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Synchronization of vectorial noise-sustained structures
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The synchronization of vectorial, noise-sustained structures in nonlinear optical systems is discussed. In
particular, the analysis is made for nondegenerate optical parametric oscillators with walk off. The interplay
between walk off and noise fluctuations leads to the formation of noise-sustained transverse patterns in both the
signal and idler fields. Despite the fact that both patterns are stochastic macroscopic structures driven by
independent sources of noise, their correlation grows with time, finally leading to a spatially distributed time
synchronization of noise-sustained structures. A physical explanation of this phenomenon is found by analyz-
ing the linear instability process and the existence of exact nonlinear solutions that show the same correlation.
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[. INTRODUCTION perturbations of the steady state are advected more rapidly
than their rate of spreading. Therefore, macroscopic patterns
Synchronization phenomena have been a topic of scierf?amed noise-sustained structutbiSS's emerge in this re-
tific research for many yeafd] and in many systems, rang- 9ime if noise is present at all times. Optical noise-sustained
ing from physics to biology[2]. Many different situations Structures[33] have been predicted in OPO[43,30,34.
have been considered, including synchronization of IimitSuch NSS's are conceptually equivalent to those observed in

. o . fluid convection experiments, in an open flow configuration
cycle oscillators[3,4], synchronization of chaotic systems [35]. In fluid dynamics the NSS are a spatial macroscopic
[5], partial(i.e., phasgsynchronizatiorj6], generalized syn-

e L X manifestation of amplified thermal fluctuations, while in
chronization[7,8], synchronization of stochastic systef8$,  opo's these macroscopic structures are associated with am-

noise-induced synchronizati¢m0], etc. These works refer to plified quantum noise. We will consider here type-Il OPO in
systems characterized by a purely temporal dynamics. SyRyhich the nonlinear crystal is pumped by a field linearly
chronization phenomena have also been studied in systemg|arized with frequencyw, and the two fields produced
with spatial degrees of freedom, in particular, synchronizayjtn frequenciesw » (signal and idler are orthogonally po-
tion of two spatiotemporally chaotic field41,12. In Refs.  |arized. A NSS appears in each of these two components of
[11,12 the two chaotic fields are taken as the two indepenthe vector electric field13] and we investigate the synchro-
dent components of a vector field, as for example, the twgyization of these two stochastic fields.
polarization components of an electric field vector. Synchro-  The paper is organized as follows. Section 11 briefly re-
nization is mediated by the dynamics of spatially localizedyjews the dynamical equations describing transverse patterns
vectorial structures. In this paper we address the question g type-1l OPO as well as the determination of the threshold
the dynamical synchronization of two spatiotemporal fieldsor the convective and absolute instabilities. In addition we
that follow stochastic dynamics driven by independent noisgyiye numerical evidence of the synchronization phenomena
sources. Again we take these two fields as two independepetween the two NSS in the convective regime. Section III
components of a vector field. To deal with a specific ex-gjves a first justification of the synchronization phenomena
ample, we consider noise-sustained patterns of the vectorigd terms of a linear analysis that identifies directions of in-
electric field, which occur in a model for type-Il optical para- stapility, while Sec. IV gives a further justification of the
metric oscillatordOPO's [13]. o _ _ synchronization in terms of nonlinear solutions of the prob-
Pattern formation has been studied in a variety of nonlinjem_ Section V gives a quantitative characterization of the

ear optical systemisl4], being OPO's a particularly interest- gegree of synchronization. Our conclusions are summarized
ing example. There are a number of theoretical and experip sec. VI.

mental studies of pattern formation, localized structures, and

domain walls in these systenid5-29. The effect of the  1I. MEAN-FIELD EQUATIONS, THRESHOLD ANALYSIS,
spatial walk off, due to the crystal birefringence, has also AND SYNCHRONIZATION

been addressed in OPO’s. Walk off breaks the reflection sym-
metry and leads to convective terms in the dynamical equa-
tions. Therefore, a convectively unstable regiB@—32 ex- The equations describing the time evolution of the nor-
ists. This regime is characterized by the fact that locaimalized slowly varying envelopes of the transverse electric

A. Equations for a type-Il OPO
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fields in a frequency and/or polarization nondegenerate OP@ussed in Refd.13,30,31, due to the convective terifpro-
(NDOPO have been derived in Ref$13,25,26,31. The portional top), this system has actually two thresholds of
equations governing the interaction &f; Ar,t), i.e., the instability in the parametdiF|. The lowest oneK.) corre-
pump, signal, and idler fields, at frequéhci@&m (where ~ sponds to the convective instability and it is the threshold of
wo=w;+w,), in a NDOPO in a ring cavity, in the mean- the signal generation for the OPO. Unstablti mﬁodes are trans-
field approximation, are given by verse traveling wavesTW's) A;, A3 =exdide r+\;(got]
whose critical wave vector GQ) and frequency
(Im[)\+(ac)]) are given below. Definingqo,y=—y2p/25,
+eg &o(r 1), (1) the convective threshold B.=1 if q5,>A/a, and the criti-
cal transverse wave vectoﬁg are those that lie on a circle
centered at qo=(00o,) With radius R=[q.—qy|
+\ e &(T1), (2 =vaj,—Ala. Otherwise, forq,<A/a the most unstable
_ _ _ mode isq.=(0,—qoy) and the convective threshold takes
A= ol = (1+182)Ap+ia,V2ArHTKoAT Aot p A2l the form |F|2=14{[ & — y2p/(43)]/(y1+ 7)}2. In both
e 1) 9 e convectve thresnold of netabiy ' gven (a1

where the paraxial and the single longitudinal mode approxi- Ac A 5

mations are assumed to be valid for all the fields. Without , &) —m \ ,(g.F,)= v172lA2— A1+ q (aZ_a1)+qu]_
loosing generality the fieldé, can be taken as ordinary ve Y1t Y2

polarized beams, whilé\, is extraordinary polarized. The (6)

vectorfz(x,y) is the spatial coordinate, transverse to the ) i -~
direction of propagatiort, is the time, andK, is the nonlin-  Hereafter we only consider the first casg (—A/a>0) for

ear coefficient. The transverse Laplacian operator describ&¥hich pattern formation is expecté¢a3].

diffraction, a; (j=0,1,2) being the diffraction coefficients. ~ The second thresholdz, (F.>F) corresponds to the
Due to the birefringence of the nonlinear crystaj,anda, absolute instability. No analytical expression féi, is
can be slightly different, even when the signal and idler ar&nown, but can be calculated through the numerical solution
frequency degeneratg, is the normalized amplitude of the ©f @ saddle point problerfi3,30,31. At the absolute thresh-
injected pump, which is considered real with no loss of gen©ld the most unstable modes are still TW's, whose wave
erality; y, and A; (j=0,1,2) are, respectively, the cavity vector and frequency of oscillation are dgtermlned through
decay rates and detunings; amds the walk-off coefficient. the same formulas found for the convectively unstable re-
By proper scaling of space, time, and amplitudes all thes§iMe, such as Eq6).

coefficients can be taken as dimensionless; the relations of

these parameters with physical quantities can be found in C. Signal-idler synchronization

Refs.[15,30,31. Finally, the last terms of each equation are
independent complex Gaussian white noises, with zero meag,
value and correlation

ﬁtAo= ’}/0[ - (1+ |A0)A0+ E0+ iaova0+ 2i KOA1A2]

A= y1[ — (L+iA)A +ia, VA +iK AL Ag]

In the absolutely unstable regimE ¥ F.) any initial ran-

m perturbation of the steady state takes the system to a
final state that consists of an exact TW solutimee Eq.
(14)]. In particular, due to symmetry breaking caused by the

walk off p#0, the selected wave vectaf& (dx,qy) always
satisfiesg,= 0 [23]. These nonlinear modes are not intensity
patterns but rather phase patterns, one for the signal and one
Equations(1)—(3) have a homogeneous symmetric solu-for the idler. The result is that, because of the deterministic
tion: A;=A,=0, Ag=Ey/(1+iA,), which corresponds to nature of the instability in this regime, the correlation be-
the regime of no-signal generation. The linearization of Eqstween signal and idler in the selected pattern is complete.
(1)—(3) around this solution identifies eigenvalues with dis- In the convectively unstable regimé& (<|F|<F,) only

(EOOE T V)=288r-1)8t-t). (4

B. Threshold analysis

persion relation$13] NSS's exis{30,33. In this regime perturbations are unstable
_ but their advection speed is larger than their spreading veloc-
N (0,F)=—3{(y1+ y2) +i[(y141— v2A,) ity and thus new structures are continuously formed by spon-

) L taneous amplification of noise. In fact, the patterns are not
+0%(v181~ 7282) — vapth I} = 3Vx,  (5) stationary, but drift in the direction with the same advection
. : .. velocity. NSS’s are stochastic, as shown in a detailed analy-
where nevy pan_amejers have been dgflned in order to simplifyq i Refs.[30,34], and their selection is dynamical, i.e.,
the notation, i.e.,a=yja;+ 8, A=y1A1+%4,, x  there is a continuous excitation of all the unstable modes
=4y,7,|F|>*~[g%a+A+ y,pa,—i(y1— ¥,)]% Finally, F  both in the signal and the idler fields. Although many TW
=iKoEp/(1+iAy) is a normalized pump intensity. solutions are excited and grow, some modes, those closer to
By increasing the pump amplitudg, (i.e., |F|) the ho- the conditiong,=0, are particularly favored. This stems
mogeneous symmetric solution becomes unstable. As digrom the symmetry breaking convective term, which makes
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FIG. 1. Signal A4, left column and idler @,, right column g
transverse fields in the convectively unstable regime at time & 0.0000F v
=475. (a) Field intensities|A,| and|A,|. (b) Fourier transforms
|A1gl and|A,4| (far field). Parameters argo=1, y;=0.985, v,
=1.015, a,=0.125, a,;=0.25375, a,=0.24625, Ag=0, A;, ~0.0005 ‘ ‘ ‘ ‘
=-0.2,p=0.25, g= €1 ,= 9% 10", andE,=1.005. Signal and (0) 0 10 20 30 40 50
Y

idler transverse patterns, which drift in thelirection, show essen-

tially the same macroscopic noise-sustained structure in intensity. .
) . ) ) . FIG. 2. (a) Re(A;) (solid curve and Im(A,) (dashed curveas a
The integration window had a total size of 26060 normalized function of the space variablg corresponding to the patterns of

spatial units, while only a central region of 8@0 units is shown Fig. 1 atx=0, which is in the region of well-developed structures.
here. The spatial width of the super Gaussian pump beam is 5&)) The samé for Re{,) and Im@A,)
2 1/

units.

€1,=€. We introduce the far-field component$ourier

the spreading velocity of perturbations wigh=0 the largest  transform
in the systenj30]. 1

In the fully nonlinear stage of the convectively unstable AT )==— > Ai,a(t)exp(iti- r 7)
regime, excited modes of opposite wave vector can reach a 2m q
macroscopic size and interfere, generating intensity stripes. . ) .
[13]. These peculiarities of NSS are clearly observable inVith i=1.2. By linearizing Egs(2) and (3) around the off
Fig. 1, which shows a snapshot(@j near andb) far field of state the following equations are obtained for the Fourier

the signal and idler in the convective regime. From the figuremOdeS:

it is 'also no.tice.able. that a large correlation between signal AL G= 7[—(1+iA1)A1a—iaq2Ala+ FA;‘;]
and idler exists in this regime. Let us stress that this behavior ’ ' : 4
is not trivial, because the NSS’s in the two fields are gener- +eyi(q,t),
ated by the spontaneous amplification of two independent
stochastic processes. To give evidence of the existence of a 0.0008 ‘
strong dynamical correlation—synchronization—in the non-
linear convective regime, the amplitude of the real and 0.0004 .
imaginary parts of the signal and idler fields are reproduced
in Figs. 2 and 3. % 0.0000 L _
[ll. DYNAMICAL CORRELATION IN THE LINEAR 0.0004 |
REGIME
In order to understand the synchronization phenomena be- -0.0008 ‘ ‘ ‘
tween the signal and the idler fields, for which we have given -0.0008  -0.0004  0.0000  ©0.0004  0.0008

. . . . . Re(A
numerical evidence above, we consider the dynamics in the oA

linearized regime, i.e., for small field amplitudes around the F|G. 3. Signal-idler synchronization can be observed by consid-
trivial solutionA; ,=0,A;=Eq/(1+iAg). To avoid cumber-  ering the time evolution in thERe(A;),Im(A,)] phase plane for
some expressions, analytical results are derived in this seghe same integration of the previous figure. A similar picture is
tion for the particular cas&o=1, Ay=0, y;,=7, and obtained in thd Re(A,),Im(A;)] plane.
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GAY =4[ —(1—iA)A* -+iag?A* -+ipg,A¥ - a huge correlation between signal and idler spatial compo-
2= 2 " Y2mg nents in the far field. In fact, definitiofl1l) and the result
+F* A ]+ Ve ys (—q.t), (®  justfoundimplyA; 5 ~iA; . ei ¢0. This correlation induces

the corresponding correlatlon in the near field. For a resonant
where ¢ Aq,t) are Gaussian white noises in the Fourlerpump field (Ag= ¢o=0), we have

space, defined through the expansiort; 2(r t)
=1/2ﬁw25¢1’3(q,t)expaq~rﬁ), A with correlation: Ay(F )= z At yexpliq-r)
(@) (A1) =28(a-q")5(t—t') 8 .

The correlation between the fields can be explained in

terms of the eigenvectonﬁt(ﬁ) for [Alﬁc'A;,fcic]T associ- ~ % 2 |A2 q(t)exp(lq r= |A*(r t), (13
ated with the eigenvalues.. introduced in Eq.5). In the d
critical case they can be written as at least if the sums are restricted to the Fourier modes on the
. . ring of most unstable modes. This analysis is strictly valid
+(de)=[1,~i exp(—ipo)] expiqc ), only in the linearized regime, i.e., for small field amplitudes;
. .. nonetheless, the nonlinear convective regime preserves such
~(ge)=[1i exp(—icho)"expiqe-T), (9)  property, as shown by numerical simulations of the full non-

) linear equations(1)—(3) and the nonlinear solutions dis-
where ¢, is the phase ofAo. At threshold, |[F|=1 and  cyssed in the following section.
A .(q.) defines the direction in the functional space along
which the instability takes place. The form of eigenvectors IV. NONLINEAR SOLUTIONS
(9) agrees with our numerical findings of synchronization.
The unstable eigenvector direction defines a relationship be- A family of nonlinear, exact solutions of Eqg&l)—(3), can
tween the signal mode and idler critical modes in such a wafe found analytically. In the limit op=0, these solutions

that Al,dc:i eXp@¢o)A;,a _ This relation between critical Pecome the TW solutions found by Longhi in RES6] for a

_ ) NDOPO. These solutions are
modes is also present below threshold and explains the ob-

served signal-idler correlation. More precisely, decomposing A A ATT=TA A exi(id-T+iot+id
the Fourier amplitudes in terms of the critical eigenvectors, [Ao.Ar. A2l =[A0.As eXRLiG @ )
we have Ayexp—iq-r—iwt—i®)]", (14

[Avg A 1T=ag As(d)+BiA-(do). (100 where

This expansion implies that ~ _EotiCexpiv)
_ 0 1+iA, ’
@, = Avg, TR, g e,
A;=A,=CI2K, exp(i¥/2), (15
Fi= A~ AS 8%, (1 a
Ce and the dispersion relatiom(q) is given by Eq.(6). The
and the followingindependenequations are derived for the intensity of the TW signal and idler solutions is given by
modes that actually drive the dynamics in the convective
regime:

—(1—-AgA) = VKZ|Eg|2— (1+ApA,)2
Cl2kg = L7208 J£| "~ (1+4040%
0

g =Y|F| = 1+io(de)]ag + ¥u(de.b), a8

Bd __ 7[|F|+1—iw(&c)]ﬂa T lﬂﬁ(ﬁc,t), (12) yvhere 1t y?)Ae=A+qZE+ ¥20yp. The global signal-
c c idler phaseV is
where w(q) is given by Eq.(6) and we have introduced
independent noise processes ¢, g=1(q,t) 2|F[cog W) =Ac+
+iygs(—q,t)e %o
From these equations it is clear that all modes indicatedvhile the relative signal-idler phase is arbitrary, as follows

by B4 are damped for any value of pumpifig|, while all  from symmetry consideratiorig4]. The domain of existence
modes defined aag are dampednly below threshold, i.e., of these TW solutions in the plang,E,) is determined by
for |[F|<1. This means that the destabilization of the tr|V|aI the conditionC>0; thus, for 1- A;A>0 only the positive
solution takes place along the manifold for whigh modes  sjgn in Eq.(16) is acceptable, and TW's exist fgF|>F,
are damped. The consequence of the fact fiyaft) -0 as- =1. At threshold F|=F and the transverse wave vectors of
ymptotically, even in the convective regime, is the growth ofthe TW's lie on the circle centered gf with radiusR (i.e.,

o :zw@, (17)
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1.000 the walk-off coefficient, the signal and idler evolutions be-

come synchronized stochastic processes. This synchroniza-
tion is not only present in integrated quantitiesI&s$) but
also present point to point, as shown in Figs. 2 and 3. This
means that the phenomenon is spatially distributed. In prac-
tice, the nonlinear pattern is constituted by the sum of all
convectively unstable Fourier modes, i.e., nonlinear exact
solutions, which can be excited at the same time in this re-
gime.
, , ‘ , ‘ The degree of correlation between the fiefdsand A3
0 80 160 240 320 400 480 depends on the difference of cavity decay rates and on the
Time noise intensity. The correlation is originated from an inter-
play between noise and nonlinear dynamics. Directions per-
acteristic realization of Eq$1)—(3) in the convective regime. The pendlcular o the unstable manifolds are damped, a§ shown
solid, dotted, and dashed curves represent, respectivelm Eq. (12). One has to to compare the damping raid

V. . . L .
T|Ay]|Al], TTRe(A;),IM(A)] andT[Re(A,),Im(A,)]. Param- I4—|F|) \(/j\llth the noise strer?gth. Folr Ia_lrger_ no(;se mtensdltyI(f)r
eters are the same as of Fig. 1. ower damping rates, the correlation is decreasedy;l

# v, the global phase is not the same for themodes in the

A,=0). Note that only in the case, = v, the global phase ring of the far field[see Eq.(_l?)] z_;md the correl_ation _is also
is invariant aifF|=F., and any pair of signal-idler TW has Qegraded. Hoyve\(er, even in this case thel §|gnal-|dler_ near
the same global phase. field synchronization is due to the superposition of nonlinear

It is important to note that the most unstable modes of thdr@veling waves with global signal-idier phase fixed, being
linear stability analysis, i.e., those identified by the wavethe dominant contribution from the far field the modes with

0.995

Correlations

0.990 H}

0.985

FIG. 4. Signal-idler correlations as a function of time for a char-

vectorq. and the relative frequend§g. (6)], belong to the A
family of exact nonlinear TW solutions. In particular, by sub-
stituting the expression aﬁ‘c into the formula forA,, all the

most unstable mode&hose on the ring satisfy A,=0. In conclusion, a theoretical analysis of synchronization in
These TW's satisfy for resonant pump field (=0) the re- noise-sustained patterns for intracavity parametric down con-
lation A;=iA% . This relation is not a symmetry of Eqgs. version has been presented. This phenomenon occurs in the
(1)—(3), but it follows the direction of instability. This con- convectively unstable regime, where noise-sustained struc-
dition means that a complete correlation exists between thiires can be generated by spontaneous amplification of noise.

VI. CONCLUSIONS

real and imaginary parts of signal and idler. For pump values between the convective and absolute
threshold of a pattern forming instability, the destabilization
V. TIME CORRELATION IN THE CONVECTIVE REGIME of the steady state leads to the formation of stochastic, self-

_ o organized structures in the down converted signal and idler
To better quantify the phenomenon of synchronization offields. In the linearized regime, the most unstable modes are
the two stochastic field&; andA% in the convective regime, traveling waves that satisfy the conditighy=iA}% ; such

the following time correlation functioi" is introduced: correlation is also a characteristic of a particular family of
nonlinear solutions. Hence, the result of the destabilization is
F[P(x,y,t),Q(x,y,t)]=F(t)=f f [(P—(P))(Q the excitation of convectively unstable nonlinear modes that
present the same correlatioA,(=iA%) at each spatial point
_ r=sel rr=ce and for all times. The final result is that signal and idler are
(QNIdxdY[Vo(PINo(Q)], synchronized stochastic spatiotemporal fields.
(18 Our analysis provides a remarkable example of synchro-

nization of macroscopic noise-sustained structures with a

where P,Q can be any of the following quantities: | iorial degree of freedom.

Re(A;),Re(A,),Im(A,),Im(A,),|A|,|A,|, determined at a
certain point §,y) and timet, () indicates their mean value
in the transverse plane and ) is their corresponding vari-
ance. In Fig. 4 it can be observed that certain correlations G.l. acknowledges helpful discussions with P. Scotto. We
calculated for the NSS’s of Fig. 1 asymptotically reach theacknowledge financial support from MCyBpain Project
unity as the NSS’s develop. In practice, the uncorrelated iniNos. PB97-0141-C02-02, BFM2000-1108, BFM2001-0341-
tial condition is substituted, as time evolves, by highly cor-C02-02, Spanish-Italian Acaibintegrada HI2000-0027, and
related NSS’s in the two components. Then, after a charac=SIC (Spain—CONICET (Argentine collaboration pro-
teristic transition time, which depends on the system size angram.
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