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[. INTRODUCTION it enables the basic description of fluctuations without going
into the complexity of underlying microscopic dynamics.
Nonlinear dynamical systems often exhibit enhanced senfhe master equation is directly developed from the kinetic
sitivity to fluctuations[1—4]. The stochastic deviations from theory of gases and it is appropriate to describe internal fluc-
deterministic dynamics can be particularly significant in systuations. The other method, the Langevin approach, is usu-
tems close to bifurcations, where fluctuations may inducelly applied to study the influence of an external noise. The
effects that reach the macroscopic level. Bifurcations arénaster equation method has been well developed and widely
turning points at which qualitative changes of features ofapplied to reaction and diffusion processes in isothermal sys-
deterministic dynamics develop. Since a stochastic evolutiofems[4]. However, this mesoscopic approach was much less
is to some extent indeterministic, it can be expected that thedvanced for thermal processes, in which temperature is not
vicinity of bifurcation has a particular effect on stochastic@ discrete but a continuous variable. Recently, the master
dynamics. equation has been derived for the Semenov thermochemical
Very rich nonlinear behavior such as excitability, bistabil- System, which includes energy exchange with a thermostat
ity, and limit cycle oscillations can be observed in thermo-[16,17. The results of this mesoscopic approach have been
chemical system$5—7]. In this paper we study stochastic confirmed by microscopic simulations. Following this re-
effects in a thermochemical system close to the supercriticéiently developed method, in the present paper we apply the
and subcritical Hopf bifurcations, related to different sce-master equation to study fluctuations in the catalytic thermo-
narios of the emergence of limit cycles. Deterministic dy-chemical system in the vicinity of the Hopf bifurcations.
namics of this system is based on two simple reactions only In the following section we present the model of the ther-
but nevertheless, it exhibits all kinds of nonlinear behaviornmochemical system as well as its deterministic description.
mentioned above. The chemical model we study consists gs€ction Ill contains necessary details of the bifurcation
two e|ementary reactions: one Cata|y(hut not autocata- analysis of deterministic equations, which allow to distin-
lytic) bimolecular reaction and one monomolecular reactionguish between the supercritical Hopf bifurcation and the sub-
More variables are necessary to obtain such rich behavior ifritical one. In Sec. IV the master equation corresponding to
isothermal chemical systems consisting of mono and bimothe studied system is presented. The following section con-
lecular reactions only8—11]. The simplicity of the model tains the results of stochastic simulations and their compari-
makes feasible in future microscopic simulations for valuessons with the deterministic description. In the last section we
of parameters close to the Hopf bifurcations, which could bediscuss and explain the obtained results.
compared with the mezoscopic approach we apply in the
present paper. Small scale microscopic simulations of this
system far from bifurcations have been performed previously
[12-14. We consider a well-mixed, nonadiabatic thermochemical
In studies of stochastic properties, especially efficient issystem which exchanges energy with its surroundings.
the master equation formalisfh,4,15. Its advantage is that Boundaries of the system are kept at constant temperature
Ty . The system is composed of the reactanthe producB,
and the catalys€C. We assume that the following reactions
*Email address: alk@ichf.edu.pl occur in the system:
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kq molar fractions ofA and C, respectively,§=T/T, is the di-
A+C — B+C+energy, (D mensionless temperature atid=nk’t is the dimensionless
ks time. The balance equatioi(3) and (4) have then the form
B — A. (2)

da
The first reaction is the exothermic one with a reaction heat — = \/5[— anexp—eld)+cy(l—a—1n)]=1(0,a),
Q. The second reaction occurs on the walls of the system and
imitates an unspecified mechanism allowing for the supply ®)
of the reactanfA and the removal of the produ& We as-
sume that no heat effect is associated with readt®nlt is do 2
noteworthy that the energetic balance of the two reactions is ;7 ~ §\/‘_9Q[‘”7 exp(—e/0)—cy(0—-1)]1=9(6,a), (9
positive. This is possible because the system is open. The
system considered here is a modification of the model elabo- B B 0 0
rated by Vol'ter and Sal'nikoy5]. It has also been used in where e =Ea/kgT, q=Q/kgTy, C1=x"S/qkN, and c;

the previous papers on thermochemical systfhs-14. = pBKOS/ktl)N_ are dimensionless parameters.
Let us notice that the sum of the concentrationéafnd The nuliclines of the system have the form
B does not change in time and the concentration of the cata-
lyst C is constant. Therefore, the composition of the system Co(1—7m)
is uniquely determined by the concentrationfofExchange aA:W’ (10
of energy between the system and an environment occurs K 2
due to a heat flow through the boundaries. We consider the o0
diluted gas system for which the internal enetdys related _ &
ar= (6—-1), 11

to the temperatur@ by the equatiortd = (3/2)NkgT, where
N is the number of particles arkk is the Boltzmann con-
stant. The environment temperature is assumed constant anthere a, and a1 are the solutions tof(6,«)=0 and

the heat transfer may be described by the Newton's lawg(g,a)=0, respectively. In further discussion it will be con-

Phenomenological behavior of the system is described by thgenient to use the combination of both the nullclines given
balance equations for the number densityAcdind the tem-  py

perature:
c, C
dn = — + _l__l
Vd_::_klnAnCV+k2nBSv (3) aps7=(1-17) c, C, 0. (12)
3 daT The nullcline for @ is a monotonic function off and
ENkBazklnAnCVQ— kNSlg(T—Ty), (4)  therefore, it is attracting for all initial conditions. Thus, the

necessary condition for the appearance of oscillations in the

whereV is the volume of the systen§ s the surface of the system is that the nulicline fo# must be nonmonotonic and
systemp is the total number densitp, , ng, andnc are the have a branch wh|c.h. is repellmg. It is easy to check thgt the
number densities of, B, andC, respectivelyx is the coef- N€cessary and sufficient condition for the nonmonotonic de-
ficient of heat exchange, anm, is the a temperature of the pe_ndencéthe existence of two extremesf the nullcline on
boundary of the system. Due to the relatios (npy+ng gise>4. ) ,
+ng), the density ofB can be eliminated from Ed3) In general, the nullclines may have one or three intersec-

From the kinetic theory of gases it follows that the ratelon p0|nts(stat|onary state)sln'the present paper we discuss
constants and the coefficient of heat exchange depend on tR8!Y the case with one stationary state positioned on the
temperature of the system and can be presented in the fgi€Pe!ling branch ofxr, because we limit ourselves to study

lowing form: the supercritical and subcritical Hopf bifurcations. The maxi-
mal negative slope of the nulicline fof at the repelling
T\2 = branch is given by
k,= kg(—) exp( - —) , (5)
Ty kgT
dlar) ——&e8*2(8—4) (13)
K,= kpg, (6) de 6 ne '
T 1/2
K= KO(_> , (7)  wherefs denotes a value of at whichd?a+/d¢? is equal to
Th zero. This slope must be greater than the slope of the straight

where pg is the coefficient determining the probability of line a7 given by

reaction(2) on the walls. q
In further discussion it will be useful to introduce the (@as7) :_ﬂ. (14)
dimensionless variables=n,/n and »=n¢c/n, which are de C2
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0.7

!

d
d_y =cxX+dy+ box®+ by xy+ boy? + by + byx?y

+byXy?+bogy3+ - - -, (16)

wherex=a—a,, andy=60—140,,.

If (a+d)?—bc>0, then the stationary state is a node,
otherwise it is a focus. The stationary state is stable provided
(a+d)<0 or unstable if &+d)>0. At (a+d)=0 it
changes its stability. The stable focus can lose its stability at
a critical value of a bifurcation parameter by the supercritical
Hopf bifurcation SF-UF+SLC. In this case the stable fo-
cus (SP at the critical value of the parameter becomes the
center and then the unstable foc(i$F), from which the
stable limit cycle(SLC) arises. The radius of SLC is growing
from zero. The other possibility is that the unstable limit
(ULC) cycle (surrounding SFdecreases its radius approach-
ing zero at the critical value of the parameter. Then the com-
. plex focus is formed and next SF becomes UF. This bifurca-
plaELG'folr' tThZe fr;lfllcl:ill\:innzs 3;11;83%5;?;@;;2%@:.g’ha;e tion is possible, if before it the subcritical. Hopf bifurcation
=0.04,¢,=0.0018, anct,=0.0036. The supercritical Hopf bifur- SF=SF+ UI.‘C+SLC has appgared. In this case the stable
cation occurs at|,,=21.968. The dashed closed curves show thefOCUS remains stable, but a pair of SLC and UL.C appears at
small stable limit cycle afj=22.5 inside the big one at=25.0. some dlsta_nce from the stable focus_. Monotonic Change of

the bifurcation parameter causes an increase of the radius of
: . SLC and a decrease of the radius of ULC. As the critical
_Therefore, to exclude thg existence of three st(i\t_lcz)?ary StateGaiue of the parameter is approached, ULC and SF merge
itis necessary and sufficient thai<e /(s —4)e™ . Fig- 54 form the complex focus, which then transforms to UF,
ure 1 shows the nuliclines fox and 6 given by Eqs.(10) In order to distinguish between the subcritical and super-
and(11). critical bifurcations, which occur ata+-d)=0, we use the

Unfortunstefly, th; coolr d'.nafles :)f.a stanonaryhstsiearr]]d IIapproach elaborated by Bautin and Androri@8,19. It is
0.. cannot be found analytically. It Is easy to check that all et 1o transform the Taylor series ferandy to the ca-

trajectories of the system starting from the boundary of thehonical form

rectangle (0,9,(0,1- %),(6,,1— 7),(6,,0) flow into the rect-

angle, if 9, is sufficiently large. Therefore, an attractor must

exist inside the rectangle. If the stationary state is unstable, ﬂ_ B+ A2+ AralD - A2+ AaclB - AU

then the attractor must be a stable limit cycle. T Bo+ Az LMY T Ao Azl Azilly
Let us mention that for fixed values of the parameters

7, C1, andc, the nulliclines do not change their position on + A U2+ Agr 3+ - - - (17)

the phase plane. The stability of the stationary state depends

then only on the reaction heat which we will use as the and

bifurcation parameter. In the sequel we choose two sets of

values ofc, andc,, for which the supercritical and subcriti-

cal Hopf bifurcations occur, respectively. — = Bu+ B,u?+ Byyuv + Bow 2+ Bagu® + B,yu?v
dt’

0.6 —

0.5 —

1. BIFURCATION ANALYSIS +ByUv2+Bo®+ - -+, (18)

The stationary state of syste® and(9) may be a stable
or unstable node, or a stable or unstable focus. Its charact¥fhereu=x, v=—ax/g—by/p, ands= yad—bc. For fur-

is determined by the linear terms in the expansiofi(# «)  ther analysis it is convenient to change coordinatgs to
andg(0,a) in the Taylor series around.. and .. : the polar coordinates=r cos®, v =r sin®. This leads to

d dr A(q)r +X,cosd +Y,sind (19
X =T - )
oLl by+ a2+ a1 Xy + agay> + 8z + a2y d®  Ay(q)r+Y,c0sP — Xpsind

whereA;(q) and A,(q) are coefficients of the transforma-
tion from (u,v) to (r,¢) andX,=X,(r cos®,rsind,q), Y,
=Y,(r cos®,rsind,q) are polynomials of at least second
and degree inr cos®,r sind. CoefficientsA; depend on the di-

+aXy?+agy’+ - (15)
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mensionless reaction hegtwhich we use as the bifurcation becomes UF and SLC around UF appears. This means that at
parameter. For <1 the right-hand side of Eq19) can be q=q, the supercritical Hopf bifurcation occurs. However, if

expanded into a;>0 in some interval ofj aroundq., anda(q)+d(q) at
q g=(q., changes its sign from negative to positive, them at
—r=rRl(CIJ,q)Jrr2R2(®,q)+r3R3((I>,q)+ e =er ULC shrinks its radius to zero ar_1d SF becomes UF.
do This means that foq<q., SF coexists with SLC. Therefore

(200 the subcritical Hopf bifurcation has to occur at some

Assuming that =0pt<Jcr, in which the pair of SLC and ULC is born.

r=r(®,ro,q) (21)
IV. MASTER EQUATION
is the solution to Eq(20) for an initial valuer (®y)=r, we

can expand with respect targ, In the stochastic approach, a state of our system is de-
scribed by the distribution functioR(6,N,) for the tem-
r=z,(®,q)ro+ 22(d>,q)r§+ zs(fl),q)rng e (22 peratured and the populatiomN, of speciesA. ( It is more

) ) ] convenient to us&l, instead ofa becauseN, is changed in
Introducing Eq.(22) into Eq. (20) we obtain the system of the reaction byAN,=*1.) The dynamics ofP(6,N,) is

recursive differential equations for the Coefﬁciemsfor i governed by the master equation, which can be written in the
=123..., following form:
dz; R
do A 1(P,9), 5
—P(a,NA,t')zf d(A6)P(6—ABN,— AN, ')
dZZ 2 (9t' AO<6
—= =2R(P,q) +Z2;R(P,q). (23

dd XW(O—AO,Na—ANp— 6,Np)

The Poincardransformation defined by
—P(e,NA,t’)f d(A6)
Ao>—0

#(ro,q)=r(2m,r0,q)—r(0ro,q) (24)
determines the stability of the solution. Introducing solution XW(O,Na— 0+AO,NA+ANL). (30
(22) into this function gives

_ 2 3

p=2a(q)rotaxq)rgtas(qrot- -, (29 The transition probabilityv is composed of three terms cor-
h responding to the separate processes which contribute to the
where dynamics ofP. Two of them are connected to reactiois
2A,(q) and(2), respectively, and the third one is related to the New-
a,= expﬁ -1, (26)  tonian exchange of energy without reaction:
2
ac=2{2mq) @7 W=W;(0,Na— 0+ A0,Na—1)+Ws( 0,Nx— 0

fork=2,3,4 . ... Thecondition for the existence of the limit +A0,Np+1)+We(6,Ny— 6+A0,Np). (32

cycle with the radius y has the form

p— 2 DR —
Y(ro,a)=21(q)+ax(d)ro+as(q)ro* 0. (28 The transition probabilityv, for exclusive energy exchange

Forg=q., two initial coefficients of this expansion are equal IS & continuous function of ¢, and it does not involve any
to zero[a;(qe,) = ax(qe,) =0]. The first focus numbeas in chemical changes. The explicit expression ¥y has been

the notation used in Eq17) and (18) has the form derived only recently16,17], under the assumption that the
velocity distribution of particles always remain Maxwellian.

T A7 Using the dimensionless variables, in our system can be
332@[3(A30+ Boa) + (At By ]~ 4_32[2(A20q20 cast in the following form:

—AozBo2) = A1a(Aoat Azg) + B1i(Boa+ Boo) ] (29)
We(0,Np— 0+A0,Np)
The stability of the solutions arourgt= g, is determined
by sign of the first focus numbea; and bya(q)+d(q), =3Ngc[1-pg(l—a—7)]V0w(6), (32)
which gives the sum of eigenvalues of E(¢5) and(16). If
a;<0 in some interval ofq aroundq., and a(q)+d(q)
changes its sign from negative to positivegat q,,, then SF where
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3
(6+1) EN)|A49|
=) 2* 0
3 |Ag
——N— for A9<0
3 exp( 2N 0)
XEN 3
exp(—ENAa) for Ag>0. a
(33

Expression(32) does not include these inelastic particle-
surface collisions which are related not only to energy trans-
fer but also to reactior{2). The transition probabilityw,
corresponding to this latter process describes a change of the

temperature by 6, combined with an increment of popula-

tion of A by AN,=1. With the use of Eq(33), w, can be 1.2 1.6 2.0 24

written as

Wo(0,Npa— 0+A60,Na+1)=2Nqc,pe(l—a—7)Vow(6).

In contrast, the transition function related to reacti@hin-
volves only the discrete change 6f because release of the
reaction heat] always increases the temperature of the sys:

FIG. 2. Stochastic trajectories on the phase plane obtained from
simulations of the master equati@8l) for the following values of
the parameterst=5.0, »=0.04, ¢;=0.0018,¢c,=0.0036, and
=21.0. At these values of the parameters the system is just below
the supercritical Hopf bifurcation. Thin dashed liné&= 100 000
particles, the continuous lineN=1 000 000 particles. Thick con-

(34

tinuous lines—the nuliclines of the system.

tem by the fixed value\ 6, =q/(3N). The decrement dfi,

associated with reactiofl) is ANy=—1. The transition
functionw; has the well-known fornj1] following from the

frequency of collisions related to reactioh):
Wl(G,NA—> 0+A01,NA_ 1)
=Nan\oexp —el6)5(A6—A6,).

Figure 2 shows the trajectories in the phase space ob-
tained from simulations of the master equation for two sys-
tems containing 100000 and 1000000 particles cat
=21.0. These systems are very close to, but below the su-
percritical Hopf bifurcation. Similarly, Fig. 3 gives the re-
(35 sults obtained for the corresponding systemsga2.5. In
this case the systems are above the bifurcation. The focus

The problems related with analytical treatment of the dis-becomes unstable and SLC appears. For the smaller particle
crete master equation are widely knofdn-3]J; they are cer- number, the stochastic trajectories below and above the bi-
tainly more serious, if the master equation has the integrofurcation are very similar in Figs. 2 and 3, respectively. It is

differential form of Eq.(30). Therefore, we study stochastic
effects in our system by means of simulations of processes 0.7

described by this equation. The method of the Monte Carlo
simulations of the master equation for discrete variables is
well founded[20] and its appropriate modification for the
continuous form of Eq(30) has been presented in the recent
paper[16].

0.6 -
V. RESULTS

A. Supercritical Hopf bifurcation

In all our calculations we use the fixed values of
the parametere=5.0 and »=0.04. For studies of the
supercritical Hopf bifurcation we assume the following 0.5 —
values of the remaining parametecs=0.0018 andc,
=0.0036. Equations(8) and (9) for the deterministic
dynamics have only one stationary state with

the coordinates a.,,=0.589 08593782349516 and,,
=1.7418281243536188. This state is SF belqwq,,
=21.968 and UF above it. At these values of the parameters,

1.2

24

the first focus numbers given by Eq.(30) is negative at FIG. 3. Same as in Fig. 2 bgt=22.5. The system is just above
dcr - Thus, the supercritical Hopf bifurcation occurscgf . the supercritical Hopf bifurcation.
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FIG. 4. Same as in Fig. 2 but=25.0. The system is further FIG. 5. Stochastic trajectorghe dashed lineon the phase plane
from the supercritical Hopf bifurcation as compared with Fig. 3. obtained from simulations of the systefN<50 000) for the fol-

lowing values of the parameters=5.0, »=0.04, c,=0.0018,c,

difficult to determine on the basis of the stochastic evolutions=0.0085, andj=210.0. At these values of the parameters the sys-
if the system is below or above the supercritical Hopf bifur-tem is above the subcritical Hopf bifurcation. The deterministic
cation. Close to this bifurcation, the dispersion of the sto-stable limit cycle and focus are shown by the thick closed curve and
chastic trajectories around the deterministic attractors ighe big point, respectively, and the unstable limit cycle is shown by
large, because the Liapunov exponents then become smdfle thin closed curve.

;nd the attraction towards the asymptotic solutions is Wef_:lkt.e m between these two attractors which show very dif-

ough estimations based on the Fokker-Planck equatio

show that the dispersion of stochastic trajectories around th%gg?t 8%322,['% ar: bsvlavg)erlse.ct': Otrh:tu%ﬁiw?:‘gth?/aslﬂsgm;al

deterministic Solution is scaled by|Re(\)|, where is the ™o metersic, =0.0018 and c,=0.0085. At these
eigenvalue of the linearized kinetic equations. Slmuna-values (and £=5.0 ~0.04) the stationary state
neously, the size of SLC grows from zero and just above the VR A y

’ ; A . is located at «,.=0.47082386758448295 andd.
supercritical Hopf bifurcation it is relatively small. Due to —3.3099984030733691. The ch f the stability f
these two factors, for the systems with small particle numbey. * - Ihe change of the stability Trom

the magnitude of fluctuations is comparable to the size of th OfFofO iLsJ ';g;;t'/;s aqﬁirc;;lZﬁgiﬁsAtthgsfovrallgv?/eornvg:Ee\;alct:‘ethe
rministic limi le. As th rticle number in th - 08 ' : :
dete stie t cycle. As the particle number in the sys (p_lfurcanon parameter, SF coexists with SLC, and ULC sepa-

: ; : o tes the basins of their attraction. Figure 5 shows the sto-
chastic trajectories get closer to the deterministic attractord3'€S X .
Accordingly, Figs. 2 and 3 show that fof=1 000000 the chastic trajectory atj=210.0 forN=50000 particles. ULC

stochastic solutions are different below and above the bifurfjlnd SLC are also shown. The value of the bifurcation param-

cation: they are either contained in a small region around Slg.ter '3 not tgo far fr(;mhlts critical val.ue. ElggredeshOWE the
or form a narrow ring around SLC. For values @further time dependence of the concentratianobtained from the

from the bifurcation valuey.,, the attractors are stronger syoghastic.simulgtion of the system. This dependence' is. very
and the dispersion of the sti)rc:hastic results is weaker. Figu milar to intermittent oscillations observed in deterministic
4 shows the trajectories in the phase spaceqfe25.0. In Chaotic dynamical systemggl],. In o_rder to characterlz_e
this case the system is above the Hopf bifurcation, but it i%he.m't we contitructh the Plomcaafczﬂon tOf _thhet ls.toch:?sft]c q
more distant from the bifurcation than the system presenteHaJec ory on the phase piane at the straight fine of Tixe
in Fig. 3. For the same particle numbers as in Fig. 3, th emperature6= Oos. T_he points of Intersection, which the
stochastic solutions are stronger focused around the detet'rgjectqry passes going from the left to the right, are only
ministic SLC, and already faX =100 000 the stochastic tra- taken into account. The return map constructed from the

actory f . inal to SL th toti oincaresection is depicted in Fig. 7. The big squares s_ho_vv
Jseoﬁu(iirgnorms aring, corresponding to SLC as the asympto Ié;e values ofx,, at SF and SLC, whereas the big cross indi-

cates ULC. They are positioned on the diagonal and corre-
spond to fixed points for a map of the deterministic system.
The return map obtained from the stochastic trajectory shows
Above the subcritical Hopf bifurcation the system has twothe specific effect of fluctuations. In Fig. 7, most of the iter-
deterministic attractors: SF and SLC which are separated bgted points in the return map are concentrated around the
ULC. If the magnitude of fluctuations is sufficient, then in fixed points corresponding to SF or SLC. However, the
stochastic simulations one can observe transitions of the sygoints far abovgbelow) the diagonal are also seen. These

B. Subcritical Hopf bifurcation
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FIG. 6. Time dependence of the concentratioobtained from

simulations of the system with the parameters same as in Fig. 5. FIG. 8. The mean first passage tir) from the basin of at-

traction of the stable focus to the basin of attraction of the stable
. . ) . limit cycle as a function of the total number of particlsis The
points correspond to transmons fr_om the basin of attraCt'o@,traight line shows the linear fit to the results of the simulations for
of SF(SLC) to the basin of attraction of SLCSP. N=50 000.
The transitions between the basins of attraction are ex-

tremely sensitive to the magnitude of an effective barriersjon of fluctuations is inversely proportional to the size of the

between the attractors. There are two main factors whiclystem. The probability of transitions may be characterized
determine this barrier. One of them is the ratio of determin-by the mean first passage time from one basin of attraction to
istic dynamiCS to Strength of fluctuations. This factor de'the other one. In F|g 8 we show the mean first passage time
pends on the total number of particldsbecause the disper- (7) from the basin of attraction of SF to the basin of attrac-
tion of SLC as a function of the number of particls In
order to eliminate the possibility of “recrossing” of ULC
during the transition, we have assumed that a trajectory had
0.7 — . T reached the basin of attraction of SLC only if it had crossed

' K. - the vertical lineé= 6., above the poiniv=0.62, which is
«‘; ST NSNS located outside of ULC. The mean first passage time has

i \‘*\45"7" been calculated from several hundred independent runs for
L "“ smallN and about 100 runs for lardé Fig. 8 shows thafr)

I o6 [ SN N strongly depends on particle numkiérand for largeN this
g U7 ORI Yoo dependence can be fitted by the exponential function.

Voo A LT The second factor determining the barrier is the distance
o N in the phase space between an attradtom which the sys-

N hAT [ tem escapgsand an unstable state. When this distance in-
. '—;7”? o i creases, the mean first passage time rapidly grows. The dis-
05— mtrt----"""7 7" h tance separating SF and ULC in our system is a function of
e g. This distance is maximal at=qy¢, at which the subcriti-

: : cal Hopf bifurcation occurs, and SLC and ULC appear. It
0'5 OI6 0'7 decreases with increasing and approaches zero gt,,

' ) ’ when ULC collapses to SF. Figure 9 shows the influenag of

" on the mean first passage tif® (calculated like in Fig. 8

FIG. 7. Return map obtained from the Poincaeztion of the
stochastic trajectories depicted in Fig. 5. The sections were calcu- VI. DISCUSSION

lated for crossings with the line of fixed temperatuig . .
=3.309 998 403 1 when the trajectory intersects the line going from  1he model presented in this paper should be treated as a

lower to higher temperatures. The big squares show the values of Simplification of real thermochemical systems. It could be
corresponding to the stable focus and the stable limit cycle, wheredéSeful as a tool in studies of the influence of fluctuations on
the big cross—the unstable limit cycle. The small points far andthe dynamics of complex chemical systems with exothermic
above(below) the diagonal correspond to transition from the basinreactions. Appropriate choice of the parameters allows us to
of attraction of the stable focushe stable limit cyclgto the basin  obtain various dynamical regimes including coexistence of
of attraction of the stable limit cycléhe stable focus more than two attractors. The values of the parameters used
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8 the intermittence observed in deterministic chaotic dynami-
cal systems.

Rigorous analytical results for the mean first passage time
are not available for systems described by many variables. It
has been proven that) can be obtained from the stationary
solution of the master equatigg5], but this result does not
allow us to obtain an analytical expression {@} because of
the integrodifferential form of Eq30). However, some the-
oretical predictions for multivariable systems can be based
on the rigorous results for one-variable systems. The analyti-
® cal expression for the mean first passage time for one-
variable system§2,26,27 can be derived from the Fokker-
Planck equation, obtained from the expansion of the master
equation for large systeni4,3]. This result shows the fea-

. ® ture[2,26] that the mean first passage time depends exponen-
. | . | . | . tially on the magnitude of an effective activation barrier be-
200 220 240 tween the attractors. Similarly, as in physical systems with
q potential, this activation barrier may be calculated by inte-
gration of the “chemical force” along a path from an attrac-

FIG. 9. The mean first passage tirie) from the basin of at-  tor to an unstable state. In chemical systems, the role of force
tragtion of the stablg focus to the bas.in of attraction of the stablemayS the ratio of the reaction rate to the noise strength,
limit cycle as a function of the bifurcation parametgr which is one factor determining the barrier height. The sec-

ond factor is the length of the integration interval in the
in the present paper are realisf22,23. The dimensionless phase space from the attractirom which a system escapes
activation energy must be greater than 4 in order to assureto the unstable state. Although such potential cannot be in-
theN-shaped nullcline for temperature. Such values are oftetroduced rigorously in dissipative, multivariable systems, the
met in real systems. The valee=5 assumed in this paper is asymptotic results for the weak-noise limit indicate that basic
convenient, if one plans an extension of this work by apply-properties of transitions in one-variable systems can also be
ing microscopic simulations of the system. The values offound in dissipative, multidimensional bistable systems in
dimensionless reaction heat are also typical for weak exowhich two attractors are separated by the saddle paBw
thermic (@~20) and strong exothermi@200) reactions. 32]. In such transitions stochastic trajectories pass through
The assumed concentration of the catalyst is an order loweghe region around the saddle point, which is related to a
than the concentrations of the reagents. minimum of the activation barrier. This property cannot be

The strongest influence of fluctuations can be expected fadirectly extended to our system, in which no saddle point
systems which are close to a bifurcation. We study the speexists, and the trajectories must cross the unstable limit
cific effects appearing in these conditions using the mastecycle.
equation approach, which is the most direct way to study the However, the description of the stochastic transitions
influence of internal fluctuations. The other way is to use thehrough the unstable limit cycle can be simplified in the fol-
Langevin approach, in which deterministic equations ardowing way. If the system circulates around the stable focus
supplemented by noise terms. The Langevin method is corend inside the unstable limit cycle, its dynamics can be
venient to study the influence of external noise. For the detreated approximately as a deterministic drift along the cycle
scription of the effect of internal fluctuations it may be usedand a relatively slow diffusive motion in the direction per-
only if the magnitude of random forces is related to the levelpendicular to the cycle. Following this approximation, one
of internal fluctuations. could then describe the transitions of trajectories across the

Our simulations show that close to the supercritical Hopfunstable limit cycle as the one-dimensional stochastic dy-
bifurcation it is very difficult (if possible at all to decide namics through a potential barrig33]. On the basis of the
whether the system is below or above the bifurcation. Weheoretical results for one-variable syste28—-33, one can
illustrate this uncertainty for the system containing relativelyexpect that the transitions occur in the vicinity of the point of
small number of particles, but such a situation can appear iolosest approach between the stable focus and the unstable
macroscopic systems as well, if they are sufficiently close tdimit cycle. Moreover, in this region the density of circulat-
the Hopf bifurcation24]. ing trajectories is the highest, which shows that the vector

Close to the subcritical Hopf bifurcation, when two attrac-field normal to the unstable limit cycle is the weakest and
tors (the stable focus and the stable limit cyatmexist, fluc-  this property enhanced the weakening of the apparent poten-
tuations are able to switch the trajectory of the system frontial barrier in this direction. Figure 5 indeed shows that the
one basin of attraction to the other one. The typical behaviotransitions occur effectively only if the stochastic trajectory
representing such transitions is shown in Fig. 6. The interremains in the region of the closest approach between the
lacement of small and large amplitude oscillations is the constable focus and the unstable limit cycles on the phase plane
sequence of fluctuations and it should be distinguished fronif,«). The minimal distance between these states is a func-

In<t™>
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tion of the bifurcation parametey, and Fig. 9 confirms that cycle) remain still relatively close. In these conditions the
(7) depends strongly oqg. transitions from one basin of attraction to another one can
Due to circulation of the stochastic trajectory the height ofappear not only in the small systems discussed above, but
the one-dimensional barrier changes periodically in timeeven in macroscopic systems.
The transitions are effective only in the region close to the In the present paper we limit ourselves to the case of one
minimal distance, where the barrier is smallest. Thereforeintersection point of the nullclines. The nulicline fércan be
one can expect that the transition probability changes periapproximated by a polynomial of the third degree. For planar
odically in time[33]. vector fields described by polynomials of the third degree,
The exponential factor including the effective barrier be-for the codimension 12 problem, the number of possible
comes many orders of magnitude smaller if the system iéimit cycles(attracting or repelling which can appear after a
close to the bifurcations, which means that the unstable limibifurcation is limited from below and according to the re-
cycle and the attractofthe stable focus or the stable limit cently proven theorerf34] is not less than 11.
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