PHYSICAL REVIEW E 68, 036208 (2003
Complete synchronization and generalized synchronization of one-way coupled time-delay systems
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The complete synchronization and generalized synchronize@8nhof one-way coupled time-delay systems
are studied. We find that GS can be achieved by a single scalar signal, and its synchronization threshold for
different delay times shows thgarameter resonanceffect, i.e., we can obtain stable synchronization at a
smaller coupling if the delay time of the driven system is chosen such that it is in resonance with the driving
system. Near chaos synchronization, the desynchronization dynamics digptadic burstswith the period
equal to the delay time of the driven system. These features can be easily applied to the recovery of time-delay
systems.
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Chaos synchronization has aroused great interests in theew method based on the CML with supposedly high secu-
study of nonlinear dynamidg] due to the potential applica- rity. Analytical studies and numerical simulation of CS of
tion in engineering, and the understanding of complicateoupled time-delay systems have also been extensively in-
phenomena in nature. Different kinds of synchronizationvestigated12—14. In this paper, we mainly study both CS
have been found: complete synchronizati@$) [2,3], gen- and GS of one-way coupled t!me—delay systems. In particu-
eralized synchronizatiofGS) [4], phase synchronizatigs], ~ |&" we focus on the relationship between these two modes of
and lag synchronizatiofi6,7]. CS means that the coupled synchronization, the critical coupling strengths for synchro-

systems remain in step with each other in the course of time’ndlyzr?;rcr)\?c:t different delay times, and the desynchronization

It is obvious that CS is the simplest and strongest form™.y "y, specific, we consider the case of one-way coupled
among the diverse synchronization behaviors. Only 'ntime-delay systeﬁ‘ns

coupled systems with identical elemerti®., each compo-

nent having the same dynamics and parametercset we x=f(X,X,1),
observe CS. In the study of nonidentical coupled systems, !
particularly in the drive-response systefusing X(p,t) to y=1(y,Y,0) +e(X—Y), (1)

drive Y(p’,t), p andp’ being different paramete};sGS is _
observed under sufficiently strong driving: the response syswhere x= f(x,x7)=ax7/(1+x2)—cx is the Mackey-Glass
tem is a function of the driving systen¥,(t)=® (X(t)). (MG) equation[10], a=2, b=10, andc=1, Xx,=X(t—7)
Clearly ®=1 for CS, and CS is only a subset of GS. With denotes the time-delayed variable, asnds the “coupling
GS,Y(t) is totally “slaved,” and loses its intrinsic chaoticity constant.” In this caser; can be different fronr,, and GS
in the absence of coupling, or in other words, the exponentiah the parameter space of and r, is the principal focus of
sensitivity with initial condition. Therefore, all driven sys- study in this paper.
tems with different initial conditions under the same driving  We would like to first highlight some of the properties of
can be following the same trajectories under GS if there is n@ single MG system at the above paramef@®12. At 7
other attractor in the phase space. <0.471, there is a stable fixed point attractor; for 04#1

It is known that chaos synchronization is extensively ex-<1.33, a stable limit cycle attractor emergesratl.33, the
ploited in secure communication. The initial motivation is system starts on a period doubling bifurcation sequence until
very straightforward: one can use the essential characteristi¢e accumulation point at=1.68. Beyond that £>1.68),
of chaos(temporal complexity and apparent randomnesswe find a chaotic attractor at most parameter values,of
and hide the information to be transmitted in a chaotic signalwith the number of positive Lyapunov exponents and the
and retrieve it by using the technique of chaos synchronizainformation dimension increasing linearly with whereas
tion at the receiver end. Nevertheless, many researchers hayg metric entropy remaining roughly constant. In other

found that secure communication based on |OW'dimenSi0na,{/0rdS, at |arge enough the system has a high_dimensiona|
system is not as secure as we commonly believe, since théhaotic attractor.

low-dimensional chaotic system can be reconstructed easily As a start, let us study CS when the driving and driven
by the embedding method, and can then be separated frogystems have the same delay timg= 7,= 7 at Egs.(1). A
the secure informatiorf8]. Because of this, researchers jinear stability analysis is performed with a small deviation

dimensional systems, and have found coupled map latticegapility is governed by

(CML) [9] and coupled time-delay systerhit0] to be rea- _
sonable candidates. Very recently REf1] has proposed a A=[0,f(x,x,;) —e]A+d,f (X, x,)A,, 2
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FIG. 1. The dependence of the synchronization threshold for
CS, g.1, on the delay timer. Above this curve, stable CS can be
achieved.

FIG. 2. The dependence of the synchronization threshold for
GS, &, on the delay timer,. (The delay time of the driving
system is fixed at; =100, The two insets are the blowup of the

whered, andd, are the partial differentials df(x,x,) with WO regions near,=r7,=100 andr, =27, =200.

respect to the first and second variables, respectively, and

A,=A(t—17). As in the treatment of systems described by x=f(X,X,1),
ordinary differential equations, we can define the largest con- ]
ditional Lyapunov exponent of CS §$2] y=f(y,y2) +e(x=y),
0 112 72=1(2,2,5) + e(Xx—2). (4)
U Az(t+¢)d¢+ ?
1 T 3) In fact, the auxiliary system method detects the local stability

=lim—In
M(2)=lim¢in of the generalized synchronous state Bft) = (X(t)).

t 172
t—oo 2
{ f, TA (¢)d¢] With A (t)=z(t) — y(t), we then obtain the linearization sta-
bility equation of GS,

Clearly\1(&) controls the stability of the complete synchro- -
nous state/(t) =x(t). In particular, if\,()<0, we will be A=[011(y.Yr2) —e]A+ 51 (y.y ) A, ®)
able to observe stable CS.

In Ref.[12], Pyragas has studied CS in E¢b. and found
that with increasingr, the synchronization threshold in the
coupling parameter first increases and then saturates to a fi- 0 172

U AZ(H@)dcp}
72

Similarly, we define the largest conditional Lyapunov expo-
nent as

nite value of~0.70(see Fig. L (For all the numerical com- 1
putations in this paper, the fourth-order Runge-Kutta algo- Ao(e)=lim=In
rithm with a fixed step size di=0.01 is used, and the main oo L JO A%(g)d
numerical results have also been verified by the program 2 (¢)de
DDE23 inMATLAB [15].) As a result, even by transmitting a
single scalar variablex in Egs.(1)], CS is possible for these Figure 2 shows the relation betweeg, and 7, with a fixed
systems which, when uncoupled, possess an arbitrarily largéelay time for the driving systent; =100. Similar to CS in
number of positive Lyapunov exponents. This is obviouslyFig. 1, with increasing,, the synchronization threshokd.,
contrary to the intuitive idea that a large number of transmitincreases and then saturates to a finite value of 0.84 approxi-
ted signals would be required to suppress the unstable diremately. Thus even GS, just as CS, can be achieved by a
tions of the synchronous state with many positive Lyapuno\single scalar signal. Apart from this similarity, however, we
exponents. also observe sharp dips located at (ressonanceparameter

We then ask ourselves the question of what happens if values: nearr,=100=7; and 7,=201~27; (see the two
is not equal tor,. In this case, we know that CS cannot be magnified figures in Fig.)2and those neat,=49~ r,/2 and
achieved, but then is stable GS possible? If it is, we wouldr,=305~3r; with some apparent fluctuations. Thiaram-
then want to know the relationship between the synchronizaeter resonanceffect in GS certainly reveals how the nonlin-
tion threshold for differentr; and 7,. Experimentally, we ear dynamics of coupled systems changes with the matching
usually use the auxiliary system method to detect GS: that isf two delay time scales. Moreover, its universality has been
given another identical driven auxiliary systetf(t), GS be-  confirmed for differentr; in Fig. 3, plotted with the solid
tweenX(t) andY(t) is established with the achievement of points denoting the local minima of the resonance peaks.
CS betweenY(t) and Z(t). The coupled systems can be Nearly all of these minima are located near the resonance
expressed as values:t,=741/2,71,271,371. NoOte thatr; varies over a very

77 (6)
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FIG. 3. The universality of the parameter resonance effect. We %3 Y3 o Y %o o 0 Y
find nearly all of resonance positions stay at or aroupe 7,/2, X y
T1, 27'1, and 3T1.

FIG. 5. The dynamics in the vicinity of the synchronization
wide parameter region from 5 to 100. The higher-order resothreshold for(a), (b) £ =0.71(abovee) and(c), (d) £=0.69 (be-
nance peakéor exampler,~ 7,/3 or 7,~47;) do not seem  1OW &c). 1= 72=7=100. ecy=ec1=£~0.702.
to show up well, perhaps because of the coarse scanning we
carried out. In order to understand the synchronization mechanism, it

To try to understand this resonance phenomenon bettewill be important to follow the dynamics in the vicinity of
we plot in Fig. 4\, (solid circles and\, (hollow circleg vs  the synchronization threshold. Figure 5 shows the relation
couplinge for r;=r,= r=100. Note that we can discuss the betweenx, y, and z in Egs. (4), with r;=7,=100, for e
stabilities of both CS and GS only for identical coupled sys-=0.71[Figs. 5a,b] ande=0.69[Figs. 5c,d)], respectively.
tems. After the transition to CS at(&), the manifold of GS  Above the synchronization thresholg,,=&.,~0.702, both
with Y(t)=®(X(t)) degenerates to that of CS wiffi(t) perfect CJFig. 5(a)] and G Fig. 5b)] are observed; below
=X(t), so,\,(g) is equal ton,(&) for e>g.,. An impor- it, CS[Fig. 5c)] and GS[Fig. 5d)] lose stability simulta-
tant observation from Fig. 4 is that the coupled systems tranreously, and the desynchronization behavior shows bursts
sit to generalized synchronous chaos directly, and the syrsut of the diagonal occasionally with rough synchronization
chronization thresholds of CS and GS adentical [16], at most time. The time traces of the differencey are
gc1=&cp. (It should be emphasized that the pattern in Fig. 4displayed in Figs. @ and @b). In Fig. 6a), the total obser-
is independent of the chosen valuerof This feature closely vation time is 4< 10° after discarding the long transient data,
connects with the parameter resonance effect in Fig. 2, andith one out of every 20 points plotted. The intermittent
we can at least understand in an intuitive way the resonandeehavior is reminiscent of the usual desynchronous chaotic
(dip) to the common threshold of value sf0.70 for GS and

CS atr,~100. o5 o
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FIG. 6. The desynchronization dynamics of the driving and the
FIG. 4. The largest conditional Lyapunov exponent of &3, response systems for the parameter vale$.69. (a) and(b) The
(solid circleg, and that of GS)\, (hollow circle9, as a function of  time evolution of the differenc&—y. (c) The distribution of the
the couplinge for 7;=7,=7=100. laminar phase ok—y.
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FIG. 7. Same as Fig. 5 but for a nonidentical coupled time-delay F|G. 8. The desynchronization dynamics near a stable GS state.

system. The parameters arg=100 and7,=90, and nowss; 7 =100 andr,=90. The interval of the grid lines ifb) is 90.
~0.834. (a) and (b)—e=0.85 (abovee,). (c) and (d)—e=0.82
(below g,).

value—hence the environmental noise smooths out the tran-
sition and enlarges the parameter region of the phenomenon.
This robustness certainly is very useful for experimental ap-
plication.

Chaos synchronization of coupled time-delay systems is
Fxploited in secure communication for two important rea-
sons: the system is of high dimensionality with multiple

ositive Lyapunov exponents, and it is easy to construct. On
he other hand, a special embedding approach recently pro-
f posed in Ref[17] seems to suggest that communication us-
Co : . : . —._ing chaos synchronization of time-delay systems is not as
the periodicity of the trajectory,_lt also displays _perlodlc secure as one might expect. The essential idea of the ap-
bursts ainr, n=1,2,3 . ... There is strong suggestion of a

power-law distributionP(T)T~¢, with a~1.25. For dif- Proach is simple: in the three-dimensional spacgf,x),
ferentd, sayd=0.01, similar distribution with the same scal- € dynamics of the time-delay system is projected to a
ing is obtained. The possible reason fodeviating from the ~ smooth manifold x—f(x,x,0) =0, in contrast to the high
normal exponentl: 1.5 for Simp|e on-off intermittency is dimen_sionality of the original phase space. In a similar space
probably because the dynamics is high dimensi¢hal). (x,X,,X), however, with7# 74, the trajectory is no longer
The characteristics of the desynchronization dynamicsestricted to a smooth hypersurface. Through a search in
with on-off intermittency and periodic bursts appear to bespace, we can identify the delay timg, reconstruct the
general. Similar to Fig. 5, but now with;=100 and 7, chaotic dynamics, and unmask the hidden message.
=90, the behaviors of vs x and z vs x are plotted fore In fact, the findings in this paper can also be applied eas-
=0.85 [Figs. 7a) and 7b)] and £=0.82 [Figs. 7c) and ily to recover time-delay systems. Taking advantage of the
7(d)], respectively.(Recall thate.,~0.834) In Figs. 7a) “parameter resonance” effect, we can search the threshold
and 7b), GS without CS[y(t)=2z(t)#x(t)] is observed. coupling strength for the driving at differemt. The position
From Figs. Ta) and 7c), we cannot tell the difference be- of a drop ine;, marks the approximate value @. Another
tween the driving and response systems, while the transitioaasier approach is based on the desynchronization dynamics
to the identity of two driven systemsandz [from Figs. 7d) in Fig. 8b). We can use an arbitrary time-delay system to
to 7(b)] indicates the establishment of GS. Similar to Fig. 6,drive two secured systen{svhich we want to attagkwith
on-off intermittency at large time scal€ig. 8a)], periodic  the same parameter set and different initial conditions. This
bursts with the delay time of the driven systeg=90 as the time we tune the driving strength from above to below the
period at small time scalfFig. 8b)], and the distribution critical value. Below the critical GS, the periodic bursts in
with similar pattern and same scalifgig. 8c)], are again the difference in the state variables will uncover the secret of
observed. We have verified that these results are not affectedeir delay-time parameter. Becausg is not sensitive with
by the existence of small noise levels. Three independerthe changing of; andr,, except in the parameter resonance
noise sources with a strength of T0and Gaussian distribu- region, and the coupled systems are not sensitive to the am-
tion are added to the right-hand side of E@8. The periodic  bient noise, this method should be realizable under experi-
bursts persist even with the coupling larger than the criticamental conditions.

behavior of on-off intermittency, in which the system dy-
namics typically stays most of time in the vicinity of the
synchronization manifold with occasional bursts out of it. A
remarkable finding in this investigation is the more detailed
structuredin Fig. 6(b)]: periodic bursts with a period that is
equal to the delay time. Now the observed part is the firs
500 time units in Fig. @) in 0.1 intervals. Figure @) pre-
sents the histogram distribution of laminar phases with th
sampling number being%10° and the critical valuel to
demarcate the “off” state being 0.1. F@r>100, because o
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In conclusion, CS and GS of unidirectionally coupled nificant observation, which can be applied directly in the
time-delay systems have been investigated. First, similar tbreaking of chaos-based secure communication, is that the
CS, GS can be achieved through only one driving signal, andesynchronization dynamics of both CS and GS is identified
the threshold coupling strength saturates at a finite value agith periodic bursts. Since an electronic analog of the MG
the time-delay increases, except for the parameter resonansgstem has been implemen{dd], we believe our numerical
effect, which is induced by the matching of the delay timesresults are generic and consequently observable in laboratory
between the driving and response systems. The second sigxperiments.
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