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Observing stochastic resonance in an underdamped bistable Duffing oscillator
by the method of moments
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The method of moments is applied to an underdamped bistable oscillator driven by Gaussian white noise and
a weak periodic force for the observations of stochastic resonance and the resulting resonant structures are
compared with those from Langevin simulation. The physical mechanisms of the stochastic resonance are
explained based on the evolution of the intrawell frequency peak and the above-barrier frequency peak via the
noise intensity and the fluctuation-dissipation theorem, and the three possible sources of stochastic resonance
in the system are confirmed. Additionally, with the noise intensity fixed, the stochastic resonant structures are
also observed by adjusting the nonlinear parameter.
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[. INTRODUCTION response theor}2,16], adiabatic approximatiofl7], eigen-
function expansion 18], etc. Among these the linear re-
The conventional stochastic resonait&®) is referred to  sponse theory has been proven to be a powerful tool, based
as a synchronization phenomenon in an overdamped bistabten which some approximate methods have been proposed,
system between the noise-induced transition and the externalich as the matrix continuous fraction methdd] and the
weak signa[1-3]. As the research on SR carried on in vari- method of moment$20,21], etc. As far as the method of
ous directions, many interesting and meaningful results havemoments is concerned, Dykmaet al. [20] first used it to
been obtained nearly in every field, especially in the fields ofnvestigate the effect of fluctuations on resonance nonlinear
neural information transmissidd —9] and signal processing response of an underdamped monostable oscillator. Then
[10-13, etc. Most of the results in these systems follow theEvstigneewvet al.[21] presented a modified moment method
conventional SR mechanism, whether the two stable attrade calculate the linear and nonlinear susceptibilities of an
tors are static or dynamic. ensemble of biased overdamped oscillator and got novel
Additionally, there exists a new type of SR in the under-resonant phenomena. Since the method of moments is a
damped monostable systdi3,14], due to the approximate simple and convenient tool, our concern is what will occur if
coincidence between the lowest-energy eigenfrequency arttie modified method is applied in observing the SR in the
the drive frequency, which has been pointed out as a generahderdamped bistable oscillator. To our knowledge, there
phenomenon in all underdamped nonlinear oscillators. Alhave been a few studiésee Refs[22,23)) on the SR in this
fonsi et al. [15] named this new type of SR intrawell SR, system at the theoretic level, but they are based on adiabatic
while they called the conventional SR interwell SR, realizedapproximation, which requires the slowly varying periodic
numerically the double stochastic resonant structure in aforce (i.e., the drive frequenc{2 <1) and weak noise inten-
underdamped bistable oscillator by investigating the evolusity. In addition, the theoretic results in Ref2,23 only
tion of the spectral amplitude at the driven frequency via theconsidered the interwell relaxation dynamics, so only the
noise intensity, and concluded that both stochastic resazonventional SR was disclosed. But the dynamic character-
nances coexist only when the forcing frequency takes valueistic of the system is more complex than the interwell relax-
within a narrow range around the unperturbed characteristiation dynamic, so using the method of moments we expect to
frequency at the bottom of the wells. Since the fluctuatingdisclose more general resonant results, which might be use-
underdamped bistable oscillator has many applications sudl in the preceding applications or in signal processing.
as in laser generation, passive optical transmission or forced The paper is organized as follows. In Sec. Il, the method
oscillation of an electron in a Penning trap, and sq®8],  of moments for linear susceptibility is introduced. In Sec. IlI,
the stochastic resonant behavior of this underdampethe spectral amplification factors are calculated both from the
bistable oscillator will be investigated further from the view- method of moments and from Langevin equation simulation,
point of linear response in this review. so that the resonant structures derived from the two methods
Since the direct simulation about stochastic systems igre compared and the applicability of the method of mo-
always time consuming, there have been several theoretiments is analyzed. In Sec. IV, the dependence of the in-
techniques developed in the research on SR, such as lineawell frequency peak and the above-barrier frequency peak
on the noise intensity is investigated, and the physical
mechanisms of the resonant structure are analyzed based on

*Email address: kangyanmei2002@yahoo.com.cn the fluctuation-dissipation theorem. In Sec. V, the SR in-
TCorresponding author. Email address: jxxu@mail.xjtu.edu.cn duced by the nonlinear parameter is presented. In Sec. VI,
*Email address: xie813@263.net the conclusions are drawn.
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Il. THE METHOD OF MOMENTS FOR LINEAR

SUSCEPTIBILITY
. . . . f jpl(x,y)dxdy=0. (7
We consider the driven underdamped bistable oscillator 2L
modeled by the following Langevin equation: R?

X+ yx—ax+bx3= e(t) + &(t), 1)

With formula (5) substituted into formuld3) and Eq.(4),
where €(t) is a weak periodic forcea>0 andb>0 are respectively, and using the orthogonality of trigonometric
parameters such that the system is bistahle;0 is the functions, we derive the following:
damping coefficient, ang(t) is Gaussian white noise with

correlation function&(t+ 7) &(t))=2D y8(7). Hered(-) is (G)as=(G)o+(G)ee™ (8)

the Dirac function and is the noise intensity.
Let p(x,y,t) denote the phase probability density of sys-
p(x,y,t) p p y y of sy A <(?ZG> +< aG> <( +b3)aG> .
Y\ — y—=) —\(yy—ax+bx’)—) =0,
ay? o X[ W/

tem (1) at timet with y=§<, and then the Fokker-Planck
equation for the phase probability density is

€)
op__ #p alyp)  Hlyy—ax+bx’—e(t)]p}
LR S v (2 )
ot ay Ix ay _ 9°G G
—iQ(G);=Dy 2 T\Yax
with p(x,y,t) obeying natural boundary conditions xat+ Yo 1
T ory—=*ow, 9G 9G
Let G(x,y) be an arbitrary function of coordinate&sand <(7y ax+ bx3)—> <_> (10)
y, and suppose that the corresponding time-dependent mo- W[y N

ment of the coordinates

with
<G>=(G(x,y)>=f jG(x,y)p(x,y,t)dxdy
— <G>aszf j G(x,y)pas(x,y,t)dxdy
R S ——
3 R?

exists. Then by multiplying the two sides of E®) with  and
G(x,y) and integrating it by means of the partial integration
formula and the natural boundary conditions, we obtain the

evolution equation for the mome(G),
‘ ¥G) (@os= | [ Gtemposeraxay.
d(G) . 9*G +< aG> R?
AT AR
d Since every continuous function can be approximated by
_ — 3_ -
<[7’y ax+bx’—e(t)] ay>' (4) the sum of polynomials, with the boundary conditions taken

into account we let
For the sake of calculating susceptibility, we takg)
=ge” ™ into account. According to Floquet's thed§], the © kK
asymptotic solution of Eq(2) is time periodic and has the P1(X,¥Y)=po(X,y) 2 2 k]xJ (11
same period as the external force. We assurdd and seek k=0j=0

the asymptotic probability in linear response background
[20,21,24 as where coefficientg, ; are unknown. Substitution @&(x,y)

with the ordinary moment functions

pas(X,y,t):po(X,y)+pl(X,y)Se_iQt, (5)
G(x,y)=x"y',m1=0,1,2 ... (12)
wherepy(x,y) is the stationary probability density of system
(1) in the case ok(t)=0. It is well known that and insertion of expansiafil) into formula(7) and Eq.(10)
po(x,y):Z*1e{*(l/D)[l/Zny(aIZ)x2+(b/4)x4]}, ® glsel% Iﬁ) \;\?Sf!nlte-dlmensmnal linear algebraic system &gy,
whereZ is a normalization constant. It can be easily induced © Kk
IL(;T the normalization property of the probabilip(x,y,t) kg Zo Ck’j<xjykfj>020’
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%k
kgl > [m(Xm LYk T mE ke
—a(xM LYK Dy g Bk
DA (= DXMY IR,
+iQ(<Xm+jyk_j+I>o*<ijk_j>o<xmyl>o)}ck,j
=—1(x™y' o (13
with m,1=0,1,2 .. ..

In order to solve this linear syste(3), we must make a
truncation onk. We take

N k
pl(x,y)~po(X.y)k§O JZO Ci Xyk (14)

and m and | satisfying (n+1)=<N into account, then the
infinite-dimensional system changes into a finite-dimensional
linear algebraic system. The truncated linear system is solved
numerically using LSARG where the concerned stationary
moments( - ), are estimated by the routine QDAGI of MS-
IMSL math function library.

Sincee <1 is supposed, by the linear response theory the
guantity

x@)= [ [ epiteyyazay (15)

R

is the linear susceptibility, which describes the long time
ensemble-averaged response of systeno a weak force of
frequencyf 4= Q/27 in the sense of the first-order harmonic
[20,21,24,2% If we take e(t) =& cos()t) into account, then
from formulas (8) and (15 and the relationy(—)
=x(Q) (the overline represents conjugate operatitwe re-
sponse approximately readx(t))as=e|x(Q)|cost+ ¢)

with ¢= —arctafilm x(Q)/Re x(£2)]. Here Reyx({}) and

Im x(Q) represent the real part and the imaginary part of
x(Q), respectively. Another quantityy(Q)|?, the spectral
amplification factor for the first order harmonic, is often used
as a measurement for the stochastic resonant behavior. With
the method of moments, we calculate the spectral amplifica-
tion factor from formulag14) and (15).

IIl. SPECTRAL AMPLIFICATION FACTOR AND THE
APPLICABILITY OF THE METHOD OF MOMENTS

Since the susceptibility from the method of moments is
related toN, the order for truncation, the accuracy of the
calculated spectral amplification factor is also affected\by
If numerical error is not of concern, the larggiis, the more
accurate the results are. However, whdnis large to an
extent, the coefficient matrix of the linear algebraic systems
is ill-conditioned, which makes the efficiency of a linear

b

N
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FIG. 1. The spectral amplification factor via the noise intensity:

solver become important, and certain methods, such as tHie method of momentolid) and Langevin simulatiofdot). The

Gaussian elimiation procedure, are found to be inefficient
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parametera=1.0, b=1.0, y=0.1 andf is (a) 0.2, (b) 0.16, (c)
0.12, (d) 0.05.
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FIG. 2. The spectral amplification factor via the noise intensity:
the method of momentsolid) and Langevin simulatiofdot). The
parametera=1.0,b=1.0, y=0.05 andf is (a) 0.19, (b) 0.15, (c)

0.1, (d) 0.05.
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FIG. 3. A time series of coordinates consists of three types of
motions(up) and the SDRdown) with a=1.0,b=1.0, y=0.1, and
D=0.13. The vertical dashed lines mark the locations of the non-
zero frequency SDF peaks, from the left to the right they are the
overbarrier spectral peak and the intrawell vibration spectral peak.

Even with a more efficient linear solver, such as LSARG, the
unbounded increase oOf still results in a lack of smoothness
in the resonant curves. Along with the poor condition of the
system, the rounding error in the concerned higher-order mo
ments( ), might be a cause. By observing the spectral am-
plification factor via the noise intensity, we see that although
all stochastic resonant peaks have appeared in the case of
N=3 for larger damping coefficient, such as=0.1, their
heights or locations have evident variations uiNte 11. We

also observe that for a smaller damping coefficient, such as
v=0.05, the convergence of the resonant curves can be ob-
served only wherlN is much larger, for example\N=23.
Below we present the dependence of the spectral amplifica-

Q.M

FIG. 4. The SDF with parametees=1.0, b=1.0, y=0.1, and
D is 0.01(solid), 0.05(dashegl 0.15(dotted, 0.5 (dash-dotted
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FIG. 5. The peak frequencies vs noise intensity with parameters 1400 ©
a=1.0, b=1.0, ¢(t)=0 and y is (a) 0.1, (b) 0.05. The upper 1200
branches represent the intrawell frequency peak, the lower represent 1000
the overbarrier frequency peak, and the solid curves show the peak _
frequency with larger spectral amplitude. g 800
E 600
tion factor on the noise intensity witN=13 in Fig. 1 and 400
N=19 in Fig. 2, respectively. 200
To check the accuracy of the method of moments, we ol

compare the results of the method of moments with those of r r T r r r
Langevin simulation of systeiti). On the basis of the linear ' | ' ' |
response theory, the susceptibilify()) can also be found in
terms of the fluctuation-dissipation theoreniFDT)

[13.20.29 FIG. 6. Langevin simulation results in terms of the FDT for

the parametera=1.0, b=1.0, y=0.1, £=0.0, andf4=0.16. ()

The spectral amplitude of the SDF at the drive frequency via the

noise intensity;b) the real part of the susceptibility via the noise
(16) intensity; (c) the imaginary part of the susceptibility via the noise

intensity.

2 +o  @92Q(w
ReX(Q)ZBPfO dw%,

17) scale acted ognof Langevin simulation are also plotted in
Figs. 1 and 2.

From Figs. 1b)—1(c) and Figs. 2a)—2(d) we can see that
Here Q(w) is the spectral density of fluctuatiogSDF) of  the resonant structures of the method of moments and those
the coordinates of the system in the absence of the periodicof Langevin simulation not only have the same number of
force andP implies the Cauchy principal part. In the simu- the resonant peaks, but have almost the same peak locations
lation, we use Runge-Kutta fourth-order routine and Box-for given parameters. But foy in zero limit (the plots are
Mueller algorithm[26] to integrate Eq(1) in the absence of omitted, we see that although the resonant curves from the
the periodic force using the steplengttt=0.005. We take method of momentswhenN=21) exhibit almost the same
10000 data points in one sample with the sample frequencghapes as the curves from Langevin simulation, the former
fs=100 Hz and apply Welch’s periodogram method to 500-has not attained its convergence, and wihfurther in-
1000 such samples to get the SDF. Then we use the Hilbedreased, numeric rounding error can induce redundant peaks
transform to calculate integratiofi6). The results(with a  in the resonant structure.

)
Im ()= 5-Qo(®).
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FIG. 7. The peak frequencies vs nonlinear coefficient veith
=1.0, y=0.1, €e=0.0, andD=0.1. The upper branch represents
the intrawell frequency peak, the lower represents the overbarrier
frequency peak, and the solid curve shows the peak frequency with
larger spectral amplitude.
IV. THE PHYSICAL MECHANISMS OF THE RESONANT “E
=

STRUCTURE

The curves in Figs. 1 and 2 show us that for certain drive
frequencies, there might exist double resonant peaks at dif-
ferent noise intensity. What we want to know exactly is for
which drive frequencies and why a double resonant structure 6 1 2 3 4 5 6
occurs. In the SDF of the underdamped monostable oscilla-
tor, there is a sharp spectral peak riding over the smooth
Lorenz spectrum of the background noise. Lindmtral.
called the frequency where the maximum spectral amplitude
is observed as the natural frequency peak, and disclosed that
the response of the underdamped monostable oscillator is
maximized when the natural frequency peak is shifted to the
drive frequency by the noisg27,28. Compared with the
underdamped monostable oscillator, the SDF of the under-
damped bistable oscillator has a more complex structure. The
existence of bistability of the potential energy results in three
different types of motions and thus there are three distinct
peaks in the distribution of the SDF within a certain param-
eter rangg29-31], as shown in Figs. 3 and 4. The zero- 00 1580 45 60 75
frequency peak is due to jumps between wells, the peak close b

to the unperturbed eigenfrequency at the bottom of the wells  FiG. 8. Spectral amplification factor vs nonlinear coefficient by
is due to vibrations near the well bottom, and the middlethe method of momentsolid) and Langevin simulatiofdot). The
peak is due to the vibrations over the barrier. Below we refeparametersa=1.0, y=0.1, andD=0.1 andf is (a) 0.16,(b) 0.12,

to the two frequencies where the two nonzero-frequencyc) 0.05.

spectral peaks are observed as the intrawell frequency peak

and the above-barrier frequency peak, respectively. The déhe evolution of the two nonzero-frequency spectral peaks
pendence of the intrawell frequency peak and the abovevia the noise intensity is important for the understanding the
barrier frequency peak on the noise intensity is shown in Fignonconventional SR in the system under consideration.

5. The figures show us that as the noise intensity increases, Now let us turn to the FDT. If the two branches of Fig. 5
the intrawell frequency peak descends from unperturbedross the drive frequency twice, th€y({2) as a function of
characteristic frequency at the bottom of the wells till disap-D has two maxima, and then the quantity () has two
pearance, while the above-barrier frequency peak continusharp peaks at the noise intensities a little less than the noise
ously ascends from a value larger that zero. Moreover, thatensities whereQg({}) attains its maxima; while from
solid curves tell us that the intrawell vibration dominatessimulations we know the quantity Rg()) successively
when the noise intensity is lower, and the above-barrier vipasses a minimum and a maximum at noise intensities less
bration overwhelms it when the noise intensity becomeghan the noise intensities where Ipf()) takes its maxima.
larger and the system response becomes more like that of tt in this case|y(£2)|? has the shape @,(Q)) with nearly
underdamped monostable oscillator. Since the intrawell frethe peak locations. Therefore, we see that the nonconven-
guency peak and the above-barrier frequency peak, just @onal double structure can occur in the system when the
the natural frequency peak, are noise tunable, we infer thahtrawell frequency peak and the above-barrier frequency

e’
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peak are shifted to the drive frequency twice, as seen frorpeak and the above-barrier frequency peak by adjusting the
Figs. 1 and 2a). However, from Figs. 1 and(B), we see that system parameter, for example, by changing the nonlinear
even if only the above-barrier frequency peak is shifted tocoefficient. With the noise intensity fixed, the dependence of
the drive frequency, double resonant structure might still béhe two nonzero frequency peaks on the nonlinear coefficient
observed. The occurrence of the second peak in Figs. 1 arid plotted in Fig. 7. Obviously, the behavior of two frequency
2(b), as the single peak in Figs. 1 andcR is due to the peaks in this case is similar to that in Figga)sand 3b). So
overbarrier vibration, but the occurrence of the first peakthe previously presented structures of SR can be observed
needs special remark. From Fig. 6, we see that although th&gain, as shown in Figs(&—8(c). It has been thoughtL2]
quantity Qo(Q2) or Im x()) is monopeak, Reg/() has a that in the application of the phenomenon of SR to signal
minimum when the noise is weak and it is the minumum thafrocessing, the noise intensity is not always a tunable quan-
make the major contribution to the first resonant peak in Figtity; contrarily, the system parameters might be altered. Thus,
1(b). With the analysis of formul416) and the structure of the SR induced by the nonlinear parameter might have im-
SDF for different noise intensity we infer that the first peak portance in signal processing. Additionally, with the other
is a result of the occurrence of the overbarrier vibration inparameters fixed, the increase of the damping coefficient
low-frequency band when the noise is weak, which agairweakens both the intrawell vibration and the overbarrier vi-
results from the noise-induced slowing down of the intrawellbration, so that the nonconventional double resonant peak
vibration near the top of the barrigd1]. Therefore, for the induced by the damping coefficient cannot occur. The further
drive frequency that ranges from the least overbarrier frefesults are omitted here.

guency peak to the unperturbed characteristic frequency at

the bottom of the wells, one can expect a double resonant VI. CONCLUSIONS

structure with t_he first resonant peak becoming more promi- |n order to demonstrate the accuracy of the method of
nent as the drive frequency more approximates the unpefqoments for the observation of SR in the periodically driven
turbed characteristic frequency at the bottom of the wellsgiqchastic underdamped bistable oscillator, the spectral am-
This is consistent with the conclusion in REES]. Moreover,  jification factor is calculated both from the method of mo-
from the above_ analys_es, we see the double resonant pe_aﬂfﬁents and from Langevin simulation. When the damping
are .both associated with the intrawell or _the overbarrier Vi-cgefficient is not in zero limit, good agreement is found be-
brations, so they both are nonconventional SR. But thgyeen the results obtained using the two methods.
above-barrier vibration was taken for the mtgrwell Jump in " Based the dependence of the intrawell frequency peak and
[15], so that the second resonant peak associated with it Wage apove-barrier frequency peak of the SDF of the system
thought of as the conventional SR behavior. In fact, the cong, the noise intensity and the FDT, the three sources of the
ventional SR behavior is due to the interwell jump, WhoSegR i the system are confirmed and the physical mechanism
relaxation time can be tuned to match the drive frequencyy ihe double resonant structures is analyzed. With the noise
[22,23 as for standard overdamped systems, and the convefsiensity fixed, the SR induced by the nonlinear parameter is

tional SR is connected with the zero-frequency spectral peakis, ohserved. The resonant structure when the damping co-
of the systenj13], as plotted in Figs. 1 and@. Therefore, etficient is in zero limit will be studied in the future.
there are three sources of SR in the system and our analysis
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