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Assessment of damage in an eight-oscillator circuit using dynamical forcing
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We employ chaotic interrogation of a circuit simulation of a structure in order to test for damage to the
structure. The circuit simulation provides a realistic test of our attractor-based method and permits close control
over parameters in the structure. In this circuit, simulating an eight-degree-of-freedom spring-mass system, we
were able to detect changes of as little as 2% in the coupling between two oscillators in the circuit. This
corresponded to detection of a 2% loss in stiffness to one spring in the modeled system.
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[. INTRODUCTION Our statistical test determines if there is evidence that a

continuous map exists between the reconstructed attractor

Simulation of a physical system with an electrical circuit from a baseline system to that of each change scenario. Us-

affords the experimentalist control over the parameters of thég this test, we are able to detect a 2% change in stiffness

system that are nearly as good as in a humerical simulatioffom the baseline scenario. We also observe incremental

and at the same t|me provides |ns|ght into the behavior OFhange-S in-the statistic that parallel the incremental Changes
data analysis algorithms with real experimental data. Typiin the circuit.

cally, output from a circuit simulation is also low noise. This

allows the ana!yst to concentrate on the analysis 01_‘ the Qata Il. EXPERIMENTAL DESIGN
and method without the additional problem of dealing with _ _ _
noise. In order to test damage detection algorithms in a con-

Here we develop an eight-oscillator circuit simulation of atrolled and well characterized system, we built a simple ana-
spring-mass damper system. We simulate incrementdPd €electronic circuit to simulate a set of masses connected
changes in stiffness to one spring near the fixed end of thBY springs(see Fig. 1 The circuit consisted of eight under-
system and force the circuit at the opposite end with a Lodamped oscillators coupled in a line. We based the oscillator
renz signal. The system acts as a linear filter of the signagircuits on the following model:
this linear filter changes with changes in stiffness. It has been
shown both theoreticallysee, e.g., Refd.1,2]) and experi- dx;
mentally[3,4] that in some casg®.g., infinite impulse re- gt Wi
sponsg(lIR) filters] the filtering of a chaotic signal changes
the dimension of the attractor that is reconstructed from the

signal. Nicholset al showed that it is possible to extract ﬁ:_T [Y(2Yi—Yis1—Yi1) + a(2X%—Xi_1—Xi+1)].
various features from the reconstructed attractors from cha- dt Y
otically forced structures in order to detect dam4§es]. (1)

Here, we test the limits of detection by attempting to detect
very low levels of damage in only one location in a structure.  The average time constant for the eight oscillators is
We introduce a statistical test, based on the continuity test 00" s, but the individualr;’s vary by 20% from this average
Pecora, Carroll, and Heady] to detect geometric changes to simulate variations in the object being tested. The other
in the reconstructed attractors and test to see how this statime constant, is constant at 10s. Damage is simulated by
tic scales with the level of damage. changing the stiffness constamatfrom its normal value of 1,
In our experiment we record the output at each oscillatowhile the damping constant is set to 0.05.
and use multivariate time-series analysis to embed the time The circuit for one oscillator is shown in Fig. 2. The value
series from various change scenarios. We note that althougif x; is measured at the location mark¥dandy; is mea-
previous multivariate embedding methods were tailored tesured atY. The oscillator time constants arg=1/R;;C,
time series that were weakly couplggl], here we use very whereC=0.001uF andR; is given in Fig. 3. We simulate
strongly coupled time series, a result of the forcing of thedamage by increasing the valuesRyf; 1) andR,(; _ 1) from
structure. We develop strategies for finding the dimension otheir normal values of 10. The signals from the other
the embedding using a series of false-nearest-neighbor testsscillators are input at the coupling points indicated.
We are simulating an array of masses and springs where
one end is fixed and the other end is driven. The driven
*FAX: (202)767-1697; electronic address: oscillator is oscillator 7, while the oscillator at the fixed end
moniz@anvil.nrl.navy.mil is oscillator 0. To simulate the fixed end, we get andy_ 4
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FIG. 1. Eight degree-of-freedom spring-mass system.

equal to 0. At the driven endxg=0 andyg (the driving  Davies and Campbelll], and we follow their notation with
signa) is a computer generated Lorenz signal. minor changes for clarity.
The Lorenz system used to generate the driving signal is Consider a nonlinear functiof(x):X— X, where we are
interested in the evolutiof"(x) of pointsx e X, for neZ.

dx After a period of transient behavior, the iteratesxafnderf
m=16(y—x), settle into the attractor dfin phase space.

Now consider applying a linear filter to a nonlinear func-
dy tion. Let the linear filter be the matri®. Let the nonlinear
qi 409X —xzmy, function bef:RP—RP be written asx,:=f"(x). Thus, we

have the following slaved dynamical system:
dz
EZXy—4Z. 2 Yn+1=BYntXn,
These Lorenz equations are numerically integrated with a Xn+1= F(Xp). (©)
fourth order Runge-Kutta routine at a time step of 0.002. The
Lyapunov exponents for this Lorenz system are 1.5 9, The input function is unchanged by the filter. However,

and—22 s™*. The Lorenzx signal is played back through a the slaved systerfly,} is determined by the filtering of the
digital to analog converter at 110000 points/s to form thepase signa{x,} (the drive signal This is an example of an
driving signal. At this playback rate, the Lyapunov exponents|R filter; the seriesy,, is affected by the entire time history
for the Lorenz signal are multiplied b{110000 points)$  of y. In practice, the dynamical systefiis not directly ob-
(500 points/s so the new set of Lyapunov exponents areservable; we instead have an observation functidrX

330!, 0, and—4840 s*. These numbers may be com- _,RP. The functionH can be thought of as an appropriate
pared to the real parts of the first three eigenvalues for theoupling function.

undamaged circuit (measured experimentally of The stability of any dynamical system is described by its
—-123st -149s?' and—250 st Lyapunov exponents. In the case of a linear function, the
The signals from the driven oscillator array were digitized Lyapunov exponents are the logarithms of the moduli of the
at 22000 points/s. characteristic value§i.e., the characteristic exponent¥Ve
say that such a system sableif all of the characteristic
IIl. THE SKEW-PRODUCT SYSTEM AND STRUCTURAL values lie inside the unit circle. In the case of an IIR filter, as
RESPONSE TO CHAOTIC EXCITATION long asB is stable, the Lyapunov exponents of the IIR filter

) o ) ] are simply the characteristic exponent8Babgether with the
The driven system we describe in Sec. Il is a part|cular|_yapunov exponents df (see, e.g., Refd]). In a practical

skew product that arises from the filtering of a dynamicalgjiation, all filters provided by linear structures are stable.
system. Here we offer a characterization of these systems now we can define the skew-product syst&mon the
which will lead to the geometric test for damage in the cir-gptire spac& x RP by the following:

cuit. Much of this background information is covered by

Rt F(xy)=[f(x),By+H(f(x))]. 4
X(i-1)_ =AM~
x(i+1)R.X.(,i$\1)\,_. We have fulfilled the criteria for Lemma 1 of Davies and
Ry1) Campbell[1]. Thus, there exists a continuous functign
y(-1) —nA R such that the graph af represents a unique, globally attract-
Ryis1) ing F-invariant manifold. The functiow is a consequence of
y(i+1) =W the skew product and of the stability of the filtBr In our

case, the attractor given by the Lorenz function is not a
= = manifold. However, we may still define the functignin the

FIG. 2. Single underdamped oscillator circuit used in the experi-

ment.Ry + 1y andRy;_;, have nominal values of 10(k, but their i o 1112 I3 la |s ls |7
values can be increased to simulate dam&yg..1)=200 K, R,

=10 kQ, R,=50 k), R;=100 K2, R,=1 MQ, R;=100 K2, R;;(KQ)|121]{100(80.6{90.9|121|110{110|90.9
Re=100 K}, C=0.001uF. R, is given in Fig. 3. All resistance

values are=1%. FIG. 3. Values of resistoR,; for different oscillators.
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same way. Although we cannot expect tkate(x)) will be F
a manifold, we can still consider it as &iinvariant geomet-
ric object.

Now suppose that we filter the chaotic functibtihrough
two different structures, each yielding a stable linear filter.
Given these two different stable linear filte&, and B, of
the samechaotic input signal, we may construct functiops

in the same manner af, above. We then have two different
geometric objects, the graphs ¢f and ¢, which represent &-ball
the two skew-product systems; call théfnand Z, respec- v Z=F(Y)
tively.
It is natural to define a map betwe&hand Z using the FIG. 4. Points from thé ball on the left map to the ball on the

drive spaceX and the representation of each point¥ras  right.
(x,¢1(x)) and each point inZ as (x,¢»(x)). Thus, we

present the following. LeW:Y—Z be defined by arbitrarily small set in the target, a set in the source can be
found for which all points map to the set in the target. Thus,
T (X, d1(X))= (X, P2(X)). (5) we see that points that are close to each other in the source

map to points that are close to each other in the target. The
This function is well defined because of the projections ortcloseness” is the relationship betweeéhand e.
Y andZ which take(x, ¢;(x)) to x e X; because the filter is For a theoretical geometric object the analytic definition is
linear, the functionsp; are one to one. We are interested in clear. However, translating the mathematieal & definition
the properties of functionV. In particular, this function of continuity to a time-series reconstruction setting raises
shows the relationship between the two geometric objectsvo important questions.
given by the graphs of the functior; . (1) How can potentially noisy, finite data yield a reason-
We would like to develop tests which indicate differencesable definition of continuity either at a point or on an entire
between(time-series reconstructions)of andZ which arise  geometric object?

because of differences in the filteBs and B,. Changes in (2) How can such a definition be translated to a meaning-
the linear filtering of the input signal will indicate changes in ful and reliable statistic regarding the absence or presence of
the structure itself. a continuous function?

In an experimental setting, a time series of measurements Three clear problems appear when considering continuity
of some function of the filtered signal is the only availablein the context of finite data. The first is thatannot be made
quantity. In this case, the attractor can be reconstructed usirtg go to zero. Thus, some finite but smalihat still indicates
a time series of the observed quantity, i.e., a time-delay emeontinuity will have to be determined. Moreover, for sorje
bedding. It has been shown that the reconstructed attractor iere may bes for which & can be found even if there is no
a faithful representation of the original attracf8i. Because continuousF. Second, only a finite number of poins= X
we force our structures with an identical signal, the functioncan be checked for continuity. Finally, in the presence of
¥ can be constructed implicitly by mapping a time-delay noise, even for an obviously continuoBs(e.g., an identity
coordinate from the reconstruction ¥fto the corresponding function), all points from as ball may not map to the corre-
(by time) time-delay coordinate in the reconstructionzf spondinge ball. For example, see Fig. 5. These issues cannot

We now turn to the description of the particular test webe ignored, but we can create a statistical criterion for con-

use for the changes . tinuity that is consistent with the— & definition.
We begin with two time-series reconstructions, dendfed
IV. THE TEST EOR STATISTICAL CONTINUITY andZ. The space¥ will be denoted the sourc&, the target

(or image. We formulate the continuity test as follows.
Given time-delay embeddings of two different geometric

objects reconstructed from time-series data, it is often impor-

tant to find a functional relationship between the two objects. /\

For instance, in the presence of noisy data from the recon-

struction of one object, can we say if it is essentially identi- sateoe .

cal to another object? Proving or disproving the existence of ,—-\g” . ..

a continuous function between two such objects can be a /.r(\\' .t .
powerful tool for the analysis of nonlinear behavior. Given a o 3-ball e .
proposed functior-:X—Y the mathematical definition of :’ LA TR
continuity at a poinix(t) e X is stated as follows: For al * e e

>0, 36>0 such that if|x(t;) —x(t;)[< &, then||F(x(t;)) e-ball

- F(x(tj))|\<e. The geometric meaning of this statement is
illustrated in Fig. 4.

If we let the input to the function be designated as the FIG. 5. Ane andé may be found bue may be large. Noise may
source and the output designated as the target, then for @rce some points from thé ball to be outside the ball.

Y Z=FY)
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Theoretically, we would choose an as in the formal
definition. We find thee ball around the point in the space
Z. We then take progressively smallérballs around the
corresponding poiny e Y that maps ta@e Z until all of the
points in theé ball are mapped into the ball. However,
because of the above issues, we need instead to apply a sta-
tistical criterion which will reject or accept thé ball as
passing the continuity test for thés For this, we formulate a
null hypothesis.

The null hypothesis assumes that for any pgiftt) in a
6 ball the corresponding poirx(t;) has a probability 0.5 of
being in thee ball, regardless of the size of theball. If n

000000 00000000

FIG. 6. Loss of differentiability may mimic loss of continuity.
For the givene ball, there is nas ball for which all points map to
the e ball.

functional relationship in order to see the smallest posgiple
call this valueey. If €*> ¢, for a particular test, it is clear
. , . that any functional relationship between the source and target
points are in any ball, the probability ofn or more of these 54 vtors is in question. ¥* is close toe,, we examine the
points’ images in the ball must be<0.05 to reject the null  gisripution for the tests in question and for the known rela-
hypothesis. ) ) tionship to detect either degradation of a functional relation-
The null hypothesis essentially assumes that points frompip or evidence that a continuous functional relationship
the givens ball map to points in the ball by a coin flip. In persists.
order to reject the nulfequivalently, toacceptthe & ball as For example, if we are testing for continuity of the func-
passing the continuity test for thég, the probability must lie  tion ¥ described in Sec. lll, we first finé* values for a
in the tail of the binomial distribution. Thus, we must have function between the attractors reconstructed from two sets
95% confidence that the points from tieball did not map  of output from an identicalindamagedircuit. We call this
to the e ball by chance. value 5. We may define the functioW between recon-
This differs from the null hypothesis described in R&fl.  structed attractors based on the input signas in definition
To account for noise, our null hypothesis allows some points5). The prerecorded input signal allows us to treat all sets of
from the & ball to map outside the ball. However, we output data as if they were recorded simultaneously from the
require that enough points from the 6 ball map into thee ~ same input signal.
ball to ensure that the probability ofi or more points land- We note that ultimately the test on our experimental data
ing in the € ball by chancenoise is low. Hence, the possi- will be performed not on the actual geometric object, but on
bility that noise can produce evidence of continuity is negli-an attractor reconstructed from time series. Thus although
gible. theoretically the function? from Eq. (5) is continuous be-
We formulate the statistic to be based not on the accepeause it is the composition of continuous functions, we ob-
tance or rejection of the null hypothesis, but on thisimum  serve that loss of differentiability in a discrete function mim-
€ that can be used to reject the null hypothesis at each poinics the loss of continuitysee Fig. 8. In this case, it may not
We call this valuee*. be possible to tell if the continuity test indicates that the
To compute the continuity statistibl test pointsy(t;) are  continuity or the differentiability of the functional relation-
chosen at random fromd. This serves to also distribute the ship changes with damage. In either case, changes*in
points randomly in space. In our implementation, the data areoint to changes in the filtering of the chaotic signal.
normalized so that the standard deviation of the attractor is We emphasize that the continuity statistic is a one-sided
o=1. For each test point, initiallg=6=30. The number statistic. Thus, evidence of a continuous functional relation-
of points in theé ball around the representative poyft;) is  ship ¥;:Y—Z does not imply existence of a continuous
n. Image points in the ball centered around the pafti) are  function ¥,:Z—Y. In practice, we compute the continuity
counted; this number isn. Then the binomial distribution statistic using sourc¥ and targetZ and then compute the
with parametersr(,0.5) is computed to find the cumulative statistics using sourc& and targetY. These statistics are
probability of findingm or more image points in theball. If ~ considered separately, but we note that in our tests, the con-
this probability is<<0.05, the null hypothesis is rejected for tinuity tests for both functional directions gave similar statis-
this point ande is recorded ag*. Then € is reduced with the tics.
sames. If the null hypothesis is not rejected,is reduced.
To maintain the 95% confidence interval, there must be at
least five temporally noncorrelated points in #héall. If no
€ can be found witrany acceptables, we increase the ini- Data from these experiments were a set of eight time se-
tially allowed e until e* can be found for all points. Note that ries of length 200 000 points. We front truncated the data by
e* for each point represents tisenalleste for which the null 10 000 points to allow for chaotic transients, and then used
hypothesis is rejected. The average and distributioer@fre  the next 80 000 point& data limitation because of computer
recorded, along with the maximufor eache*. memory and speed constraints
To detect differences in geometric structures using the We embedded the eight time series in a 16-dimensional
continuity test, we compare both the averagend the dis-  space, using two time delays per time series. The embedding
tribution of €* for the set of representative points. For com- dimension was determined by using a false-nearest-neighbor
parison, we compute the continuity statistics for a knownanalysis[10] on all eight time series. The false-nearest-

V. DATA ANALYSIS
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) _ _ o FIG. 8. (Color online Changes in average* with damage.
FIG. 7. (Color onling Changes in average® in the continuity ~ Maps from undamaged-to-damaged reconstructions.
test for maps from damaged-to-undamaged reconstructions.

neighbor analysis has been used for determination of embe h embedded . L7 beddi
ding dimension for multivariate data by Boccaledtial.[8].  'OF €ach embedded vector in a univariate embedding.
However, in that case the time series were weakly coupled. In order t_o e_xclude spatlally_ correlated |_o0|nts_ that are also
In our case the time series were strongly coupled via th&orrelated in time, we examined the drive signal for the
drive signal. The scheme in RdB] was adaptive, in that length of an average oscﬂlauon._ We found this to be 30 time
dimensions were only increased when false near neighboiePS:- We then employed a Theilsee Ref[11]) window of
were found. We adopted a nonadaptive scheme, testing dﬁ:ngth 30 tllme' steps in the search for nearest-neighbor points
possibilities for combinations of time series. Because ouf" the continuity test.

time series were strongly coupled, it was conjectured that the, "€ data were normalized and demeaned before embed-
adaptive scheme might be susceptible to coupling effects b&ing. In order to facilitate range searches in the 16-
tween time series. This could cause the adaptive false-neafimensional space, we adapted a kd-tree range search algo-
neighbors routine to omit a time series. The result of thigithm (see, e.g., Ref$12,13) to the multivariate embedding.

could be an incomplete investigation of embedding dimenJhis allowed us to perform each continuity test in about 3

sion. Thus, we investigate embeddings starting with dimenmin for 100 representgtive points on the attractor using a 265
sion 1 and ending with dimension 24. MHz G3 processor with 384 MB of memory.

We have eight time series from which we construct With the ten datasets for the circuit at damage level 0, we

d-dimensional delay vectors. For a one-dimensional embed2€rformed 20 source-target combinations of the continuity

ding, we construct one-dimensional vectors from a singléeSt in order to determine, and distribution ofe* values _
time series §t). For two-dimensional vectors we use an- between attractors reconstructed from an undamaged cir-

other time series,&t) for the second component of the vec- cuit's output. We fther) performed the continuity test between
tor. To further increase the delay to dimensiahsvith 1 @0 undamaged circuit's output as the source and a damaged
<d=8, we add additional time series. An eight-dimensionalCIrCUIt'S output as the target to obtain the averageand

}f{je same effect as sampling randomly through the time series

time-delay vector looks likeq;, .. . ,Sg).
For dimensiongi>8, we add delays in constructing the  0.35

vector. One  example is (sq(t), ... .ss(t),ss(t iufdgmaged

+17), ....54(t)). To create embedded vectors of dimension %3 2% Damage
d . . --—--6% Damage

d>9, we continue to add delayed time serigt ¢ 7) [and 0.25 | T ——

in dimensions>16, (t+27)] as new components for the

vector. 0.2 |

We used the autocorrelation function on all eight time &
series to find an appropriate time delay. We used a time-dela
window of 30 time steps. This corresponded to~a®/3 loss
of autocorrelation for the time-series output by the oscillators
at the driven end of the undamaged circuit. Because the au ¢.05 |
tocorrelation delays for the output of the oscillators at the s
fixed end of the system were much longer 150 time 0 ARRRRN
steps, we used the shorter delay times of the driven end. In 0.05 0.3 0.55 0.8 1.2 éf 3.2 42 52 6.2
a multivariate time-series embedding with all output values
synchronized with the input signal, the same delay must be FIG. 9. (Color onling Distributions ofe* in the continuity test.
used for each time series. Using different delays would hav&laps from undamaged-to-damaged reconstructions.

0.15 4

0.1
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0.3
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2% =~ 0.23
00.15
4% ~ 0.12
0.1 6% ~ 0.70
0.05 8% ~ 0.80
0 e SR = SRRt g SE 10% =~ 0.90
0.05 0.3 0.55 0.8 1.2 2.2 32 42 52 6.2

ex ' . ) .
FIG. 11. Variance ine* for various damage levels. Mapping

FIG. 10. (Color onling Distributions ofe* in the continuity test. ~ between undamaged and damaged circuits at indicated level.

Maps from undamaged-to-damaged reconstructions.

undamaged-to-undamag#d vs the undamaged-to-damaged
distribution of e* for ten source-target pairs with each level ¥. This points to a loss of continuity or differentiability. We
of damage. also saw incrementdhlthough not linearchange in the na-

In order to assure that the continuity test is a two-way testfure of ¥ corresponding to incremental changes in the cir-
we also performed the test for damaged-to-undamageduit. Note by the 95% confidence intervals in Fig. 8 that the
source-target pairs. These results were similar to those olgontinuity test didhot indicateany damage existed in any of
tained for the undamaged to damaged and appear in Fig. The undamaged circuits. This was reflected in tight distribu-
tions with small variance ire* along with small e*. Vari-
ances for thee* in the continuity test from undamaged to
damaged are listed in Fig. 11.

We summarize the results in Figs. 8—10. Figure 8 shows
that the average* is larger when there is 2% damage than VII. CONCLUSION
the average* for no damage. We see that the lower end of
the 95% confidence interval for the 2% damage scenario is This method of damage detection was extremely sensitive
close to the average* for the undamaged scenario. The 4% to damage, while at the same time giving consistent results
damage shows a similar increaseenover that of the un- when no damage was present. We saw an incremental change
damaged scenario. The 95% confidence intervals for th# our statistic with changes in damage, indicating that the
damage scenarios are also larger than that from the undarmethod may possibly be used for prognostics as well as di-
aged scenario; in the damage of 6% or more, the interval haggnostics.
more than tripled in size. The evidence of damage is even The damage in this structure was confined to one location.
more striking when we consider the probability distributionsThus, no localization study was possible. A study is currently
seen in Figs. 9 and 10. The distributions are drawn from tern progress in which we analyze data from circuits that have
runs of the continuity test, each run using a different combithe same level of damage in the coupling between different
nation of output from the undamaged circuit and the dam-oscillators.
aged circuit. We see spreading of the entire probability dis- One advantage to this method over current vibrational
tribution of €* as well as clear movement in the location of methods such as described in Ra#] is that no damage- or
the peak of the distribution with increasing damage. structure-specific model is necessary to use this test. The data

We note that although there is a clear difference betweeprovide the model. To arrive at the baseliete one interro-
the probability distribution for the undamaged and the 2%gates a pristine structure. Changes in the distributioa*of
damage, there is not a large difference between those of thigdicate change in the stiffness of the structure. The particu-
2% and 4% damage and between 6% and 8% damage. Aler damage mechanism does not need to be known in order to
though the resistors only have(4%) accuracy in their la- detect damage. Using data from multiple sensors, it is pos-
beling, the discrepancy does not completely explain this phesible to localize damage as in R¢L5]; it may also be pos-
nomenon. More investigation into both the closeness of theible to characterize various kinds of damage by looking at
distributions of the 2% and 4% and of the 6% and 8% as welthe maps between attractors reconstructed from individual
as the apparent jump between 4% and 6% damage is wagensors’ data.
ranted.

It is noteworthy that there is a clearly identifiable change
in the nature of the functio® even with only 2% change in
the circuit. Damage in the 10% scenario was overwhelm- This project was supported by the Office of Naval Re-
ingly obvious—we saw a large change in the peak andearch, the American Society for Engineering Education and
spread of the probability distribution of th& values for the a 6.1 Navy ARI.

VI. RESULTS
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