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Three-dimensional randomly dilute Ising model: Monte Carlo results
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We perform a high-statistics simulation of the three-dimensional randomly dilute Ising model on cubic
latticesL® with L<256. We choose a particular value of the density,0.8, for which the leading scaling
corrections are suppressed. We determine the critical exponents, obtami@®b833), »=0.0352), B
=0.3535(17), andv=—0.0499), in agreement with previous numerical simulations. We also estimate nu-
merically the fixed-point values of the four-point zero-momentum couplings that are used in field-theoretical
fixed-dimension studies. Although these results somewhat differ from those obtained using perturbative field
theory, the field-theoretical estimates of the critical exponents do not change significantly if the Monte Carlo
result for the fixed point is used. Finally, we determine the six-point zero-momentum couplings, relevant for
the small-magnetization expansion of the equation of state, and the invariant amplitud%;rmm expresses
the universality of the free-energy density per correlation volume. WeFt;hé 0.2885(15).
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I. INTRODUCTION are lIsing spin variables, angl are uncorrelated quenched
random variables, which are equal to 1 with probabikty
During the last few decades many theoretical and experifthe spin concentratiorand zero with probability +x (the
mental studies have investigated the critical properties of stampurity concentration For small 1-x, i.e., above the per-
tistical systems in the presence of quenched disorder. Typicablation threshold of the spins, this model shows a critical
examples are randomly dilute uniaxial antiferromagnets, fotransition analogous to that observed in experiments and
instance, F&n, _,F, and MnZn, _,F,, obtained by mixing whose nature has been the object of many theoretical studies,
a uniaxial antiferromagnet with short-range interactions withsee, e.g., Ref§7-10.
a nonmagnetic material. Experiments show that, for suffi- Numerical Monte Carlo simulationfl1-17 had long
ciently low impurity concentration 4 x, these systems un- been inconclusive in setting the question of the critical be-
dergo a second-order phase transitioTgix) <T.(x=1), havior of the RIM. While the measured critical exponents
with critical exponents independent of the impurity concen-were definitely different from the Ising ones, results appar-
tration. The experimental results have been summarized iantly depended on the spin concentration, in disagreement
Ref. [1], which reportsa=—0.1012), »=0.691), andg  with renormalization-grougRG) theory. Only recently has
=0.3509). These estimates are definitely different from thethe question been clarified. Refere@&] showed the pres-
values of the critical exponents of the pure Ising universalityence of very strong concentration-dependent scaling correc-
class, where, e.ga=0.1096(5)(Ref.[2]), and thus indicate tions with exponeniw=0.376). Only if they are properly
that the impurities change the nature of the transition thataken into account, the numerical estimates of the critical
belongs to a new random universality class. In the presencgxponents become dilution independent as expected. Their
of an external magnetic field, dilute uniaxial antiferromag-final estimates are=0.6837(53) andy=0.0374(45), from
nets show a different critical transition, belonging to the uni-which one also derives =0.3546(28) and a=
versality class of the random-field Ising modia}6]. —0.051(16) using scaling relations. These results are in
A simple model for dilute uniaxial systems is provided by good agreement with the experimental ones reported above,
the three-dimensional random Ising mod@IM) with  although the numerical estimate efis slightly different.
Hamiltonian Randomly dilute Ising systems can also be studied by
using the field-theoreticdFT) approach9,10]. The starting

oint is the cubic-symmetric Hamiltonidi8
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such a model corresponds to a system with quenched disow*, v* is always found, although the estimatesufandv *
der effectively coupled to the energy density, as is the case ofary significantly with the order and the resummation
the RIM [18]. As is well known, the limitN—O0 is a subtle method. In spite of that, the estimates of the critical expo-
one. In the standard perturbative approaches, the limit igents are quite precise, due to a relatively large insensitivity
taken naively—we simply seN=0 in the perturbative of the results to the position of the fixed point. The analysis
expansion—implicitly assuming that the replica symmetry isof the six-loop series gives[26] »=0.678(10), 7
not broken. In recent years, however, this assumption has 0.03qQ3), 5=0.3495), anda=—0.034(30). The agree-
been questionefl19] on the ground that the RG approach ment with the experimental and numerical results is again
may not take into account other local minimum configura-quite satisfactory; only the estimate @fseems to be slightly
tions of the random Hamiltoniafl.2), which may cause the larger than the experimental result.
spontaneous breaking of the replica symmetry. However, a In this paper we present a numerical study of the RIM.
fixed-dimension perturbative two-loop calculatifi®0] in a  The purpose is to extend and possibly improve the numerical
perturbative approach proposed in REE9] finds that the results of Ref[13]. We estimate the critical exponents and,
standard replica-symmetric fixed point is stable under anyn particular,a in order to verify whether or not the apparent
replica-symmetry breaking perturbation, thereby supportingmall discrepancy between experiments and numerical re-
the standard approach. In this paper, we do not further corsults is really there. Moreover, we determine the four-point
sider this issue and in the following we always assume thatnd the six-point zero-momentum couplings, and the univer-
the standard approach is correct. Note that the good agresal ratioRg . As a by-product we are able to check the ac-
ment between numerical and field-theoretical results supeuracy of the FT approach by comparing Monte Carlo and
ports this assumption, although one cannot exclude theET estimates of the fixed-point value$ andv*.
replica-symmetry breaking effects can only be seen very We have performed a high-precision Monte Carlo simula-
close to the critical point. tion of the model with Hamiltonial.l) atJ=1 and density

In the FT approach one looks for stable fixed points in thex=0.8. Such a value has been chosen on the basis of the
regionuy<<0 (or, equivalentlyu<0). If the pure fixed point results of Ref[13], where it was shown that scaling correc-
atu=0 is stable, disorder is irrelevant, while the presence otions are particularly small for such a valuexfThis is fully
a new stable fixed point with<<O indicates that disorder is confirmed by our analysis: We do not observe scaling cor-
relevant and that dilute systems belong to a new universalityections with exponenb=0.376), thecorrection-to-scaling
class. Numerical and experimental results indicate that iexponent observed in Refl13] for generic values of the
dilute Ising systems the correct scenario is the second ongensity[27]. Note that the absence of corrections with expo-
and thus a new random fixed point should be present witlhent w also implies the absence of corrections with expo-
u*<0. nents 2, 3w, .... Therefore, we expect corrections to

The most precise FT estimates of critical quantities argcaling with next-to-leading exponeat, (w,=0.8(2) ac-
presently obtained by using perturbative methods. Howevegording to field theory{28]). Unexpectedly, also these cor-
in the case of random systems the perturbative approadfections are small. The RIM at=0.8 is therefore an “im-
faces new difficulties: the perturbative series are not onlyroved” model[29-32,3, i.e., a model in which the leading
divergent, but are also non-Borel summab®i,22. This  correction to scaling isapproximately absent in the expan-
means that even the knowledge of the complete perturbativsion of any observable near the critical point.
series does not allow the exact computation of the critical First of all, we determine the critical exponents by using
quantities. These difficulties are clearly evident in tfie  two different methods. A first estimate is obtained by em-
expansion and in the related minimal-subtraction schemeloying the extrapolation method of Ref&3-35 (similar
without e expansion[23—25. The expansion in/e is not  methods have been discussed in RE3§,37). It allows us
well behaved and does not allow quantitative determinationto determine the critical exponents from the high-
of the critical exponents, while in the minimal-subtraction temperature behavior of the susceptibility and of the correla-
scheme results are very sensitive to the resummation methotiion length. We also use direct finite-size scalif@S meth-
If the Chisholm-Borel method is usé¢@4], no random fixed ods, obtaining consistent estimates. Our final results are
point is found with the longest available serigise loops.
Apparently, four-loop series provide the most accurate re- »=0.6833), (1.3
sults and increasing the length of the expansion does not help
improving the precision of the results. On the other hand, if
a double Pad®orel resummation is used as proposed in 7=0.0332), (1.4
Ref. [22], a random fixed point is found also at five loops
[25]. The estimates of the critical exponents are in any caséom which, using scaling and hyperscaling relations, we ob-
not very precise, and moreover, at variance with the fixedtain
dimension approach described below, the stability-matrix ei-
genvalues turn out to be complex. o y=1v(2—5)=1.3426), (1.5

The fixed-dimension perturbative expansion in powers of
two independent zero-momentum quartic couplingand v
[directly related touy andv defined in Eq(1.2)] is appar- _v _
ently better behaved. Up to six loops, a random fixed point p= 2(1+ 7)=0.353%17), (1.6
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-7 pansion of the critical equation of state in the high-
o= m=4-8q 11), (1.7 temperature phag@?2]. We find

a=2-3v=—0.0499). (1.9 rg=0.90115). (1.12

. . R
Our results are in good agreement with those of REg)] Finally, we compute the universal rati®; defined by
and, in particular, confirm the discrepancy between the ex-
perimental and theoretical estimatesaof

We also carefully check the validity of the hyperscaling whereA+ andf*
relation 2— a=3v. We analyze the specific heat at the criti-
cal point obtaininga/v=—0.115(28). Using estimatel.3)
for 1/v we obtain

Ry =(aA")¥3", (113

are defined in terms of the singular behav-
ior of the specific heaC and of the correlation lengtlj,
Coing=A 't~ %, é~f"t"" for t=B,—B—0". We obtain

R, =0.288515), (1.14
2 «

———=38.043), 19 . ) _ N
v in good agreement with other theoretical resy#g]: R;

o ] ) =0.290(10), obtained from the analysis of the correspond-
which is fully consistent with 3. We also perform anothering six-loop perturbative series, a|R£=O.28Z3), derived
check of hyperscaling, analyzing the specific heat and thgom 4 quite precise approximation of the equation of state.

energy at the critical point. We obtain The paper is organized as follows. In Sec. Il we present
the Monte Carlo results. In Sec. Il B we determine the criti-
3_3:2.936), (1.10 qa! ter_nperature_by performing a care_ful analysis of the
v v finite-size behavior of some RG invariant ratios near the
critical point. In Sec. 1l C we determine the four-point and
again consistent with 3. six-point couplings by using the extrapolation method of

In addition to the critical exponents we also measure therefs.[33—35. In Secs. I D and Il E we determine and 7
four-point couplingsG; andG3, defined in Eqs(A12) and by using again the extrapolation method and by also per-
(A14), which can be directly related to the fixed-point valuesforming a more direct FSS analysis. Then, in Sec. Il F we

u* andv*: G} =v* andG3,=u*/3. We obtain study the finite-size behavior of the energy and of the spe-
cific heat near the critical point. We obtain an independent
G, =43.32), estimate ofa, which allows us to check the validity of the
hyperscaling relation 2 «=3wv. Finally, in Sec. IIG we
5=—6.21). (1.1) compute the universal ratg . For this purpose, we gener-

alize the extrapolation method of Ref83-35 to the en-

These estimates differ significantly from those reported irergy. In spite of the necessary subtractions, the method
Ref. [26], which were obtained from the analysis of pertur- works quite well, providing a rather precise estimate. In Sec.
bative six-loop seriesG} =38.0(1.5) andG},=—4.5(6). Il we reanalyze the six-loop perturbative series of R26],
Clearly, the non-Borel summability of the perturbative ex-using the new Monte Carlo estimate of the fixed point. We
pansions gives rise to a large systematic error. It is also posmploy the different resummation methods discussed in Ref.
sible that the nonanalyticity of the RG functiofd8—41  [26] and also a method based on an expansion around the
near the random fixed point plays an important role. Ising fixed point. Finally, in the appendix we report the defi-

These discrepancies on the estimatesibfandv* call nitions of the quantities that are used throughout the paper.
for a reanalysis of the perturbative expansions of the critical
exponents. By using the Monte Carlo estimateibfandv* Il. NUMERICAL RESULTS
we find »=0.6864), 7=0.0263), and y=1.3558).
These estimates do not differ significantly from those ob-
tained in Ref.[26] and are also in satisfactory agreement We have performed a high-precision Monte Carlo simula-
with the Monte Carlo results. Clearly exponents are quiteion of the model with Hamiltoniari1.1) with J=1 at den-
insensitive to the exact location of the fixed point. We alsosity x=0.8. Such a value has been chosen on the basis of the
try a different method for estimating critical quantities. It is results of Ref[13], which showed that for such a value f
based on an expansion around the Ising fixed point. Resultscaling corrections are particularly small. In the simulations
are similar: »=0.6908), #©=0.0345(20), and y  we have considered cubic lattices of siz§ L=16, 32, 64,
=1.355(10). Note that the estimate gfis now in perfect 128, and 256, with periodic boundary conditions. Simula-
agreement with the Monte Carlo result. tions have been performed for several valuegdfetween

In this paper we also determine some other universal amg.275 and 0.285 78. Two-thirds of the simulations refer to
plitude ratios that involve high-temperature quantities. Firstthe interval 0.275: 8<0.2856(we will call the correspond-
we determine the six-point universal ratio§, Cj,, and ing data the high-temperature resltshile one-third of the
C3,,, defined in Eq(A13). The coefficient is particularly CPU time was used in simulations in a narrow interval
important since it parametrizes the small-magnetization exaround the critical point, 0.285 #3=<0.28578. The aver-

A. The Monte Carlo simulation
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age number of samples for eagh and L has been~7 TABLE I. Results of the fitR(B,L) =R* +a(8— B,)L*"*. DOF
x10* (L=16), 36x10° (L=32), 27x10° (L=64), 12 is the number of degrees of freedom of the fit.
x10® (L=128), and X 10° (L=256). The runs were per-

2 *
formed on a cluster with Dual Athlon MP 1.2 MHz proces- —™" X /DOF R Be Y
sors. The total CPU time is=17.4 CPU-years of a single U,
processor. As random number generator we have used 1& 115.2/25  1.633%) 0.285 75207) 0.80444)
combination of the Parisi-Rapuano generd#8] and of a 32 17.5/20  1.638%) 0.285 74776) 0.72743)
congruential generatdéd4]. Results for each sample have g4 7.4/12 1.64001) 0.285 74629) 0.72660)
been obtained as follows. Starting from a random spin con- Us
figuration, we perform 2000 iterations, each of them consisty g 134.4/25 3.23482)  0.285753(8) 0.81746)
ing alternatively of a Metropolis sweep and of a full 5, 18.8/20 3.25928  0.285 74806) 0.72743)
Swendsen-Wang update. We use both a local and a nonloc Jl 7.4112 327164  0.285746%) 0.72660)
dynamics to guarantee equilibration of short-distance an U,
long-distance modes. T_hen, we perform 2000 full va_endse - 35.0/25  0.1508) 02857266141  1.2351)
Wang updates, measuring all quantitiese the Appendix for 32 25020  0.1496) 0.285 742868) 1.0654)
definitiong every ten iterations. To estimate correlation func- ' ' ' '
tions we use improved estimators that significantly reducé® 21.2/12 0.14800 0285745483 0.9366)
the statistical errors. Note that we have been much more ¢iL

conservative than Refl13]: There, only 200 Swendsen- 16 22.6/25  0.592P) 0.285 74146) 0.73334)
Wang iterations were performed for equilibration. For quan-32 17.4/20  0.5928) 0.285 7428) 0.70837)
tities that involve the disorder average of products of sampl&4 11.8/12 0.593%)  0.28574319) 0.72254)
averages, there is a bias due to the finite length of the run for
each sample. In order to take this bias into account we have
performed a bias correction following Re#5].

These fits are not particularly sensitive to the expongnt

which is quite poorly determined. We obtain=0.726).

One could imagine of improving the results by fixing

However, the dependence Bf on v is very small and no
As a first step in our analysis we have determined theasignificant change is observed.

critical temperatureB;. For this purpose we consider the In order to include scaling corrections we also perform

results of the simulations for 0.285%23<0.285 78, which fits of the form

is a small interval aroung@B.. We consider four invariant

ratios,U,, Ug, U,,, andé/L, see the Appendix for defini- R(B,L)=R*+a(B—B)LY"+bL™°, (2.9

tions. Standard FSS predicts that, in the FSS ligt 8.,

L—o at (B—B.)LY" fixed, each quantityR(3,L) behaves where we include the leading scaling correction. These fits

B. Determination of the critical temperature

as are not sensitive to the value ofand thus we fix it, taking
r=0.69. We keepw as a free parameter, since we do not
R(B,L)= IQ[(,B—,BQL””], (2.2 know which is the most important correction to scaling for
our data. Indeed, the leading correction has exponent
whereR(z) is a universal function. Sinc— 3, is particu- =0.376), butthere is evidence that fgr=0.8 leading cor-

larly small for the data, we can expaf{z) in powers ofz, rections have a very small amplitufE3]. In order to be able_
keeping only the first ternwe checked that the addition of 0 k€€pw as a free parameter, we analyzed at the same time
the term of ordee? does not change the resultShus, we fit two different observables. We restrict our attentionUg,

each quantityR(8,L) by using Us, a_nd &L, sinc_eUzz is too no_isy. Using all _dr_slta withh
=16 (if the data withL =16 are discarded, the fit is unstapble
R(B,L)=R*+a(8— B )L, (2.2 and taking properly into account the covariance between the

two observables, we obtain the following.
with R*, B, a, andv being free parameters. In each fitwe (&) Analysis of f“; and Uj,. w=*0.70(11), Be
include all data with. =L, and, in order to detect correc- =0.285743%8), (£/L)*=0.59438), U42:1-6502(24),
tions to scaling, we usk,;;=16, 32, and 64. The results are b(¢/L)=—0.0147), b(U,;)=—-0.133); x“=47.5, DOF

reported in Table I. =50. .
There is a slight evidence of corrections to scaling, but it (b) Analysis of ¢/L and Us. »=0.71(11), B
is interesting to note that they have opposite sighlin Us, ~ =0.28574%(8), (¢/L)*=0.59428), Ug=3.318(11),
and /L. Conservatively, we would obtain b(&/L)=—-0.0177), b(U,)=—0.67(16); x>=46.7, DOF
=50.
B:.=0.285744724), (2.3 Here DOF is the number of degrees of freedom. The re-

sults are quite stable, indicating the presence of corrections
where the central value is the average of the estimates olwith exponentw=0.7(1), inagreement with the idea that
tained forU, and ¢/L (L,,;,=64), and the error is so as to scaling corrections with exponeat=0.4 are very small. The
include one error bar for botb, and &/L. effective exponentw=0.7(1) is quite close to the next-to-
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leading exponent predicted by perturbative field thd@8j, 2
i.e., w,=0.8(2). Thus, we mainly observe next-to-leading
corrections, which in any case are quite small. In particular, g}l
they are of little relevance té/L. The coefficient, cf. Eq.
(2.4, is very small and the estimates 8f obtained from the
combined fits are fully compatible with those obtained for <
&/L without scaling corrections. 14
These analyses that keep into account scaling correctiony 14 -

bt 128-256

16

B.L)

L)/Gy

hint at values ofB. lower than estimat¢2.3). We are thus fw
led to consider 12l
B.=0.2857442) (2.5
1}

as our final estimate. . . . . s

From the above-reported analyses, we also obtain esti 0 0.1 0.2 0.3 0.4 0.5
mates of the invariant ratioR* at the critical point. We EB.LL
obtain FIG. 1. RatiosG,(8,2L)/G4(B,L) vs &(B,L)/L. The solid

£\* curve is a fit using all data with=64.
(f) =0.59439),

for 0sz=z*=(&/L)*=0.5943(9) such thaE(0)=1 and
F<(z*)=s", where o is the exponent characterizing the

*
U3=1.6509), critical behavior of S(B,L) at the critical point, i.e.,
U*=33 S(B:,L)~L". Equation(2.7) is the basis of the extrapola-
£=3.325), ; : : : . . .
tion technique since, in the absence of scaling corrections, it
* —0.148010). 2.6 allows us to computeS(B,sL) on a lattice of sizesL in

terms of quantities defined on a lattice of sizeand of the

We quote the results obtained in fi@4), while the error is function Fg(z). In practice, one wo_rks as follows. First, one
so as to include also the result of the fit without scalingP€rforms several runs, determinin§(B,sL), S(B.L),

corrections and.,;,=64. ForU,, we only consider the fits &(8:SL), andé(B,L). By means of a suitable interpolation,
without scaling corrections. Note tha,#0, indicating the thiS provides the functiof(z) for Sand¢. Then,S.(5) and

absence of self-averaging at the critical point, in agreemerfi=(5) are obtained fron§(5,L) and £(5,L) by iterating
with the theoretical arguments of R¢A6]. Eq. (2.7 and the corresponding equation fé¢s,L). Of

We can compare our results with those of R&8]. They ~ course, one must be very careful about scaling corrections,
found  B.=0.2857421(52), UZ%=1.653(20) 5 discarding systematically lattices with small valuesLdfill
C . 3 . b

_ *_ ; ; the results become independentlLofvithin error bars.
=0.1487), (¢/L)" =0.597), which are in full agreement Let us first discuss the four-point couplings for which we
with our final results. . . . . ) X
will obtain quite precise estimates. In Figs. 1, 2, and 3 we
report the data foiS(B,2L)/S(B,L) for G4, G,,, and ¢,
respectively, together with a fit of the data with=64. As

In this section we wish to determine the four-point cou-discussed in Refs[33,34, we parametrizeFg(z) with a
plings G; and G3, and the six-point universal ratios; ,
Cx,, andC3,,, See Appendix for definitions. Note that these 26
guantities are defined in the high-temperature phase and on
should take first the infinite-volume limit and then the limit
B— B¢, cf. Eq.(A14). In order to perform this task we have 22
applied the extrapolation method of Ref83-35 to our
high-temperature data, i.e., to the results wik:0.2856
[corresponding to&..(B8)=<89]. This method is extremely
powerful in order to compute the infinite-volume behavior of g'
critical quantities and it has been applied to several models™§
including spin glassegt7]. © 14

The idea is the following. Given a long-distance quantity

C. Determination of the four-point and six-point couplings

2.4

)/Go(B,L)

S(B,L), in the FSS limit we can write 12
1 il
M:FS@(B'L)/LH O(L™2,& @), (2.7 0 o1 02 03 04 05
S(B.L) EB,LIL
where s is an arbitrary(rationa) number(here we always FIG. 2. RatiosG,(3,2L)/G,y(B,L) vs &(B,L)/L. The solid

considers=2). HereF4(z) is a universal function defined curve is a fit using all data with=64.
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1.8 g - - - - Using the extrapolation procedure we have outlined
17 b o above, for each. i, and Bmin We obtain infinite-volume es-
timatesé.(8), G4.(B), andGy,..(8). To obtain the esti-
1.6 mate at the critical point, the extrapolated values for the cou-
15 pling constants have been fitted by using
-
5 S.(B)=S*+a(Be—B), 2.8
N 13
S with 8.=0.285 7442). Theresults are reported in Tables I
12 and Il for 0.275< 8,,,<0.284 (corresponding to 4.45&,
1.1 =<15.86).
] To check for corrections to scaling, we have also per-
formed a different analysis. First we 8 3,2L)/S(B,L) tak-
0.9 : : : : : ing into account a scaling correction with exponenti.e.,
0 0.1 0.2 0.3 0.4 0.5 assuming
&(B,LIL
FIG. 3. Ratiosé(8,2L)/£(B,L) vs £(B,L)/L. The solid curve is S(B.2L) 1
a fit using all data with.=64. S(B,L) FS(g(’B’L)/L)+FGS(§(E’L)/L)’ 29

polynomial[48] in e~ of ordern, increasingn until the x*  and use both functionsrg(z) and G¢(z), to perform the

of the fit changes by less than 1 by going franto n+1. In  infinite-volume extrapolation. Then, the infinite-volume re-

these analyses we have takes 7. The parametrization of sults for the coupling constants are fitted by using

Fs(z) as a polynomial ine ' is theoretically motivated:

indeed, for zero-momentum quantitigsg(z) approaches 1 S.(B)=S"+a(B.—B)". (2.10

with corrections of ordee”#? a~1, asz—0. This choice _ _

is not strictly correct for¢ since in this cas@49] F(z)=1 In order to perform the analysis we should fix the exponents

+0(z%). However, these power corrections are expected te andv. We user=0.69, and repeat the analysis usiag

be very small for our definition of finite-volume correlation = 0.8 (the next-to-leading exponent predicted by field theory

length [50], and therefore the systematic error due to our28]) andw=0.4, which is the leading exponent determined

choice of parametrization should be small. in Ref. [13]. The results corresponding ©=0.8 are re-
Looking at the figures, it is quite difficult to distinguish ported in Table IV. It is essential to include the results with

any correction to scaling, i.e., systematic deviations from thd-= 16 in the analysis, otherwise the data do not show FSS

fitted curve. However, at a closer look one may see that someorrections and the fit is unstable. Therefore, we cannot

points withL =16 are out of the curvén all cases by less check the goodness of the Ansatz by discarding data with

than three error bars, so that these differences are baregmallL, i.e., present results for different values lof;, as

significan). Conservatively, we have decided to discard alldone before.

L =16 data. In order to check further for corrections to scal- Let us first discuss the results f@} . The fits without

ing we have computed infinite-volume estima®&gL) us-  corrections to scaling show a significaiat the level of the

ing only data withL=L ,,, Lmin=32, 64. Additionally, we reported errorsdecrease a@,, is increased and also a

have also systematically discarded points that are far fronslight dependence oh,,,. Corrections to scaling are posi-

the critical point by including only data witl8= 8, for  tive and the estimate decreases with increaglpg, so that

several values 0B, - one only obtains an upper bour@l} <43.4. On the other

TABLE Il. Results for the renormalization consta®f . On the left we report the results fog,;,=32, on
the right those fol ,;,=64. We report two different?. The first one ﬁst,) refers to the fit that allows the
determination of the curvEG4(z), cf. Eq.(2.7), the second oneAﬁI) to fit (2.8). In addition to they? we
also report the number of DOF. The results have two errors: the first one is the statistical error, the second one
gives the variation of the estimate Bs is varied within one error bar, cf. E42.5).

0.2750 14.9/22 17.3/16  43.65¢@)

0.2780 14.9/22 16.8/15  43.63¢®) 9.0/11 15.9/15  43.56(82)
0.2800 14.9/21 13.4/14  43.59¢0) 9.0/11 13.1/14  43.51(100)
0.2810 14.9/20 11.9/13 43.6048L) 9.0/11 12.7/13  43.52(101)
0.2820 14.8/19 9.2/12  43.55¢8l) 9.0/11 11.8/12  43.47(10)
0.2830 12.117 9.1/11 43.41(1) 7.4/10 12.7/11 43.45(120)
0.2835 12.0/15 7.6/10  43.34(22) 7.4/9 10.8/10  43.40(151)
0.2840 9.1/13 9.3/9 43.34(3R2) 7.1/8 9.7/9 43.32(181)
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TABLE lIl. Results for the renormalization consta@,. Definitions are as in Table II.

Brin ngt/ DOF szit/ DOF G3, ngt/ DOF X%t/ DOF G3,

0.2750 19.5/22 13.6/16 —6.18(3+0)

0.2780 19.5/22 14.2/15 —6.18(3+0) 12.0/11 11.3/15 —6.25(4+0)
0.2800 19.1/21 13.1/14 —6.18(3+0) 12.0/11 11.5/14 —6.25(4+0)
0.2810 17.4/20 10.9/13 —6.22(3+0) 12.0/11 11.3/13 —6.25(5+1)
0.2820 17.4/19 6.2/12 —6.19(3+0) 12.0/11 8.9/12 —6.23(5+0)
0.2830 16.9/17 5.7/11 —6.18(4+0) 11.7/10 8.4/11 —6.23(6+0)
0.2835 16.8/15 4.9/10 —6.19(5+1) 11.3/9 8.2/10 —6.25(6+1)
0.2840 12.1/13 2.5/9 —6.12(7+0) 10.4/8 1.5/9 —-6.11(8+1)

hand, the fit witho =0.80 gives results independent 8f,,  volumeGy,..(8) andG,..(B) have scaling corrections with
within error bars; moreover the? of fit (2.10) is systemati- next-to-leading exponenb~0.8(2) of similar relative size.
cally lower than that of fit(2.8). Clearly the data are very In particular, the results of Ref.[28] give ag,
well fitted by assuming a correction-to-scaling exponent =—0.23(10pg,, wherea is the coefficient defined in Eq.
=0.80. Forw=0.40 the results strongly depend @h,,,  (2.10. From the fits we obtain insteads =20(5) and
varying from G} =42.49(14) for Bnin=0.275 to Gj _ .

~ 43.47(40) forBo. —0.2835. Also, thec? is larger than the ag,,= 1.5(1.0). The errors should be taken with caution:
- . min— VY- . y . . P . _
x? obtained usingo=0.8. There is therefore little evidence They simply give the variation of the parame&ewith Sin

for such a small correction-to-scaling exponent, confirmin for 0.275< fnin=0.281 for larger values the statistical error

again that for densitx=0.8 the leading scaling correctionsggegtoe quiiclaé?fgctthzg&rﬁﬂd ?hoeggtvg}ﬁlgsd?/vi?g )(ch%?rsselfrlgrs
are very small. As final estimate we take Y ' 9 '

we estimateaezzz—O.OS(S)aGA, which is in reasonable

G =43.32), (2.11 agreement with the FT result.
As a check we have repeated the analysisHge=G,
which is consistent with all results. +3G,,. Since the procedure is nonlinear, this represents an

Let us now consider the results f@%,. The results of important consistency check. We obtain
Table 11l show no dependence @h,;, and a tiny dependence
on Li» Which could be of purely statistical origin. With the H}=24.72), (213
present error bars there is no evidence for nonanalytic scal- _ _
ing corrections and indeed the results obtained using Whichis in full agreement with the estimates reported above.
=0.80 (see Table IV are perfectly consistent with those of  Finally, we consider the six-point couplingg, C,,, and

the fits with purely analytic corrections. Our final estimate isC222- We apply again the extrapolation procedure we have
used forG, andG,,. However, in this case there are larger

3= —6.2(1). (2.12 systematic errors. The extrapolation curi#€z), cf. Eq.
(2.7), is poorly determined foz=<0.3, since the six-point
The error is rather conservative and is such to include altouplings have large statistical errors whé@g,L)/L is
estimates. small. A large error on the curve gives a large systematic
We should note that our results are compatible with theerror on the extrapolations and induces correlations among
FT predictions of Ref[28], where it is shown that in infinite the results for differeng (such correlations are instead small

TABLE IV. Results forG} andG3, for fits with a correction-to-scaling exponeat=0.8. We report two
different y?. The first one ;(gst; refers to the fit that allows the determination of the cufe), cf. Eq.(2.9),
the second oneX{fn) to fit (2.10. In addition to they? we also report the number of DOF. We only report the
statistical error; the error due 8, is negligible.

Bunin Xes{DOF  xji/DOF Gi Xes{DOF  xji/DOF G5,
0.2750 30.0/29 12.6/16 43.@8 31.8/29 12.1/16 —6.15(3)
0.2780 29.9/28 10.9/15 43.3 31.6/28 11.1/15 —6.16(4)
0.2800 29.5/26 10.8/14 43.3m) 31.1/26 9.9/14 —6.16(4)
0.2810 25.4/24 9.0/13 43.411) 22.1/24 8.8/13 —6.26(5)
0.2820 24.3/22 9.0/12 43.81B) 22.0/22 5.8/12 —6.21(6)
0.2830 21.3/19 6.4/11 43.877) 21.1/19 3.6/11 —6.25(7)
0.2835 13.4/16 7.1/10 43.6R) 18.1/16 3.2/10 —6.33(9)
0.2840 10.6/13 7.9/9 43.259) 12.3/13 2.7/9 —6.00(13)
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FIG. 4. Infinite-volume results for the six-point ratiog(B),
C4(B), and C,,B) from the extrapolation with_,,;,=16, Bmin
=0.275, and degree of the interpolation polynontiat 7. On the
horizontal axis we repor€..(B). We also report the final results
r§=0.90(15),C},=0.125), andC%,,=0.45(15).

FIG. 5. Results for the exponentvs B, . We report the results
obtained by fitting the extrapolated high-temperature data without
scaling correctiongthey are labeled. ;=32 andL,,,=64) and
with scaling corrections with exponent= 0.8 (labeledw=10.80),
and the results obtained by using all data and parametriz&tiaf)

e labeled FS$ The horizontal li d to the final It
for G, andG,,). Because of them, it is difficult to set correct (_ao 28633) § The horizontal lines correspond to the final resu

error bars and to determine the final results. For these rea-
sons we have taken a conservative attitude. We have gener-

. . ve performed a fi£..(B)~(B:.—B) " "; (b) we have per-
ated different sets of extrapolated data by changing the d%rmeg a purely FSES (aﬁrzaléé[ig; wl[igt)hout(eitrapolationps The
green of the interpolation polynomial ang,,, (in all cases '

we setL ;=16 in order to have a sufficiently large number advantage of methofh) is that we can keep l.)OtBC ande .
. ! . . as free parameters, and thus check the previously determined
of points in the smalk region. Then, we determine the

range that includes most~2/3) of the extrapolated data value for j; and our'clalm that scaling corrections with
) . . small values ofw are tiny.
with their error bars. The central value of such an interval

gives the final result, while its half width gives the error. We . In the f|r_st case we proceed as b_efpr_e. It we neglegt scal-
obtain ing corrections, we can generate infinite-volume estimates

¢.(B) by using the extrapolation procedure based on Eq.
r=0.90(15) (2.7) and then we can determinefrom fits of the form

Iné.(B)=—vIn(B.—B)+a+b(B.—B). (2.1
Ct,=0.175), E(B)=—vIn(Bc—B)+a+b(B.—p). (219
. As a second possibility we can include corrections with
220~ 0-4519). (2.14 exponentw in the extrapolation, see E@2.9), and fit the

In Fig. 4 we report the final results together with the resultseXtraDOIated data with

for a single extrapolation, so that the reader can see the qual-
ity of our numerical results and how much conservative our
final error bars are. Note that in this analysis we have not o o
made any attempt to evaluate corrections to scaling. In anyVe report in Fig. 5 the results for the analytic fit withy,
case, we expect them to be small compared with the large 32 andL ;=64 and for the nonanalytic fit witi=0.80
errors we quote. dL,,i,=16 for several values oB,,,. We observe that

The numerical estimates can be compared with the FTesults with and without nonanalytic corrections differ sig-
results. We shall discuss the four-point couplings in Sec. I11Nificantly, much more than the statistical errors. However,
For what concerns the six-point couplings, the analysis of th&€0rTections have opposite trends. Analytic fits give results
available four-loop series in the fixed-dimension schggig  that decrease gy, is increased while nonanalytic fits have
is not very precise. We only mention the estimaig the opposite behavior. Compatible results are obtained for

—1.1"%4 reported in Ref[42], which agrees with the more Bmin=0-283. For3=0.283 we obtainy=0.6847(15) from
precise result2.14). the first analysis with.,;;,=64 andv=0.6818(24) from the

second analysis. A reasonable estimate would be 0.683(3)
which includes all results. It should be noted that the results
depend strongly onpB. that has been fixed tog,

In order to determine the exponentwe have followed =0.2857442). By varying 8. within one error bary varies
two different strategieqa) we have determined extrapolated approximately by+0.003. Thus, collecting everything to-
valuesé&..(B) using our extrapolation method and then we gether, this method gives the final result

In&.(B)=—vIn(B.—pB)+a+b(B.—p)*". (2.16

D. The exponentr
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v=0.6833+3). (2.1 TABLE V. Results of the FSS analysis using parametrization

(2.20 with n=12 as a function o3, . Here DOF is the number of

Estimate(2.17) has been obtained by using only the high-degrees of freedom of the fit.

temperature data, i.e., those wjslx=0.2856. A more precise

estimate can be obtained by performing a direct FSS analys&min x*/DOF v & Be

thfa_t allovys us to use both the hi_gh—temperature _and th8.2750 51/62 068515 17118  0.28574347)

e e e e o0 5060 Ofedza 16020 0265 rao

parameter. We start frocm the general FSS expression 0.2800 45/57 0.68236)  1.3235  0.285743%)
0.2810 43/54 0.68032 1.1034) 0.285743%)

¢ 0.2820 41/51  0.68236) 1.5166) 0.28574387)
L= F(uy(HLY",up(L ™), (2.18  0.2830 39/47  0.68388) 2.1(1.3  0.2857430(7)
0.2835 30/43  0.68383) 3.62.5  0.28574283)

where only one correction-to-scaling operator has been taken
into account. Heré=(B8.— B), andu,(t) andu,(t) are non-
linear scaling fields satisfyingi;(0)=0 and u,(0)#0.
Equation(2.18 can be rewritten in the scaling limit as

data withL=16, otherwise there are no scaling corrections
at the level of our error bars and therefore it is impossible to
determinew. To check for corrections, we have systemati-
é ” 71/V ” . " cally discarded points far fron8., including in the analysis
= R+ L (L) + L T5(tL ™), only data withB= B, for several values oB,,. In order
(2.19 to have a mostly linear fit, we have fitted/{) ~"”. The
results are reported in Table V.
with f;1(0)#0 and f3(0)#0. The three scaling functions The results foi3.. are quite stable, in full agreement with
represent the three types of contributions we expg¢k) is  the analyses reported in Sec. Il B f6tL and with the final
the leading FSS curvé,(x) corresponds to the analytic cor- estimate(2.5. The estimates ofv vary significantly and
rections, andf;(x) is the nonanalytic FSS correction. The have a quite large error. There is however very little evidence
function f,(x) is related tof,(x) by f,(x)~x?f;(x), arela- of scaling corrections withw=<1, as already discussed in
tion that follows from the fact that this correction is due to Sec. Il B. Finally, let us consider. As can be seen from Fig.
the expansion of the scaling field(t) =t+at>*+O(t%). The 5 the results are in rough agreement with those found before
existence of the infinite-volume limit fixes the behavior of and apparently become independentgf;, for 5=0.282.
these functions forx—oo: fi(x)~x"", fo(xX)~x'"" and Our final estimate is
fa(x)~x(@ D7,

Now, we wish to determing., v, andw by fitting the v=0.6833), (2.2
numerical data fo&/L with Eq. (2.19. For this purpose, we
must parametrize the scaling functions reported above wit
expressions containing a finite number of parameters. Thu
we consider an even integarand parametrize:

é :[Pn(tLllv) + L—m(1+ ptLllv)mVQn(tLllv)]—v/n’
L In order to compute the exponentand correspondingly
N v=(2—7n)v, one can analyze the critical behavior of the
_ i B 2 susceptibility y. However, we have found much more con-
P”(X)_EO ax, Q“(X)_;O by X, (220 enient to analyze’= y/£2. Indeed, because of statistical
correlations betweey and ¢, the relative error orf is sig-
wheret=(B.— 8). This parametrization has the correct be- nificantly smaller than that ox. Moreover, the FT analysis
havior both for small and large for any n. Note that our of Ref.[28] indicates thatf has much smaller scaling cor-
choice of writingQ,(x) as a polynomial inx? is due only to  rections thary.
practical considerations: since corrections are snag|(,x) In order to determine; we perform two different analy-
cannot be parametrized with as many parameter8 és); ses. The first one uses the high-temperature data and follows
on the other hand, to guarantee the correct largpehavior  closely the analysis of the correlation length presented in
Qn(x) andP,(x) must have the same degree. We also madé&ec. Il D. Given{(3,L) we determine the curve(z), cf.
some analyses writin@,,(x) as a polynomial ik>*—in this  Eq. (2.7). The ratios{(8,2L)/{(B,L) are reported in Fig. 6,
casen must be a multiple of 3—without finding significant together with a fit of the points with=64. There are clear
differences. The value af has been chosen on the basis ofscaling corrections, especially whés,L)/L=0.3: the data
the x? of the fit: n has been increased until thé does not with L=16, and also some points with=32, are system-
change significantly as is increased by 2. The results of the atically above the curve. As before, we discard all points
analyses we present corresponchte 12. with L=16 and perform the extrapolation using data with
In the analyses we have kept w, p, B¢, {aj}, and{b;} L=L yin, with L,;;=32,64, in order to detect scaling correc-
as free parameters. The fit is stable only if we include thdions. The extrapolated values are fitted by using

hich is compatible with the results of all analyses. Estimate
2.21) is in very good agreement with the resuilt
=0.6837(53) of Ref[13].

E. The exponentyn

n/2

036136-9



CALABRESE et al. PHYSICAL REVIEW E 68, 036136 (2003

105 — dent from they? of fit (2.25 which is quite large for small
e 32-64 Bmin- A lower value ofw, say w=0.4, gives even worse
104 p 284128, 1 results, confirming that corrections with<1 are very
small, in agreement with the FT analysis of R&8]. In any
1.03 case the results of Table VII indicate that=0.0220, in
2 agreement with Eg(2.23).
::‘f 1.02 The second analysis we consider uses the data at the criti-
3 cal point. ForB~ B, we have
Y 101
L(B,L)=L" 7 (tLY)+ L= 7" @f,(tLY),  (2.26
1
wheret=B,— B. If we expand fort=0, we can write
0.99 ‘ ‘ : : ‘
0 0.1 0.2 &(BYL)‘/"L" 04 05 InZ(B,L)=—7pinL+a+btLY¥+cL . (2.27)

FIG. 6. Ratios{(B,2L)/{(B,L) vs £(B,L)/L. The solid curve is e first perform an analysis neglecting scaling corrections
a fit using all data witl.=>64. (c=0) for several values ofL.,. If we fix S

=0.285744(2) and’=0.6833), we obtain
In{.(B)=nvIn(B.—pB)+atb(B.—p) (2.22

and fixing B,=0.2857442). The results are reported in
Table VI. They show a systematic dependencelLgg, and

Lyin=16:7=0.03312+6), x?/DOF=76/26:

Bmin and seem to indicater~0.0240, but it is difficult to Lmin=32:7=0.03473+8), x?/DOF=27/21;
set an error bar. Conservatively, we write
7]V:0024Ql5) (223) Lmin: 647]:003546+ 14), XZ/DOFZ 22/13

which includes the estimates wif},;;=0.284 with their er-  The first error is statistical, while the second one is due to the
ror bars. Using the estimate of reported in Sec. Dy error ong,. The error due to the error ancan be neglected.
=0.6833), weobtain There are apparently some scaling corrections, but it should
be noted that the difference between the results Witk
7=0.0342). (2.24 =32 and 64 is not significant given the statistical error bars.

We have also repeated the analysis including scaling corWe also perform an analysis with scaling corrections with

rections withw=0.8. In the extrapolation procedure we useexponentw=0.80. Using all data, i.e., taking,=16, we

H 2
Eq. (2.9, and th fitt th t lated data b : obtain 7=0.0382(8+16), c=—0.111(16+23), x“/DOF
d. (2.9, and then we fit the extrapolated data by using = 29/25. This result is higher than the estimates obtained

InZ..(B)=nvIn(B.—B)+a+b(B.—B)". (2.25 before, but still compatible with the quoted errors.
The analysis at the critical point gives therefore results
The results are reported in Table VII. They show a systemthat are in full agreement with those obtained before, con-
atic upward trend, indicating that scaling corrections withfirming the correctness of estima24), and with the result
»=0.8 do not correctly describe the data. This is also evi-of Ref.[13], »=0.0374(45).

TABLE VI. Results for the critical exponenyv. On the left side we report the results foy,;,=32, on
the right side those fak ,,;,=64. We report two different?. The first one gﬁstg refers to the fit that allows
the determination of the curvig,(z), cf. Eq.(2.7), the second onexé,) to the fit(2.22. In additon to they?
we also report the number of DOF. The results have two errors: the first one is the statistical error, the second
one gives the variation of the estimate @sis varied within one error bar, cf. E42.5).

Brin ngt/DOF szit/ DOF nv Xésu/DOF szit/DOF nv

0.2750 37.1/22 16.2/15 0.0249¢1)

0.2780 37.1/22 16.1/14 0.0249¢2) 15.7/11 12.4/14 0.0253(R21)
0.2800 36.7/21 11.0/13 0.0246(2) 15.7/11 11.6/13 0.0252(R21)
0.2810 36.7/20 5.9/12 0.0243¢2) 15.7/11 10.6/12 0.0251(31)
0.2820 36.3/19 5.5/11 0.024243L) 15.7/11 11.0/11 0.0250(31)
0.2830 35.1/17 4.0/10 0.0241441) 15.5/10 9.9/10 0.0248(42)
0.2835 33.2/15 1.5/ 9 0.0236{%2) 15.5/9 4.9/9 0.0243(62)
0.2840 22.6/13 4.7/ 8 0.023672) 12.0/8 2.7/18 0.0245(81)
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TABLE VII. Results for the critical exponeny» using scaling  which depends only omv/v. We begin by neglecting the
corrections with exponenb=0.8. We report two different?. The correction-to-scaling term, i.e., we set=0. Fixing S,

first one (x2,) refers to the fit that allows the determination of the — 285 7442), a five-parameter fit of the data with
curve F(2), cf. Eq. (2.9, the second onex) to fit (2.25. In =L, gives

addition to they? we also report the number of DOF. We report two

errors: the first one is the statistical error, the second one gives the | . =16, a/v=—-0.1197+6), XZ/DOF= 12.0/24,
variation of the estimate &3 is varied within one error bar, cf. Eq.

2.9. Lmin=32, a/v=—0.11517+11), x?DOF=11.6/19.
Bmin Xbst DOF Xf/ DOF nv The first error is the statistical one, while the second one
gives the variation of the estimate @ is varied by one

0.2750 24.5/29 174715 0.0179¢2) error bar. Two things should be noticed: the analytic term
0.2780 24.5/28 55.8/14 0.0193(2) proportional tot is very small compared with the statistical
0.2800 24.1/26 29.0113 0.0203¢3) errors. Indeedbc=23(83+8) and b= —30(167+24) in
0.2810 22.5/24 19.3112 0.0210¢2) the two fits. Moreover, corrections to scaling are apparently
0.2820 20.0/22 11.011 0.0217%2) small, since the results do not dependlgy,,. As a check,
0.2830 19.4/19 6.1/10 0.0228¢72) we have also performed an analysis with a correction term
0.2835 19.2/16 4.8/9 0.0226(&) (ec#0). We find a/v=—0.109(50-6), ec=—0.3(1.4),
0.2840 14.2/13 5.3/8 0.0230(+3) and y?/DOF=11.9/23, fore=0.8 andL ,,=16. The coef-

ficient ec is compatible with zero, while thg? of the fit
_ changes only by 0.1 in spite of the fact that we have added
F. The exponenta and hyperscaling an additional parameter. There is no evidence of scaling cor-

In this section we wish to determine the exponenand rections. As final estimate of/v we take the result with
check the hyperscaling relation-2x=dv. Unfortunately, ~Lmin=32 andec=0,
we have measured the specific h€4t{3,L) only near the
critical' point and thus we can determire only from the a_ —0.11528). (2.32
behavior forg~g.. v

RG predicts that, in the FSS limit, the energy scales as ) _
If we use hyperscaling and the estimateobf Sec. Il D,

E(B,L)~Epu(B)+ L Vg, (tL) v=0.6833), weobtaina/v=—0.072(13). This estimate is
(- 1) 1y in reasonable agreement witR.32) confirming the validity
+L ga(tL™), (2.28 of hyperscaling. Using Eq.2.32 and »=0.683(3) we ob-

tain = —0.079(19), which is in reasonable agreement with

wheret=p.— 8 and we have included one scaling correc-the estimate obtained using hyperscaling —0.0499).

tion. Note thatE,(8) is expected to have an exponentially ~ We can also check hyperscaling d_l_rectly by comparing the
small dependence dn which can be neglected for all prac- results for the energy and the specific heat. If we deélipe
tical purposes. Near the critical point we can expand this=@/v, 6,=(2—a)/v, we can rewrite Eqg2.29 and(2.30
expression in powers dlL” obtaining for the energy and @S

the specific heat the expressions E(B.L)=ag+bgt+cel (=224 gL 1

E(B,L)~ag+bgt+cel @V +detL "+ egl e D= C(B,L)=bg+dgL 1+ dtLE%t 0272 (2.33
2.2
(229 where we have neglected scaling corrections and have set
s (@t 1)y oo bc=0 in agreement with the previous analysis. If hyperscal-
C(B,L)=actbct+ccl“"+dctlL tecl : ing is satisfied we should find,=3. A combined analysis of
(2.30 E(B,L) andC(B,L) fixing B. gives
with ac=bg andce=dg. Lnin=16: a/v=-0.1196+6),
We wish now to determine/v. We consider the specific
heat, since in this case the singular behavior is stronger. In
Eq. (2.30 we have not used hyperscaling, so that the expres-
sion depends on two independent exponesmtand v, or
more preciselya/v and 1b. In order to simplify the analy-
sis, we now analyze the specific heat using hyperscaling to
rewrite the correction term. Thus, E@®.30 becomes

0,=2.95317+8), x?/DOF=33.4/51;
Lnin=32: a/v=-0.11216+9),
6,=2.93043+12), x?*/DOF=29.3/41.

Here, as before, the first error is the statistical one, while the

second gives the error due B . The estimates of/v are

C(B,L)=ac+bct+ccL¥’+dtL32@/ v 4 g @/v=o compatible with Eq(2.32, while 6, is in reasonable agree-
(2.3)  ment with 3, confirming again the validity of hyperscaling.
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G. The universal ratio R}

We now wish to compute the universal ralR*;C that is
related to the universality of the singular part of the free
energy per correlation volume. More precisely, let us con-
sider the infinite-volume free-energy density.(B)

11—
Fo=—yinz (2.34)

R(B,2L)/R(B,L)

and the infinite-volume  specific  heat C.(B)
=9?F.,(B)/3B%. In the critical limitt=8,—B—0 we can
write

Foo(B) = Fou B) + F Tt2~ %+ corrections,

C.(B)=Cuu(B)+A"t “+corrections, (2.39

PHYSICAL REVIEW E 68, 036136 (2003
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whereA*=(2—a)(1—a)F". If £&,(B)~f"t™”inthe same

limit t—0", RG predicts the universality df *(f")3, or

equivalently of

RgE(aA+)1/3f+_

(2.36

We now computeRg+ using our high-temperature results for

the energyE(B,L) and for the correlation lengtl§(B,L).
We define a quantitR(3,L),

R(B.L)=| — 7—=(E(B,L)—ac—bet)t

fbulk(ﬁ) for t—0:

1/3

&(B.L),
(2.37)

whereag and bg are defined in terms of the expansion of

dFpu( B)
g =Ewi(B)=actbet+0(t). (239
It is easy to check that
lim limR(B,L)=R{ . (2.39

t—0 L—o

In order to computdR(B,L), we must specify the values of
the two constantag andbg in Eq. (2.37). For this purpose
we exploit the fact thaE, (B) is the same function in Eq.
(2.28 and in Eq.(2.38, so thatag andbg coincide with the

FIG. 7. RatiosR(B,2L)/R(B,L) vs &(B,L)/L. The solid curve
is a fit using all data with.=64.

constants defined in E42.29. Thus,ag andbg can be de-
termined independently by using the critical-point data for
the energy and the specific heat. We thus proceed as follows.
We consider Eq(2.33, fix B,=0.2857442), 6,=3, alv
=2/v—3, v=0.6833), andcomputeag andbg by analyz-

ing E(B,L) and C(B,L) near the critical point. Then, we
determineR(3,L). The error onR(B,L) takes into account
the error onE(B,L), &(B,L), ag, andbg, and also the
variation of the estimates asand 3. vary within one error

bar. In order to be conservative, we use a worst-error esti-
mate summing all errors together. OnR¢B,L) has been
computed we use the extrapolation method presented in Sec.
IIC.

In Fig. 7 we report the ratioR(3,2L)/R(B,L) together
with a fit of the data withL=64 (a good fit is obtained by
using a polynomial withn=10). Apparently, there are no
scaling corrections, but at a closer look one finds systematic
deviations forL=16. As before, these points will be dis-
carded in the analytic fits.

The results of the fits with analytic corrections are re-
ported in Table VIII forL ;=32 andL,=64. For small
Bumin they show an upward trend and then apparently stabilize
around 0.287@3). In order to check the role of the correc-
tions to scaling, we have repeated the analysis by adding
scaling corrections with exponeint=0.80. The results are

TABLE VIII. Results for the universal rati(Rg . Definitions are as in Table Il. The error due 83 is

negligible.
Bmin  Xes/DOF  xiu/DOF R; Xes/DOF  xj/DOF R{

0.2750 14.7/19 40.2/16 0.286(18)

0.2780 14.7/19 31.3/15 0.286(@3) 10.4/8 20.1/15 0.286 T16)
0.2800 14.6/18 23.9/14 0.287(@3) 10.4/8 16.5/14 0.286 827)
0.2810 14.6/17 20.9/13 0.287(12) 10.4/8 15.8/13 0.286 989)
0.2820 13.8/16 20.4/12 0.287(1B) 10.4/8 13.2/12 0.287 @20
0.2830 13.6/14 15.4/11 0.287@2) 10.3/7 10.8/11 0.287 283
0.2835 12.9/12 12.8/10 0.287 &%) 10.3/6 9.45/10 0.287 387)
0.2840 12.9/10 11.5/9 0.287 @) 10.2/5 8.63/9 0.287 383)
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TABLE IX. Results for the universal raticRg using scaling resummation method58]. Indeed, we found[26] G
corrections with exponenb=0.8. Definitions are as in Table IV. =37.12), G;ZZ —4.3(6), HZ =24.8(1.8) (double Pade
The error related t@. is negligible. Borel methodt Gi=36.93), $=—4.0(1), H}
=24.8(6) (conformal PadeBorel methodi G =38.67),

2 2 +
Brin Xes/ DOF Xiil DOF Re %,=—4.8(2), Hf=24.2(9) (direct conformal method
0.2750 32.0/25 10.5/16 0.289(18) The estimates ofl} are in good agreement with the Monte
0.2780 30.8/24 9.5/15 0.288@1) Carlo result(2.13, H; =24.72). On theother hand, the
0.2800 30.5/22 8.6/14 0.288 @) estimates ofG) and G3,—combining the results we would
0.2810 29.7120 7.6/13 0.288@0) have guesse@} =38.0(1.5) ands%,= —4.5(6) with errors
0.2820 28.5/18 8.5/12 0.288 &) that are, at first sight, quite conservative—differ significantly
0.2830 27.9/15 8.5/11 0.289 (@) from the Monte Carlo estimatg®.11) and(2.12.
0.2835 17.8/12 5.2/10 0.289@b) These discrepancies call for a reanalysis of the perturba-
0.2840 15.7/9 6.4/9 0.289 &) tive series of the exponents, verifying if the use of the Monte

Carlo results foiG; andG3, leads to significantly different

. ) ) estimates. We have thus repeated the analysis, using the dif-
presented in Table IX. They are now substantially indepensa ant resummation methods outlined in Rd@6,55. We
dent of B, confirming that the data are very well fitted by find

assuming such an exponent. The final estimate is somewhat

higher than that obtained in the analytic fits, indicating that v=0.6864), 7=0.0263), y=1.3588), (3.)

in this case nonanalytic scaling correction may play an im-

portant role. We do not know which of the two fits is the where the errors include the results of the different resum-

most reliable one and thus we have taken as final estimatemation methods. It is reassuring that these estimates are
close to those found in Ref[26], »=0.678(10), 7

R/ =0.288515), (240  =0.0303), andy=1.330(17), and also reasonably close to
o ] ] the Monte Carlo estimates. The small variation of the esti-
which is compatible with the results of both analyses. mates of the critical exponents is due to the particular struc-

Estimate(2.40 is in good agreement with the results of re of the perturbative series: if they are rewritten in terms
other methods. A six-loop computation in the fixed- y=u+v andu, the resummations depend mostly ph
dimension FT approach givé42] R; =0.290(10), while by  _ H} , which is correctly determined by FT methods, and
using approximate parametric representations of the equatiqgmy slightly onu* that is instead poorly known. We should

. v : :
of state one obtaing12] R, =0.2843). also observe that the new estimateva$ closer to the Monte
Carlo result, while the estimate efis slightly worse. There-

lll. COMPARISON WITH FIELD-THEORY RESULTS fore, the FT estimates do not become more accurate if more

. * . i e
The critical behavior of the RIM has been extensivelyprec'se results fou* andv* are used. This is an indication

studied using the FT approach. Quantitative predictions Caﬂwat, at least for the critical exponents, the location of the

be obtained by using different techniques: perturbative meth-X?/?/epgllgé It?iengtaTZItrQ?r:gt?v(:aurigcf dirrrgrbggetgiée;ﬂ;' an-
ods in the four-point renormalized couplings in fixed dimen- P P

siond=3 or in Ve, e=4—d, or nonperturbative methods sion of the RG functions around the unstable Ising fixed

. * * .
based on approximate RG equations, see Rggg— POINtu=0,v=g;, where[2] g7’ =23.562). Theanalysis
26,28,51-56 The most accurate results have been obtaine((j).f the I;lng—to—RIM RG flow reported_ n Ref28] _and th?
in the first approach: six-loop expansions for fhéunctions discussion reported_above show_that it is convenient to intro-
and the critical exponents have been derived and analyzed ff'“ "W var|ablgy=.u+v and;i— v Jn terms ofy andi,
Refs.[57,26. The corresponding estimates of the critical ex-"¢ R”Vi fixed point is located iy* =Hj =24.7(2) andz
ponents, e.g.»=0.678(10) andy=0.03q3), are insatis- = —3G2;=18.83), while the lsing fixed point is ay,
factory agreement with the Monte Carlo results presented 9i » Z=0. Then, we writey=g, + dy, obtaining for any
before. RG functionf(y,z),

The main problem of the perturbative approach is the
non-Borel summability of the seri¢&1,22. This fact makes f(y,2)=>, cij (91 dy'2, (3.2
the analysis more subtle and less precise than in the case of 0
the pure Ising model. The difficulties of the perturbative ap-
proach appear in the determinations of the fixed-point values K
u* andv* of the renormalized couplingghey are normal- Cﬂgﬂ:? Fijkgr - 3.3
ized so that at tree level=uy/m, v=vy/m, m being the
renormalized magswhich are directly related to the quanti- The value off(y,z) at the RIM fixed point is then obtained
ties we have measured in the Monte Carlo simulatisee  as follows. First, we compute the coefficiemts(g;‘) at the
Ref. [42] for a derivation of these relationsG} =v*, G5, Ising fixed point, by using the conformal-mapping method
=u*/3, andH} =G} +3G},=u* +v*. The analysis of the and exploiting the known large-order behavior of the expan-
six-loop series provided results somewhat dependent on thaon of ¢;;(g,) that is determined by the Ising fixed point.
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TABLE X. Estimates of the coefficiengj :(1677/3)‘(677)jcij(g,"), cf. Eq.(3.3), for the expansions of
n, v, 1lv, v, and 1k around the Ising fixed point.

7 v 1/v y 1y
T 0.0506) 0.1053) —0.273(5) 0.18(3) —0.1193(8)
Cyo 0.0328) 0.0164) 0.001) 0.0145) 0.0086)
Ca0 0.0116) 0.0045) 0.0013) 0.001) 0.001)
Coy 0 0.05004) -0.127(1) 0.098®) —0.0646(1)
Cop —0.0062(2) 0.005@®) —0.003(3) 0.01B) —0.005(2)
Cos 0.001G2) —0.003(1) 0.01®) ~0.007(2) 0.061)
€04 0.00015) 0.001) 0.001) 0.002) 0.0011)
. 0 0.0171) —0.003(1) 0.0321) —0.0024(2)
Cy» —0.0018(4) —0.003(2) 0.016) —0.006(3) 0.008)
Ci3 0.00074) —0.004(3) 0.001) —0.009(7) 0.006)
Cy 0 0.00336) 0.00066) 0.0051) —0.0004(2)
Cyo —0.0009(4) —0.003(2) 0.007) —0.005(4) 0.008QL)

Then, we evaluate the double series &*=H}—g;  which are again in substantial agreement with the MC re-
=1.14(20) and* = — 3G},=18.63). Here, we are neglect- sults.

ing the fact that the RG functions are nonanalytic at the Ising The expansion around the Ising fixed point can also be
fixed point[38—41. Note thatf(g;,0) is the value of the Performed along the Ising-to-RIM RG trajectdi38], which
same quantity for the Ising universality class, so that expaniS obtained as the limii,— 0" of the RG trajectories in the
sion (3.2) provides the differences between RIM and Ising: v Plane. Atleast in principle, this expansion is expected to
critical exponents, i.eAf=f g~ fising, Which are expected be better behave_d than the previous one, since RG functl(_)ns
to be rather small. Of course, this expansion is, at mostShould be analytic near the Ising fixed point only along this
asymptotic. But one may hope that the RIM and Ising fixed{rajectory, up to the random fixed point where nonanalytic-
points are sufficiently close, so that the first few terms of thdtes are again presef@8]. o

expansion around the Ising fixed point allow us to obtain An effective parametrization of the curve is given by the
more accurate estimates of the exponents of the RIM. Ifirst few terms of its expansion aroume-0, which is given
Table X we report the estimates of the first coefficientsbY

Cij(gl*) for p—u, v—v,, y—v, =1y, and 1k

—1/v, . The results for the critical exponents are reported in y=y1=T(2)=c2+cz®+ - - -, (3.9
Table XI as a function of the ordes= max(+j) of the

expansion. We thus obtain the following estimates: 7, where [28] ¢,=0.0033(1) andc;=1(2)x 10 °. The fact
=—0.0017(13), v—1,=0.0605), 1v—1ly, thaty—vy, is of orderz? is the main reason why we intro-
=—0.135(15), y—v=0.121), 1/y—1/y,=-0.041). duced the variablg and is due to the identit}28]

The estimate we quote correspondote3, while the error

is so as to include the results with=2 ando=4. Then, 9B, 9B, B,
using the estimatefd] 7, =0.03645), »,=0.63014), U = - =0. (3.6
=1.23725), wefinally obtain u=0 u=0 Y lu=o

Substituting expansiof8.5) into the double expansia3.2),
v=0.6905), =0.0352), v=1.35710), (3.9 we obtain an expansion in powers of

TABLE XI. Results obtained by using expansi¢®.2) for various truncation®=max(+j). The first
error is due to the uncertainty on the values of the coefficien(®;"), the second one is due to the
uncertainty on the location of the RIM fixed point.

0 n—mn v—u, 1/v—1/y, Y= 1/y—1ly,

1 0.0033(4+6) 0.056(0+2) —0.145(0+5) 0.110(1+4) —0.072(1+2)
2 —0.0025(4+8) 0.063(1+2) —0.147(3+5) 0.126(2+5) —0.076(1+3)
3 —0.0017(5+8)  0.060(1+2) —0.135(3+5) 0.120(2+4)  —0.070(2+2)
4  —00016(6+8)  0.062(16-3)  —0.137(20r5)  0.12320+4)  —0.070(10+2)
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TABLE XII. Estimates of the coefficienlE: (6w)iei(g,*), cf. Eq.(3.7), for the expansions o#, v, 1/v,
v, and 1k around the Ising fixed point.

i 7 v /v y 1y

1 0 0.05006) ~0.1278(4) 0.098®) ~0.06462(7)
2 ~0.0028(4) 0.01Q) ~0.022(3) 0.02R) ~0.013(2)

3 0.00084) ~0.002(1) 0.012) ~0.005(2) 0.0066)

i whereZ({p}) is the sample partition function. Of course, we
f(y,z)=f(g,+T(z),z)=§i: €9z, (3.7 are interested in averaging over the random dilution and thus
we consider disorder-averaged quantities

which should be then evaluated git=g;" andz=z*. The o

values of the coefficients (g¥) at the Ising fixed point have <C9>(B)=f [dp]CO)(B.{p}), (A2)
been computed by using a conformal mapping and a Borel

transform. The results far=1,2,3 are reported in Table XII. where

The estimates of the difference between the critical expo-

e At R [dp1=11 [x3(p =1 +(1-x)0(p)].  (A3)
=-0.136(20), 7y—79=0.119(10), and I—1ly,

=—0.070(10). These results are obtained by truncating exWe define the two-point correlation function and the suscep-
pansion(3.7) to third order, while the error is the sum of the tibility x(8,L)

uncertainty due to the resummation, due to the truncation of -

the seriegthe difference between the second-order and the G(x;8,L)=(poSopxSx)» (A4)
third-order result and due to the uncertainty @ (we used

the Monte Carlo result Then, by using the estimaté¢8] =S G(x'B.L A5
7,=0.03645), »,=0.63014), v,=1.23725), we finally X(B.L) 2 (GA.L). (A5)
obtain
We also consider the second-moment correlation legigth
v=0.6908), 7=0.034520), y=1.35510), (3.8 infinite volume it is defined as
which do not differ significantly from estimatd8.4). 1

EB= g g2 MCxB). (A6)

Note that the estimate af obtained by using the expan-
sion around the Ising fixed point is now in perfect agreement
with the Monte Carlo result, at variance with the direct esti-The finite-volume generalization is by no means unique. We
mate(3.1). The estimate of is also in substantial agreement use
with the numerical estimate=0.6833). Therefore, the ex- . .
pansion around the Ising fixed point appears to be a useful 2(BL)= G(0;8,L) = G(Umin; B:L)
alternative method to compute the critical properties of the ' Elﬁ]iné(qmin;ﬁ,L) '
RIM.

(A7)

where g,,,=(27/L,0,0), q=2sing/2, andG(q;B,L) is the
ACKNOWLEDGMENTS Fourier transform ofG(x;B,L). This finite-volume defini-
tion has the correct infinite-volume limit and shows a fast
ai:onvergence ak—o0 [49,50.
We also define the enerdy(B,L) and the specific heat

V.M.-M. was partly supported by MCyTSpain, Project
Nos. FPA2001-1813 and FPA2000-0956. The numeric
computations were performed at the PC Cluster at the Uni-

versity of Pisa. We thank Maurizio Davini for his indispens- ClB.L):
able technical assistance. E(B,L)=3G(e;B3,L),
APPENDIX: NOTATIONS JE(B,L)
CBL)=—7PH— (A8)
We consider Hamiltonial.1) with J=1 on a finite lat- B

tice L with periodic boundary conditions. Given a quantity

O depending on the spins} and on the random variables wheree=(1,0,0). We also compute higher-order couplings.

{p} we define the sample average at fixed distribufiph Setting
k —_——
1 me={ 2 pisi| ) Mgk, k=M, - - - ks
O ; = OG_BH[S"O], Al < ( 7 ) > 172 n 177%2 n
(ONBAPN =701 & (A1) o
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we define the connectadpoint susceptibilities,, averaged
over random dilution by

VXZ(E,L)EVX(E,L):mz,

Vxa(B,L)=my—3my,,

(A10)

Vxe(B,L)=mg— 15my,+ 30my,,,
whereV=L2 is the volume. Moreover, we also define
Vxoo B,L) =myp—m3,

Vx4 B,L)=Mg— Mymy — 3Mypp+ 3Mymy,

VX224 B, L) =Myp5— 3Myum,+ 2ms. (A11)
Then, we define the four-point couplings
Xa
G 1L =- 3. 21
4(B,L) 3%
X22
GZZ(BvL)E_ T2 o
x5
H(B,L)=G4+3Gy,, (A12)

and the six-point universal ratios

XeX2
fe(B,L)510—7,

4

PHYSICAL REVIEW E 68, 036136 (2003

X42X2
XaX22'

CaB.L)=4—

X222X2
Coxd B,L)=6———.
X22

(A13)

We will be interested in the critical value of these quantities.
If S(B,L) is any of them, we compute its fixed-point value
(note that the order of the limits cannot be interchanged

S*= lim lim S(B,L). (A14)
B—Bcl—

Finally, we define the Binder parameters

Un(B,L)=@,

2
Moo= M3
s BL)=—g 2,
ms

(A15)

and the corresponding critical-point values

U*=lim lim U(B,L).
L—»ocﬁ—»ﬁc

(A16)

Note that the order of limits is reversed with respect to Eq.
(Al14).
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