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Delay times and reflection in chaotic cavities with absorption
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Absorption yields an additional exponential decay in open quantum systems which can be described by
shifting the(scattering energyE along the imaginary axi€ +i%/27, . Using the random-matrix approach, we
calculate analytically the distribution of proper delay tinfegyenvalues of the time-delay matrix chaotic
systems with broken time-reversal symmetry that is valid for an arbitrary number of generally nonequivalent
channels and an arbitrary absorption ra;el. The relation between the average delay time and the “norm-
leakage” decay function is found. Fluctuations above the average at large values of delay times are strongly
suppressed by absorption. The relation of the time-delay matrix to the reflection Bt8ris established at
arbitrary absorption that gives us the distribution of reflection eigenvalues. The particular case of single-
channel scattering is explicitly considered in detail.
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There is a growing interest in statistical properties of thegoes back to the concept of the spreading width in nuclear
Wigner-Smith matrixQ(E) = —i#%S'9S/JE [1,2], with S(E) physics[24]; see Ref.[4] for the recent developments. In
being the scattering matrix at the collision enefgyin the  addition to coupling to continuuniscattering states the
cases of chaotic scattering and transport in disordered medaiginally closed system is considered to be also coupled to
[3]. In the resonance scattering, the matrix elen@@nt de-  the background compound environment. The latter has a
scribes the overlap of the internal parts of the scattering waveery dense spectrum with the mean level spadipgbeing
functions in the incident channetsandc’ [2,4]. This di- much smaller than the corresponding akeof the closed
rectly relates the Wigner-Smith matrix to the effective non-system,A,;<A. When the coupling strength? is large
Hermitian Hamiltoniar?{=H — (i/2)VV' of the unstable in- enough to mix background state§,>A§g, the original lev-

termediate system as followkenceforthh =1) [4]: els acquire the damping or spreading width= 27702/Abg
[4,24]. Corrections to the resulting exponential decay show
1 up at the timet,, ~A,;gl and, therefore, can be safely ignored
Q(E)ZVT—Jr mV. (1)  on mesoscopic scale of the Heisenberg time 27/A <t,
(E-H) we are interested in.

In the absorption limit of continuous spectrum of the

The Hermitian parH stands here for the closed counterpartbackground, when an irreversible decay into walls takes
of the system while the amplitud&4; describe the coupling place, this description becomes equivalent to that achieved in
betweerN interior andM channel states. The random-matrix the framework of the Bttiker's model of dephasing in me-
theory approach is usually adopted to simulate the complisoscopic conductors; see Fig[45]. One consider$17,19
cated intrinsic motio}5-7. M, fictitious scattering channels in addition kb real ones.

The known analytical resulf8—14] are restricted to the The vanishing transmissioh,— 0 of the fictitious channels
idealization neglecting absorption. The latter is, however, alis assumed to be compensated by their large nunvbgr
ways present to some extent under laboratory conditions, be-,, the dimensionless absorption rate=M 4T, being
ing one of the sources of a coherence loss in quantum trangept fixed[20]. Then the anti-Hermitian part of the effective
port. This has dramatic consequences for the statisticalamiltonian?, which describes coupling t@ll) open chan-
observable$15,16. Necessity of proper accounting of finite npels, splits readily a§Mc,rea|VﬁVﬁ1* + 8yl s [20] into the
decoherencé¢l7] was recently emphasiz¢d8] in order to  escape contributiorfirst term) and damping one witH",
remove a certain discrepancy between thefd9,2Q and = —1—A/27. An exponential decay, associated with the

experiment[16] on conductance distributions in quantum last term, lasts up to the characteristic tiﬂlle=tH/\/m
dots. Reflection in a weakly absorbing medium turned out tc[26] being large as compared tq

be directly related15,21,23 to the time-delay matrix with-

out absorption. Recent experimefs] in microwave cavi- @) (b)
ties demonstrated that the absorptioine to the skin effect open cavity background J\’\’\—
e’ ==

open

in the wallg may be strong, leading to an exponential decay == . =4y, ' Foharmalt
[15,23. A coupling :
In this paper we show that representatidn in terms of I e N

the effective Hamiltonian allows us to extend the consider- fictitious channels

ation to the case of an arbitrary absorption. The nature of the FIG. 1. An open cavity with absorption in walls modeled by
exponential decay caused by absorption can be easily undefsupling to(a) the compound background @) an infinite number
stood from the following model consideration which actually of fictitious channels with vanishing transmission probabilities.
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tion is equivalent to the purely imaginary shit+ (i/2)I",

t xlxz—x)
— H , H -1
=E, of the energy in the Green’s functiok (- )~ of the

The consideration presented suggeststatzeroabsorp- 1 o o
P(t)=f d)\J dMJ d)\z,u()\i)é(——
-1 1 1 th 2
M

open systemvithoutabsorption as long as resonance scatter- (got))? 12
ing far from the channel thresholds is concerijad]; see Xf(M)H ¢ ]

also Refs[22,28. This is in agreement with the available =1 [ (gt MAp)2—(Mi—1)(N\3—-1)

data on correlations 0% matrix elements in cavities with (5)
absorption 23].

In what follows we consider the time-delay matrix with
absorptionQ,=Q(E,), W|th_ Q from Egq. (1), trt_aatmg Y where M()\i):(1_)\2)/()\§+)\§+)\2_2)\)\1)\2_1)2 and
=TI"4ty as a phenomenological parameter. The important re; 202 12 2 .5 ”
lation for the reflection matrix f(Ai)=(2AA5—A—A5—A"+1)/4. The quantities g
=2[T.—1=1 are related to the transmission coefficients
R=S!S,=1-T,Q 2 Te=1- |Scc|? [5], which determine the openness strength of
ey ’ the system(without absorptiop referringT=1 (0) to the

follows directly from the definition of the scattering matrix completely opericlosed one. For reader’s convenience, we

SYES(Ey)zl—iVT(E,/—H)‘lv, which is subunitary R ?ote that the result fqr the case of proken j‘[RS] follow§
<1) at nonzero absorption. This relation giv@s the mean- "™ Eq.(5) by removing there thi integration and setting
ing of the matrix of unitarity deficit and generalizes limiting M2=1 everywhere in tzhg integrand save the integration mea-
expressions of Ref§21,27] valid at weak absorption to the Suré u(A)=(rA1—\)"“ in this case[30]. It is also worth
case ofarbitrary T',. Q. is anM XM Hermitian, positive- ~Pointing out the relation betweeR(t), Eq. (5, and the au-
definite matrix and, therefore, has real positive eigenvaluetpcorrelation function of the photodissociation cross section
0., the so-calledproper delay times. They were recently [31]. The exactin the RMT limit N—) Eq.(4) is valid for
studied in much detail for the case of zero absorptionany symmetry and will also be derived below using a differ-
[13,14). Even a weak absorption modifies their statisticalent way.
properties significantly, as will be shown below. The norm leakage is identical to unity when the system is

We begin with the calculation of the average total delayclosed(hence the norm Its time dependence is solely due to
time =0+ - - - +qu=trQ,, where the bar denotes the the openness of the system and has been thoroughly studied
ensemble average. Making use of the invariance of the trade Ref.[26] that allows us to understand the qualitative de-
under cyclic permutations and the following relatidf/" pendence ofy,,; on absorption. The typical behaviét(t)
=i[(E,—H)"—(E,—H)]-Ta, one gets ~IIM [1+(2IB)Tet/ty] P2, with B=1 (2) standing for

preserved(broken TRS, is the simple exponential exp
) (—t=.T./ty) at small enough times. In the so-called “diago-
, 3

1
E,~H(E,~n)T

nal approximation’[26], which neglects the nonorthogonal-
ity of the resonance wave functions and becomes asymptoti-
cally exact at largd, P(t) turns out to be related by the
where Tr acts in théN-dimensional intrinsic space of reso- Laplace transfordeiag(t)zfgdl“ e’“p(l“)z<e*“)r to
nances. The first term is knowi8,9] to be equal to the the distributionp(I') of resonance widths. One gets readily
Heisenberg time,,. To calculate the second one, it is in- from Eq. (4) that 7= (I'/(I'+T,))r within this very ap-
structive to go to the time domain and to exploit the well- proximation. The simple interpolation formula;,~ (1
known relation between the Green’s function and the time+ y/3.T.)~' with corrections of the order of
evolution operator expfiHt). This enables us to represent min[1/y,1/2.T.] becomes exact as the absorption rate
Eq. (3) in the following form: and/or the totaldimensionlessescape width> T, grows.
We proceed further with an analysis of the distribution of
Gt - the proper delay timesP(q)=M1=.8(q—q.). For the
o=, 1—Faf0 dte " aP(t), (4 sake of simplicity, we restrict ourselves to the case of broken
TRS (the unitary symmetry clagsThe factorized represen-
— tation (1) of Q, enables us to use the same method devel-
where P(t)=(1/N)Tr(e'" 'e”'") is the “norm-leakage” oped in Ref[14] to treat the zero absorption case. Thus, we
decay function introduced in Ref26]. The average delay skip all standard technical details, indicating only essential
time within the cavity becomes smaller due to additionalones. As usual, the jump of the resolver®(z)
dissolution in the walls. The average weighted-mean reflec=Mm *1tr(z—Q7)*1 on the discontinuity line along=Rez
tion coefficient(ry=M~rR is correspondingly given by >0 determines the seeking distribution as follow(q)
(ry=1—y71/M. =m'ImG(q—i0). Due to the factorized structure &,

P(t) can be calculated by means of Efetov's supersymG(z) can then be represented in the form suitable for subse-
metry techniqug5,29], which becomes now a standard ana-quent supersymmetry calculatifs2]. We find the following
lytical tool. Here we only state the corresponding result forexpression for the determining partK({=z/ty)
the case of preserved time-reversal symmetiiRS): =M tyG(2)— 1/]:

Oot=IMTr r,Tr

E,~H
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1 (= 1
K()=1+ EL d)\lf_l)\l

J
£>b7()\1)f7()\)|vl—v—l' (6)

OctA
_)\(;:]_ gC+)\l

X

(91}1

Here b, (\y)=e® "2l ((vy/0) V(1 - y) (\F-1))
andf(\)=e” =720 (1 £) (1— y£) (1—2?)), with
[o(X)[Jo(X)] being the modifiedlusual Bessel function. The
resolventG(¢) given by Eq.(6) is an analytical function of
the complex variablg for the negative values of Reand,
therefore, can be expanded there in Taylor’s series. One fin
directly from the definition of G that t,G(z)=1/¢
+trQ7/(M§2tH)+ -- . for large ¢, relating thusq,, to the

coefficient of the second term of this expansion. On the other

hand, this coefficient is given just b (—c<) which can
easily be calculated from Ed6) to reproduce exactly Eq.
(4.

An analytical continuation in E(q6) to the region of posi-
tive 7==Re({ requires more care as compared to the ¢adg
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1
Bo=e""15%(vya\/g2— 1) [

a(#c) ga_gc,
J+1d)\
Fo=| —=
(o} 1 2

The obtained result is valid for arbitrary absorption strength
and arbitrary transmission coefficients Mf generally non-
equivalent channels. The limit of zero absorptjd#d] is cor-
rectly reproduced. The case of statistically equivalent chan-
nels can easily be worked out by performing the limiting

(9a)

e "My(vay1-22) [] (ga+N). (9b)
+*

a(#c)

4ransition g.—9=2/T—1 for all c. At last, the distribution

anction Pr(r)=M"1=.8(r—r.) of reflection eigenvalues

ro=1-yq./ty follows readily from Eq.(8) as
Pr(N=»"'"P(y" X (1-1)),

We see that the absorption rateenters the distribution in
a highly nontrivial way. This is expected to be true for any
distribution function and is contrasted with a correlation

function of, say,S matrix elementsS;(E,)S, (E,+¢).

o=r<1. (10

of zero absorption, where it was achieved by a proper deforrye corresponding form facté23] (the Fourier transform of
mation of an original integration contour. First we make thei,a correlation function differs from that[5] of the zero

following decomposition in partial fractions:

Oct A 1 M 1 gpt+ A

gc+)\1 _)\1_)\ a=1 ga+7\1b(¢a) gb_ga.

Ll
)\1_)\021
The contribution from the term\;—\) " leads to an exact
cancellation of the first term in Eq6). [This is not surpris-
ing since the product term in Ed6), the channel factor,

absorption case simply by the presence of an additional ex-
ponential terme™ "/, The most striking effect of finite ab-
sorption on the time-delay distribution is likely to consist in
suppression of the universal long-time tais™(#2~2 [10-

14] at 7>y~ ! [34]. To understand this fact qualitatively, we
note that the delay timeq(E)~T,/[(E—E,)%+ (I,
+T',)?] in the vicinity of a given resonance with the energy
E,. The maximal value of this single-resonance contribution
is attained aE=E,,, being qma=4T,/Ty+I,)><1T", for

which determines solely the strength of system opennessny value of thepositive) escape widtH",.

reduces ab ;=\ to unity, resultingG(z)=1/z in this case
identically] The integration oveh; gets completely decou-
pled from that ovei in the contribution from the rest sum.
Making use of the table integral83], one finds that

=g\, eM % @ UpgV(p—s)*—a®
f —lo(a\/kf—l)=f dp—F/—,
1 9tNg 0 V(p—9)2—a?

()

with notationss=7"1—y/2 anda=7"1J1— ry. Just this

term (7) has a nonzero imaginary part, thus the distribution,

at positiver—i0. A close inspection of the right-hand side of

Eq. (7) shows that the imaginary part is determined by the

integration regions— a<p<s+«, resulting at the end in
mlo(a\g?— 1)@ (71— ), with the step functior®(x).

We arrive finally at the following general expression for
the probability distribution of the proper delay times:

d

for 0<r<y !, andP(r)=0 otherwise. Here

1

J J
i _

M

T_ﬂ):

_tH

) BCFC|V1= v=11 (8)

We analyze now the important case of single-channel
scatteringM =1, in more detail. The explicit expression to
be obtained from Eq8) reads as follows:

e 9

P(7)= [Io(a\/gz—1)<cosh2—7—§/sinhg)

1_2

2
+ ;sinhg[gslo(a\/gz— 1)

—anZ—lmwgz—l)]]. (11)

We have explicitly checked the normalization of this distri-
bution to unity and verified relatio@) for the first moment.
This function should be compared to the more simple expres-
sionP,_o(7)=7"Y(dlar)e” ¥l o(7~ 97— 1) [10] valid at
zero absorption. Figure 2 shows the behavioPf) in two
limiting cases of the weakly and perfectly open system. One
sees in the first case that the maximum of the distribution
function at the small timer~(2g) '~T/4<1 gets more
pronounced and narrow as the absorption ratgrows. At
larger values of- the distribution is exponentially suppressed
with P(y~ 1)~ (y?/T)e ”'T. The latter is contrasted with the
behavior in the case of perfect coupling=T=1, when
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(1)

0.1

0.01
0 1

0 002 004 006 T 0.5 1 L5 20 FIG. 3. (Color onling The reflection coefficient distribution in
the single-channel cavity at four experimental realizatif88 of
FIG. 2. (Color onling Distribution (11) of the time delay in  the absorption rate and transmission coefficiesgte the text for
single-channel scattering for different values of the absorption ratgletaily. The values (#,T) correspond to (0.56, 0.12, Il (2.42,
y at weak T=0.1, lefy and perfect T=1, right coupling. 0.79, 1l (8.4, 0.98, and IV (48, 0.99.

Proy(D=72e"YT1+(1-7(e’=1)/ry] and P(y )
could be rather large. We relate these distinctions to pec
liarities in fluctuations of the resonance escape widths in th

Lgiven by Egs.(10) and (11), reproducing exactly the recent
éesult[35] obtained by a different method. In the particular

two cases considered. The width distributjel’), which is case of perfect coﬁuapliing/ i(tlfirr;]plifies further to the expression
known exactly[10] for any T and M, has the simple expo- Pr=1(r) =(1-r)""e"” [v(e"=1)+ (1+y—e)(1
nential forme ™" /T when coupling is smallT<1, and the —r)] found earllgr[22]. F(l)r. the case of. pre.served. TRB (
power law behavior-TI' "2 atT'=t;;* whenT=1. The ratio =1), the reflection coefficient distribution in a microwave
of the widthsT ~T', determiningP(7~ y~1) is, therefore, Cavity has recently been megsuré‘.ab]. Our c'ilst.r|but|on.
exponentially small in the first case and only a power in thePr(r) at the values of absorption and transmission realized
second. This conclusion holds for any finke in this experiment under compulsof@ithough not surprising
The sharp border at=y ! of the obtained distribution is in the RMT) rescalingy to yg/2 with $=1 is shown in Fig.
the direct consequence of E() with the absorption rate 3. (This corresponds to replacing our paramejem Egs.
fixed to a constant. Although, as shown above, the valu¢10) and(11) with T, /2 of Ref.[36].) That should roughly
P(y~ 1) of the jump may be exponentially small when cou- take into account the difference between the symmetry class
pling is weak, a generic exponential suppression should bef our analytical result §=2) and that of the experiment.
intuitively expected at large values of delay times y~ 1. Such a replacement is expected to become more efficient as
Indeed, for the timest a wave packet oscillating in the cavity absorption grows. The trend is clearly seen from the distri-
with the frequencyA/2m, on an average, experiences bution sharply peaked near~1 at weak absorption
(A/27) 6t collisions with the walls, yielding the probability <1) to the Rayleigh distributionPg(r)=(yB/2)e ""#?
T4(A/27) 8t to be absorbed into one ® , fictitious chan-  [28], see also Refl22], reproduced correctly at strong ab-
nels. The total reflection is then estimated BRs=[1  sorption (y>1) and perfect couplingT{=1). Figure 3 is in
—T¢(A/2w)6t]’\"¢, giving e 7*4 in the limit of fixed y good qualitative agreement with the experimental data re-
=MyT, asM,—> andT,—0. Itis instructive, therefore, ported in Ref[36] (see Figs. 4 and 6 therevhich becomes
to define alternatively through the following relaticR  even quantitative as absorption gets stronger. The rigorous
=e "aQr the matrixQg, which we call the matrix ofeflec-  analytical treatment for the case of preserved TRS is still
tion time delaysThe positive-definite matriQr is related to  lacking, being under current investigation.

Q, as QRz—Fglln(l—FaQy) that leads to the following In summary, we have calculated the general distribution

connection: of proper delay times and reflection coefficients in an open
chaotic systenie.g., billiard with broken TRS at arbitrary

Pr(m)=€ ""P(y (1-e ")), >0, (120  absorption. Finite absorption leads to strong suppression of

fluctuations at large values of delay times, making the distri-
bution narrower around the mean. The latter as well as the
mean reflection coefficient are found to be related to the
norm-leakage decay function. The particular case of single-

matrix (1) in the limit of vanishing absorption. The differ- ,anne| scattering is paid appreciable attention, when discus-
ence between them becomes noticeable at fipit8till both o of available experimental data is also given.

distributions coincide up to the time appreciably less than

between the corresponding distributigRg( ) andP(r) of
proper delay timeseigenvalues ofQg and Q,, respec-
tively). Both Qg and Q,, reduce to the same Wigner-Smith

vy~ L. They start to differ at larger times, whé?(7) has the We are grateful to Y. V. Fyodorov, G. Hackenbroich, U.
cutoff whereasPr(7>7y Y)xe 77 is exponentially sup- Kuhl, V. V. Sokolov, H.-J. Stokmann, and C. Viviescas for
pressed. useful discussions. This work was partly an outcome of the

Finally, we discuss the distributidPg(r) of the reflection  ongoing initiative Sonderforschungsbereich/Transregio 6029.
coefficient r=|S |?>=1—y7 in the single-channel cavity. The partial financial support by the SFB 237 and RFBR
This distribution at arbitrary values of and T is explicitty =~ Grant No. 03-02-16151D.V.S) is acknowledged.
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