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Synchronization of vectorial noise-sustained structures
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The synchronization of vectorial, noise-sustained structures in nonlinear optical systems is discussed. In
particular, the analysis is made for nondegenerate optical parametric oscillators with walk off. The interplay
between walk off and noise fluctuations leads to the formation of noise-sustained transverse patterns in both the
signal and idler fields. Despite the fact that both patterns are stochastic macroscopic structures driven by
independent sources of noise, their correlation grows with time, finally leading to a spatially distributed time
synchronization of noise-sustained structures. A physical explanation of this phenomenon is found by analyz-
ing the linear instability process and the existence of exact nonlinear solutions that show the same correlation.
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I. INTRODUCTION

Synchronization phenomena have been a topic of sc
tific research for many years@1# and in many systems, rang
ing from physics to biology@2#. Many different situations
have been considered, including synchronization of lim
cycle oscillators@3,4#, synchronization of chaotic system
@5#, partial ~i.e., phase! synchronization@6#, generalized syn-
chronization@7,8#, synchronization of stochastic systems@9#,
noise-induced synchronization@10#, etc. These works refer to
systems characterized by a purely temporal dynamics. S
chronization phenomena have also been studied in sys
with spatial degrees of freedom, in particular, synchroni
tion of two spatiotemporally chaotic fields@11,12#. In Refs.
@11,12# the two chaotic fields are taken as the two indep
dent components of a vector field, as for example, the
polarization components of an electric field vector. Synch
nization is mediated by the dynamics of spatially localiz
vectorial structures. In this paper we address the questio
the dynamical synchronization of two spatiotemporal fie
that follow stochastic dynamics driven by independent no
sources. Again we take these two fields as two indepen
components of a vector field. To deal with a specific e
ample, we consider noise-sustained patterns of the vect
electric field, which occur in a model for type-II optical par
metric oscillators~OPO’s! @13#.

Pattern formation has been studied in a variety of non
ear optical systems@14#, being OPO’s a particularly interes
ing example. There are a number of theoretical and exp
mental studies of pattern formation, localized structures,
domain walls in these systems@15–29#. The effect of the
spatial walk off, due to the crystal birefringence, has a
been addressed in OPO’s. Walk off breaks the reflection s
metry and leads to convective terms in the dynamical eq
tions. Therefore, a convectively unstable regime@30–32# ex-
ists. This regime is characterized by the fact that lo
1063-651X/2003/68~3!/036201~6!/$20.00 68 0362
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perturbations of the steady state are advected more rap
than their rate of spreading. Therefore, macroscopic patt
named noise-sustained structures~NSS’s! emerge in this re-
gime if noise is present at all times. Optical noise-sustain
structures@33# have been predicted in OPO’s@13,30,34#.
Such NSS’s are conceptually equivalent to those observe
fluid convection experiments, in an open flow configurati
@35#. In fluid dynamics the NSS are a spatial macrosco
manifestation of amplified thermal fluctuations, while
OPO’s these macroscopic structures are associated with
plified quantum noise. We will consider here type-II OPO
which the nonlinear crystal is pumped by a field linea
polarized with frequencyv0 and the two fields produced
with frequenciesv1,2 ~signal and idler! are orthogonally po-
larized. A NSS appears in each of these two component
the vector electric field@13# and we investigate the synchro
nization of these two stochastic fields.

The paper is organized as follows. Section II briefly r
views the dynamical equations describing transverse patt
in type-II OPO as well as the determination of the thresh
for the convective and absolute instabilities. In addition
give numerical evidence of the synchronization phenom
between the two NSS in the convective regime. Section
gives a first justification of the synchronization phenome
in terms of a linear analysis that identifies directions of
stability, while Sec. IV gives a further justification of th
synchronization in terms of nonlinear solutions of the pro
lem. Section V gives a quantitative characterization of
degree of synchronization. Our conclusions are summar
in Sec. VI.

II. MEAN-FIELD EQUATIONS, THRESHOLD ANALYSIS,
AND SYNCHRONIZATION

A. Equations for a type-II OPO

The equations describing the time evolution of the n
malized slowly varying envelopes of the transverse elec
©2003 The American Physical Society01-1
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fields in a frequency and/or polarization nondegenerate O
~NDOPO! have been derived in Refs.@13,25,26,31#. The
equations governing the interaction ofA0,1,2(rW,t), i.e., the
pump, signal, and idler fields, at frequenciesv0,1,2 ~where
v05v11v2), in a NDOPO in a ring cavity, in the mean
field approximation, are given by

] tA05g0@2~11 iD0!A01E01 ia0¹2A012iK 0A1A2#

1Ae0 j0~rW,t !, ~1!

] tA15g1@2~11 iD1!A11 ia1¹2A11 iK 0A2* A0#

1Ae1 j1~rW,t !, ~2!

] tA25g2@2~11 iD2!A21 ia2¹2A21 iK 0A1* A01r ]yA2#

1Ae2 j2~rW,t !, ~3!

where the paraxial and the single longitudinal mode appro
mations are assumed to be valid for all the fields. With
loosing generality the fieldsA0,1 can be taken as ordinar
polarized beams, whileA2 is extraordinary polarized. The
vector rW5(x,y) is the spatial coordinate, transverse to t
direction of propagation,t is the time, andK0 is the nonlin-
ear coefficient. The transverse Laplacian operator descr
diffraction, aj ( j 50,1,2) being the diffraction coefficients
Due to the birefringence of the nonlinear crystal,a1 anda2
can be slightly different, even when the signal and idler
frequency degenerate.E0 is the normalized amplitude of th
injected pump, which is considered real with no loss of g
erality; g j and D j ( j 50,1,2) are, respectively, the cavit
decay rates and detunings; andr is the walk-off coefficient.
By proper scaling of space, time, and amplitudes all th
coefficients can be taken as dimensionless; the relation
these parameters with physical quantities can be foun
Refs.@15,30,31#. Finally, the last terms of each equation a
independent complex Gaussian white noises, with zero m
value and correlation

^j i~rW,t !j j* ~rW8,t8!&52 d i , jd~rW2rW8!d~ t2t8!. ~4!

B. Threshold analysis

Equations~1!–~3! have a homogeneous symmetric so
tion: A15A250, A05E0 /(11 iD0), which corresponds to
the regime of no-signal generation. The linearization of E
~1!–~3! around this solution identifies eigenvalues with d
persion relations@13#

l6~qW ,F !52 1
2 $~g11g2!1 i @~g1D12g2D2!

1q2~g1a12g2a2!2g2rqy#%6 1
2 Ax, ~5!

where new parameters have been defined in order to sim
the notation, i.e.,ã5g1a11g2a2 , D̃5g1D11g2D2 , x

54g1g2uFu22@q2ã1D̃1g2rqy2 i (g12g2)#2. Finally, F
5 iK 0E0 /(11 iD0) is a normalized pump intensity.

By increasing the pump amplitudeE0 ~i.e., uFu) the ho-
mogeneous symmetric solution becomes unstable. As
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cussed in Refs.@13,30,31#, due to the convective term~pro-
portional tor), this system has actually two thresholds
instability in the parameteruFu. The lowest one (Fc) corre-
sponds to the convective instability and it is the threshold
the signal generation for the OPO. Unstable modes are tr
verse traveling waves~TW’s! A1 ,A2* .exp@iqWc•rW1l1(qWc)t#

whose critical wave vector (qW c) and frequency
(Im@l1(qW c)#) are given below. Definingq0,y52g2r/2ã,
the convective threshold isFc51 if q0,y

2 .D̃/ã, and the criti-

cal transverse wave vectorsqW c are those that lie on a circle
centered at qW 05(0,q0,y) with radius R5uqW c2qW 0u
5Aq0,y

2 2D̃/ã. Otherwise, forq0,y
2 ,D̃/ã the most unstable

mode isqW c5(0,2q0,y) and the convective threshold take
the form uFcu2511$@D̃2g2r/(4ã)#/(g11g2)%2. In both
cases, the frequency of oscillations of the unstable mode
the convective threshold of instability is given by@13#

v~qW !5Im l1~qW ,Fc!5
g1g2@D22D11q2~a22a1!1rqy#

g11g2
.

~6!

Hereafter we only consider the first case (q0,y
2 2D̃/ã.0) for

which pattern formation is expected@13#.
The second threshold,Fa (Fa.Fc) corresponds to the

absolute instability. No analytical expression forFa is
known, but can be calculated through the numerical solut
of a saddle point problem@13,30,31#. At the absolute thresh
old the most unstable modes are still TW’s, whose wa
vector and frequency of oscillation are determined throu
the same formulas found for the convectively unstable
gime, such as Eq.~6!.

C. Signal-idler synchronization

In the absolutely unstable regime (F.Fc) any initial ran-
dom perturbation of the steady state takes the system
final state that consists of an exact TW solution@see Eq.
~14!#. In particular, due to symmetry breaking caused by
walk off rÞ0, the selected wave vectorsqW 5(qx ,qy) always
satisfiesqx50 @23#. These nonlinear modes are not intens
patterns but rather phase patterns, one for the signal and
for the idler. The result is that, because of the determini
nature of the instability in this regime, the correlation b
tween signal and idler in the selected pattern is complete

In the convectively unstable regime (Fc,uFu,Fa) only
NSS’s exist@30,33#. In this regime perturbations are unstab
but their advection speed is larger than their spreading ve
ity and thus new structures are continuously formed by sp
taneous amplification of noise. In fact, the patterns are
stationary, but drift in they direction with the same advectio
velocity. NSS’s are stochastic, as shown in a detailed an
sis in Refs.@30,34#, and their selection is dynamical, i.e
there is a continuous excitation of all the unstable mo
both in the signal and the idler fields. Although many T
solutions are excited and grow, some modes, those clos
the conditionqx50, are particularly favored. This stem
from the symmetry breaking convective term, which mak
1-2
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the spreading velocity of perturbations withqx50 the largest
in the system@30#.

In the fully nonlinear stage of the convectively unstab
regime, excited modes of opposite wave vector can rea
macroscopic size and interfere, generating intensity str
@13#. These peculiarities of NSS are clearly observable
Fig. 1, which shows a snapshot of~a! near and~b! far field of
the signal and idler in the convective regime. From the fig
it is also noticeable that a large correlation between sig
and idler exists in this regime. Let us stress that this beha
is not trivial, because the NSS’s in the two fields are gen
ated by the spontaneous amplification of two independ
stochastic processes. To give evidence of the existence
strong dynamical correlation—synchronization—in the no
linear convective regime, the amplitude of the real a
imaginary parts of the signal and idler fields are reprodu
in Figs. 2 and 3.

III. DYNAMICAL CORRELATION IN THE LINEAR
REGIME

In order to understand the synchronization phenomena
tween the signal and the idler fields, for which we have giv
numerical evidence above, we consider the dynamics in
linearized regime, i.e., for small field amplitudes around
trivial solutionA1,250,A05E0 /(11 iD0). To avoid cumber-
some expressions, analytical results are derived in this
tion for the particular caseK051, D050, g1,25g, and

FIG. 1. Signal (A1, left column! and idler (A2, right column!
transverse fields in the convectively unstable regime at timt
5475. ~a! Field intensitiesuA1u and uA2u. ~b! Fourier transforms
uA1,qu and uA2,qu ~far field!. Parameters areg051, g150.985, g2

51.015, a050.125, a150.25375, a250.24625, D050, D1,2

520.2, r50.25, e05e1,259310214, andE051.005. Signal and
idler transverse patterns, which drift in they direction, show essen
tially the same macroscopic noise-sustained structure in inten
The integration window had a total size of 1603160 normalized
spatial units, while only a central region of 80380 units is shown
here. The spatial width of the super Gaussian pump beam is
units.
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e1,25e. We introduce the far-field components~Fourier
transform!

Ai~rW,t !5
1

2p (
qW

Ai ,qW~ t !exp~ iqW •rW ! ~7!

with i 51,2. By linearizing Eqs.~2! and ~3! around the off
state the following equations are obtained for the Fou
modes:

] tA1,qW5g@2~11 iD1!A1,qW2 iaq2A1,qW1FA2,2qW
* #

1Ae c1~qW ,t !,

ty.

56

FIG. 2. ~a! Re(A1) ~solid curve! and Im(A2) ~dashed curve! as a
function of the space variabley, corresponding to the patterns o
Fig. 1 atx50, which is in the region of well-developed structure
~b! The same for Re(A2) and Im(A1).

FIG. 3. Signal-idler synchronization can be observed by con
ering the time evolution in the@Re(A1),Im(A2)# phase plane for
the same integration of the previous figure. A similar picture
obtained in the@Re(A2),Im(A1)# plane.
1-3
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] tA2,2qW
* 5g@2~12 iD2!A2,2qW

* 1 iaq2A2,2qW
* 1 ir qyA2,2qW

*

1F* A1,qW #1Ae c2* ~2qW ,t !, ~8!

where c1,2(qW ,t) are Gaussian white noises in the Four
space, defined through the expansionj1,2(rW,t)
51/2p(qWc1,2(qW ,t)exp(iqW•rW), with correlation:

^c i(qW ,t)c j* (qW 8,t8)&52 d(qW 2qW 8)d(t2t8)d i j .
The correlation between the fields can be explained

terms of the eigenvectorsLW 6(qW ) for @A1,qW c
,A2,2qW c

* #T associ-

ated with the eigenvaluesl6 introduced in Eq.~5!. In the
critical case they can be written as

LW 1~qW c!5@1,2 i exp~2 if0!#Texp~ iqW c•rW !,

LW 2~qW c!5@1,i exp~2 if0!#Texp~ iqW c•rW !, ~9!

where f0 is the phase ofA0. At threshold, uFu51 and
LW 1(qW c) defines the direction in the functional space alo
which the instability takes place. The form of eigenvecto
~9! agrees with our numerical findings of synchronizatio
The unstable eigenvector direction defines a relationship
tween the signal mode and idler critical modes in such a w
that A1,qW c

5 i exp(if0) A2,2qW c
* . This relation between critica

modes is also present below threshold and explains the
served signal-idler correlation. More precisely, decompos
the Fourier amplitudes in terms of the critical eigenvecto
we have

@A1,qW c
,A2,2qW c

* #T5aqW c
LW 1~qW c!1bqW c

LW 2~qW c!. ~10!

This expansion implies that

aqW c
5A1,qW c

1 iA2,2qW c
* eif0,

bqW c
5A1,qW c

2 iA2,2qW c
* eif0, ~11!

and the followingindependentequations are derived for th
modes that actually drive the dynamics in the convect
regime:

ȧqW c
5g@ uFu211 iv~qW c!#aqW c

1ca~qW c ,t !,

ḃqW c
52g@ uFu112 iv~qW c!#bqW c

1cb~qW c ,t !, ~12!

where v(qW ) is given by Eq.~6! and we have introduced
independent noise processes ca,b5c1(qW ,t)
6 ic2* (2qW ,t)eif0.

From these equations it is clear that all modes indica
by bqW are damped for any value of pumpinguFu, while all
modes defined asaqW are dampedonly below threshold, i.e.,
for uFu,1. This means that the destabilization of the triv
solution takes place along the manifold for whichbqW c

modes

are damped. The consequence of the fact thatbqW c
(t)→0 as-

ymptotically, even in the convective regime, is the growth
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a huge correlation between signal and idler spatial com
nents in the far field. In fact, definition~11! and the result
just found implyA1,qW c

; iA2,2qW c
* eif0. This correlation induces

the corresponding correlation in the near field. For a reson
pump field (D05f050), we have

A1~rW,t !5
1

2p (
qW

A1,qW~ t !exp~ iqW •rW !

'
1

2p (
qW

iA2,2qW
* ~ t !exp~ iqW •rW !5 iA2* ~rW,t !, ~13!

at least if the sums are restricted to the Fourier modes on
ring of most unstable modes. This analysis is strictly va
only in the linearized regime, i.e., for small field amplitude
nonetheless, the nonlinear convective regime preserves
property, as shown by numerical simulations of the full no
linear equations~1!–~3! and the nonlinear solutions dis
cussed in the following section.

IV. NONLINEAR SOLUTIONS

A family of nonlinear, exact solutions of Eqs.~1!–~3!, can
be found analytically. In the limit ofr50, these solutions
become the TW solutions found by Longhi in Ref.@36# for a
NDOPO. These solutions are

@A0 ,A1 ,A2#T5@Ā0 ,Ā1 exp~ iqW •rW1 ivt1 iF!,

Ā2 exp~2 iqW •rW2 ivt2 iF!#T, ~14!

where

Ā05
E01 i C exp~ iC!

11 iD0
,

Ā15Ā25AC/2K0 exp~ iC/2!, ~15!

and the dispersion relationv(qW ) is given by Eq.~6!. The
intensity of the TW signal and idler solutions is given by

C/~2K0!5
2~12D0 De!6AK0

2uE0u22~11D0 De!
2

K0
,

~16!

where (g11g2)De5D̃1q2ã1g2qyr. The global signal-
idler phaseC is

2uFucos~C!5De1
g12g2

g1g2
v~qW !, ~17!

while the relative signal-idler phaseF is arbitrary, as follows
from symmetry considerations@24#. The domain of existence
of these TW solutions in the plane (q,E0) is determined by
the conditionC.0; thus, for 12D0D̃.0 only the positive
sign in Eq.~16! is acceptable, and TW’s exist foruFu.Fc
51. At thresholduFu5Fc and the transverse wave vectors
the TW’s lie on the circle centered atqW 0 with radiusR ~i.e.,
1-4
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De50). Note that only in the caseg15g2 the global phase
is invariant atuFu5Fc , and any pair of signal-idler TW ha
the same global phase.

It is important to note that the most unstable modes of
linear stability analysis, i.e., those identified by the wa
vectorqW c and the relative frequency@Eq. ~6!#, belong to the
family of exact nonlinear TW solutions. In particular, by su
stituting the expression ofqW c into the formula forDe , all the
most unstable modes~those on the ring! satisfy De50.
These TW’s satisfy for resonant pump field (D050) the re-
lation A15 iA2* . This relation is not a symmetry of Eqs
~1!–~3!, but it follows the direction of instability. This con
dition means that a complete correlation exists between
real and imaginary parts of signal and idler.

V. TIME CORRELATION IN THE CONVECTIVE REGIME

To better quantify the phenomenon of synchronization
the two stochastic fieldsA1 andA2* in the convective regime
the following time correlation functionG is introduced:

G@P~x,y,t !,Q~x,y,t !#5G~ t !5E E @~P2^P&!~Q

2^Q&!#dxdy/@As~P!As~Q!#,

~18!

where P,Q can be any of the following quantities
Re(A1),Re(A2),Im(A1),Im(A2),uA1u,uA2u, determined at a
certain point (x,y) and timet, ^ & indicates their mean valu
in the transverse plane ands( ) is their corresponding vari
ance. In Fig. 4 it can be observed that certain correlati
calculated for the NSS’s of Fig. 1 asymptotically reach t
unity as the NSS’s develop. In practice, the uncorrelated
tial condition is substituted, as time evolves, by highly c
related NSS’s in the two components. Then, after a cha
teristic transition time, which depends on the system size

FIG. 4. Signal-idler correlations as a function of time for a ch
acteristic realization of Eqs.~1!–~3! in the convective regime. The
solid, dotted, and dashed curves represent, respecti
G@ uA1u,uA2u#, G@Re(A1),Im(A2)# andG@Re(A2),Im(A1)#. Param-
eters are the same as of Fig. 1.
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the walk-off coefficient, the signal and idler evolutions b
come synchronized stochastic processes. This synchron
tion is not only present in integrated quantities asG(t) but
also present point to point, as shown in Figs. 2 and 3. T
means that the phenomenon is spatially distributed. In p
tice, the nonlinear pattern is constituted by the sum of
convectively unstable Fourier modes, i.e., nonlinear ex
solutions, which can be excited at the same time in this
gime.

The degree of correlation between the fieldsA1 and A2*
depends on the difference of cavity decay rates and on
noise intensity. The correlation is originated from an int
play between noise and nonlinear dynamics. Directions p
pendicular to the unstable manifolds are damped, as sh
in Eq. ~12!. One has to to compare the damping ratiog(1
1uFu) with the noise strengthe. For larger noise intensity o
lower damping rates, the correlation is decreased. Ifg1
Þg2 the global phase is not the same for theq modes in the
ring of the far field@see Eq.~17!# and the correlation is also
degraded. However, even in this case the signal-idler n
field synchronization is due to the superposition of nonlin
traveling waves with global signal-idler phase fixed, bei
the dominant contribution from the far field the modes w
qx50.

VI. CONCLUSIONS

In conclusion, a theoretical analysis of synchronization
noise-sustained patterns for intracavity parametric down c
version has been presented. This phenomenon occurs in
convectively unstable regime, where noise-sustained st
tures can be generated by spontaneous amplification of n
For pump values between the convective and abso
threshold of a pattern forming instability, the destabilizati
of the steady state leads to the formation of stochastic, s
organized structures in the down converted signal and i
fields. In the linearized regime, the most unstable modes
traveling waves that satisfy the conditionA1. iA2* ; such
correlation is also a characteristic of a particular family
nonlinear solutions. Hence, the result of the destabilizatio
the excitation of convectively unstable nonlinear modes t
present the same correlation (A1. iA2* ) at each spatial poin
and for all times. The final result is that signal and idler a
synchronized stochastic spatiotemporal fields.

Our analysis provides a remarkable example of synch
nization of macroscopic noise-sustained structures wit
vectorial degree of freedom.
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