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Criticality and market efficiency in a simple realistic model of the stock market
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We discuss a simple model based on the minority game which reproduces thestylaiad factsof
anomalous fluctuations in finance. We present the analytic solution of the model in the thermodynamic limit.
Stylized facts arise only close to a line of critical points with nontrivial properties, marking the transition to an
unpredictable market. We show that the emergence of critical fluctuations close to the phase transition is
governed by the interplay between the signal to noise ratio and the system size. These results provide a clear
and consistent picture of financial markets, where stylized facts and verge of unpredictability are intimately
related aspects of the same critical systems.
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Understanding the origin of the anomalous collectivea theory of finite size effects which is fully confirmed by
fluctuations arising in stock markets poses novel and fascirumerical simulations. This allows us to conclude that i
nating challenges in statistical physics. Stock market pricegnomalous fluctuations are properties of the critical point in
are characterized by anomalous collective fluctuations—SCMG and i) their occurrence is a consequence of markets

known asstylized factd1]—which are strongly reminiscent being close to efficiency. Put differently, the standard model

of critical phenomena: Prices do not follow a simple randon?f. Mathematical finance where markets are efficient and
price fluctuations are GaussidR] is never realized. It is

W.alk process, b.Ut rather price Increments are fat tailed dISéxactly in the limit where markets become efficient that
tributed and their absolute value exhibits long range autocor.

lati lled volatility clusteri anomalous fluctuations arise.
refations, calfled voiatility clustering. . The phase transition is quite unique as it mixes features
The connection with critical phenomena is natural, be-

which are typical of first order phase transitions—as discon-

cause financial markets are indeed complex systems of many,ities and phase coexistence—and of second order phase
interacting degrees of freedom—the traders. However, thgansitions—such as the divergence of correlation volumes
nature of the two phases is still unclear. By means of agendnq finite size effects.

based modeling, it hgs bee_n realiz[QeLG_] that sFy_Iized facts In the market described by the minority gafifd, agents
are due to the way in which the trading activity of agentsj—1 N submita bidb, (t) to the market in every period
interacting in a market “dresses” the fluctuations arisingtzl,z, ... .Agents whose bid has the opposite sign of the

from economic activity—the so—pallddlndamentalsRefer— total bid A(t) = =;b;(t), win whereas the others lose. Agents
ence[6] has shown that very simple models based on thg,q according to arading strategywhich prescribes a bid
minority game[7] can reproduce a quite realistic and rich Ju()— + 1 for each possible value of the public information

behavior. Their simplicity makes an analytical approach tovlelriable,u(t) which is drawn uniformly from the integers
these models possible, using tools of statistical physics. Al !

though minority game models do not capture the full com L,... P ateach time. Each agent is assigned one trading
plexity of financial markets[8—10], the emergence of strategya’, randomly chosen from the set of Jossible

anomalous fluctuations in such simple models, besides pros_trategles of this type. Agents are adaptive and may decide to

viding a picture for the behavior of real markets, also pose efrain from playing if their strategy is not good enough

novel questions in statistical physics which deserve intere 3.4l Mor(% precisely, the bids of agents t"’?"e the faott)
in their own =¢i(t)al*"” where ¢;(t)=1 or 0 according to whether

In this paper, we first introduce the simplest possibleagemi trades or not. In order to assess the performance of

grand canonical minority gam@CMG) which reproduces their strategy, agents assign scotggt) which they update
the main stylized facts, i.e., fat tails and volatility clustering. y

Then we present the analytic solution of this model in the Ui(t+1)=U;(t) —alOA(t) — ¢, (1)
relevant thermodynamic limit. It shows that the behavior of

GCMG, in this limit, exhibits Gaussian fluctuations for all where A(t)=3;¢;(t)a*". Agents trade ¢;=1) only if
parameter values, but on a line of critical points which marksheir scoreU;(t) is large enough. Here we suppose ]

a phase transition at which the market becomes information-

ally efficient(i.e., unpredictable For finite size systems, nu-

merical simulations reveal that stylized facts emerge close to Prol ¢;(t)=1}= 1+elui®’ )

the transition line, but they abruptly disappear as the system

size increases. Remarkably, the vanishing of stylized factevherel’>0 is a constant. The connection with markets goes
when the system’s size increases also occurs in a variety @flong the lines of Refd4—6,10, which show thatA(t) is
models of financial marketfll]; note that the models of proportional to the difference of price logarithms; here, we
Refs.[8,9] are not affected by finite size effects. We presenttake Inp(t+1)=In p(t) +A(t).
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In words, an agent reward his strategy if it prescribes bids 15
a* which tend to coincide with thosk(t) = —sign A(t) of
the minority of agents. If-a*(YA(t) is larger thane;, the 10
scoreU; increases. The threshokd in Eq. (1) models the A
incentives of agents for trading in the market. Investors who g
need to trade in the market for exchanging goods or asset 06
will have ¢;<0. On the contrary, speculators who only trade
for profiting of price fluctuations typically have;>0. Of 0.0
course there may be a whole range of types of traders, fron -
prudent investorsg;>0) to risk-lover speculatorse(<0).
Here we focus, for simplicity, on the case=¢€ for i<Ng
and €= —o for Ng<i<N. The N,=N-—Ng agents who
havee; = — 0, calledproducersafter Refs[13,14], trade no
matter what, whereas the remainiid, the speculators
trade only if their strategy puts them on the minority side

o 1
“o

often enough. 0 .

If the conditional time averagéA|w) of A(t) given 01 ! N 10
m(t)=pu is nonzero, then the knowledge pf(t) allows a *
statistical prediction of the sign d&(t). A measure of pre- FIG. 1. Theory and numerical simulations;, (top) and o?/P
dictability is hence given by and H/P (bottom) as a function ofng for e=0.1 (solid ling) and

€=—0.01 (dashed ling Numerical results foe=0.1 (open sym-
— 1 P 5 bols) ande= —0.01(full symbols are averages over 200 runs, with
Ho=(A)?= 5 21 (Alw)?, N.P =10 000 fixed and™= .
=

Following Refs.[16,17] we find that the fractiod ¢;) of
Hmes that agent plays his active strategy in the stationary
state is the solution of the minimization of the function

where we introduced the notatign--) for averages oven
whereag- --) denotes averages on the stationary state. Whe
Ho=0 the market is unpredictable anformationally effi-

cient Volatility is instead defined as®=(A?) and it mea- P [N NgtNp 72

sures market's fluctuations. A further quantity of interest is :E > (p)al+ > at| +2e> (),
the number of active speculatofdg(t) ==(;(t)) in the =N = T ST i '
market. (5)

Exact results can be obtained in the thermodynamic limit,
which is defined as the limNs,N,,,P—c, keeping constant with respect td ¢;). Note that fore=0 this function reduces
the reduced number of speculators and producegs to the predictabilityH,. Fore#0, the solution to this prob-
=N¢/P andn,=N,/P. In this limit, both o? and H, di- lem, and hence the stationary state, is unique. An exact sta-
verge with the system size, Siné&ét)"’ \/N Hence we shall tistical mechanics description of the SO|Uti{){’¢i>} can be
consider the rescaled quantitie, /P or o?/P. A detailed ~ carried out with the replica method, because the replica sym-
account of the calculation will be given elsewh§ts)]. Here metric ansatz is exact. Furthermore, the solution to the
we just discuss the main step and the results. Following Ref-okker-Planck equation corresponding to Eg).can be well
[16], we derive an Ito stochastic differential equations for theapproximated by a factorized ansatz for-0. This means
strategy scoreyg;(7)=U;(t) in the rescaled continuous time that the off-diagonal correlations vanigi(¢;—(#:))(#;
7=t/N: —(¢)))=0, fori#]j] and, as a consequence, the volatility
turns out to be given bys?=(A%)=H,+ Eile<¢i)(1
—(¢i)). The solution{{ ¢;)} of the minimization ofH, pro-
vides a complete description of the model in the [irNit
—o for €>0. In particular the behavior i is indepen-
Here 7, is a zero average Gaussian noise term with dent ofI".

Figure 1 shows that all these conclusions are perfectly
supported by numerical simulations: With a fixed numingr
of producers, as the numbeg of speculators increases, the
market becomes more and more unpredictable, Hg.de-
In Egs.(3, 4 averagesg: - ), are taken on the distribution of creases. At the same time also the volatitity decreases. In
¢i(t) in Eq. (2), which depends og;(7) in a nonlinear way: a market with few speculators{<1 in Fig. 1), most of the
Pro ¢;(t)=1}=1[1+e"Yi(7]. Hence Eq.(3) is a quite fluctuations inA(t) are due to the random choice pf(t)
complex system of nonlinear equations with a noise strengtli.e., o?>=H,) and the numbem, of active speculators
proportional to the time dependent voIatiIi(;A2>y. This  grows approximately linearly witing.
feedback will be responsible for the emergence of volatility When ng increases further, the market reaches a point
buildups. where it is barely predictable. Then, fer-0 the number of

dy; ——
E:_ai<A>y_6+ 7 - ©)

1—
(m(n)my(7')= Jaia(A%)yd(r—1"). (4)
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FIG. 3. (Color online Excess kurtosis oA(t) in simulations

FIG. 2. Probability distribution oA(t)>A for ny=10 (continu-  jth ¢=0.01,n,=70, n,=1, and several different system sizes
ous ling, 20, 50, 100, and 20Qdash-dotted line(PNs=16000,  for '=1, 10, and>.

n,=1, €=0.01,I'=). Inset: time series of return(t) showing

volatility clustering forng=20 (lower curve, but not forng=200

In order to understand these finite size effects, we note
(upper curve

that volatility clustering arises because the noise strength in

active traders decreases and finally converges to a constal qzs (34 is p.ropornon.al to the time dependent voIat|I.|ty
This means that the market becomes highly selective: Only & )v- Then—0|25e term is a source of correlated fluctuations
negligible fraction of speculators tradey(t)=1) whereas Decause;a;(A )y/N~ 1N is small but nonzero, for#j.
the majority is inactive ¢;(t)=0). The volatility o also It is rgasonable to assume that_ the dynamlcs will sustain
remains constant in this limit. collective correlated fluctuations in thg only if the corre-
For e<0 we see a markedly different behavior: The num-lated noise is larger than the signala(A),—e€, which
ber of active speculators continues growing witheven if ~ agents receive form the deterministic part of Eg). Time
the market is unpredictablé,~0. The volatilityc?/P has a dependent volatility fluctuations would be dissipated by the
minimum and then it increases with, in a way which de- deterministic dynamics otherwise. A quantitative translation
pends onT. In other words, e=0 for ng=n(n,) of this insight goes as follows: The noise correlation term is
(=4.15.. ., forn,=1) is the locus of a first order phase Of order ajaj(A%),/N~¢?P®2, for i#j. This should be
transition across whichl,. and o exhibit a discontinuity. compared to the square of the deterministic term of @y.
This same picture applies to a wider range of GCMG model§ai(A),+ €]°~[VHo/P+€]?. Rearranging terms, we find

such as that of Ref6]. that volatility clustering sets in when
Numerical simulations reproduce anomalous fluctuations
similar to those of real financial markets close to the phase Ho Ho P P K
transition line. As shown in Fig. 2, the distribution Aft) is —t2e\ 5 5+ € —=—, (6)
Gaussian for small enough,, and has fatter and fatter tails o o o P

asng increases; the same behavior is seen for decreasing
In particular the distribution oA(t) shows a power law be- whereK is a constant. This prediction is remarkably well
havior P(|A|>x)~x"# with an exponent which we esti- confirmed by Fig. 4: In the lower panel we plot the two sides
mated ag3=2.8 and 1.4 fon,= 20 and 200 respectively and Of Ed. (6) as a function oh; for different system sizes. The
€=0.01. Note that a realistic valyg~3 [19] is obtained for upper panel shows that the volatility’/N starts deviating
ng=20. from the analytic result exactly at the crossing paifi¢P)
This is inconsistent, at first sight, with the theoretical re-where Eq.(6) holds true. Furthermore the inset shows that
sults discussed previously fdk— . Indeed, if the distribu- the regionng>ng(P) is described by a different type of scal-
tion of ¢; factorizes,A(t) is the sum ofNg independent ing limit. Indeed the curves of Fig. 4 collapse one on top of
contributions and it satisfies the Central Limit Theorem. Thisthe other when plotted againsg/ng(P).
implies that fore= 0 the variableA(t)//N converges in dis- The nonlinearity of the response of agents is crucial for
tribution to a Gaussian variable with zero average and varithe onset of volatility time dependence. IIf is small the
ance o?/N in the limit N—« at fixed a. There are no response becomes smooth and anomalous fluctuations disap-
anomalous fluctuations and no stylized facts. Figure 3 indeefdear(see Fig. 3. This picture is not affected by the introduc-
shows that the anomalous fluctuations of Fig. 2 are finite siz&on of a finite memory in the learning process of agents, for
effects which disappear abruptly as the system size increasexample in Ref[18]. In particular the exponents of Fig. 2 do
(orif ' is smal). not depend on the memory.
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'.,‘ ‘ - range nature of the interaction, anomalous fluctuations either
w -~ concern the whole system or do not affect it at all, as clearly
1o - L L - shown in Fig. 3. In the critical region the Gaussian phase
° - . it L coexists probabilistically with a phase characterized by
e . A R anomalous fluctuations. This and the discontinuous nature of
A PRI et the transition ak=0, are usually typical of first order phase
§ ] o transitions.
1 5 - PR E The picture of collective correlated fluctuations controlled
18 » e by the signal to noise ratio appears to be universal for mi-
‘x‘;;. ] S nority games. Finite size effects close to the phase transition
r of the standard minority gani&,15] are indeed explained by
1 : ‘ the same generic argument: When the signal to noise ratio
S J Ho/o? is of order 14/P self-sustained collective fluctuations
: — ; arise. In addition, finite size effects appear at a distance of
. 8 = order P~ Y4 from the critical point.
01 < 8 Volatility clustering also occur only close to the phase
transition in the GCMG. The effect, in real markets is known
to be due to wild fluctuations in the volume of tradd$)].
Volume is the number of active tradefd,.+N, in the
different system sizes. Top:?/N for different series of simulations GCMG. Wild volqme ﬂUCtua.tlonS Ca_n only occur becau.s.e of
with L=PN, constant:PN,= 1000 (circles, 2000 (squarel 4000 _correlated _coIIec_:tlve fI_uctuatlons which arise close to critical-
(diamonds, 8000 (up triangles and 16 000(left triangles. In all  Ity- Numerical simulations suggest that exponents vary con-
simulationsn,=1, e=0.1, andl'=c. Bottom: Left-hand side of t!nuously on the line of critical pomt;. This raises the ques-
Eq. (6) (full line) from the exact solution ank/P=K(n,/L)¥4  tion of why real markets self-organize close to the critical

(parallel dashed lingsas a function oh, (K=1.1132 in this plot ~ Surface withg~3. - N _
The intersection definesS(P). Inset: Collapse plot o&2/N as a We conclude that the GCMG exhibits a critical behavior

function of ng/nS(P). which is very similar to that observed in real markets. This,
with the observation that real markets are indeed close to

o . . being informationally efficient, strongly suggests that real

The fact that, in flnltg_sys_tems,_s_tyhzed fa(_:ts_ arise Onlymarkets operate close to criticality. The phase transition is
_clos_e to the phase transition is rem|n|sce.nt of _f|n|te slzé Scalt'quite peculiar, with properties of both continuous and discon-
g 1n the theory of critical phenomena: kd}dmengpnal tinuous transitions. The extension of renormalization group
Ising m_odel, for gxample, at te_mp_eratuTec Tc+e critical approaches to this system promises to be a quite interesting

fluctuations(e.g., in the magnetizatigroccur as long as the

o . v challenge.
system sizeN is smaller than the correlation volumes ™",
But for N>g 9" the system shows the normal fluctuations  This work was supported in part by the European Com-
of a paramagnet. munity’'s Human Potential Programme under Contract
Equation(6) andHy/P~ €2 imply that the same occurs in  HPRN-CT-2002-00319, STIPCO, and in part by EPSRC un-
the GCMG withdv=4. In other words, the critical window der Oxford Condensed Matter Theory Grant No. GR/
shrinks adN~*# whenN— . However, because of the long M04426.

/N
=

FIG. 4. (Color onling Onset of the anomalous dynamics for
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