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Three-dimensional randomly dilute Ising model: Monte Carlo results
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We perform a high-statistics simulation of the three-dimensional randomly dilute Ising model on cubic
latticesL3 with L<256. We choose a particular value of the density,x50.8, for which the leading scaling
corrections are suppressed. We determine the critical exponents, obtainingn50.683(3), h50.035(2), b
50.3535(17), anda520.049(9), in agreement with previous numerical simulations. We also estimate nu-
merically the fixed-point values of the four-point zero-momentum couplings that are used in field-theoretical
fixed-dimension studies. Although these results somewhat differ from those obtained using perturbative field
theory, the field-theoretical estimates of the critical exponents do not change significantly if the Monte Carlo
result for the fixed point is used. Finally, we determine the six-point zero-momentum couplings, relevant for
the small-magnetization expansion of the equation of state, and the invariant amplitude ratioRj

1 that expresses
the universality of the free-energy density per correlation volume. We findRj

150.2885(15).

DOI: 10.1103/PhysRevE.68.036136 PACS number~s!: 64.60.Fr, 75.10.Nr, 75.40.Cx, 75.40.Mg
er
st
ic
fo

it
ffi
-

n
d

he
lit

ha
n
g
ni

by

s,

d

cal
and
dies,

e-
ts
ar-
ent

rec-

cal
heir

in
ove,

by

rd
I. INTRODUCTION

During the last few decades many theoretical and exp
mental studies have investigated the critical properties of
tistical systems in the presence of quenched disorder. Typ
examples are randomly dilute uniaxial antiferromagnets,
instance, FexZn12xF2 and MnxZn12xF2, obtained by mixing
a uniaxial antiferromagnet with short-range interactions w
a nonmagnetic material. Experiments show that, for su
ciently low impurity concentration 12x, these systems un
dergo a second-order phase transition atTc(x),Tc(x51),
with critical exponents independent of the impurity conce
tration. The experimental results have been summarize
Ref. @1#, which reportsa520.10(2), n50.69(1), and b
50.350(9). These estimates are definitely different from t
values of the critical exponents of the pure Ising universa
class, where, e.g.,a50.1096(5)~Ref. @2#!, and thus indicate
that the impurities change the nature of the transition t
belongs to a new random universality class. In the prese
of an external magnetic field, dilute uniaxial antiferroma
nets show a different critical transition, belonging to the u
versality class of the random-field Ising model@3–6#.

A simple model for dilute uniaxial systems is provided
the three-dimensional random Ising model~RIM! with
Hamiltonian

Hx5J(̂
i j &

r ir j sisj , ~1.1!

where the sum is extended over all nearest-neighbor sitesi
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are Ising spin variables, andr i are uncorrelated quenche
random variables, which are equal to 1 with probabilityx
~the spin concentration! and zero with probability 12x ~the
impurity concentration!. For small 12x, i.e., above the per-
colation threshold of the spins, this model shows a criti
transition analogous to that observed in experiments
whose nature has been the object of many theoretical stu
see, e.g., Refs.@7–10#.

Numerical Monte Carlo simulations@11–17# had long
been inconclusive in setting the question of the critical b
havior of the RIM. While the measured critical exponen
were definitely different from the Ising ones, results app
ently depended on the spin concentration, in disagreem
with renormalization-group~RG! theory. Only recently has
the question been clarified. Reference@13# showed the pres-
ence of very strong concentration-dependent scaling cor
tions with exponentv50.37(6). Only if they are properly
taken into account, the numerical estimates of the criti
exponents become dilution independent as expected. T
final estimates aren50.6837(53) andh50.0374(45), from
which one also derives b50.3546(28) and a5
20.051(16) using scaling relations. These results are
good agreement with the experimental ones reported ab
although the numerical estimate ofa is slightly different.

Randomly dilute Ising systems can also be studied
using the field-theoretical~FT! approach@9,10#. The starting
point is the cubic-symmetric Hamiltonian@18#

HLGW5E ddxH 1

2 (
i 51

N

@~]mf i !
21rf i

2#

1
1

4! (
i , j 51

N

~u01v0d i j !f i
2f j

2J , ~1.2!

where f i is an N-component field. By using the standa
replica trick, it can be shown that in the formal limitN→0
©2003 The American Physical Society36-1
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such a model corresponds to a system with quenched d
der effectively coupled to the energy density, as is the cas
the RIM @18#. As is well known, the limitN→0 is a subtle
one. In the standard perturbative approaches, the lim
taken naively—we simply setN50 in the perturbative
expansion—implicitly assuming that the replica symmetry
not broken. In recent years, however, this assumption
been questioned@19# on the ground that the RG approac
may not take into account other local minimum configu
tions of the random Hamiltonian~1.2!, which may cause the
spontaneous breaking of the replica symmetry. Howeve
fixed-dimension perturbative two-loop calculation@20# in a
perturbative approach proposed in Ref.@19# finds that the
standard replica-symmetric fixed point is stable under
replica-symmetry breaking perturbation, thereby support
the standard approach. In this paper, we do not further c
sider this issue and in the following we always assume
the standard approach is correct. Note that the good ag
ment between numerical and field-theoretical results s
ports this assumption, although one cannot exclude
replica-symmetry breaking effects can only be seen v
close to the critical point.

In the FT approach one looks for stable fixed points in
regionu0,0 ~or, equivalentlyu,0). If the pure fixed point
at u50 is stable, disorder is irrelevant, while the presence
a new stable fixed point withu,0 indicates that disorder i
relevant and that dilute systems belong to a new universa
class. Numerical and experimental results indicate tha
dilute Ising systems the correct scenario is the second
and thus a new random fixed point should be present w
u* ,0.

The most precise FT estimates of critical quantities
presently obtained by using perturbative methods. Howe
in the case of random systems the perturbative appro
faces new difficulties: the perturbative series are not o
divergent, but are also non-Borel summable@21,22#. This
means that even the knowledge of the complete perturba
series does not allow the exact computation of the crit
quantities. These difficulties are clearly evident in theAe
expansion and in the related minimal-subtraction sche
without e expansion@23–25#. The expansion inAe is not
well behaved and does not allow quantitative determinati
of the critical exponents, while in the minimal-subtractio
scheme results are very sensitive to the resummation met
If the Chisholm-Borel method is used@24#, no random fixed
point is found with the longest available series~five loops!.
Apparently, four-loop series provide the most accurate
sults and increasing the length of the expansion does not
improving the precision of the results. On the other hand
a double Pade´-Borel resummation is used as proposed
Ref. @22#, a random fixed point is found also at five loop
@25#. The estimates of the critical exponents are in any c
not very precise, and moreover, at variance with the fix
dimension approach described below, the stability-matrix
genvalues turn out to be complex.

The fixed-dimension perturbative expansion in powers
two independent zero-momentum quartic couplingsu andv
@directly related tou0 andv0 defined in Eq.~1.2!# is appar-
ently better behaved. Up to six loops, a random fixed po
03613
or-
of

is

s
as

-

a

y
g
n-
at
e-

p-
at
y

e

f

ty
in
ne
th

e
r,
ch
y

ve
l

e

s

od.

-
lp

if

e
-
i-

f

t

u* , v* is always found, although the estimates ofu* andv*
vary significantly with the order and the resummati
method. In spite of that, the estimates of the critical exp
nents are quite precise, due to a relatively large insensiti
of the results to the position of the fixed point. The analy
of the six-loop series gives@26# n50.678(10), h
50.030(3), b50.349(5), anda520.034(30). The agree
ment with the experimental and numerical results is ag
quite satisfactory; only the estimate ofa seems to be slightly
larger than the experimental result.

In this paper we present a numerical study of the RI
The purpose is to extend and possibly improve the numer
results of Ref.@13#. We estimate the critical exponents an
in particular,a in order to verify whether or not the appare
small discrepancy between experiments and numerical
sults is really there. Moreover, we determine the four-po
and the six-point zero-momentum couplings, and the univ
sal ratioRj

1 . As a by-product we are able to check the a
curacy of the FT approach by comparing Monte Carlo a
FT estimates of the fixed-point valuesu* andv* .

We have performed a high-precision Monte Carlo simu
tion of the model with Hamiltonian~1.1! at J51 and density
x50.8. Such a value has been chosen on the basis of
results of Ref.@13#, where it was shown that scaling corre
tions are particularly small for such a value ofx. This is fully
confirmed by our analysis: We do not observe scaling c
rections with exponentv50.37(6), thecorrection-to-scaling
exponent observed in Ref.@13# for generic values of the
density@27#. Note that the absence of corrections with exp
nent v also implies the absence of corrections with exp
nents 2v, 3v, . . . . Therefore, we expect corrections t
scaling with next-to-leading exponentv2 „v250.8(2) ac-
cording to field theory@28#…. Unexpectedly, also these co
rections are small. The RIM atx50.8 is therefore an ‘‘im-
proved’’ model@29–32,2#, i.e., a model in which the leading
correction to scaling is~approximately! absent in the expan
sion of any observable near the critical point.

First of all, we determine the critical exponents by usi
two different methods. A first estimate is obtained by e
ploying the extrapolation method of Refs.@33–35# ~similar
methods have been discussed in Refs.@36,37#!. It allows us
to determine the critical exponents from the hig
temperature behavior of the susceptibility and of the corre
tion length. We also use direct finite-size scaling~FSS! meth-
ods, obtaining consistent estimates. Our final results are

n50.683~3!, ~1.3!

h50.035~2!, ~1.4!

from which, using scaling and hyperscaling relations, we
tain

g5n~22h!51.342~6!, ~1.5!

b5
n

2
~11h!50.3535~17!, ~1.6!
6-2
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THREE-DIMENSIONAL RANDOMLY DILUTE ISING . . . PHYSICAL REVIEW E68, 036136 ~2003!
d5
52h

11h
54.80~11!, ~1.7!

a5223n520.049~9!. ~1.8!

Our results are in good agreement with those of Ref.@13#
and, in particular, confirm the discrepancy between the
perimental and theoretical estimates ofa.

We also carefully check the validity of the hyperscali
relation 22a53n. We analyze the specific heat at the cri
cal point obtaininga/n520.115(28). Using estimate~1.3!
for 1/n we obtain

2

n
2

a

n
53.04~3!, ~1.9!

which is fully consistent with 3. We also perform anoth
check of hyperscaling, analyzing the specific heat and
energy at the critical point. We obtain

2

n
2

a

n
52.93~6!, ~1.10!

again consistent with 3.
In addition to the critical exponents we also measure

four-point couplingsG4* andG22* defined in Eqs.~A12! and
~A14!, which can be directly related to the fixed-point valu
u* andv* : G4* 5v* andG22* 5u* /3. We obtain

G4* 543.3~2!,

G22* 526.2~1!. ~1.11!

These estimates differ significantly from those reported
Ref. @26#, which were obtained from the analysis of pertu
bative six-loop series:G4* 538.0(1.5) andG22* 524.5(6).
Clearly, the non-Borel summability of the perturbative e
pansions gives rise to a large systematic error. It is also p
sible that the nonanalyticity of the RG functions@38–41#
near the random fixed point plays an important role.

These discrepancies on the estimates ofu* and v* call
for a reanalysis of the perturbative expansions of the crit
exponents. By using the Monte Carlo estimate ofu* andv*
we find n50.686(4), h50.026(3), and g51.355(8).
These estimates do not differ significantly from those o
tained in Ref.@26# and are also in satisfactory agreeme
with the Monte Carlo results. Clearly exponents are qu
insensitive to the exact location of the fixed point. We a
try a different method for estimating critical quantities. It
based on an expansion around the Ising fixed point. Res
are similar: n50.690(8), h50.0345(20), and g
51.355(10). Note that the estimate ofh is now in perfect
agreement with the Monte Carlo result.

In this paper we also determine some other universal
plitude ratios that involve high-temperature quantities. Fi
we determine the six-point universal ratiosr 6* , C42* , and
C222* , defined in Eq.~A13!. The coefficientr 6* is particularly
important since it parametrizes the small-magnetization
03613
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pansion of the critical equation of state in the hig
temperature phase@42#. We find

r 6* 50.90~15!. ~1.12!

Finally, we compute the universal ratioRj
1 defined by

Rj
1[~aA1!1/3f 1, ~1.13!

whereA1 and f 1 are defined in terms of the singular beha
ior of the specific heatC and of the correlation lengthj,
Csing'A1t2a, j' f 1t2n for t[bc2b→01. We obtain

Rj
150.2885~15!, ~1.14!

in good agreement with other theoretical results@42#: Rj
1

50.290(10), obtained from the analysis of the correspo
ing six-loop perturbative series, andRj

150.282(3), derived
from a quite precise approximation of the equation of sta

The paper is organized as follows. In Sec. II we pres
the Monte Carlo results. In Sec. II B we determine the cr
cal temperature by performing a careful analysis of
finite-size behavior of some RG invariant ratios near
critical point. In Sec. II C we determine the four-point an
six-point couplings by using the extrapolation method
Refs.@33–35#. In Secs. II D and II E we determinen andh
by using again the extrapolation method and by also p
forming a more direct FSS analysis. Then, in Sec. II F
study the finite-size behavior of the energy and of the s
cific heat near the critical point. We obtain an independ
estimate ofa, which allows us to check the validity of th
hyperscaling relation 22a53n. Finally, in Sec. II G we
compute the universal ratioRj

1 . For this purpose, we gener
alize the extrapolation method of Refs.@33–35# to the en-
ergy. In spite of the necessary subtractions, the met
works quite well, providing a rather precise estimate. In S
III we reanalyze the six-loop perturbative series of Ref.@26#,
using the new Monte Carlo estimate of the fixed point. W
employ the different resummation methods discussed in R
@26# and also a method based on an expansion around
Ising fixed point. Finally, in the appendix we report the de
nitions of the quantities that are used throughout the pap

II. NUMERICAL RESULTS

A. The Monte Carlo simulation

We have performed a high-precision Monte Carlo simu
tion of the model with Hamiltonian~1.1! with J51 at den-
sity x50.8. Such a value has been chosen on the basis o
results of Ref.@13#, which showed that for such a value ofx
scaling corrections are particularly small. In the simulatio
we have considered cubic lattices of sizeL3, L516, 32, 64,
128, and 256, with periodic boundary conditions. Simu
tions have been performed for several values ofb between
0.275 and 0.285 78. Two-thirds of the simulations refer
the interval 0.275<b<0.2856~we will call the correspond-
ing data the high-temperature results!, while one-third of the
CPU time was used in simulations in a narrow interv
around the critical point, 0.285 72<b<0.285 78. The aver-
6-3
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age number of samples for eachb and L has been'7
3104 (L516), 363103 (L532), 273103 (L564), 12
3103 (L5128), and 33103 (L5256). The runs were per
formed on a cluster with Dual Athlon MP 1.2 MHz proce
sors. The total CPU time is'17.4 CPU-years of a single
processor. As random number generator we have use
combination of the Parisi-Rapuano generator@43# and of a
congruential generator@44#. Results for each sample hav
been obtained as follows. Starting from a random spin c
figuration, we perform 2000 iterations, each of them cons
ing alternatively of a Metropolis sweep and of a fu
Swendsen-Wang update. We use both a local and a non
dynamics to guarantee equilibration of short-distance
long-distance modes. Then, we perform 2000 full Swends
Wang updates, measuring all quantities~see the Appendix for
definitions! every ten iterations. To estimate correlation fun
tions we use improved estimators that significantly red
the statistical errors. Note that we have been much m
conservative than Ref.@13#: There, only 200 Swendsen
Wang iterations were performed for equilibration. For qua
tities that involve the disorder average of products of sam
averages, there is a bias due to the finite length of the run
each sample. In order to take this bias into account we h
performed a bias correction following Ref.@45#.

B. Determination of the critical temperature

As a first step in our analysis we have determined
critical temperaturebc . For this purpose we consider th
results of the simulations for 0.285 72<b<0.285 78, which
is a small interval aroundbc . We consider four invarian
ratios,U4 , U6 , U22, andj/L, see the Appendix for defini
tions. Standard FSS predicts that, in the FSS limitb→bc ,
L→` at (b2bc)L

1/n fixed, each quantityR(b,L) behaves
as

R~b,L !5R̂@~b2bc!L
1/n#, ~2.1!

whereR̂(z) is a universal function. Sinceb2bc is particu-
larly small for the data, we can expandR̂(z) in powers ofz,
keeping only the first term~we checked that the addition o
the term of orderz2 does not change the results!. Thus, we fit
each quantityR(b,L) by using

R~b,L !5R* 1a~b2bc!L
1/n, ~2.2!

with R* , bc , a, andn being free parameters. In each fit w
include all data withL>Lmin and, in order to detect correc
tions to scaling, we useLmin516, 32, and 64. The results ar
reported in Table I.

There is a slight evidence of corrections to scaling, bu
is interesting to note that they have opposite sign inU4 , U6,
andj/L. Conservatively, we would obtain

bc50.285 7447~24!, ~2.3!

where the central value is the average of the estimates
tained forU4 and j/L (Lmin564), and the error is so as t
include one error bar for bothU4 andj/L.
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These fits are not particularly sensitive to the exponenn,
which is quite poorly determined. We obtainn50.72(6).
One could imagine of improving the results by fixingn.
However, the dependence ofbc on n is very small and no
significant change is observed.

In order to include scaling corrections we also perfo
fits of the form

R~b,L !5R* 1a~b2bc!L
1/n1bL2v, ~2.4!

where we include the leading scaling correction. These
are not sensitive to the value ofn and thus we fix it, taking
n50.69. We keepv as a free parameter, since we do n
know which is the most important correction to scaling f
our data. Indeed, the leading correction has exponenv
50.37(6), but there is evidence that forp50.8 leading cor-
rections have a very small amplitude@13#. In order to be able
to keepv as a free parameter, we analyzed at the same t
two different observables. We restrict our attention toU4 ,
U6, andj/L, sinceU22 is too noisy. Using all data withL
>16 ~if the data withL516 are discarded, the fit is unstabl!
and taking properly into account the covariance between
two observables, we obtain the following.

~a! Analysis of j/L and U4. v50.70(11), bc

50.285 7435(8), (j/L)* 50.5943(8), U4* 51.6502(24),
b(j/L)520.017(7), b(U4)520.13(3); x2547.5, DOF
550.

~b! Analysis of j/L and U6. v50.71(11), bc

50.285 7435(8), (j/L)* 50.5942(8), U6* 53.318(11),
b(j/L)520.017(7), b(U4)520.67(16); x2546.7, DOF
550.

Here DOF is the number of degrees of freedom. The
sults are quite stable, indicating the presence of correct
with exponentv50.7(1), in agreement with the idea tha
scaling corrections with exponentv'0.4 are very small. The
effective exponentv50.7(1) is quite close to the next-to

TABLE I. Results of the fitR(b,L)5R* 1a(b2bc)L
1/n. DOF

is the number of degrees of freedom of the fit.

Lmin x2/DOF R* bc n

U4

16 115.2/25 1.6337~4! 0.285 7520~7! 0.804~44!

32 17.5/20 1.6385~6! 0.285 7477~6! 0.727~43!

64 7.4/12 1.6407~11! 0.285 7462~9! 0.726~60!

U6

16 134.4/25 3.2348~22! 0.285 7530~8! 0.817~46!

32 18.8/20 3.2597~28! 0.285 7480~6! 0.727~43!

64 7.4/12 3.2710~54! 0.285 7463~9! 0.726~60!

U22

16 35.0/25 0.1500~8! 0.285 7266~141! 1.23~51!

32 25.0/20 0.1484~6! 0.285 7425~68! 1.06~54!

64 21.2/12 0.1480~10! 0.285 7454~83! 0.93~66!

j/L
16 22.6/25 0.5921~2! 0.285 7414~6! 0.733~34!

32 17.4/20 0.5926~3! 0.285 7423~6! 0.708~37!

64 11.8/12 0.5934~6! 0.285 7432~9! 0.722~54!
6-4
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leading exponent predicted by perturbative field theory@28#,
i.e., v250.8(2). Thus, we mainly observe next-to-leadin
corrections, which in any case are quite small. In particu
they are of little relevance toj/L. The coefficientb, cf. Eq.
~2.4!, is very small and the estimates ofbc obtained from the
combined fits are fully compatible with those obtained
j/L without scaling corrections.

These analyses that keep into account scaling correct
hint at values ofbc lower than estimate~2.3!. We are thus
led to consider

bc50.285 744~2! ~2.5!

as our final estimate.
From the above-reported analyses, we also obtain e

mates of the invariant ratiosR* at the critical point. We
obtain

S j

L D *
50.5943~9!,

U4* 51.650~9!,

U6* 53.32~5!,

U22* 50.1480~10!. ~2.6!

We quote the results obtained in fits~2.4!, while the error is
so as to include also the result of the fit without scali
corrections andLmin564. ForU22 we only consider the fits
without scaling corrections. Note thatU22* Þ0, indicating the
absence of self-averaging at the critical point, in agreem
with the theoretical arguments of Ref.@46#.

We can compare our results with those of Ref.@13#. They
found bc50.285 7421(52), U4* 51.653(20), U22*
50.145(7), (j/L)* 50.598(7), which are in full agreemen
with our final results.

C. Determination of the four-point and six-point couplings

In this section we wish to determine the four-point co
plings G4* and G22* and the six-point universal ratiosr 6* ,
C42* , andC222* , See Appendix for definitions. Note that the
quantities are defined in the high-temperature phase and
should take first the infinite-volume limit and then the lim
b→bc , cf. Eq.~A14!. In order to perform this task we hav
applied the extrapolation method of Refs.@33–35# to our
high-temperature data, i.e., to the results withb<0.2856
@corresponding toj`(b)&89]. This method is extremely
powerful in order to compute the infinite-volume behavior
critical quantities and it has been applied to several mod
including spin glasses@47#.

The idea is the following. Given a long-distance quant
S(b,L), in the FSS limit we can write

S~b,sL!

S~b,L !
5FS„j~b,L !/L…1O~L2v,j2v!, ~2.7!

where s is an arbitrary~rational! number ~here we always
considers52). HereFS(z) is a universal function defined
03613
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for 0<z<z* [(j/L)* 50.5943(9) such thatFS(0)51 and
FS(z* )5ss, where s is the exponent characterizing th
critical behavior of S(b,L) at the critical point, i.e.,
S(bc ,L);Ls. Equation~2.7! is the basis of the extrapola
tion technique since, in the absence of scaling correction
allows us to computeS(b,sL) on a lattice of sizesL in
terms of quantities defined on a lattice of sizeL and of the
function FS(z). In practice, one works as follows. First, on
performs several runs, determiningS(b,sL), S(b,L),
j(b,sL), andj(b,L). By means of a suitable interpolation
this provides the functionF(z) for Sandj. Then,S`(b) and
j`(b) are obtained fromS(b,L) and j(b,L) by iterating
Eq. ~2.7! and the corresponding equation forj(b,L). Of
course, one must be very careful about scaling correctio
discarding systematically lattices with small values ofL till
the results become independent ofL within error bars.

Let us first discuss the four-point couplings for which w
will obtain quite precise estimates. In Figs. 1, 2, and 3
report the data forS(b,2L)/S(b,L) for G4 , G22, and j,
respectively, together with a fit of the data withL>64. As
discussed in Refs.@33,34#, we parametrizeFS(z) with a

FIG. 1. RatiosG4(b,2L)/G4(b,L) vs j(b,L)/L. The solid
curve is a fit using all data withL>64.

FIG. 2. RatiosG22(b,2L)/G22(b,L) vs j(b,L)/L. The solid
curve is a fit using all data withL>64.
6-5
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polynomial@48# in e21/z of ordern, increasingn until thex2

of the fit changes by less than 1 by going fromn to n11. In
these analyses we have takenn57. The parametrization o
FS(z) as a polynomial ine21/z is theoretically motivated:
indeed, for zero-momentum quantities,FS(z) approaches 1
with corrections of ordere2a/z, a'1, asz→0. This choice
is not strictly correct forj since in this case@49# Fj(z)51
1O(z2). However, these power corrections are expected
be very small for our definition of finite-volume correlatio
length @50#, and therefore the systematic error due to o
choice of parametrization should be small.

Looking at the figures, it is quite difficult to distinguis
any correction to scaling, i.e., systematic deviations from
fitted curve. However, at a closer look one may see that s
points withL516 are out of the curve~in all cases by less
than three error bars, so that these differences are ba
significant!. Conservatively, we have decided to discard
L516 data. In order to check further for corrections to sc
ing we have computed infinite-volume estimatesS`(L) us-
ing only data withL>Lmin , Lmin532, 64. Additionally, we
have also systematically discarded points that are far f
the critical point by including only data withb>bmin for
several values ofbmin .

FIG. 3. Ratiosj(b,2L)/j(b,L) vs j(b,L)/L. The solid curve is
a fit using all data withL>64.
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Using the extrapolation procedure we have outlin
above, for eachLmin andbmin we obtain infinite-volume es-
timatesj`(b), G4,̀ (b), and G22,̀ (b). To obtain the esti-
mate at the critical point, the extrapolated values for the c
pling constants have been fitted by using

S`~b!5S* 1a~bc2b!, ~2.8!

with bc50.285 744(2). Theresults are reported in Tables
and III for 0.275<bmin<0.284 ~corresponding to 4.45&j`

&15.86).
To check for corrections to scaling, we have also p

formed a different analysis. First we fitS(b,2L)/S(b,L) tak-
ing into account a scaling correction with exponentv, i.e.,
assuming

S~b,2L !

S~b,L !
5FS„j~b,L !/L…1

1

Lv GS„j~b,L !/L…, ~2.9!

and use both functions,FS(z) and GS(z), to perform the
infinite-volume extrapolation. Then, the infinite-volume r
sults for the coupling constants are fitted by using

S`~b!5S* 1a~bc2b!vn. ~2.10!

In order to perform the analysis we should fix the expone
v and n. We usen50.69, and repeat the analysis usingv
50.8 ~the next-to-leading exponent predicted by field theo
@28#! andv50.4, which is the leading exponent determin
in Ref. @13#. The results corresponding tov50.8 are re-
ported in Table IV. It is essential to include the results w
L516 in the analysis, otherwise the data do not show F
corrections and the fit is unstable. Therefore, we can
check the goodness of the Ansatz by discarding data w
small L, i.e., present results for different values ofLmin as
done before.

Let us first discuss the results forG4* . The fits without
corrections to scaling show a significant~at the level of the
reported errors! decrease asbmin is increased and also
slight dependence onLmin . Corrections to scaling are pos
tive and the estimate decreases with increasingbmin , so that
one only obtains an upper boundG4* &43.4. On the other
ond one
TABLE II. Results for the renormalization constantG4* . On the left we report the results forLmin532, on
the right those forLmin564. We report two differentx2. The first one (xestr

2 ) refers to the fit that allows the
determination of the curveFG4

(z), cf. Eq. ~2.7!, the second one (xfit
2 ) to fit ~2.8!. In addition to thex2 we

also report the number of DOF. The results have two errors: the first one is the statistical error, the sec
gives the variation of the estimate asbc is varied within one error bar, cf. Eq.~2.5!.

bmin xestr
2 /DOF xfit

2 /DOF G4* xestr
2 /DOF xfit

2 /DOF G4*

0.2750 14.9/22 17.3/16 43.65(610)
0.2780 14.9/22 16.8/15 43.63(610) 9.0/11 15.9/15 43.56(912)
0.2800 14.9/21 13.4/14 43.59(710) 9.0/11 13.1/14 43.51(1010)
0.2810 14.9/20 11.9/13 43.60(811) 9.0/11 12.7/13 43.52(1011)
0.2820 14.8/19 9.2/12 43.55(811) 9.0/11 11.8/12 43.47(1110)
0.2830 12.1/17 9.1/11 43.41(1111) 7.4/10 12.7/11 43.45(1210)
0.2835 12.0/15 7.6/10 43.34(1211) 7.4/9 10.8/10 43.40(1511)
0.2840 9.1/13 9.3/9 43.34(1712) 7.1/8 9.7/9 43.32(1811)
6-6
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TABLE III. Results for the renormalization constantG22* . Definitions are as in Table II.

bmin xestr
2 /DOF xfit

2 /DOF G22* xestr
2 /DOF xfit

2 /DOF G22*

0.2750 19.5/22 13.6/16 26.18(310)
0.2780 19.5/22 14.2/15 26.18(310) 12.0/11 11.3/15 26.25(410)
0.2800 19.1/21 13.1/14 26.18(310) 12.0/11 11.5/14 26.25(410)
0.2810 17.4/20 10.9/13 26.22(310) 12.0/11 11.3/13 26.25(511)
0.2820 17.4/19 6.2/12 26.19(310) 12.0/11 8.9/12 26.23(510)
0.2830 16.9/17 5.7/11 26.18(410) 11.7/10 8.4/11 26.23(610)
0.2835 16.8/15 4.9/10 26.19(511) 11.3/9 8.2/10 26.25(611)
0.2840 12.1/13 2.5/9 26.12(710) 10.4/8 1.5/9 26.11(811)
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hand, the fit withv50.80 gives results independent ofbmin

within error bars; moreover thex2 of fit ~2.10! is systemati-
cally lower than that of fit~2.8!. Clearly the data are very
well fitted by assuming a correction-to-scaling exponentv
50.80. Forv50.40 the results strongly depend onbmin ,
varying from G4* 542.49(14) for bmin50.275 to G4*
543.47(40) forbmin50.2835. Also, thex2 is larger than the
x2 obtained usingv50.8. There is therefore little evidenc
for such a small correction-to-scaling exponent, confirm
again that for densityx50.8 the leading scaling correction
are very small. As final estimate we take

G4* 543.3~2!, ~2.11!

which is consistent with all results.
Let us now consider the results forG22* . The results of

Table III show no dependence onbmin and a tiny dependenc
on Lmin which could be of purely statistical origin. With th
present error bars there is no evidence for nonanalytic s
ing corrections and indeed the results obtained usingv
50.80 ~see Table IV! are perfectly consistent with those o
the fits with purely analytic corrections. Our final estimate

G22* 526.2~1!. ~2.12!

The error is rather conservative and is such to include
estimates.

We should note that our results are compatible with
FT predictions of Ref.@28#, where it is shown that in infinite
03613
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volumeG22,̀ (b) andG4,̀ (b) have scaling corrections with
next-to-leading exponentv'0.8(2) of similar relative size.
In particular, the results of Ref.@28# give aG22

520.23(10)aG4
, wherea is the coefficient defined in Eq

~2.10!. From the fits we obtain insteadaG4
520(5) and

aG22
521.5(1.0). The errors should be taken with cautio

They simply give the variation of the parametera with bmin
for 0.275<bmin<0.281~for larger values the statistical erro
becomes larger thanuau) and do not include any possibl
systematic effect. Assuming these values with their erro
we estimateaG22

520.08(5)aG4
, which is in reasonable

agreement with the FT result.
As a check we have repeated the analysis forH4[G4

13G22. Since the procedure is nonlinear, this represents
important consistency check. We obtain

H4* 524.7~2!, ~2.13!

which is in full agreement with the estimates reported abo
Finally, we consider the six-point couplingsr 6 , C42, and

C222. We apply again the extrapolation procedure we ha
used forG4 andG22. However, in this case there are larg
systematic errors. The extrapolation curveF(z), cf. Eq.
~2.7!, is poorly determined forz&0.3, since the six-point
couplings have large statistical errors whenj(b,L)/L is
small. A large error on the curve gives a large systema
error on the extrapolations and induces correlations am
the results for differentb ~such correlations are instead sma
he
TABLE IV. Results forG4* andG22* for fits with a correction-to-scaling exponentv50.8. We report two
differentx2. The first one (xestr

2 ) refers to the fit that allows the determination of the curveF(z), cf. Eq.~2.9!,
the second one (xfit

2 ) to fit ~2.10!. In addition to thex2 we also report the number of DOF. We only report t
statistical error; the error due tobc is negligible.

bmin xestr
2 /DOF xfit

2 /DOF G4* xestr
2 /DOF xfit

2 /DOF G22*

0.2750 30.0/29 12.6/16 43.28~8! 31.8/29 12.1/16 26.15(3)
0.2780 29.9/28 10.9/15 43.31~9! 31.6/28 11.1/15 26.16(4)
0.2800 29.5/26 10.8/14 43.30~10! 31.1/26 9.9/14 26.16(4)
0.2810 25.4/24 9.0/13 43.43~11! 22.1/24 8.8/13 26.26(5)
0.2820 24.3/22 9.0/12 43.30~13! 22.0/22 5.8/12 26.21(6)
0.2830 21.3/19 6.4/11 43.37~17! 21.1/19 3.6/11 26.25(7)
0.2835 13.4/16 7.1/10 43.53~22! 18.1/16 3.2/10 26.33(9)
0.2840 10.6/13 7.9/9 43.26~29! 12.3/13 2.7/9 26.00(13)
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for G4 andG22). Because of them, it is difficult to set corre
error bars and to determine the final results. For these
sons we have taken a conservative attitude. We have ge
ated different sets of extrapolated data by changing the
green of the interpolation polynomial andbmin ~in all cases
we setLmin516 in order to have a sufficiently large numb
of points in the small-z region!. Then, we determine the
range that includes most ('2/3) of the extrapolated dat
with their error bars. The central value of such an inter
gives the final result, while its half width gives the error. W
obtain

r 6* 50.90~15!,

C42* 50.12~5!,

C222* 50.45~15!. ~2.14!

In Fig. 4 we report the final results together with the resu
for a single extrapolation, so that the reader can see the q
ity of our numerical results and how much conservative
final error bars are. Note that in this analysis we have
made any attempt to evaluate corrections to scaling. In
case, we expect them to be small compared with the la
errors we quote.

The numerical estimates can be compared with the
results. We shall discuss the four-point couplings in Sec.
For what concerns the six-point couplings, the analysis of
available four-loop series in the fixed-dimension scheme@51#
is not very precise. We only mention the estimater 6*
51.120.5

10.1 reported in Ref.@42#, which agrees with the more
precise result~2.14!.

D. The exponentn

In order to determine the exponentn we have followed
two different strategies:~a! we have determined extrapolate
valuesj`(b) using our extrapolation method and then w

FIG. 4. Infinite-volume results for the six-point ratiosr 6(b),
C42(b), and C222(b) from the extrapolation withLmin516, bmin

50.275, and degree of the interpolation polynomialn57. On the
horizontal axis we reportj`(b). We also report the final result
r 6* 50.90(15),C42* 50.12(5), andC222* 50.45(15).
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have performed a fitj`(b);(bc2b)2n; ~b! we have per-
formed a purely FSS analysis without extrapolations. T
advantage of method~b! is that we can keep bothbc andv
as free parameters, and thus check the previously determ
value for bc and our claim that scaling corrections wit
small values ofv are tiny.

In the first case we proceed as before. If we neglect s
ing corrections, we can generate infinite-volume estima
j`(b) by using the extrapolation procedure based on
~2.7! and then we can determinen from fits of the form

ln j`~b!52n ln~bc2b!1a1b~bc2b!. ~2.15!

As a second possibility we can include corrections w
exponentv in the extrapolation, see Eq.~2.9!, and fit the
extrapolated data with

ln j`~b!52n ln~bc2b!1a1b~bc2b!vn. ~2.16!

We report in Fig. 5 the results for the analytic fit withLmin
532 andLmin564 and for the nonanalytic fit withv50.80
and Lmin516 for several values ofbmin . We observe that
results with and without nonanalytic corrections differ si
nificantly, much more than the statistical errors. Howev
corrections have opposite trends. Analytic fits give resu
that decrease asbmin is increased while nonanalytic fits hav
the opposite behavior. Compatible results are obtained
bmin>0.283. Forb50.283 we obtainn50.6847(15) from
the first analysis withLmin564 andn50.6818(24) from the
second analysis. A reasonable estimate would be 0.683
which includes all results. It should be noted that the res
depend strongly onbc that has been fixed tobc
50.285 744(2). By varyingbc within one error bar,n varies
approximately by60.003. Thus, collecting everything to
gether, this method gives the final result

FIG. 5. Results for the exponentn vs bmin . We report the results
obtained by fitting the extrapolated high-temperature data with
scaling corrections~they are labeledLmin532 andLmin564) and
with scaling corrections with exponentv50.8 ~labeledv50.80),
and the results obtained by using all data and parametrization~2.20!
~labeled FSS!. The horizontal lines correspond to the final resultn
50.683(3).
6-8
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n50.683~313!. ~2.17!

Estimate~2.17! has been obtained by using only the hig
temperature data, i.e., those withb<0.2856. A more precise
estimate can be obtained by performing a direct FSS ana
that allows us to use both the high-temperature and
critical-point results for the correlation length. In this wa
we do not need to fixbc and we can also keepv as a free
parameter. We start from the general FSS expression

j

L
5F„u1~ t !L1/n,u2~ t !L2v

…, ~2.18!

where only one correction-to-scaling operator has been ta
into account. Heret[(bc2b), andu1(t) andu2(t) are non-
linear scaling fields satisfyingu1(0)50 and u2(0)Þ0.
Equation~2.18! can be rewritten in the scaling limit as

j

L
5 f 1~ tL1/n!1L21/n f 2~ tL1/n!1L2v f 3~ tL1/n!,

~2.19!

with f 1(0)Þ0 and f 3(0)Þ0. The three scaling function
represent the three types of contributions we expect:f 1(x) is
the leading FSS curve,f 2(x) corresponds to the analytic co
rections, andf 3(x) is the nonanalytic FSS correction. Th
function f 2(x) is related tof 1(x) by f 2(x);x2f 18(x), a rela-
tion that follows from the fact that this correction is due
the expansion of the scaling fieldu1(t)5t1at21O(t3). The
existence of the infinite-volume limit fixes the behavior
these functions forx→`: f 1(x);x2n, f 2(x);x12n and
f 3(x);x(v21)n.

Now, we wish to determinebc , n, andv by fitting the
numerical data forj/L with Eq. ~2.19!. For this purpose, we
must parametrize the scaling functions reported above w
expressions containing a finite number of parameters. T
we consider an even integern and parametrize:

j

L
5@Pn~ tL1/n!1L2v~11ptL1/n!vnQn~ tL1/n!#2n/n,

Pn~x!5(
i 50

n

aix
i , Qn~x!5(

i 50

n/2

bix
2i , ~2.20!

wheret[(bc2b). This parametrization has the correct b
havior both for small and largex for any n. Note that our
choice of writingQn(x) as a polynomial inx2 is due only to
practical considerations: since corrections are small,Qn(x)
cannot be parametrized with as many parameters asPn(x);
on the other hand, to guarantee the correct large-x behavior
Qn(x) andPn(x) must have the same degree. We also m
some analyses writingQn(x) as a polynomial inx3—in this
casen must be a multiple of 3—without finding significan
differences. The value ofn has been chosen on the basis
the x2 of the fit: n has been increased until thex2 does not
change significantly asn is increased by 2. The results of th
analyses we present correspond ton512.

In the analyses we have keptn, v, p, bc , $ai%, and$bi%
as free parameters. The fit is stable only if we include
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data withL516, otherwise there are no scaling correctio
at the level of our error bars and therefore it is impossible
determinev. To check for corrections, we have systema
cally discarded points far frombc , including in the analysis
only data withb>bmin for several values ofbmin . In order
to have a mostly linear fit, we have fitted (j/L)2n/n. The
results are reported in Table V.

The results forbc are quite stable, in full agreement wit
the analyses reported in Sec. II B forj/L and with the final
estimate~2.5!. The estimates ofv vary significantly and
have a quite large error. There is however very little eviden
of scaling corrections withv&1, as already discussed i
Sec. II B. Finally, let us considern. As can be seen from Fig
5 the results are in rough agreement with those found be
and apparently become independent ofbmin for b*0.282.
Our final estimate is

n50.683~3!, ~2.21!

which is compatible with the results of all analyses. Estim
~2.21! is in very good agreement with the resultn
50.6837(53) of Ref.@13#.

E. The exponenth

In order to compute the exponenth and correspondingly
g5(22h)n, one can analyze the critical behavior of th
susceptibilityx. However, we have found much more co
venient to analyzez[x/j2. Indeed, because of statistic
correlations betweenx andj, the relative error onz is sig-
nificantly smaller than that onx. Moreover, the FT analysis
of Ref. @28# indicates thatz has much smaller scaling cor
rections thanx.

In order to determineh we perform two different analy-
ses. The first one uses the high-temperature data and fol
closely the analysis of the correlation length presented
Sec. II D. Givenz(b,L) we determine the curveFz(z), cf.
Eq. ~2.7!. The ratiosz(b,2L)/z(b,L) are reported in Fig. 6,
together with a fit of the points withL>64. There are clear
scaling corrections, especially whenj(b,L)/L*0.3: the data
with L516, and also some points withL532, are system-
atically above the curve. As before, we discard all poi
with L516 and perform the extrapolation using data w
L>Lmin , with Lmin532,64, in order to detect scaling corre
tions. The extrapolated values are fitted by using

TABLE V. Results of the FSS analysis using parametrizat
~2.20! with n512 as a function ofbmin . Here DOF is the number o
degrees of freedom of the fit.

bmin x2/DOF n v bc

0.2750 51/62 0.6851~15! 1.71~18! 0.285 7434~7!

0.2780 50/60 0.6842~22! 1.60~28! 0.285 7434~7!

0.2800 45/57 0.6823~36! 1.32~35! 0.285 7433~7!

0.2810 43/54 0.6803~52! 1.10~34! 0.285 7435~8!

0.2820 41/51 0.6827~36! 1.51~66! 0.285 7433~7!

0.2830 39/47 0.6836~28! 2.1~1.3! 0.285 7430~7!

0.2835 30/43 0.6836~23! 3.6~2.5! 0.285 7428~8!
6-9
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ln z`~b!5hn ln~bc2b!1a1b~bc2b! ~2.22!

and fixing bc50.285 744(2). The results are reported in
Table VI. They show a systematic dependence onLmin and
bmin and seem to indicatehn'0.0240, but it is difficult to
set an error bar. Conservatively, we write

hn50.0240~15!, ~2.23!

which includes the estimates withbmin50.284 with their er-
ror bars. Using the estimate ofn reported in Sec. II D,n
50.683(3), weobtain

h50.035~2!. ~2.24!

We have also repeated the analysis including scaling
rections withv50.8. In the extrapolation procedure we u
Eq. ~2.9!, and then we fit the extrapolated data by using

ln z`~b!5hn ln~bc2b!1a1b~bc2b!vn. ~2.25!

The results are reported in Table VII. They show a syste
atic upward trend, indicating that scaling corrections w
v50.8 do not correctly describe the data. This is also e

FIG. 6. Ratiosz(b,2L)/z(b,L) vs j(b,L)/L. The solid curve is
a fit using all data withL>64.
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dent from thex2 of fit ~2.25! which is quite large for small
bmin . A lower value ofv, say v50.4, gives even worse
results, confirming that corrections withv&1 are very
small, in agreement with the FT analysis of Ref.@28#. In any
case the results of Table VII indicate thathn*0.0220, in
agreement with Eq.~2.23!.

The second analysis we consider uses the data at the
cal point. Forb'bc we have

z~b,L !5L2h f 1~ tL1/n!1L2h2v f 2~ tL1/n!, ~2.26!

wheret[bc2b. If we expand fort'0, we can write

ln z~b,L !52h ln L1a1btL1/n1cL2v. ~2.27!

We first perform an analysis neglecting scaling correctio
(c50) for several values ofLmin . If we fix bc
50.285 744(2) andn50.683(3), weobtain

Lmin516:h50.0331~216!, x2/DOF576/26;

Lmin532:h50.0347~318!, x2/DOF527/21;

Lmin564:h50.0354~6114!, x2/DOF522/13.

The first error is statistical, while the second one is due to
error onbc . The error due to the error onn can be neglected
There are apparently some scaling corrections, but it sho
be noted that the difference between the results withLmin
532 and 64 is not significant given the statistical error ba
We also perform an analysis with scaling corrections w
exponentv50.80. Using all data, i.e., takingLmin516, we
obtain h50.0382(8116), c520.111(16123), x2/DOF
5 29/25. This result is higher than the estimates obtain
before, but still compatible with the quoted errors.

The analysis at the critical point gives therefore resu
that are in full agreement with those obtained before, c
firming the correctness of estimate~2.24!, and with the result
of Ref. @13#, h50.0374(45).
second
TABLE VI. Results for the critical exponenthn. On the left side we report the results forLmin532, on
the right side those forLmin564. We report two differentx2. The first one (xestr

2 ) refers to the fit that allows
the determination of the curveFz(z), cf. Eq.~2.7!, the second one (xfit

2 ) to the fit ~2.22!. In additon to thex2

we also report the number of DOF. The results have two errors: the first one is the statistical error, the
one gives the variation of the estimate asbc is varied within one error bar, cf. Eq.~2.5!.

bmin xestr
2 /DOF xfit

2 /DOF hn xestr
2 /DOF xfit

2 /DOF hn

0.2750 37.1/22 16.2/15 0.0249(111)
0.2780 37.1/22 16.1/14 0.0249(211) 15.7/11 12.4/14 0.0253(211)
0.2800 36.7/21 11.0/13 0.0246(211) 15.7/11 11.6/13 0.0252(211)
0.2810 36.7/20 5.9/12 0.0243(211) 15.7/11 10.6/12 0.0251(311)
0.2820 36.3/19 5.5/11 0.0242(311) 15.7/11 11.0/11 0.0250(311)
0.2830 35.1/17 4.0/10 0.0241(411) 15.5/10 9.9/10 0.0248(412)
0.2835 33.2/15 1.5/ 9 0.0236(512) 15.5/9 4.9/9 0.0243(612)
0.2840 22.6/13 4.7/ 8 0.0236(712) 12.0/8 2.7/8 0.0245(811)
6-10
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F. The exponenta and hyperscaling

In this section we wish to determine the exponenta and
check the hyperscaling relation 22a5dn. Unfortunately,
we have measured the specific heatC(b,L) only near the
critical point and thus we can determinea only from the
behavior forb'bc .

RG predicts that, in the FSS limit, the energy scales a

E~b,L !'Ebulk~b!1L (a21)/ng1~ tL1/n!

1L (a21)/n2vg2~ tL1/n!, ~2.28!

where t[bc2b and we have included one scaling corre
tion. Note thatEbulk(b) is expected to have an exponentia
small dependence onL, which can be neglected for all prac
tical purposes. Near the critical point we can expand t
expression in powers oftL1/n obtaining for the energy and
the specific heat the expressions

E~b,L !'aE1bEt1cEL (a21)/n1dEtLa/n1eEL (a21)/n2v,
~2.29!

C~b,L !'aC1bCt1cCLa/n1dCtL (a11)/n1eCLa/n2v,
~2.30!

with aC5bE andcC5dE .
We wish now to determinea/n. We consider the specific

heat, since in this case the singular behavior is stronge
Eq. ~2.30! we have not used hyperscaling, so that the exp
sion depends on two independent exponentsa and n, or
more preciselya/n and 1/n. In order to simplify the analy-
sis, we now analyze the specific heat using hyperscalin
rewrite the correction term. Thus, Eq.~2.30! becomes

C~b,L !5aC1bCt1cCLa/n1dCtL3/2(a/n11)1eCLa/n2v,
~2.31!

TABLE VII. Results for the critical exponenthn using scaling
corrections with exponentv50.8. We report two differentx2. The
first one (xestr

2 ) refers to the fit that allows the determination of th
curve Fz(z), cf. Eq. ~2.9!, the second one (xfit

2 ) to fit ~2.25!. In
addition to thex2 we also report the number of DOF. We report tw
errors: the first one is the statistical error, the second one gives
variation of the estimate asbc is varied within one error bar, cf. Eq
~2.5!.

bmin xestr
2 /DOF xfit

2 /DOF hn

0.2750 24.5/29 174/15 0.0179(211)
0.2780 24.5/28 55.8/14 0.0193(211)
0.2800 24.1/26 29.0/13 0.0203(311)
0.2810 22.5/24 19.3/12 0.0210(412)
0.2820 20.0/22 11.0/11 0.0217(512)
0.2830 19.4/19 6.1/10 0.0228(712)
0.2835 19.2/16 4.8/9 0.0226(812)
0.2840 14.2/13 5.3/8 0.0230(1213)
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which depends only ona/n. We begin by neglecting the
correction-to-scaling term, i.e., we seteC50. Fixing bc
50.285 744(2), a five-parameter fit of the data withL
>Lmin gives

Lmin516, a/n520.119~716!, x2/DOF512.0/24,

Lmin532, a/n520.115~17111!, x2/DOF511.6/19.

The first error is the statistical one, while the second o
gives the variation of the estimate asbc is varied by one
error bar. Two things should be noticed: the analytic te
proportional tot is very small compared with the statistic
errors. Indeed,bC523(8318) and bC5230(167124) in
the two fits. Moreover, corrections to scaling are apparen
small, since the results do not depend onLmin . As a check,
we have also performed an analysis with a correction te
(eCÞ0). We find a/n520.109(5016), eC520.3(1.4),
andx2/DOF511.9/23, forv50.8 andLmin516. The coef-
ficient eC is compatible with zero, while thex2 of the fit
changes only by 0.1 in spite of the fact that we have ad
an additional parameter. There is no evidence of scaling
rections. As final estimate ofa/n we take the result with
Lmin532 andeC50,

a

n
520.115~28!. ~2.32!

If we use hyperscaling and the estimate ofn of Sec. II D,
n50.683(3), weobtaina/n520.072(13). This estimate is
in reasonable agreement with~2.32! confirming the validity
of hyperscaling. Using Eq.~2.32! and n50.683(3) we ob-
tain a520.079(19), which is in reasonable agreement w
the estimate obtained using hyperscalinga520.049(9).

We can also check hyperscaling directly by comparing
results for the energy and the specific heat. If we defineu1
[a/n, u2[(22a)/n, we can rewrite Eqs.~2.29! and~2.30!
as

E~b,L !5aE1bEt1cEL (u12u2)/21dEtLu1,

C~b,L !5bE1dELu11dCtL (3u11u2)/2, ~2.33!

where we have neglected scaling corrections and have
bC50 in agreement with the previous analysis. If hypersc
ing is satisfied we should findu253. A combined analysis of
E(b,L) andC(b,L) fixing bc gives

Lmin516: a/n520.119~616!,

u252.952~1718!, x2/DOF533.4/51;

Lmin532: a/n520.112~1619!,

u252.930~43112!, x2/DOF529.3/41.

Here, as before, the first error is the statistical one, while
second gives the error due tobc . The estimates ofa/n are
compatible with Eq.~2.32!, while u2 is in reasonable agree
ment with 3, confirming again the validity of hyperscaling

he
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G. The universal ratio Rj
¿

We now wish to compute the universal ratioRj
1 that is

related to the universality of the singular part of the fr
energy per correlation volume. More precisely, let us c
sider the infinite-volume free-energy densityF`(b)

F`52
1

V
ln Z ~2.34!

and the infinite-volume specific heat C`(b)
5]2F`(b)/]b2. In the critical limit t[bc2b→0 we can
write

F`~b!5Fbulk~b!1F1t22a1corrections,

C`~b!5Cbulk~b!1A1t2a1corrections, ~2.35!

whereA15(22a)(12a)F1. If j`(b)' f 1t2n in the same
limit t→01, RG predicts the universality ofF1( f 1)3, or
equivalently of

Rj
1[~aA1!1/3f 1. ~2.36!

We now computeRj
1 using our high-temperature results f

the energyE(b,L) and for the correlation lengthj(b,L).
We define a quantityR(b,L),

R~b,L ![F2
a

12a
~E~b,L !2aE2bEt !t G1/3

j~b,L !,

~2.37!

whereaE and bE are defined in terms of the expansion
Fbulk(b) for t→0:

dFbulk~b!

db
[Ebulk~b!5aE1bEt1O~ t2!. ~2.38!

It is easy to check that

lim
t→0

lim
L→`

R~b,L !5Rj
1 . ~2.39!

In order to computeR(b,L), we must specify the values o
the two constantsaE andbE in Eq. ~2.37!. For this purpose
we exploit the fact thatEbulk(b) is the same function in Eq
~2.28! and in Eq.~2.38!, so thataE andbE coincide with the
03613
-

constants defined in Eq.~2.29!. Thus,aE andbE can be de-
termined independently by using the critical-point data
the energy and the specific heat. We thus proceed as follo
We consider Eq.~2.33!, fix bc50.285 744(2), u253, a/n
52/n23, n50.683(3), andcomputeaE andbE by analyz-
ing E(b,L) and C(b,L) near the critical point. Then, we
determineR(b,L). The error onR(b,L) takes into account
the error onE(b,L), j(b,L), aE , and bE , and also the
variation of the estimates asn andbc vary within one error
bar. In order to be conservative, we use a worst-error e
mate summing all errors together. OnceR(b,L) has been
computed we use the extrapolation method presented in
II C.

In Fig. 7 we report the ratiosR(b,2L)/R(b,L) together
with a fit of the data withL>64 ~a good fit is obtained by
using a polynomial withn510). Apparently, there are no
scaling corrections, but at a closer look one finds system
deviations forL516. As before, these points will be dis
carded in the analytic fits.

The results of the fits with analytic corrections are r
ported in Table VIII forLmin532 andLmin564. For small
bmin they show an upward trend and then apparently stabi
around 0.2874(3). In order to check the role of the correc
tions to scaling, we have repeated the analysis by add
scaling corrections with exponentv50.80. The results are

FIG. 7. RatiosR(b,2L)/R(b,L) vs j(b,L)/L. The solid curve
is a fit using all data withL>64.
TABLE VIII. Results for the universal ratioRj
1 . Definitions are as in Table II. The error due tobc is

negligible.

bmin xestr
2 /DOF xfit

2 /DOF Rj
1 xestr

2 /DOF xfit
2 /DOF Rj

1

0.2750 14.7/19 40.2/16 0.286 74~13!

0.2780 14.7/19 31.3/15 0.286 88~14! 10.4/8 20.1/15 0.286 77~16!

0.2800 14.6/18 23.9/14 0.287 03~15! 10.4/8 16.5/14 0.286 89~17!

0.2810 14.6/17 20.9/13 0.287 12~17! 10.4/8 15.8/13 0.286 98~19!

0.2820 13.8/16 20.4/12 0.287 18~18! 10.4/8 13.2/12 0.287 09~20!

0.2830 13.6/14 15.4/11 0.287 44~22! 10.3/7 10.8/11 0.287 26~23!

0.2835 12.9/12 12.8/10 0.287 49~26! 10.3/6 9.45/10 0.287 36~27!

0.2840 12.9/10 11.5/9 0.287 37~32! 10.2/5 8.63/9 0.287 30~33!
6-12
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presented in Table IX. They are now substantially indep
dent ofbmin confirming that the data are very well fitted b
assuming such an exponent. The final estimate is some
higher than that obtained in the analytic fits, indicating th
in this case nonanalytic scaling correction may play an
portant role. We do not know which of the two fits is th
most reliable one and thus we have taken as final estim

Rj
150.2885~15!, ~2.40!

which is compatible with the results of both analyses.
Estimate~2.40! is in good agreement with the results

other methods. A six-loop computation in the fixe
dimension FT approach gives@42# Rj

150.290(10), while by
using approximate parametric representations of the equa
of state one obtains@42# Rj

150.282(3).

III. COMPARISON WITH FIELD-THEORY RESULTS

The critical behavior of the RIM has been extensive
studied using the FT approach. Quantitative predictions
be obtained by using different techniques: perturbative m
ods in the four-point renormalized couplings in fixed dime
sion d53 or in Ae, e[42d, or nonperturbative method
based on approximate RG equations, see Refs.@23–
26,28,51–56# The most accurate results have been obtai
in the first approach: six-loop expansions for theb functions
and the critical exponents have been derived and analyze
Refs.@57,26#. The corresponding estimates of the critical e
ponents, e.g.,n50.678(10) andh50.030(3), are insatis-
factory agreement with the Monte Carlo results presen
before.

The main problem of the perturbative approach is
non-Borel summability of the series@21,22#. This fact makes
the analysis more subtle and less precise than in the ca
the pure Ising model. The difficulties of the perturbative a
proach appear in the determinations of the fixed-point val
u* andv* of the renormalized couplings~they are normal-
ized so that at tree levelu5u0 /m, v5v0 /m, m being the
renormalized mass!, which are directly related to the quant
ties we have measured in the Monte Carlo simulation~see
Ref. @42# for a derivation of these relations!: G4* 5v* , G22*
5u* /3, andH4* [G4* 13G22* 5u* 1v* . The analysis of the
six-loop series provided results somewhat dependent on

TABLE IX. Results for the universal ratioRj
1 using scaling

corrections with exponentv50.8. Definitions are as in Table IV
The error related tobc is negligible.

bmin xestr
2 /DOF xfit

2 /DOF Rj
1

0.2750 32.0/25 10.5/16 0.289 08~19!

0.2780 30.8/24 9.5/15 0.288 97~21!

0.2800 30.5/22 8.6/14 0.288 95~24!

0.2810 29.7/20 7.6/13 0.288 97~26!

0.2820 28.5/18 8.5/12 0.288 98~30!

0.2830 27.9/15 8.5/11 0.289 05~36!

0.2835 17.8/12 5.2/10 0.289 51~45!

0.2840 15.7/9 6.4/9 0.289 67~56!
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resummation method@58#. Indeed, we found@26# G4*
537.7(2), G22* 524.3(6), H4* 524.8(1.8) ~double Pade´-
Borel method!; G4* 536.8(3), G22* 524.0(1), H4*
524.8(6) ~conformal Pade´-Borel method!; G4* 538.6(7),
G22* 524.8(2), H4* 524.2(9) ~direct conformal method!.
The estimates ofH4* are in good agreement with the Mon
Carlo result~2.13!, H4* 524.7(2). On theother hand, the
estimates ofG4* and G22* —combining the results we would
have guessedG4* 538.0(1.5) andG22* 524.5(6) with errors
that are, at first sight, quite conservative—differ significan
from the Monte Carlo estimates~2.11! and ~2.12!.

These discrepancies call for a reanalysis of the pertu
tive series of the exponents, verifying if the use of the Mon
Carlo results forG4* andG22* leads to significantly different
estimates. We have thus repeated the analysis, using the
ferent resummation methods outlined in Refs.@26,55#. We
find

n50.686~4!, h50.026~3!, g51.355~8!, ~3.1!

where the errors include the results of the different resu
mation methods. It is reassuring that these estimates
close to those found in Ref.@26#, n50.678(10), h
50.030(3), andg51.330(17), and also reasonably close
the Monte Carlo estimates. The small variation of the e
mates of the critical exponents is due to the particular str
ture of the perturbative series: if they are rewritten in ter
of y[u1v and u, the resummations depend mostly ony*
5H4* , which is correctly determined by FT methods, a
only slightly onu* that is instead poorly known. We shoul
also observe that the new estimate ofn is closer to the Monte
Carlo result, while the estimate ofh is slightly worse. There-
fore, the FT estimates do not become more accurate if m
precise results foru* andv* are used. This is an indicatio
that, at least for the critical exponents, the location of
fixed point is not the main source of error on the results.

We also tried an alternative procedure based on an ex
sion of the RG functions around the unstable Ising fix
point u50, v5gI* , where@2# gI* 523.56(2). Theanalysis
of the Ising-to-RIM RG flow reported in Ref.@28# and the
discussion reported above show that it is convenient to in
duce new variablesy[u1v andz[2u. In terms ofy andz,
the RIM fixed point is located iny* 5H4* 524.7(2) andz*
523G22* 518.6(3), while the Ising fixed point is atyI

5gI* , z50. Then, we writey5gI1dy, obtaining for any
RG function f (y,z),

f ~y,z!5(
i , j

ci j ~gI !dyizj , ~3.2!

ci j ~gI !5(
k

f i jkgI
k . ~3.3!

The value off (y,z) at the RIM fixed point is then obtaine
as follows. First, we compute the coefficientsci j (gI* ) at the
Ising fixed point, by using the conformal-mapping meth
and exploiting the known large-order behavior of the exp
sion of ci j (gI) that is determined by the Ising fixed poin
6-13
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TABLE X. Estimates of the coefficientsc̄i j 5(16p/3)i(6p) j ci j (gI* ), cf. Eq. ~3.3!, for the expansions of
h, n, 1/n, g, and 1/g around the Ising fixed point.

h n 1/n g 1/g

c̄10
0.050~6! 0.105~3! 20.273(5) 0.181~3! 20.1193(8)

c̄20
0.032~8! 0.016~4! 0.00~1! 0.014~5! 0.008~6!

c̄30
0.011~6! 0.004~5! 0.00~3! 0.00~1! 0.00~1!

c̄01
0 0.0500~4! 20.127(1) 0.0987~6! 20.0646(1)

c̄02
20.0062(2) 0.0056~9! 20.003(3) 0.015~2! 20.005(2)

c̄03
0.0010~2! 20.003(1) 0.017~3! 20.007(2) 0.06~1!

c̄04
0.0001~5! 0.00~1! 0.00~1! 0.00~2! 0.001~1!

c̄11
0 0.017~1! 20.003(1) 0.032~1! 20.0024(2)

c̄12
20.0018(4) 20.003(2) 0.018~6! 20.006(3) 0.009~3!

c̄13
0.0007~4! 20.004(3) 0.00~1! 20.009(7) 0.005~5!

c̄21
0 0.0033~6! 0.0006~6! 0.005~1! 20.0004(2)

c̄22
20.0009(4) 20.003(2) 0.007~1! 20.005(4) 0.003~1!
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Then, we evaluate the double series atdy* 5H4* 2gI*
51.14(20) andz* 523G22* 518.6(3). Here, we are neglect
ing the fact that the RG functions are nonanalytic at the Is
fixed point @38–41#. Note that f (gI* ,0) is the value of the
same quantity for the Ising universality class, so that exp
sion ~3.2! provides the differences between RIM and Isi
critical exponents, i.e.,D f 5 f RIM2 f Ising, which are expected
to be rather small. Of course, this expansion is, at m
asymptotic. But one may hope that the RIM and Ising fix
points are sufficiently close, so that the first few terms of
expansion around the Ising fixed point allow us to obt
more accurate estimates of the exponents of the RIM
Table X we report the estimates of the first coefficie
ci j (gI* ) for h2h I , n2n I , g2g I , 1/n21/n I , and 1/g
21/g I . The results for the critical exponents are reported
Table XI as a function of the ordero[ max(i1j) of the
expansion. We thus obtain the following estimates:h2h I
520.0017(13), n2n I50.060(5), 1/n21/n I
520.135(15), g2g I50.12(1), 1/g21/g I520.07(1).
The estimate we quote corresponds too53, while the error
is so as to include the results witho52 and o54. Then,
using the estimates@9# h I50.0364(5), n I50.6301(4), g I
51.2372(5), wefinally obtain

n50.690~5!, h50.035~2!, g51.357~10!, ~3.4!
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which are again in substantial agreement with the MC
sults.

The expansion around the Ising fixed point can also
performed along the Ising-to-RIM RG trajectory@28#, which
is obtained as the limitu0→02 of the RG trajectories in the
u, v plane. At least in principle, this expansion is expected
be better behaved than the previous one, since RG funct
should be analytic near the Ising fixed point only along t
trajectory, up to the random fixed point where nonanalyt
ites are again present@28#.

An effective parametrization of the curve is given by t
first few terms of its expansion aroundz50, which is given
by

y2yI5T~z!5c2z21c3z31•••, ~3.5!

where @28# c250.0033(1) andc351(2)31025. The fact
that y2yI is of orderz2 is the main reason why we intro
duced the variabley and is due to the identity@28#

]bv

]u U
u50

1
]bu

]u U
u50

2
]bv

]v U
u50

50. ~3.6!

Substituting expansion~3.5! into the double expansion~3.2!,
we obtain an expansion in powers ofz
e

TABLE XI. Results obtained by using expansion~3.2! for various truncationso[max(i1j). The first

error is due to the uncertainty on the values of the coefficientsci j (gI* ), the second one is due to th
uncertainty on the location of the RIM fixed point.

o h2h I n2n I 1/n21/n I g2g I 1/g21/g I

1 0.0033(416) 0.056(012) 20.145(015) 0.110(114) 20.072(112)
2 20.0025(418) 0.063(112) 20.147(315) 0.126(215) 20.076(113)
3 20.0017(518) 0.060(112) 20.135(315) 0.120(214) 20.070(212)
4 20.0016(618) 0.062(1013) 20.137(2015) 0.123~2014! 20.070(1012)
6-14
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TABLE XII. Estimates of the coefficientsēi5(6p) iei(gI* ), cf. Eq.~3.7!, for the expansions ofh, n, 1/n,
g, and 1/g around the Ising fixed point.

i h n 1/n g 1/g

1 0 0.0500~6! 20.1278(4) 0.0987~6! 20.064 62(7)
2 20.0028(4) 0.013~1! 20.022(3) 0.027~2! 20.013(2)
3 0.0008~4! 20.002(1) 0.012~2! 20.005(2) 0.0065~8!
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f ~y,z!5 f „gI1T~z!,z…5(
i

ei~gI !z
i , ~3.7!

which should be then evaluated atgI5gI* and z5z* . The
values of the coefficientsei(gI* ) at the Ising fixed point have
been computed by using a conformal mapping and a B
transform. The results fori 51,2,3 are reported in Table XII
The estimates of the difference between the critical ex
nents of the Ising and RIM universality classes areh2h I
520.0020(18), n2n I50.060(5), 1/n21/n I
520.136(20), g2g I50.119(10), and 1/g21/g I
520.070(10). These results are obtained by truncating
pansion~3.7! to third order, while the error is the sum of th
uncertainty due to the resummation, due to the truncatio
the series~the difference between the second-order and
third-order result!, and due to the uncertainty onz* ~we used
the Monte Carlo result!. Then, by using the estimates@9#
h I50.0364(5), n I50.6301(4), g I51.2372(5), we finally
obtain

n50.690~8!, h50.0345~20!, g51.355~10!, ~3.8!

which do not differ significantly from estimates~3.4!.
Note that the estimate ofh obtained by using the expan

sion around the Ising fixed point is now in perfect agreem
with the Monte Carlo result, at variance with the direct es
mate~3.1!. The estimate ofn is also in substantial agreeme
with the numerical estimaten50.683(3). Therefore, the ex-
pansion around the Ising fixed point appears to be a us
alternative method to compute the critical properties of
RIM.
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APPENDIX: NOTATIONS

We consider Hamiltonian~1.1! with J51 on a finite lat-
tice L3 with periodic boundary conditions. Given a quanti
O depending on the spins$s% and on the random variable
$r% we define the sample average at fixed distribution$r%

^O&~b,$r%![
1

Z~$r%! (
$si %

Oe2bH[s,r] , ~A1!
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whereZ($r%) is the sample partition function. Of course, w
are interested in averaging over the random dilution and t
we consider disorder-averaged quantities

^O&~b!5E @dr#^O&~b,$r%!, ~A2!

where

@dr#5)
i

@xd~r i21!1~12x!d~r i !#. ~A3!

We define the two-point correlation function and the susc
tibility x(b,L)

G~x;b,L ![^r0s0rxsx&, ~A4!

x~b,L ![(
x

G~x;b,L !. ~A5!

We also consider the second-moment correlation lengthj. In
infinite volume it is defined as

j`
2 ~b![

1

6x`~b!(x
uxu2G`~x;b!. ~A6!

The finite-volume generalization is by no means unique.
use

j2~b,L ![
Ĝ~0;b,L !2Ĝ~qmin ;b,L !

q̂min
2 Ĝ~qmin ;b,L !

, ~A7!

whereqmin[(2p/L,0,0), q̂[2sinq/2, andĜ(q;b,L) is the
Fourier transform ofG(x;b,L). This finite-volume defini-
tion has the correct infinite-volume limit and shows a fa
convergence asL→` @49,50#.

We also define the energyE(b,L) and the specific hea
C(b,L):

E~b,L ![3G~e;b,L !,

C~b,L ![
]E~b,L !

]b
, ~A8!

wheree5(1,0,0). We also compute higher-order coupling
Setting

mk[K S (
i

r isi D kL , mk1k2 . . . kn
[mk1

mk2
. . . mkn

,

~A9!
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we define the connectedn-point susceptibilitiesxn averaged
over random dilution by

Vx2~b,L ![Vx~b,L !5m2 , ~A10!

Vx4~b,L ![m423m22,

Vx6~b,L ![m6215m42130m222,

whereV[L3 is the volume. Moreover, we also define

Vx22~b,L ![m222m2
2 ,

Vx42~b,L ![m422m4m223m22213m22m2 ,

Vx222~b,L ![m22223m22m212m2
3 . ~A11!

Then, we define the four-point couplings

G4~b,L ![2
x4

j3x2
2 ,

G22~b,L ![2
x22

j3x2
2

,

H4~b,L ![G413G22, ~A12!

and the six-point universal ratios

r 6~b,L ![102
x6x2

x4
2 ,
ys

in

,

a

-

k

03613
C42~b,L ![42
x42x2

x4x22
,

C222~b,L ![62
x222x2

x22
2

. ~A13!

We will be interested in the critical value of these quantitie
If S(b,L) is any of them, we compute its fixed-point valu
~note that the order of the limits cannot be interchanged!

S* 5 lim
b→bc

lim
L→`

S~b,L !. ~A14!

Finally, we define the Binder parameters

Un~b,L ![
mn

m2
n/2

,

U22~b,L ![
m222m2

2

m2
2

, ~A15!

and the corresponding critical-point values

U* 5 lim
L→`

lim
b→bc

U~b,L !. ~A16!

Note that the order of limits is reversed with respect to E
~A14!.
put.
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Guillou, and J. Zinn-Justin~Plenum, New York, 1982!.

@39# A. Pelissetto and E. Vicari, Nucl. Phys. B519, 626 ~1998!.
@40# P. Calabrese, M. Caselle, A. Celi, A. Pelissetto, and E. Vic

J. Phys. A33, 8155~2000!.
@41# M. Caselle, A. Pelissetto, and E. Vicari, inFluctuating Paths

and Fields, edited by W. Janke, A. Pelster, H.-J. Schmidt, a
M. Bachmann~World Scientific, Singapore, 2001!.

@42# P. Calabrese, M. De Prato, A. Pelissetto, and E. Vicari, Ph
Rev. B ~to be published!, e-print cond-mat/0305434.

@43# G. Parisi and F. Rapuano, Phys. Lett.157B, 301 ~1985!.
@44# The Parisi-Rapuano generator@43# is defined in terms of the

sequence aPR,n defined by aPR,n5mod(aPR,n224

1aPR,n255,232). A random integer between 0 and 23221 is
obtained by takingr PR,n5aPR,nXORaPR,n261. We also consider
the congruential generatorr c,n5mod(16 807r c,n21 ,23121).
03613
nt

.

d

l,

i,

s.

The random numbers we use are obtained fromr n

5mod(2r c,n1r PR,n,232), 0<r n,232.
@45# H.G. Ballesteros, L.A. Ferna´ndez, V. Martı´n-Mayor, A.
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