PHYSICAL REVIEW E 68, 036212 (2003
Decay of the classical Loschmidt echo in integrable systems
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We study both analytically and numerically the decay of fidelity of classical motion for integrable systems.
We find that the decay can exhibit two qualitatively different behaviors, nameblgabraic decayhat is due
to the perturbation of the shape of the tori dvallistic decaythat is associated with perturbing the frequencies
of the tori. The type of decay depends on initial conditions and on the shape of the perturbation but, for small
enough perturbations, not on its size. We demonstrate numerically this general behavior for the cases of the
twist map, the rectangular billiard, and the kicked rotor in the almost integrable regime.
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I. INTRODUCTION been discussed in recent papgt$,20,2] and very different

behaviors have been found. Jacqueidal. have shown the
The study of the relation between classical and quanturgXistence of a regime in which the quantum fidelity for clas-
dynamical chaos has greatly improved our understanding cfically integrable systems decays as a power law, with an

the behavior of quantum systems. An issue which may be giomalous exponent of purely quantum orig#i]. Prosen
interest in several situations is the stability of motion. In this2nd Znidarichave instead discussed a regime in which quan-

respect, even though Liouville equation, which governs thgUm fidelity exhibits a much faster Gaussian defsd. Both
evolution of classical distribution functions, is linear, the ex-'€9imes have been also discussed by Eckhardt in his analysis

ponential sensitivity of classical trajectories with respect to®f the decay of classical fidelity20], in which the problem
perturbing the initial conditions leads to a strong dynamical! the evolution of classical phase space densities has been
instability and characterizes classical chaos. Like the classpddressed for linearized flows. _ o
cal Liouville equation, the Schdinger equation is also lin- Ip the present paper, we dlscuss.the behawor.of fidelity
ear. However, the quantum evolution of states is stable anfpr integrable classical systems. Besides being of interest on
this qualitative difference is clearly apparent in the its own, our classical study will allow us to understand the
Loschmidt echo numerical experiments of Réf]. The main mechanisms for the fidelity decay and therefore will
problem of the stability of quantum motion under perturba_cpnsutute a valuable reference point for the quantum analy-
tions in the Hamiltonian has recently gained a renewed in$'S- L'et us state the main re;ults of our paper. We show, for
terest{2—16), also in connection with quantum computation Hgmﬂtoman mtegrablg classical systems, the existence of a
[17-19. The quantity of central interest in these investiga-Cfitical border depending on thehapeof the perturbation,

tions is the fidelityf o(t) (also called Loschmidt echowhich ~ Which separates two different types of fidelity decay: a
measures the accuracy to which a quantum state can be ROWer law decay=14", wheren is the dimension of the
covered by inverting, at time, the dynamics with a per- system, and a much faster decay of ballistic type. We stress

turbed Hamiltonian. The main interest has been focused off!@t the type of decay depends on initial conditions and on

classically chaotic systems for which, besides numerical ext€ shape of the perturbation but, for small enough perturba-
ons, not on its strength. We derive an analytical expression

periments, some theoretical tools are available, such as raH o -
dom matrix theory and semiclassical methods. However igor the critical border. Our theoretical results have general

the general case, the phase space structure is mixed wiffdidity and are confirmed by a numerical analysis on three
chaotic components and islands of stability. If the motiontYPical models of integrable systems: the twist map, the rect-
starts inside an integrable island, then it very much re2ngular billiard, and the kicked rotor in the almost integrable

sembles the motion in integrable systems. Contrary to chd®9'me. _

otic systems, which are dynamically unstable but structurally 1€ outline of the paper is as follows. In Sec. Il we de-

stable, integrable systems are dynamically stable but very€lOP @ general theory for the decay of classical fidelity in

sensitive to external perturbations. Therefore the analysis dpt€grable systems. Section Ill demonstrates numerically the

the fidelity requires particular care and one may expect it tg/@lidity of our theory in two different typical examples of

be dependent on initial conditions and on the type of perturiNtégrable systems, the twist map and the rectangular bil-

bation. Indeed, the decay of fidelity in integrable systems haliard: and in an almost integrable system, the kicked rotor.
Our conclusions are drawn in Sec. IV. Finally, in the Appen-

dix, we discuss the long-time relaxation to equilibrium.
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the same initial staté(0)) with the unperturbed Hamil- The frequency vector§ and Q' characterize the linedin
tonianH, and the perturbed Hamiltoniad,+ €V, respec- time) evolution of the angle variables in integrable systems.
tively. The fidelity is then given by Expressed in the original action-angle variables, the overall
evolution can be written as
fa() =[] g(1))]% D

This expression can be equivalently rewritten in terms of the
Wigner functions as

02=0,+[Q(1)—Q'(1")]t+0O(e), (€)

where the error tern® () is due to the change from one set
N nn _ _ of variables to the other at timeand the reverse change at
fo()=(27h) fd qd"pW(q,p;)W(a,p;t), (2 time 2t. Since the perturbation is small, we may write the
change in frequency as
where n is the number of degrees of freedom. Since the
Wigner functions can be considered as the quantum analogs oQ
of the classical phase space densities, we define the classical ~ €'(I")=Q(1)+AQ(1)+ —=(I" —1)+0(e?), (10
fidelity as

whereAQ=Q'(1)—Q(l) denotes the change of frequencies
f(t):J d"qd"pp.(q,p;t)p(a.p;t), (3 on the unperturbed torusandl’ —1 gives the change of the
action variables caused by the perturbatiamitten in Eq.
wherep,p. are the square normalized classical phase spadé) to the first order ine].
densities (d"qd"pp?= fd"qd"pp?=1). We note that (t) If we consider the angle variables to be uniformly distrib-
is the classical limit offy(t). As the density evolution is uted at the time at which the motion is inverted, we may
unitary in both classical and quantum mechanics, instead dftroduce the distribution
evolving two densities forward in time and calculating their
overlap, we may first evolve the initial densjiy forward in Al 1 Al=[1'(1,0)=1)]
time with the unperturbed Hamiltoniad,, and then evolve |(—) f " [ .
this density backward in time with the perturbed Hamil-
tonian Hy+ €V. We denote the density obtained in such a
way asp,;. The fidelity is then given by the overlap of the which gives the probability density for the transition from
density p,; with the initial densitypg: the torus characterized by the action variablésthe unper-
turbed coordinates to the torus with action varialifes the
perturbed coordinates. Thescaling has been chosen in or-
f(t):f d"qd"pp2:(d,p)po(a.P).- @ der for that functionw, itself does not depend oa in the
linear approximation.
Such an approach is more convenient for our discussion of |n the generic case, the motion on a torus is ergodic. It is,
the classical fidelity of integrable systems. however, not random and therefore, in order for Bd) to
For the following discussion we assume that the perturbawell describe transitions between the tori, one needs to con-
tion of the integrable system is of the Kolmogorov-Arnold- sider an ensemble of tori in the vicinity of the chosen actions
moser(KAM) type, namely, for small enough perturbations |, as only for an ensemble of tori with different frequencies
€V, most of the tori of the system are only slightly deformedwe can expect the angle variables to be uniformly distributed
but not destroyed. Therefore for most of the tori the tranSfOf-after a Sufﬁcienﬂy |0ng time. Indeed, the Spread of frequen-
mation from old action-angle variablds® to new ones cies given bysQ=(4Q/4l) 4l translates into the spread of

I",0" is possible, in such a way that the new actions arexngle variabless®= 5Qt. The time for this spread in the
constants of motion of the perturbed system. To the first orangle variable to become comparable to B

der in the perturbation strengththe transformation can be

(2w

- .y

written as 20
~—— 12
0'=0+f(1,0), 5) to (m) : (12
— |y
al
I'=14+€9(1,0). (6)
After the forward unperturbed evolution up to timeve ~ Wherey is the characteristic width of the initial phase space
have density distributiorpy along the action directiofto simplify
writing, we have given Eq(12) for the one-dimensional
0,=0,+ Q(I)t. (7) casg. Thus, our theory based on E@.1) is valid for times
_ t>tg.
Then we perform a backward evolution of the perturbed sys-  Since the final angle variables, after the forward and back-
tem from timet to time 2t, getting ward evolutions, depend on the actions of the perturbed sys-
) , L tem, we compute the distribution of the angle variables from
05=0; - Q'(I")t. (8)  the distribution of the perturbed actions as
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a(1' = 1)1e)
(Oy— )|’

13

17—
Pl(zt_@)o;t):Wl( . )

Using expression&d) and(10), we obtain

Pi(O2—0g;t)
1 o0 ? (aﬂ 1(®0—®2t+0(e) AQ))
_(Et)” ol "o et e )

(14)
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of mass motion of the phase space densities after the forward
and backward evolutions is responsible for a drastic drop of
fidelity. Such a decay takes place as soon as the centers of
mass of the densities,; and p, are separated in the angle
variables® by more than their characteristic widil, . As

can be seen from Ed4), the exact form of the fidelity drop

in the ballistic regime depends on the tails of the initial dis-
tribution pg. For instance, a Gaussian tail gives a Gaussian
decay of fidelity, whereas a sharp border induces a sharp
drop to zero of fidelity. Finally, it is important to stress that
the type of decay, power law or ballistic, depends on initial

This expression is the kernel for the combined forward andonditions and on the shape of the perturbation. However, it

backward evolution of the phase space densities.

We assume that the width along the action direction of
the initial densitypy is much larger than the change of the
o

action variable induced by the perturbation, that is,

v;>emaxg(l,0)] (15
1,0

[to simplify writing we have given conditioril5) for the

one-dimensional cageTherefore the effects of the forward
and backward evolutions are felt mainly in the change of the
angles variable. This means that the evolution from the initial
phase space densipy to p,; iS given, up to corrections of

ordere, by
pm(l,@):f "0’ P(©'—O31) po(1,0').  (16)

The fidelity f(t) can then be computed by insertipg; into
Eq. (4).

The kernelP,(®' — ) is stretched linearly in time, while
at the same time it moves ballisticallinearly with time

with velocity AQ. Under the assumption that the perturba-

tion of the shape of the tori is not divergdias is the case for
most of the tori in a KAM regimg the distributionW, (1/¢€)

does not depend on the strength of the perturbation, provided
that it is sufficiently small. Indeed, Eq17) shows that
Alg/e is € independentto the first order ine), sinceAQ

€.

IIl. NUMERICAL DEMONSTRATION

As the first example we consider the perturbed twist map
defined by

li+1=1;+ecoga)sin(O,),
. _ (19
O111= 0+ 1T esin(a)sin(ly ),

where the anglex determines the mixture between purely
perturbing the shape of the torie€&0) or purely changing
their frequencies ¢ = m/2). This parametrization allows us
to change the type of the perturbation without changing its
overall magnitude. The change of frequency associated with
the perturbation is given by

AQ=esin(a)sin(l). (19
The conserved action variable of tleeperturbed system is,
tq the first order(in €) approximation, given by

has a bounded support which is determined by the change of

the shape of the tori due to the perturbation. We can see from

Eq. (14) that at long times the argument of the functidh is

given by —[9Q/d1]"Y(AQ/ ). Therefore the long-time be-
the value of

havior of P, depends on whether
—[aQ/91] YH(AQ/€) falls within the support ofw, or not.

In the first caseW,=W,(—[dQ/d1]1 1(AQ/¢)) is different
from zero and therefore the kernB| drops«14". In the

latter case\V,=0 and thereforeP, drops ballistically. The

1 I
|’=|+€C0$a)mCO{®—§). (20

Indeed, inserting this expression into mappiig), one can
easily verify thatl,, ;=1,. The transition probability func-
tion W, for this system can thus be obtained by means of Eq.
(12):

transition between these two regimes is determined by the W|(A|/€):if de s ﬂ_ C_(?E(a) Coﬁ(_ I_”
equality ™ e 2sinl/2) 2 ,
1
Al [0Q “1AQ @)
e o e @D which gives
whereAlg/e are the coordinates of the border of the support Al 1
of W| . W= . (22)
€ coq a)

We can therefore draw the following conclusions. If the
perturbation of a classical integrable system is such that the

2
RS 2
7T\/(zsinu/Z)) (Al7e)

primary effect is the change of the shape of the tori, then the

expected decay of fidelity is1£". On the contrary, if the

The range of the support of the distributid, is between

change of the frequencies of the tori is the dominant effect;t cos()/[2 sin(/2)]. The critical valuea, for which Al¢/e
then we expect a ballistic decay of fidelity, that is, the center=— (9Q/dl) " *AQ/e is therefore determined by
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10°¢ LT Ty is ballistic, we can see from E{l4) that the argument of the

; ] function W, goes outside the support @, after a time that
becomes longer close to the critical point. Only after this
time the fidelity drops off. Of course the decay cannot be
postponed indefinitely since the exact conditi@3) can be
satisfied only for a single torus, while we always deal with a
family of tori upon which the initial phase space dengity

rests.

10°F We also checked numerically that, provided the perturba-
tion is much smaller than the characteristic widihsof the
initial density[that is, requiremen(l5) is fulfilled], the type

B e of behavior does not alter with changing the actual size of

the perturbatiore, as expected from our theory. We simply
rescale the time, 1/e after which the fidelity decay starts,

FIG. 1. Fidelity decay for the twist map at various values of the'" «:slt_gr(_a”ement W'I,t]h Ing(2|4) d - bl ith
parametera=0 (full line), 0.8 (dasheg, 0.892 (dot dashej] 1.0 o Illustrate the tidelity decay in Integrable systems wit

(dot dot dashed and 7/2 (dotted. The =1/t decay is shown as a MOre than one degree of freedom, we consider the following

thin dotted line. system:
H(11,12,01,05)=Hq(l1,15) +€V(11,1,,0,0,),
tanag)= 5 23 (25
¢ 2sinl)sin(1/2)
where the unperturbed Hamiltonian
In Fig. 1 we show the numerically computed behavior of
fidelity for this system as a function of time for various val- Lay o, ap,
ues of the parameter. We take as initial phase space den- H0_7|1+ ?'2 (26)

sity a rectangle centered around the poidtf 7r,| = 1) with ) ) ) ) ) o
sides of lengthvg=2x1073, »,=2x10 2. The perturba- describes the motion of a particle bouncing elastically inside

tion strength ise=10"°. To compute fidelity, we follow the @ rectangular billiard and the perturbation is given by

evolution of N=10" trajectories, which at=0 are uni- .
formly distributed inside the above rectangle. The fidelity is V=c0gB)cog0,)cog0,) +sin(B)l1l>. (27)

then given by the percentage of trajectories that return backgain, depending on the value of the paramegertthe per-
to this region after the forward and backward evolutions. Iy rhation mainly affects either the shape of the tori or their
all cases we observe an initial plateau during which the fifrequencies. We use the first-order perturbation theory of
delity does not decay appreciably. This plateau persists untjlgmiltonian systemssee, e.g., Refi22]) to determine the
the timet,, at which the width of kerne(14) or the shift of its  effects of the perturbation. What we need to find is a set of
center becomes comparable to the width of the phase action-angle coordinates such that, to the first order in the
space density along the angle variable. In either case thiserturbation strengtl, the Hamiltonian(25) in these coor-
time Is dinates can be written as a function of only the following
Ve actions:
tpoc e (24) o 2
€ H(11,12,01,02)=H"(l1,1;)+0(e). (28)

According to Eq.(17), we expect the behavior to change . . .
from algebraic decay to ballistic one at the value of the pa_lntroducmg the generating function
rametera= a.. For the chosen initial conditions, E(R3) € cosp
givesa,~0.892. Indeed, the change from an algebraic fidel-  G(11,12,01,02)=110:+1,0,— —
ity decay f(t)«1/t when a<ea, to a sharp drop of fidelity
whena> « is clearly seen in Fig. 1. {sin(@ﬁ 0,) Sin(@l_z)l

An interesting feature is that an approaching the critical X + ,
value a., we observe that the fidelity decay, power law or
ballistic, sets in after longer and longer times. This fact (29)

has a clear explanation: The valueW,=Ww,
(—[Q/31]~1(AQ/€)), which determines the long-time be- We get
havior of the evolution kerne(14), diverges close to the

allj+al) allj—ayl)

prltlcal valuea= a, [see Eq(22)]. When the fidelity decay = J9G —1]- €codp) cog®,+0,)
is power law, we havé®,=c/t", with the constant=W,. 90 2 |alitasl;
Sincec becomes larger and larger close to the critical point,
S 1
t_he fidelity decay must be postponed to I_onge_r ar_1d longer +————cog0,-0,)/, (30)
times. On the other hand, when the long-time fidelity decay agl;—asl;
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=S ), Ecosp) ®,+0
2_(96)2_ 2 2 II:I_I:I_'i‘Cl’ZIZCOS 1 2)
! ®,—0 31
—mcoi 1—05) . (31)

Substituting the above expressions into the Hamilto2&i,
we get
2 2
@7

’ ! ! al ! ! H ry !
H (|1,|2)=?|12+ > 1,24+ esin(B)lil,. (32

The frequencies are then given by

(7 !
Q£=W=a1|£+esin(,8)lé, (33
1

a !
QQ=W=a2I§+esin(,3)li. (34)
2

Thus the frequencies changes read as follows:
AQ =esin(B)l;, (35

AQ,=€esin(B)l;. (36)

PHYSICAL REVIEW B8, 036212 (2003

) I | |

10°

FIG. 2. Fidelity decay for the rectangular billiard for various
values of the parametgg=0 (full line), 0.232(dashedg, 0.3 (dot
dashedl and #/2 (dotted. The «142? decay is shown as a thin
dotted line.

—[0Q/dl 1-1(AQ/e) goes outside the support &, at first
along this direction. This gives

-1
_(%) :CO‘_BC):[(@) AQ
€ U a1|1+a2|2 ol

, (39
u

where the right-hand side is thé component of the vector

As in the previous example, the above expressions allow us

to find the transition probability function
W|(A| 1/€,A| 2/6)

2 1

w? \/( cosB) )2
al|l+a2|2 a
1
cogB)

X\/(alll—azlz>2_(m:N2)2.

It can be seen that the support for the distributibpis the
rectangle

Al +AlL)\?

€

37)

cog )

all 1+ C¥2|2

cog )

U< —
agly—asl,

IVI< (39)

o0\t fat 0 (Sin(ﬂc)lz>
(W) AQ‘( 0 azl) singl,) 40

Therefore we get

a

tanBc) = (41)

(aili+asly)?

Substituting the chosen values|qf,l,,aq, anda,, we find
that the critical value is equal {8,~0.232. This theoretical
expectation is confirmed by the numerical data of Fig. 2,
which show a crossover from a power law fidelity de¢ty
B<B.) to a ballistic decayfor 8> B.). The results are very
similar to the case of the twist map, including the fact that
close to the critical valug= 3., the decay is postponed to
longer times. It should be stressed that the algebraic fidelity
decay, differently from the twist map case, is now inversely
proportional to the square of the time, in agreement with our
theoretical expectation for a two-dimensional systEsae

In Fig. 2 we show the decay of fidelity for this system for Eq. (14)].

As a last numerical example, we consider the kicked rotor

various values of8. The parameters of the system have been N
chosen as followsa;=(\/5+1)/2, a,=1. In all cases the map that is given by
initial phase space density is a hyper-rectangle centered
aroundl,=1, 1,=1, ;=1 and®,=1 with all sides of
length e T 1/@2:0.02. The perturbation param-
eter ise=3x10"4, and the number of trajectoridé=10°.

li+1=1+Ksin(@y), (42

Or11=0 ¢+ 1141, (43

For the above initial conditions and parametess «», the

As is known, forK<1 the system is almost integrable,

critical value 8. which separates the power law and the bal-namely, its phase space is dominated by invariant tori. There

listic fidelity decay is determined by equali}l7) in the
direction of theU variable. Indeed, wherB increases,

is a stable fixed point ald = 7,1 =0) and a separatrix which
divides the phase space into two regions: a section of libra-
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10— —— ics, due to tori quantization and subsequent gaps between

I - ] them. The classical-quantum correspondence will be the
topic of further studies.

In the quantum context, it is also worth mentioning Ref.
[23], where the dynamics of a solid-state spin model of quan-
tum computer is analyzed, in a regime close to integrability.
The fidelity of quantum computation under systematic
Hamiltonian errors is found to decrease linearly with increas-
ing quantum computation time. Unfortunately, these findings
cannot be directly compared to the results of our paper, since
the model considered in Refi23] has no evident classical
limit.

f(t)

10
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APPENDIX: ASYMPTOTIC BEHAVIOR

tional motion around the stable fixed point inside the sepa- The results of the preceding sections do not tackle the
ratrix and a section of rotational motion outside the separagsymptotic decay of fidelity for integrable systefad]. In-
trix. We perturb the system by varying—K’=K+e. The  deed, we neglected the contributions to the evolution kernel
important point is that the type of the perturbation chosen4) that stem from the fact that the angle variables are cy-
strongly affects the frequencies of the tori in the librationalgjic. This means that, after a time which427/e, we need

section, while it mainly perturbs the shape of the rotationaky take into account the contributions to E@4) not only at
tori. Therefore the same system and perturbation should IeaQZt_@)O but also at all®,,— @,+ 27k, wherek is a vector

to two completely different types of fidelity decays, power ¢ integer numbers.

law or ballistic, depending on the choice of the initial condi-  \ye |imit ourselves to the case of a single torus. Of course
tions. Figure 3 confirms this expectation: if the initial density o fidelity f(t) is strictly zero for a single torus and there-

po is inside the separatrix the fidelity decay is ballistic, oth-f5re it should be understood that we take the limits
erwise it is power law.

€
e—0, r—0 with —=constantc1. (A1)
IV. CONCLUSIONS AND OUTLOOK V|

In this work we have studied the decay of the fidelity of | et us consider the initial densipp(®) to be defined on the
classical motion for integrable systems. Our main result isyhole ® space(without 27 periodicity), while the kernel

the following: For small enough perturbations, the type ofk (@;t) is defined as the periodic function obtained from the
the decay of fidelity for integrable systems depends not ogyiginal kernel:

the strength of the perturbation but on its shape and on initial

conditions. More precisely, the fidelity exhibits two com-

pletely different behaviors, namely, an algebraic decay if the KI(G)?U:; P\(O-2mk:t). (A2)

perturbation mainly affects the shape of the tori, and a faster,

ballistic decay if the main effect of the perturbation is to Assuming that the initial density is square normalized, the

change the frequencies of the tori. We have also given clegdelity can be written as

numerical demonstrations of the transition between the two

types of behaviors, induced by changing the shape of the - Nk o ™

perturbation or the initial conditions. f(t):f d ®Po(®)92t(®):f d"®pj () por(P),
This result poses interesting questions with respect to the (A3)

guantum mechanical picture. Due to the correspondence

principle, there should exist regimes where both types ofvhere~ denotes the Fourier transform

decay may be observed. It is however expected that, for 1

small perturbations, quantum mechanics would favor the ~ —_— | g i,

ballistic-type decay, as demonstrated in R&f]. Indeed the p(®) \/ﬁf d"Op(@)exp - 6). (Ad)

algebraic decay is due to the transitions between tori which,

for small perturbations, are suppressed in quantum mechasince
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pzt(®)=f d"®’po(0")K(0-0";1), (A5)
in the Fourier picture this becomes
Pau(®) = po(®)K, (P;1). (A6)

We may write the original kernélL4) in the simplified form

P/(®;t)=14"p,(O/t+T), (A7)

where p,(y) =€ "W, (—[dQ/ ] L(y/€))|oQ/dl| " and T
=AQ. The Fourier transform of kerndlA2) is therefore

given by
Rl(cp;t):; Pi(t®)exdi®- (I't—27k)].  (A8)

Then the formula

; exq—i27r(1>~k)=; (D)) (A9)

leads to
Ki(@it)=2 pulthexp(itl-j)s(®=j).  (A10)
This result, coupled with Eq$A3) and(A6), finally leads to

f(t>=;|Bo(j>|25|<tj>exmtr‘j>. (A11)

As we can see, the behavior of fidelity in the linhit> is
given by the tails of the Fourier transform of the kerpel

PHYSICAL REVIEW B8, 036212 (2003

The origin of the kernel is the projection of the perturbed tori
onto unperturbed ones, and we expect singularities in such a
projection. These singularities induce a power law decay in
the tails of the Fourier transform of the kernel and thus are
responsible for the asymptotic power law decay of fidelity.

In the single degree of freedom situation, the typical sin-
gularity of projection to be encountered leadspidy) |y
—yo| Y2 as it can also be seen in the twist map example
(22). This type of singularity leads to the Fourier transform

P (D)o d Pexp —idy,). (A12)

Such an expression leads to following asymptotic fidelity
decay:

f(t)—f(W)=t71’2§0 (o171~ V2exelij (T't—Yyo)]

=t~ Yz(p), (A13)

where B=—T't+yy and z is some periodic function with
period 2. We note that Eq(A13) gives an overalb<t ~ %2
fidelity decay together with a superimposed oscillatory be-
havior. This is the typical asymptotic relaxation of fidelity for
a single torus in integrable systems with a single degree of
freedom. If one considers a finite interval of actians the
decay(A13) must be averaged ovey, and therefore, due to
the oscillatory nature of EGA13), it can be faster that /2.

The extension to the many-dimensional case requires a com-
plex analysis of the singularities encountered in the projec-
tion of the perturbed tori onto the unperturbed ones and is
beyond the scope of the present paper.
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