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Assessment of damage in an eight-oscillator circuit using dynamical forcing
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We employ chaotic interrogation of a circuit simulation of a structure in order to test for damage to the
structure. The circuit simulation provides a realistic test of our attractor-based method and permits close control
over parameters in the structure. In this circuit, simulating an eight-degree-of-freedom spring-mass system, we
were able to detect changes of as little as 2% in the coupling between two oscillators in the circuit. This
corresponded to detection of a 2% loss in stiffness to one spring in the modeled system.
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I. INTRODUCTION

Simulation of a physical system with an electrical circ
affords the experimentalist control over the parameters of
system that are nearly as good as in a numerical simula
and at the same time provides insight into the behavior
data analysis algorithms with real experimental data. Ty
cally, output from a circuit simulation is also low noise. Th
allows the analyst to concentrate on the analysis of the
and method without the additional problem of dealing w
noise.

Here we develop an eight-oscillator circuit simulation o
spring-mass damper system. We simulate increme
changes in stiffness to one spring near the fixed end of
system and force the circuit at the opposite end with a
renz signal. The system acts as a linear filter of the sig
this linear filter changes with changes in stiffness. It has b
shown both theoretically~see, e.g., Refs.@1,2#! and experi-
mentally @3,4# that in some cases@e.g., infinite impulse re-
sponse~IIR! filters# the filtering of a chaotic signal change
the dimension of the attractor that is reconstructed from
signal. Nicholset al showed that it is possible to extra
various features from the reconstructed attractors from c
otically forced structures in order to detect damage@5,6#.
Here, we test the limits of detection by attempting to det
very low levels of damage in only one location in a structu
We introduce a statistical test, based on the continuity tes
Pecora, Carroll, and Heagy@7# to detect geometric change
in the reconstructed attractors and test to see how this st
tic scales with the level of damage.

In our experiment we record the output at each oscilla
and use multivariate time-series analysis to embed the
series from various change scenarios. We note that altho
previous multivariate embedding methods were tailored
time series that were weakly coupled@8#, here we use very
strongly coupled time series, a result of the forcing of t
structure. We develop strategies for finding the dimension
the embedding using a series of false-nearest-neighbor t
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Our statistical test determines if there is evidence tha
continuous map exists between the reconstructed attra
from a baseline system to that of each change scenario.
ing this test, we are able to detect a 2% change in stiffn
from the baseline scenario. We also observe increme
changes in the statistic that parallel the incremental chan
in the circuit.

II. EXPERIMENTAL DESIGN

In order to test damage detection algorithms in a c
trolled and well characterized system, we built a simple a
log electronic circuit to simulate a set of masses connec
by springs~see Fig. 1!. The circuit consisted of eight unde
damped oscillators coupled in a line. We based the oscilla
circuits on the following model:

dxi

dt
5t i yi ,

dyi

dt
52ty@g~2yi2yi 112yi 21!1a~2xi2xi 212xi 11!#.

~1!

The average time constantt i for the eight oscillators is
104 s, but the individualt i ’s vary by 20% from this average
to simulate variations in the object being tested. The ot
time constantty is constant at 104 s. Damage is simulated b
changing the stiffness constanta from its normal value of 1,
while the damping constantg is set to 0.05.

The circuit for one oscillator is shown in Fig. 2. The valu
of xi is measured at the location markedX, andyi is mea-
sured atY. The oscillator time constants aret i51/Rt iC,
whereC50.001mF andRt i is given in Fig. 3. We simulate
damage by increasing the values ofRx( i 11) andRx( i 21) from
their normal values of 10 kV. The signals from the othe
oscillators are input at the coupling points indicated.

We are simulating an array of masses and springs wh
one end is fixed and the other end is driven. The driv
oscillator is oscillator 7, while the oscillator at the fixed en
is oscillator 0. To simulate the fixed end, we setx21 andy21
©2003 The American Physical Society15-1
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FIG. 1. Eight degree-of-freedom spring-mass system.
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equal to 0. At the driven end,x850 and y8 ~the driving
signal! is a computer generated Lorenz signal.

The Lorenz system used to generate the driving signa

dx

dt
516~y2x!,

dy

dt
545.92x2xz2y,

dz

dt
5xy24z. ~2!

These Lorenz equations are numerically integrated wit
fourth order Runge-Kutta routine at a time step of 0.002. T
Lyapunov exponents for this Lorenz system are 1.5 s21, 0,
and222 s21. The Lorenzx signal is played back through
digital to analog converter at 110 000 points/s to form
driving signal. At this playback rate, the Lyapunov expone
for the Lorenz signal are multiplied by~110 000 points/s!/
~500 points/s! so the new set of Lyapunov exponents a
330 s21, 0, and24840 s21. These numbers may be com
pared to the real parts of the first three eigenvalues for
undamaged circuit ~measured experimentally! of
2123 s21, 2149 s21, and2250 s21.

The signals from the driven oscillator array were digitiz
at 22 000 points/s.

III. THE SKEW-PRODUCT SYSTEM AND STRUCTURAL
RESPONSE TO CHAOTIC EXCITATION

The driven system we describe in Sec. II is a particu
skew product that arises from the filtering of a dynami
system. Here we offer a characterization of these syst
which will lead to the geometric test for damage in the c
cuit. Much of this background information is covered b

FIG. 2. Single underdamped oscillator circuit used in the exp
ment.Rx( i 11) andRx( i 21) have nominal values of 10 kV, but their
values can be increased to simulate damage.Ry( i 61)5200 kV, R1

510 kV, R2550 kV, R35100 kV, R451 MV, R55100 kV,
R65100 kV, C50.001mF. Rt is given in Fig. 3. All resistance
values are61%.
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Davies and Campbell@1#, and we follow their notation with
minor changes for clarity.

Consider a nonlinear functionf (x):X→X, where we are
interested in the evolutionf n(x) of points xPX, for nPZ.
After a period of transient behavior, the iterates ofx underf
settle into the attractor off in phase space.

Now consider applying a linear filter to a nonlinear fun
tion. Let the linear filter be the matrixB. Let the nonlinear
function be f :Rp→Rp be written asxn :5 f n(x). Thus, we
have the following slaved dynamical system:

yn115Byn1xn ,

xn115 f ~xn!. ~3!

The input function is unchanged by the filter. Howev
the slaved system$yn% is determined by the filtering of the
base signal$xn% ~the drive signal!. This is an example of an
IIR filter; the seriesyn is affected by the entire time histor
of y. In practice, the dynamical systemf is not directly ob-
servable; we instead have an observation functionH:X
→Rp. The functionH can be thought of as an appropria
coupling function.

The stability of any dynamical system is described by
Lyapunov exponents. In the case of a linear function,
Lyapunov exponents are the logarithms of the moduli of
characteristic values~i.e., the characteristic exponents!. We
say that such a system isstable if all of the characteristic
values lie inside the unit circle. In the case of an IIR filter,
long asB is stable, the Lyapunov exponents of the IIR filt
are simply the characteristic exponents ofB together with the
Lyapunov exponents off ~see, e.g., Ref.@1#!. In a practical
situation, all filters provided by linear structures are stabl

Now we can define the skew-product systemF on the
entire spaceX3Rp by the following:

F~x,y!5@ f ~x!,By1H„f ~x!…#. ~4!

We have fulfilled the criteria for Lemma 1 of Davies an
Campbell @1#. Thus, there exists a continuous functionf
such that the graph off represents a unique, globally attrac
ing F-invariant manifold. The functionf is a consequence o
the skew product and of the stability of the filterB. In our
case, the attractor given by the Lorenz function is no
manifold. However, we may still define the functionf in the

i-

FIG. 3. Values of resistorRt i for different oscillators.
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ASSESSMENT OF DAMAGE IN AN EIGHT-OSCILLATOR . . . PHYSICAL REVIEW E 68, 036215 ~2003!
same way. Although we cannot expect that„x,f(x)… will be
a manifold, we can still consider it as anF-invariant geomet-
ric object.

Now suppose that we filter the chaotic functionf through
two different structures, each yielding a stable linear filt
Given these two different stable linear filters,B1 andB2 of
thesamechaotic input signal, we may construct functionsf i
in the same manner asf, above. We then have two differen
geometric objects, the graphs off1 andf2 which represent
the two skew-product systems; call themY and Z, respec-
tively.

It is natural to define a map betweenY and Z using the
drive spaceX and the representation of each point inY as
„x,f1(x)… and each point inZ as „x,f2(x)…. Thus, we
present the following. LetC:Y→Z be defined by

C„x,f1~x!…5„x,f2~x!…. ~5!

This function is well defined because of the projections
Y andZ which take„x,f i(x)… to xPX; because the filter is
linear, the functionsf i are one to one. We are interested
the properties of functionC. In particular, this function
shows the relationship between the two geometric obje
given by the graphs of the functionsf i .

We would like to develop tests which indicate differenc
between~time-series reconstructions of! Y andZ which arise
because of differences in the filtersB1 and B2. Changes in
the linear filtering of the input signal will indicate changes
the structure itself.

In an experimental setting, a time series of measurem
of some function of the filtered signal is the only availab
quantity. In this case, the attractor can be reconstructed u
a time series of the observed quantity, i.e., a time-delay
bedding. It has been shown that the reconstructed attract
a faithful representation of the original attractor@9#. Because
we force our structures with an identical signal, the funct
C can be constructed implicitly by mapping a time-del
coordinate from the reconstruction ofY to the corresponding
~by time! time-delay coordinate in the reconstruction ofZ.

We now turn to the description of the particular test w
use for the changes inC.

IV. THE TEST FOR STATISTICAL CONTINUITY

Given time-delay embeddings of two different geomet
objects reconstructed from time-series data, it is often imp
tant to find a functional relationship between the two objec
For instance, in the presence of noisy data from the rec
struction of one object, can we say if it is essentially iden
cal to another object? Proving or disproving the existence
a continuous function between two such objects can b
powerful tool for the analysis of nonlinear behavior. Given
proposed functionF:X→Y the mathematical definition o
continuity at a pointx(t)PX is stated as follows: For alle
.0, 'd.0 such that ifix(t i)2x(t j )i,d, then iF„x(t i)…
2F„x(t j )…i,e. The geometric meaning of this statement
illustrated in Fig. 4.

If we let the input to the function be designated as
source and the output designated as the target, then fo
03621
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arbitrarily small set in the target, a set in the source can
found for which all points map to the set in the target. Th
we see that points that are close to each other in the so
map to points that are close to each other in the target.
‘‘closeness’’ is the relationship betweend ande.

For a theoretical geometric object the analytic definition
clear. However, translating the mathematicale2d definition
of continuity to a time-series reconstruction setting rais
two important questions.

~1! How can potentially noisy, finite data yield a reaso
able definition of continuity either at a point or on an ent
geometric object?

~2! How can such a definition be translated to a meani
ful and reliable statistic regarding the absence or presenc
a continuous function?

Three clear problems appear when considering contin
in the context of finite data. The first is thate cannot be made
to go to zero. Thus, some finite but smalle that still indicates
continuity will have to be determined. Moreover, for somex,
there may bee for which d can be found even if there is n
continuousF. Second, only a finite number of pointsxPX
can be checked for continuity. Finally, in the presence
noise, even for an obviously continuousF ~e.g., an identity
function!, all points from ad ball may not map to the corre
spondinge ball. For example, see Fig. 5. These issues can
be ignored, but we can create a statistical criterion for c
tinuity that is consistent with thee2d definition.

We begin with two time-series reconstructions, denoteY
andZ. The spaceY will be denoted the source,Z the target
~or image!. We formulate the continuity test as follows.

FIG. 4. Points from thed ball on the left map to thee ball on the
right.

FIG. 5. Ane andd may be found bute may be large. Noise may
force some points from thed ball to be outside thee ball.
5-3
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MONIZ et al. PHYSICAL REVIEW E 68, 036215 ~2003!
Theoretically, we would choose ane as in the formal
definition. We find thee ball around the pointz in the space
Z. We then take progressively smallerd balls around the
corresponding pointyPY that maps tozPZ until all of the
points in thed ball are mapped into thee ball. However,
because of the above issues, we need instead to apply a
tistical criterion which will reject or accept thed ball as
passing the continuity test for thise. For this, we formulate a
null hypothesis.

The null hypothesis assumes that for any pointy(t j ) in a
d ball the corresponding pointz(t j ) has a probability 0.5 of
being in thee ball, regardless of the size of thee ball. If n
points are in anyd ball, the probability ofm or more of these
points’ images in thee ball must be,0.05 to reject the null
hypothesis.

The null hypothesis essentially assumes that points f
the givend ball map to points in thee ball by a coin flip. In
order to reject the null~equivalently, toacceptthe d ball as
passing the continuity test for thise), the probability must lie
in the tail of the binomial distribution. Thus, we must ha
95% confidence that the points from thed ball did not map
to thee ball by chance.

This differs from the null hypothesis described in Ref.@7#.
To account for noise, our null hypothesis allows some po
from the d ball to map outside thee ball. However, we
require that enough pointsm from thed ball map into thee
ball to ensure that the probability ofm or more points land-
ing in thee ball by chance~noise! is low. Hence, the possi
bility that noise can produce evidence of continuity is neg
gible.

We formulate the statistic to be based not on the acc
tance or rejection of the null hypothesis, but on theminimum
e that can be used to reject the null hypothesis at each p
We call this valuee*.

To compute the continuity statistic,N test pointsy(t i) are
chosen at random fromY. This serves to also distribute th
points randomly in space. In our implementation, the data
normalized so that the standard deviation of the attracto
s51. For each test point, initiallye5d53s. The number
of points in thed ball around the representative pointy(t i) is
n. Image points in the ball centered around the pointz(t i) are
counted; this number ism. Then the binomial distribution
with parameters (n,0.5) is computed to find the cumulativ
probability of findingm or more image points in thee ball. If
this probability is,0.05, the null hypothesis is rejected fo
this point ande is recorded ase*. Thene is reduced with the
samed. If the null hypothesis is not rejected,d is reduced.
To maintain the 95% confidence interval, there must be
least five temporally noncorrelated points in thed ball. If no
e can be found withany acceptabled, we increase the ini-
tially allowede until e* can be found for all points. Note tha
e* for each point represents thesmalleste for which the null
hypothesis is rejected. The average and distribution ofe* are
recorded, along with the maximumd for eache*.

To detect differences in geometric structures using
continuity test, we compare both the averagee* and the dis-
tribution of e* for the set of representative points. For com
parison, we compute the continuity statistics for a kno
03621
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functional relationship in order to see the smallest possible;
call this valuee0. If e* @e0 for a particular test, it is clear
that any functional relationship between the source and ta
attractors is in question. Ife* is close toe0, we examine the
distribution for the tests in question and for the known re
tionship to detect either degradation of a functional relatio
ship or evidence that a continuous functional relations
persists.

For example, if we are testing for continuity of the fun
tion C described in Sec. III, we first finde* values for a
function between the attractors reconstructed from two s
of output from an identicalundamagedcircuit. We call this
value e0. We may define the functionC between recon-
structed attractors based on the input signalx as in definition
~5!. The prerecorded input signal allows us to treat all sets
output data as if they were recorded simultaneously from
same input signal.

We note that ultimately the test on our experimental d
will be performed not on the actual geometric object, but
an attractor reconstructed from time series. Thus altho
theoretically the functionC from Eq. ~5! is continuous be-
cause it is the composition of continuous functions, we o
serve that loss of differentiability in a discrete function mim
ics the loss of continuity~see Fig. 6!. In this case, it may not
be possible to tell if the continuity test indicates that t
continuity or the differentiability of the functional relation-
ship changes with damage. In either case, changes ine*
point to changes in the filtering of the chaotic signal.

We emphasize that the continuity statistic is a one-sid
statistic. Thus, evidence of a continuous functional relati
ship C1 :Y→Z does not imply existence of a continuou
function C2 :Z→Y. In practice, we compute the continuit
statistic using sourceY and targetZ and then compute the
statistics using sourceZ and targetY. These statistics are
considered separately, but we note that in our tests, the
tinuity tests for both functional directions gave similar stat
tics.

V. DATA ANALYSIS

Data from these experiments were a set of eight time
ries of length 200 000 points. We front truncated the data
10 000 points to allow for chaotic transients, and then u
the next 80 000 points~a data limitation because of comput
memory and speed constraints!.

We embedded the eight time series in a 16-dimensio
space, using two time delays per time series. The embed
dimension was determined by using a false-nearest-neig
analysis @10# on all eight time series. The false-neare

FIG. 6. Loss of differentiability may mimic loss of continuity
For the givene ball, there is nod ball for which all points map to
the e ball.
5-4
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ASSESSMENT OF DAMAGE IN AN EIGHT-OSCILLATOR . . . PHYSICAL REVIEW E 68, 036215 ~2003!
neighbor analysis has been used for determination of em
ding dimension for multivariate data by Boccalettiet al. @8#.
However, in that case the time series were weakly coup
In our case the time series were strongly coupled via
drive signal. The scheme in Ref.@8# was adaptive, in tha
dimensions were only increased when false near neigh
were found. We adopted a nonadaptive scheme, testing
possibilities for combinations of time series. Because
time series were strongly coupled, it was conjectured that
adaptive scheme might be susceptible to coupling effects
tween time series. This could cause the adaptive false-n
neighbors routine to omit a time series. The result of t
could be an incomplete investigation of embedding dim
sion. Thus, we investigate embeddings starting with dim
sion 1 and ending with dimension 24.

We have eight time series from which we constru
d-dimensional delay vectors. For a one-dimensional emb
ding, we construct one-dimensional vectors from a sin
time series sj (t). For two-dimensional vectors we use a
other time series sk(t) for the second component of the ve
tor. To further increase the delay to dimensionsd with 1
<d<8, we add additional time series. An eight-dimensio
time-delay vector looks like (s1 , . . . ,s8).

For dimensionsd.8, we add delays in constructing th
vector. One example is „s1(t), . . . ,s3(t),s3(t
1t), . . . ,s8(t)…. To create embedded vectors of dimensi
d.9, we continue to add delayed time series sj (t1t) @and
in dimensions.16, sj (t12t)] as new components for th
vector.

We used the autocorrelation function on all eight tim
series to find an appropriate time delay. We used a time-d
window of 30 time steps. This corresponded to an'2/3 loss
of autocorrelation for the time-series output by the oscillat
at the driven end of the undamaged circuit. Because the
tocorrelation delays for the output of the oscillators at
fixed end of the system were much longer ('150 time
steps!, we used the shorter delay times of the driven end
a multivariate time-series embedding with all output valu
synchronized with the input signal, the same delay mus
used for each time series. Using different delays would h

FIG. 7. ~Color online! Changes in averagee* in the continuity
test for maps from damaged-to-undamaged reconstructions.
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the same effect as sampling randomly through the time se
for each embedded vector in a univariate embedding.

In order to exclude spatially correlated points that are a
correlated in time, we examined the drive signal for t
length of an average oscillation. We found this to be 30 ti
steps. We then employed a Theiler~see Ref.@11#! window of
length 30 time steps in the search for nearest-neighbor po
in the continuity test.

The data were normalized and demeaned before em
ding. In order to facilitate range searches in the 1
dimensional space, we adapted a kd-tree range search
rithm ~see, e.g., Refs.@12,13#! to the multivariate embedding
This allowed us to perform each continuity test in abou
min for 100 representative points on the attractor using a
MHz G3 processor with 384 MB of memory.

With the ten datasets for the circuit at damage level 0,
performed 20 source-target combinations of the continu
test in order to determinee0 and distribution ofe* values
between attractors reconstructed from an undamaged
cuit’s output. We then performed the continuity test betwe
an undamaged circuit’s output as the source and a dam
circuit’s output as the target to obtain the averagee* and

FIG. 8. ~Color online! Changes in averagee* with damage.
Maps from undamaged-to-damaged reconstructions.

FIG. 9. ~Color online! Distributions ofe* in the continuity test.
Maps from undamaged-to-damaged reconstructions.
5-5
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MONIZ et al. PHYSICAL REVIEW E 68, 036215 ~2003!
distribution ofe* for ten source-target pairs with each lev
of damage.

In order to assure that the continuity test is a two-way te
we also performed the test for damaged-to-undama
source-target pairs. These results were similar to those
tained for the undamaged to damaged and appear in Fig

VI. RESULTS

We summarize the results in Figs. 8–10. Figure 8 sho
that the averagee* is larger when there is 2% damage tha
the averagee* for no damage. We see that the lower end
the 95% confidence interval for the 2% damage scenari
close to the averagee* for the undamaged scenario. The 4
damage shows a similar increase ine* over that of the un-
damaged scenario. The 95% confidence intervals for
damage scenarios are also larger than that from the und
aged scenario; in the damage of 6% or more, the interval
more than tripled in size. The evidence of damage is e
more striking when we consider the probability distributio
seen in Figs. 9 and 10. The distributions are drawn from
runs of the continuity test, each run using a different com
nation of output from the undamaged circuit and the da
aged circuit. We see spreading of the entire probability d
tribution of e* as well as clear movement in the location
the peak of the distribution with increasing damage.

We note that although there is a clear difference betw
the probability distribution for the undamaged and the 2
damage, there is not a large difference between those o
2% and 4% damage and between 6% and 8% damage
though the resistors only have a~1%! accuracy in their la-
beling, the discrepancy does not completely explain this p
nomenon. More investigation into both the closeness of
distributions of the 2% and 4% and of the 6% and 8% as w
as the apparent jump between 4% and 6% damage is
ranted.

It is noteworthy that there is a clearly identifiable chan
in the nature of the functionC even with only 2% change in
the circuit. Damage in the 10% scenario was overwhe
ingly obvious—we saw a large change in the peak a
spread of the probability distribution of thee* values for the

FIG. 10. ~Color online! Distributions ofe* in the continuity test.
Maps from undamaged-to-damaged reconstructions.
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undamaged-to-undamagedC vs the undamaged-to-damage
C. This points to a loss of continuity or differentiability. W
also saw incremental~although not linear! change in the na-
ture of C corresponding to incremental changes in the c
cuit. Note by the 95% confidence intervals in Fig. 8 that t
continuity test didnot indicateanydamage existed in any o
the undamaged circuits. This was reflected in tight distrib
tions with small variance ine* along with smalle*. Vari-
ances for thee* in the continuity test from undamaged t
damaged are listed in Fig. 11.

VII. CONCLUSION

This method of damage detection was extremely sensi
to damage, while at the same time giving consistent res
when no damage was present. We saw an incremental ch
in our statistic with changes in damage, indicating that
method may possibly be used for prognostics as well as
agnostics.

The damage in this structure was confined to one locat
Thus, no localization study was possible. A study is curren
in progress in which we analyze data from circuits that ha
the same level of damage in the coupling between differ
oscillators.

One advantage to this method over current vibratio
methods such as described in Ref.@14# is that no damage- o
structure-specific model is necessary to use this test. The
provide the model. To arrive at the baselinee*, one interro-
gates a pristine structure. Changes in the distribution ofe*
indicate change in the stiffness of the structure. The part
lar damage mechanism does not need to be known in ord
detect damage. Using data from multiple sensors, it is p
sible to localize damage as in Ref.@15#; it may also be pos-
sible to characterize various kinds of damage by looking
the maps between attractors reconstructed from individ
sensors’ data.
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FIG. 11. Variance ine* for various damage levels. Mapping
between undamaged and damaged circuits at indicated level.
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