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Experiments on elastomechanical wave functions in chaotic plates and their statistical features
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We measure the amplitude of the elastomechanical displacement at a fine grid of points on a free plate
having the shape of a Sinai stadium. The obtained displacement field formally corresponds to a wave function
in a quantum system. While the distribution of the squared amplitudes agrees with the prediction of random
matrix theory (RMT), there is a strong deviation of the spatial correlator from the standard prediction for
guantum chaotic systems. We show that this is due to the presence of two modes, leading to a beating
phenomenon. We construct a proper extension of the spatial correlator within the framework of RMT.
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[. INTRODUCTION The paper is organized as follows. After briefly reviewing
some properties of elastomechanical waves in Sec. Il, we
Attracting interest in the field of quantum chaos, elasto-describe the experiment in Sec. lll. In Sec. IV, we analyze

mechanical systems are being studied analytically, numerithe data and interpret our results. We present our conclusions
cally, and experimentally. In 1989, Weaver measured the firsfh Sec. V.
few hundred eigenfrequencies of an aluminum block and

worked out the spectral statistigk]. The transition to chaos,

symmetry breaking, and parametric level motion were mea-

sured in aluminum and quartz block®&-4]. For isotropic

plates, important analytical results have been obtained by In a homogeneous and isotropic three-dimensional me-
Bogomolny and Hugues using semiclassical methds dium, elastomechanical waves obey the wave equation
Some of their results were confirmed in recent experiments
[6,7]. In elastomechanical systems, first, the wave equation
involves two types of wave motiofiongitudinal and trans-
versg and, second, free boundary conditions apply in many
cases. These two features make elastomechanical systems
quite different from the often studied thin microwave cavi-
ties, which allow for an exact simulation of the two- for the displacement vectar. Here,\ andu are the Lame
dimensional Schidinger equation; for reviews see Refs. coefficientsp is the density, and we have assumed no exter-
[8,9]. Nevertheless, the spectral fluctuations of elastomenal forces. For details, see, e.g., REE3], and references
chanical spectra are universal and follow the prediction otherein. The Navier equatiofi) is different from the scalar
random matrix theoryfRMT) for quantum chaotic systems Schralinger equation for a quantum particle in a two-
[1-3]. It is our first goal to extend such investigations to thedimensional domain both because it is vectorial and because
statistics of the elastomechanical displacement field, whiclhe term ¢+ «)V(V -u) is present. Equatiofi) allows two

we will refer to as a wave function from now on, because oftypes of wave motion: longitudinal and transverse. As
the formal similarity to a quantum system. To this end, wepointed out by Bernf14], the vectorial character, implying
study a freely vibrating isotropic plate of a certain shapethe presence of different modes, formally relates elastome-
which would, in the case of a quantum billiard, induce cha-chanics to quantum mechanics for a particle with spin 1. In
otic motion. Does RMT apply to elastomechanical wavealuminum, longitudinal waves travel almost twice as fast as
functions as well? In this context, one should be aware thatransverse waves. In the bulk, the two types of waves propa-
in the parametric correlatg#], a statistically significant de- gate independently. However, upon reflection at a boundary,
viation was found, whose origin is, at present, still unclearmode conversiotakes place: an incident wave that is purely
Our second goal is the study of the spatial correlator for thédongitudinal or transverse will, in general, give rise tt@o
elastomechanical displacement field. As two modes arexcident waves, one longitudinal and one transverse. More-
present in the system under study, the structure of the wavever, their angles of reflection are differeidue to their dif-
functions is much richer than in the previously studied mi-ferent velocitiey as described by Snell’s law.

crowave system$10,11] (as analogs of quantum chaotic  If we consider an infinite plate in the case where the shear
ones. Our system is also different from three-dimensionalwavelength is larger than twice the thickness of the plate,
microwave cavities, where the distribution of frequencythree classes of modes exist. Tiexural modes(also called
shifts, due to the presence of—effectively—random and inbendingmodes are transverse modes that have displacement
dependent electric and magnetic field components, was meperpendicular to the plane of the plate. At low frequency,
sured in Ref[12]. Thus, we may expect new features for thethese are well described by the Kirchhoff-Love mofEs],
spatial correlator in our experiment. in which Eq. (1) reduces to the scalar biharmonic equation

Il. SOME PROPERTIES OF
ELASTOMECHANICAL WAVES

d%u
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FIG. 1. The dispersion relations for the three types of modes in The experlme_:ntal Sei%p 'SV\";m exter;smn of tzepog%gszd n
an infinite isotropic plate. We notice that, although the longitudinalPT€VioUS ~experimentq16]. We employ an HP
waves are dispersive, the curvature is too small to be visible in th§PECtrum/network analyzer to measure transmission spectra

plot. of elastomechanical resonators via piezoelectric transducers.
The analyzer is run in scalar mode, implying that phases are
W not measured. In the present study, the elastomechanical

DV4W+”“W =0. 2) resonator is an aluminum plate of thickness 3 mm, cut in the

shape of a quarter Sinai stadiythe geometry introduced in
) ) ) ) ] Ref.[11]) with radii 29 mm and 50 mm. The new ingredient
Here,w is the vertical dlsplacemerfn,l_s _th_e thlc_kness of the jp the setup is a pickup, which can be accurately positioned
plate, andD denotes theflexural rigidity, given by D ysing an &,y) scanner, and which holds the receiving trans-
=Eh%/12(1-v?%), whereE is Young's modulus and’ is  ducer. Thus, one can excite a single resonance peak in the
Poisson’s ratio and » are functions of the Lameoeffi-  transmission spectrum and measure its amplitude as a func-
cients[13]. tion of positionR on the plate. Scanning the surface of the
Other modes have displacement in the plane of the platg|ate in a fine grid then gives a measurement of the “ampli-
and are labeledn-plane These modes are studied in the t,de Jandscape” of the wave function. The spatial resolution
Poisson model, where EqL) reduces to a two-dimensional js 0.5 mm in each direction, which is much smaller than a
equation for the in-plane displacement vector typical wavelength of 10 mm. The pressure of the surround-
ing air is kept below 10* Torr, which reduces air damping
to a level where the loss of elastomechanical energy is domi-
nated by intrinsic losses and losses to the supports. The mea-
surements are carried out at room temperature. The tyQical
value of a resonance at 0.5 MHithe typical frequency of a
measured wave functidris 5x 10%.

u = ! V(V 1V><V>< 3
FO T A v e

The in-plane modes comprise two classesplane trans-
verse and in-plane longitudinal The in-plane transverse
modes obey the simple dispersion relati@p=2=f/c,,
wheref is the frequency and, is the transverse velocity, i.e., IV. DATA ANALYSIS AND INTERPRETATION

these waves are non(_jispersivg. Ray_leigh an_d Lamb derived Regarding our choice of geometry, we are aware that the
an exact, more complicated, dispersion relation for the flexsinai stadium billiard is known to be a mixed system, i.e.

ural and in-plane longitudinal modes, see, e.g., Ref}. The completely chaotic. We emphasize, however, that the re-
dispersion relations of mode{) and(3) serve as a guide for g s presented here concern the elastomechanical wave
our experimental system; we will use the Rayleigh-Lambgqation with free boundaries, as opposed to the scalar

dispersion relatio_n later on to rescale our data_l. In Fig. 1, We&chralinger equation and fixed boundaries of quantum
show the dispersion relations for a plate of thickness 3 mmyiiards.

Poisson’s ratio 0.33, and transverse velocity 3190 m/s, which  The statistics and the spatial correlations of the wave
are the data for the plate used in recent experimisits functions are discussed in Secs. IV A and IV B, respectively.
The statements made above strictly apply only to free
wave propagation in infinite, uniform plates. For a finite
plate, mode conversiottakes place at the boundary. How-
ever, there is no mode conversion between the flexural and From the experimental results for the amplitude of the
in-plane waves at plate edges because of the up/down symave functions at the poirR in the Sinai stadium plate, we
metry at such edges. The side faces of our experimentalbtain the distributions of the normalized, squared amplitude
plates were accurately machined such that this symmetry il (R)|2, which we shall refer to agtensityfrom now on.
preserved. Therefore, it is reasonable to expect that the fleXrigure 2 shows gray scale plots and distributions for three
ural modes still comprise a single class of mode, uncoupledtheasured wave functions, two flexufall8.9 kHz and 425.1
from any of the other mode types. This expectation was rekHz), and one in plan€510.6 kH2. Black represents maxi-
cently confirmed by experimeifi6,7]. We also note that the mum intensity, white represents zero intensity. Since the dis-
flexural modes, being solutions to a scalar equation and ngilacement vector is, for in-plane modes, not in general par-

A. Wave function statistics
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’ﬁgﬁgk F A 107 function P,(r)=1+bJy(r). The solid curve represents an average
SAVTANC 0 2 4 & 8 10 over four measured flexural standing waves, while the dashed curve
w12 is a fit to these data yieldinig=1.93+0.05.
510.6 kHz _ o= »# i IEB Y 10’
_ ;!‘; ,«’qf?’! % 10° as scratches or pjtsAs any attempt to correct for such drop-
lﬂm-s” e ¥ “' Y 101 outs would involve arbitrary judgment, we elect to work with
P gg‘i : -/ < 102} the raw data as shown. Note that the spatial distribution of
. 3 Nyl T 10-3 the dropouts is uncorrelated with the wave function pattern
;?&‘* ""} ;; 107 in all cases. The inclusion of these dropouts in our analysis
reemniatasi 0 2 4 6 8 10 causes a small transfer of weight in the intensity distribution
4

from high-intensity to lower-intensity regions, but the effect
FIG. 2. Left: Grayscale plots for three measured wave functionsiS Not perceptible. All three intensity distributions in Fig. 2

Two flexural mode€318.9 kHz and 425.1 kHzand one in-plane Show good agreement with the Porter-Thomas distribution

mode (510.6 kH2. To enhance contrast, the grayscale is logarith-over several decades.

mic. Black represents maximum intensity, white is zero intensity.

One notes the complexity of the white structures, usually referred to B. Intensity correlator

asnodal lines Right: Plots showing probability distribution for the

intensity, corresponding to each mode. The step function represents 10 Obtain information about spatial correlations, one
the measurement while the solid line is the Porter-Thomas distribu¢ould measure the wave function correlator. However, as our

tion. Note the log,-scale on the secondary axis. setup does not yield phase information, we decide to use the
spatial intensity correlatd?,(R), which relates intensities at

allel to the polarization of the piezo device, we measure aROiNtsR; andRy,
effective projection of its full distribution. For a chaotic ge- _ P P
ometry, the distribution of the intensitigal (R)|? is ex- P2(R)=([¥ (R[W(R)[%, ®

pected to follow the Porter-Thomas law, where the brackets denote average over the mean positions

2 (R1+R5)/2. As this also eliminates angular dependence, the
1 |P(R)| . . .
—e)ﬁ — —) (4)  correlator is only a function of the distanée=|R;—R,|.
227V (R)|? 2 The Bessel function character of such correlators was shown
in Refs.[18,19, see Refs[20,21. One has

see the reviews in Ref§8,17]. As Fig. 2 demonstrates, we

find excellent agreement with the expected distribution for Po(r)=1+2J3(r), (6)

flexural and in-plane modes. Note that, in our analysis, we

decided to exclude points close to the plate’s perimeter, bewith J, denoting the zeroth-order Bessel function. Here, we

cause such a free boundary is known to lead to a behavior aftroduced the dimensionless distancekR, wherek is the

the wave functions which would not be covered by Porterwave number. When parts of the phase space are regular,

Thomas statistics. This is due to exponential, i.e., nonoscileorrections are need¢@?2], as were measured by Kudrodt

latory solutions of the biharmonic equati¢®) for the flex-  al. [11] in a microwave billiard with disorder. In Fig. 3, we

ural modes; for a discussion see RE5]. These solutions present our result for correlatgb) of flexural wave func-

describe a flapping’ of the plate, which only occurs within  tions. Here, we average over four separate wave functions,

a distance of the order of Kfrom the perimeter. two of which are shown in Fig. 2. To work out correlat®)
Closer inspection of the wave functions in Fig. 2 reveals &or a measured flexural wave function, we calculate the wave

smattering of individual pixels that are significantly lighter numberk from the frequency, using the appropriate expan-

than their immediate surroundings; these are most noticeabkion of the dispersion relation for wave propagation along

within dark regions of near-to-maximum intensity. We inter- the corresponding infinite, uniform plate. We replace the

pret such pixels as “dropouts,” arising from poor contact constant factor of 2 in formulg) with a variableb, which

between the scanning transducer and the plate, presumabhge fit to the experimental data. We obtdin=1.93+ 0.05.

due to microscopic irregularities in the plate’s surfasech  Thus, we find agreement between the experimental data and

P([¥(R)|%)=
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the RMT prediction—as expected because of the agreement 3.0
with the Porter-Thomas distribution found above.

We now address the in-plane modes. It will turn out that
the simple form(6) of the correlator is completely destroyed.
The reason is the presence of two modes. We calculate a
prediction for the spatial correlator. To this end, we extend
Srednicki’'s approacf23] which builds upon Berry’s conjec-
ture [18]. We write the wave function as the sum of two
waves, e.g., a longitudinal on¥,(R) and a transverse one s s )
’\Ijt(R), 0 10 20 30 40

251 —21 in—plane standing waves -
- 1+2[0.51,(r)+0.5J4(rk,/k)]?

Y(R)=a¥(R)+a,V(R), (7 FIG. 4. Comparison of in-plane data and RMT for the correla-

h he longitudinal and th & tion function P,(r) given by Eq.(11) with a?=a’=0.5. The solid
where the Qngltu inal and the transverse wave VeGQIS  cype represents an average over 21 measured in-plane standing
andk, are different. We assume no phase shifts. The coeffigayes, while the dashed curve is the random matrix model. We note

cientsa, anda; determine the relative weights. We want t0 thatr =k R is the dimensionless distance, wh@és the distance.
calculate correlato(5) for superposition(7) at two different

points R, and R,. We assume that the wave functions ;e the experimental and theoretical result to the longitu-

‘P.B(Ri)dwnh Xz.l't andi=1,2 are multivariate Gaussian dis- 4ina| wave numbek,, thereby introducing the dimension-
tributed according to less distance =k|R. Figure 1 shows that the dispersion

1 relation for transverse waves is exactly linear and for longi-
P~ex 3 2 \IfX(Ri)[Mfl]Xiyj\Ify(Rj) . (8 tudinal waves linear to a very good approximation in the
XY.h) frequency range considered. Therefore, the réfitk; re-

: . . mains constant, and no new scale is introduced by averaging
The matrix M is real symmetric and has as elements the . : .
over different in-plane wave functions.

averages The difference between the result here and the case dis-
M =(¥,(R)Y(R))=1,(R), cussed above, with one type of wave motion, is striking. The

presence of two modes leads to a beating phenomenon re-

My = (¥ (R)V(R)))=f(R), sulting in a much less pronounced structure in the correlator

with only some isolated bumps. The interference responsible

Mii; = (W1 (R)W(R))) =T 1«(R), (9)  for this behavior comes in through the measurement, where

the components of the transverse and the longitudinal dis-
combining the longitudinal and the transverse wave with it-placement fields are projected onto a real number, which is
self and the two of them with one another. The functibns  the voltage produced by the piezoelectric component.
f; and f; depend only on the distand® between the two For intermediateR, the theoretical predictiorf11l) de-
points. Normalization requires that we ha¥g0)=1 and scribes the shape of the experimental result well, in particular
f:(0)=1. There is no such condition dfy . We note that we the bumps in the correlator. Since we cannot infer the above
may normalize to unit volume or, in this case, to unit areamentioned projection quantitatively from our data, we adjust
Due to the Gaussian assumpti@), correlator(5) can be the constants, and a; in the predicted correlatofll) in

calculated in a straightforward manner. The result is such a way that these bumps are reproduced in the best pos-
) ) . ) sible way. This led us to pua?=a’=0.5. Although the
P2(R)=[aif(0) +2aa:f:(0) +arf(0)]1°+ 2[ajf|(R) above mentioned projection is not precisely known, we are
+2aa,f(R)+a’f(R)]. (10) still able to justify the approximate size of these numbers.

We know from independent calibration that our receiving

This can easily be extended to an arbitrary number of modedf@nsducer is about three times more sensitive to pure out-of-
For the functions, andf, in correlator(10), we may insert Plane motion than to pure in-plane mc;tlozn. The ratio of lon-
Berry’s formula[18] for a two-dimensional system, yielding 9itudinal energy to shear eqergyn§=c, Ici ~3 fqr a plate,
fi(R)=Jo(kR) and f(R)=Jo(kR) with k=|k| and k, yvherec|=:_<ct= V(21— v)ct is the pIate-Iongﬂudma_l veloc-
=|k,]. We assume that the longitudinal and the transvers&y. Assuming that the vibrational energy density is propor-
waves are statistically uncorrelated such thgR)=0. For ~ tional to the squared wave velocity and to the squared am-
consistency reasons we should also have the normalizatidfitude of vibration, and using that the out-of-plane

a’+a’=1. Hence, we arrive at the correlator amplitude associated with the longitudinal wave is just
times the longitudinal in-plane displacement, we find that
P,(R)=1+2[a%Jq(kR)+a2Jq(kR)]?, (1) (Vi t+Vip)/V=2/3, where the/’s represent expected, mea-

sured voltages associated with the amplitudes of the two lon-
which we compare to our experimental data. Figure 4 showsitudinal displacements and the transverse displacement, re-
an average over 21 measured in-plane wave functions, meapectively. We emphasize that this is a rough estimate. We
sured in the frequency range from 450 kHz to 510 kHz. Toalso note that the relative coupling of the transmitting trans-
compare with predictiori11), we find it convenient to nor- ducer to the two wave types is of no importance in this
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a) b)

-- RSPW 1 25l - RsPW 1
— 14+2[0.75J,(r) +0.25J,(rk, /)] — 1+2[0.751,4(r)+0.25J,(rk,/k)]?
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r r

FIG. 5. Comparison of numerical data and RMT for the correlation fundigim) given by Eq.(11) with a|2:0.75 andaf:0.25. The
solid curve represents the random matrix model, while the dashed curve is the random superposition of plane waves. The numerical results
are calculated for two situations: A small system with just six longitudinal wavelengths across the @stesembling the experimental
situation, and a big system with 50 longitudinal wavelengths across the system

context. For a chaotic system such as the Sinai stadiummoise to the spatial correlators shown in Figs. 3 and 4. We
mode conversion distributes the energy to the equilibriuntan only expect, however, to reveal the RMT prediction by
values within a few reflections. This should be comparedaveraging over an ensemble of the correlators for several
to the lifetime of the wave, which spans thousands ofindividual wave functions. Thus, the noise injected due to the
reflections. shortcomings of our experiment is indistinguishable from
As for the global structure of the correlator, there is firstand simply adds to the ensemble noise, i.e., to the one from
an undershoot betweer=5 andr =25, and second an over- the scattering around the averaged result. The experimental
shoot for larger. This can be understood if one takes into correlator in Fig. 4 is remarkably smooth. We interpret this
account, first, the finiteness of our system and, second, thas an indication that the noise stemming from the presence of
boundary conditions. To demonstrate how the undershoatropouts is marginal compared to the ensemble noise.
comes about, we present numerical simulations for a random
superposition of plane waves, where the wave numbers were
chosen to be the same as those in the experiment. Figures
5(a) and 3b) show the results for a small and for a large We have conducted an experimental study of the wave
system, respectively, compared to the theoretical predictiofunction statistics of the flexural and in-plane modes of a
(12). In Figures %a) and 3b) we have chosen different val- Sinai stadium shaped aluminum plate. For flexural modes,
ues fora; and a; compared to Fig. 4, in order to give an the wave equation reduces to a scalar biharmonic equation,
impression of how the correlator depends on these two coefvhereas in-plane modes are solutions to a vectorial wave
ficients. While the resulting correlator in the larger systemequation. In the latter case, the wave equation is qualitatively
agrees perfectly with the theory, there is an undershoot visdifferent from the Schrdinger equation for a quantum par-
ible for the small system, exactly of the type found in theticle in a two-dimensional domain. We find accurate agree-
experiment which was of the same size. Although the simument with RMT for the two quantities under study: the dis-
lation for the small system does show an overshoot, it igribution of intensity for both mode types and a spatial
much smaller than observed in the experiment. Thus, weorrelation for the flexural modes. As for the flexural modes,
conclude that the experimental result for larger values of our results for the distribution and spatial correlation of in-
reflects the free boundary conditions in our experimenttensity show, for elastomechanical systems, that the universal
Similar to the flexural modes, discussed in Sec. IV A, thepredictions of RMT are valid not only for the spectral fluc-
in-plane modes also have systematic excess amplitudes toation statistics, as found in R¢fL—3], but also for proper-
the boundary region. Hence, at distanéewhich are com- ties of the wave functions. As this statement applies to waves
parable to the size of the plate, this contributes to the cordescribed by a biharmonic, i.e., fourth-order equation, the
relator. In our numerical simulation, the amplitudes at thestatistical model of RMT is experimentally proven to be ro-
boundary are random and therefore do not affect the combust also in this respect.
relator. Of course, these excess amplitudes will also influ- Moreover, we have, by investigating a system with two
ence the correlator at distancRxomparable to X. In our  different types of modes, demonstrated that the spatial cor-
opinion, this explains why the structure consisting of the diprelator (6) for one type of wave is a somewhat fragile quan-
nearr =2 followed by the bump near=3 in the RMT pre- tity. If another type of wave mixes in, the pronounced oscil-
diction is washed out and thus not visible in the measuredatory structure is destroyed due to a beating phenomenon.
correlator. We do not contribute the undershoot of the corWe believe that this will also be relevant in many complex
relator in the intermediate range to this effect just discussedjuantum systems where different classes of modes are
rather we believe it is due to the finiteness of the system, agresent. In molecules, for example, one is confronted with
explained above. exactly such a situation, as becomes obvious in the Born-
The existence of scanning dropouts in the measured wav@ppenheimer approximation, which leads to a Hamiltonian
functions, as already mentioned in Sec. IV A, adds soméhat explicitly contains such different classes of modes.

V. CONCLUSIONS
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