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Why social networks are different from other types of networks

M. E. J. Newman and Juyong Park
Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, U

and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
~Received 2 June 2003; published 22 September 2003!

We argue that social networks differ from most other types of networks, including technological and bio-
logical networks, in two important ways. First, they have nontrivial clustering or network transitivity and
second, they show positive correlations, also called assortative mixing, between the degrees of adjacent verti-
ces. Social networks are often divided into groups or communities, and it has recently been suggested that this
division could account for the observed clustering. We demonstrate that group structure in networks can also
account for degree correlations. We show using a simple model that we should expect assortative mixing in
such networks whenever there is variation in the sizes of the groups and that the predicted level of assortative
mixing compares well with that observed in real-world networks.
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I. INTRODUCTION

The last few years have seen a burst of interest within
statistical physics community in the properties of network
systems such as the Internet, the World Wide Web, and so
and biological networks@1–4#. Researchers’ attention has,
a large extent, been focused on properties that seem t
common to many different kinds of networks, such as
so-called ‘‘small-world effect’’ and skewed degree distrib
tions @5–7#. In this paper, by contrast, we highlight som
apparent differences between networks, specifically betw
social and nonsocial networks. Our observations appea
indicate that social networks are fundamentally differe
from other types of networked systems.

We focus on two properties of networks that have
ceived attention recently. First, we consider degree corr
tions in networks. It has been observed that the degree
adjacent vertices in networks are positively correlated in
cial networks but negatively correlated in most other n
works @8#. Second, we consider network transitivity or clu
tering, the propensity for vertex pairs to be connected if th
share a mutual neighbor@5#. We argue that the level of clus
tering seen in many nonsocial networks is not greater t
one would expect by chance, given the observed degree
tribution. For social networks, however, clustering appear
be far greater than we expect by chance.

We conjecture that the explanation for both of these p
nomena is in fact the same. Using a simple network mo
we argue that if social networks are divided into groups
communities, this division alone can produce both deg
correlations and clustering.

The outline of the paper is as follows. In Sec. II we d
cuss the phenomenon of degree correlation and summ
some empirical results for various networks. In Sec. III
do the same for clustering. We also present theoretical a
ments that suggest that the clustering seen in nonsocial
works is of about the magnitude one would expect fo
random graph model with parameters similar to real n
works. Then in Sec. IV we present analytic results for
simple model of a social network divided into groups. Th
model, which was introduced previously@9#, is known to
1063-651X/2003/68~3!/036122~8!/$20.00 68 0361
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generate high levels of clustering. Here we show that it c
also explain the presence of correlations between the deg
of adjacent vertices. In Sec. V we compare the model’s p
dictions concerning degree correlations against two re
world social networks, of collaborations between scienti
and between business people. In the former case we find
the model is in good agreement with empirical observati
In the latter we find that it can predict some but not all of t
observed degree correlation, and we conjecture that the
mainder is due to true sociological or psychological effec
as distinct from the purely topological effects contained
the model. In Sec. VI we give our conclusions.

II. DEGREE CORRELATIONS

In studies of the network structure of the Internet at t
level of autonomous systems, Pastor-Satorraset al. @10# have
recently demonstrated that the degrees of adjacent vertic
this network appear to be anticorrelated. They measured
mean degreêknn& of the nearest neighbors of a vertex as
function of the degreek of that vertex and found that th
resulting curve falls off withk approximately as^knn&
;k21/2. Thus, vertices of high degree tend to be connect
on average, to others of low degree and vice versa. A sim
way of quantifying this effect is to measure a correlati
coefficient of the degrees of adjacent vertices in a netwo
defined as follows.

Suppose thatpk is the degree distribution of our network
i.e., the fraction of vertices in the network with degreek, or
equivalently the probability that a vertex chosen uniformly
random from the network will have degreek. The vertex at
the end of a randomly chosen edge in the network will ha
degree distributed in proportion tokpk , the extra factor ofk
arising becausek times as many edges end at a vertex
degreek than at a vertex of degree one@11–13#. Commonly
we are interested not in the total degree of the vertex at
end of an edge, but in the ‘‘excess degree,’’ which is t
number of edges attached to the vertex other than the on
arrived along, which is obviously one less than the to
degree. The properly normalized distribution of the exc
degree is
©2003 The American Physical Society22-1
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qk5
~k11!pk11

(
k

kpk

. ~1!

We then define the quantityejk , which is the joint probabil-
ity that a randomly chosen edge joins vertices with exc
degreesj andk.

Now consider a network in which the vertices have giv
degrees~the values of the degrees being called the ‘‘deg
sequence’’!, but which is in all other respects random. Th
is, the network is drawn uniformly at random from the e
semble of all possible networks with the given degree
quence. This is the so-called configuration model@12–15#,
which we can use as a handy null model for testing
results. In the configuration model the expected value of
quantity ejk is simply ejk5qjqk , and by its deviation from
this value we can quantify the level of degree correlat
present relative to the null model. We define@8#

r 5
1

sq
2 (

jk
jk~ejk2qjqk!, ~2!

wheresq
25(kk

2qk2@(kkqk#
2 is the variance of the distri

bution qk . The quantityr will be positive or negative for
networks with positive or negative degree correlations,
spectively. In the ecology and epidemiology literatures th
two cases are called ‘‘assortative’’ and ‘‘disassortative’’ m
ing by degree, and this nomenclature has been adopte
many physicists also.

The findings of Pastor-Satorraset al. @10# discussed above
suggest that the Internet should have a negative value fr,
and this indeed is the case. The most recent structural m
surements of the autonomous-system graph of the Inte
@16# yield a value ofr 520.19360.002. It now appears tha
similar results apply to essentially all other networksexcept
social networks. In Refs.@8,17# we found that almost al
networks seem to be disassortatively mixed, i.e., have n
tive values of the coefficientr, except for social networks
which are normally assortative. A small number of netwo
yield inconclusive results because the error onr is bigger
than its value, but other than these few, the pattern app
essentially perfect.

Here we propose that this striking pattern arises beca
disassortativity is the natural state for all networks, in a se
that we will make clear shortly. Left to their own devices, w
conjecture, networks normally have negative values ofr. In
order to show a positive value ofr, a network must have
some specific additional structure that favors assortative m
ing. In Sec. IV we suggest a possible candidate for suc
structure in social networks.

Our conjecture that most networks will be disassortat
is motivated by work of Maslovet al. @18#. Using computer
simulations, they showed that on small networks disasso
tive mixing is produced if one restricts the network topolo
to having at most one edge between any pair of vertices.
same result can be demonstrated analytically as well@19#.
How small a network needs to be to show this effect depe
on the degree distribution; to see significant disassortativ
03612
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the highest-degree vertices in the network need to have
gree of the order ofAn, where n is the total number of
vertices, so that there is a substantial probability of so
vertex pairs sharing two or more edges.~Obviously if there is
negligible probability of a double edge occurring anywhe
in the network, then the restriction of having no double edg
will have no effect.! The Internet is a particularly good ex
ample of the effect, since it has a degree distribution t
appears approximately to follow a power law,pk;k2a with
a constant@16,20#, and the fat tail of the power law produce
many vertices of sufficiently high degree. However, a nu
ber of other networks also fit the bill: the World Wide We
peer-to-peer networks, food webs, neural networks,
metabolic networks all have vertices of sufficiently high d
gree, at least in some cases. In their most common repre
tations these networks also have only single edges betw
vertices, and hence we would expect them to haver ,0, and
calculations ofr from structural data confirm that this is th
case@17#.

In fact, most networks have only single edges betwe
their vertices. Although it is possible to have double edges
some networks, in practice these are usually ignored e
where they exist and all edges are represented as single
instance, in the World Wide Web it is possible, and ev
common, for a Web page to link twice or more to the sa
other page, creating a multiple link. Such links are howe
normally recorded as single by Web crawler programs, a
hence any information about multiple links is lost. Th
many networks may have single edges only because th
the way researchers have chosen to represent them, an
served properties such as disassortativity may be pure
product of this choice of representation rather than a fun
mental law of nature. Other networks may truly have sin
edges—metabolic networks and food webs are possible
amples of this.

Social networks also usually have only single edges
tween vertex pairs. Two people are either acquainted w
one another or not—we do not normally have a concep
being ‘‘doubly acquainted’’ with a person. Nonetheless, t
assortativity coefficientr is positive, and sometimes ver
positive, for almost all social networks measured@8,17#. This
appears to indicate some special structure in social netw
that distinguishes them from other types of networks. A
vealing clue about what this special structure might be com
from network transitivity, as we now describe.

III. CLUSTERING

Watts and Strogatz@5# have pointed out that most ne
works appear to have high transitivity, also called clusteri
That is, the presence of a connection between verticesA and
B and another betweenB and C, makes it likely that there
will also be a connection betweenA andC. To put it another
way, if B has two network neighbors,A andC, they are likely
to be connected to one another, by virtue of their comm
connection withB. In topological terms, there is a high den
sity of triangles,ABC, in the network, and clustering can b
quantified by measuring this density:
2-2
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C5
33~number of triangles on the graph!

number of connected triples of vertices
, ~3!

where a ‘‘connected triple’’ means a vertex connected
rectly to an unordered pair of others. In physical terms,C is
the probability, averaged over the network, that two of yo
friends will be friends also of one another.~This is in fact
only one definition of the clustering coefficient. An altern
tive definition, given in Ref.@5#, has also been widely used
The latter however is difficult to evaluate analytically, and
we avoid it here.!

The value of the clustering coefficient in the null config
ration model can be calculated in a straightforward fash
@21,22#. Suppose that two neighbors of the same vertex h
excess degreesj and k. The probability that one particula
edge in the network falls between these two vertices
2( j /2m)(k/2m), wherem is the total number of edges in th
network. The total number of edges between the two vert
in question ism times this quantity, orjk/(2m). Both j and
k are distributed according to Eq.~1!, since both vertices are
neighbors ofA and, averaging over this distribution, we the
get an expression for the clustering coefficient:

C5
1

2m (
jk

jkqjqk5
1

n

@^k2&2^k&#2

^k&3 , ~4!

where averages are over all vertices and we have made
of 2m5n^k&.

Normally this quantity goes asn21 and so is very smal
for large graphs. However, some graphs are not large,
henceC is not negligible. Consider, for example, the foo
web of organisms in Little Rock Lake, WI, which was orig
nally analyzed by Martinez@23# and has been widely studie
in the networks literature. This network hasn592, ^k&
521.0, and̂ k2&5655.2. Plugging these figures into Eq.~4!
gives C50.47. The measured value ofC is 0.40. Thus it
appears that we need invoke no special clustering proce
explain the clustering in this network. Similar results can
found for other small networks.

This argument can also be applied to some larger
works as well, particularly those with power-law degree d
tributions. The fat tail of the degree distribution in power-la
networks can affect the value of the clustering coeffici
strongly. To see this consider first how the degree of
highest-degree vertex in the configuration model varies w
system size@4#.

The probability of there being exactlym vertices of de-
greek in the network and no vertices of degree greater th
k is (m

n )pk
m(12Pk)

n2m, where

Pk5 (
k85k

`

pk8 ~5!

is the probability that a vertex has degree greater than
equal tok. Then the probabilityhk that the highest degree i
the network isk is
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m~12Pk!
n2m

5~pk112Pk!
n2~12Pk!

n, ~6!

and the expected value of the highest degree iskmax
5(kkhk .

The value ofhk tends to zero for both small and larg
values ofk, and the sum overk is dominated by the terms
close to the maximum. Thus, in most cases, a good appr
mation to the expected value of the maximum degree
given by the modal value. Differentiating and observing th
dPk /dk5pk , we find that the maximum ofhk occurs when

S dpk

dk
2pkD ~pk112Pk!

n211pk~12Pk!
n2150, ~7!

or kmax is a solution of

dpk

dk
.2npk

2 , ~8!

where we have made the assumption thatpk is sufficiently
small for k*kmax that npk!1 andPk!1. For a degree dis-
tribution with a power-law tailpk;k2a, we then find that

kmax;n1/(a21). ~9!

~As shown by Cohenet al. @24#, a simple rule of thumb tha
leads to the same result is that the maximum degree
roughly the value ofk that solvesnPk51.!

Most networks of interest havea,3, which meanŝk2&
;kmax

32a;n(32a)/(a21) and ^k& is independent ofn. Then Eq.
~4! gives

C;n(723a)/(a21). ~10!

If a. 7
3 , this means thatC tends to zero as the graph b

comes large, although it does so slower than the expliciC
;n21 of Eq. ~4!. At a5 7

3 , C becomes constant~or logarith-
mic! in the graph size. And remarkably, fora, 7

3 it actually
increases with increasing system size, becoming arbitra
large asn→`. Thus fora& 7

3 , we might expect to see quit
large values ofC even in large networks.

Taking the case of the World Wide Web, for example, w
find the predicted value of the clustering coefficient for t
configuration model isC50.048 @21#, while the measured
value is 0.11—certainly not perfect agreement, but of
right order of magnitude. Other examples err in the oppo
direction. Maslovet al. @18#, for instance, cite the example o
the Internet, for which they show using numerical simu
tions that the observed clustering is actually lower than t
expected for an equivalent random graph model.

It is worth noting that Eq.~10! implies the clustering co-
efficient can be greater than 1 ifa, 7

3 . Physically this means
that there will be more than one edge on average betw
two vertices that share a common neighbor. This is perh
at odds with the conventional interpretation of the cluster
coefficient as the probability that there existsany edge be-
tween the given two vertices—normally one would not d
2-3



d
n

ef

te

ity
is

o
e

a

et
rld
o
.
he
d
-

-

te
98
s
er
ap
st
ve
d
te
ity

et
c

t
ci
s

o
a

ch
ls

e a

o
re-

rob-
it-
the
of

tion

in
case
rk,

t is
uce

e in-
e-
also

ave
hus,
ed

IV.

es

rco-

M. E. J. NEWMAN AND J. PARK PHYSICAL REVIEW E68, 036122 ~2003!
tinguish between the case where there are two edges an
case where there is one.~Indeed, as mentioned in Sec. II, i
many networks, one ignores double edges altogether.! If one
takes this approach, then the value of the clustering co
cient is modified for networks that would otherwise haveC
.1 as follows.

Consider again two vertices that are neighbors of ver
A, with excess degreesj and k. The probability that a par-
ticular edge falls between them is 2(j /2m)(k/2m), as before,
and the probability that it does not is 1 minus this quant
Then the probability that no edge falls between this pair

F12
jk

2m2Gm

.e2 jk/2m, ~11!

where the equality becomes exact in the limit of largem.
Thus the probability of any edge falling between the tw
vertices is 12e2 jk/2m, and the correct expression for th
clustering coefficient is the average of this

C5(
jk

qjqk~12e2 jk/2m!. ~12!

In fact, however, using this expression makes only the sm
est of differences to the expected value ofC on, for example,
the World Wide Web.

All of this demonstrates that for many nonsocial n
works, including food webs, the Internet, and the Wo
Wide Web, clustering can be explained by a simple rand
model. The same however is not true for social networks
turns out that social networks in general have a far hig
degree of clustering than the corresponding random mo
We give four examples: the widely studied network of film
actor collaborations@5,7#, collaboration networks of math
ematicians@25,26# and company directors@27#, and an email
network @28#. For these four networks the theory presen
above predicts values of the clustering coefficient of 0.00
0.000 15, 0.0035, and 0.017. The actual measured value
0.20, 0.15, 0.59, and 0.17, in each case at least an ord
magnitude greater than the prediction. The implication
pears to be that there is some mechanism producing clu
ing in social networks that is not present at a significant le
in nonsocial networks~or not at least in the examples studie
here!. Recent work@9,29–32# suggests a possible candida
theory that social networks contain groups or ‘‘commun
structure’’@41#.

IV. COMMUNITY STRUCTURE IN NETWORKS

In Ref. @9# one of us proposed a simple model of a n
work with community structure and showed that this stru
ture produces substantial clustering, with values ofC that do
not go to zero as the network size becomes large. Thus
results of the preceding section could be explained if so
networks possess community structure and other type
networks do not~or they possess it to a lesser degree!. We
now show that the same distinction can also explain the
served difference in degree correlations between social
nonsocial networks.
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In our model the network is divided into groups and ea
individual can belong to any number of groups. Individua
do not necessarily know all those with whom they shar
group, but instead have probabilityp of acquaintance. They
have probability zero of knowing those with whom they d
not share a group. Mathematically the model can be rep
sented as a bond percolation process with occupation p
ability p on the network formed by the projection of a su
able bipartite graph of individuals and groups onto just
individuals, as shown in Fig. 1. The percolation properties
the model can be solved exactly using generating func
methods.

In Ref. @9# the model was studied in a simple version
which the size of all groups was assumed the same. This
can account for the presence of clustering in the netwo
and is straightforward to treat mathematically. However, i
inadequate for our purposes here, since it does not prod
any degree correlation. Degree correlation arises becaus
dividuals who belong to small groups tend to have low d
gree and are connected to others in the same group, who
have low degree. Similarly those in large groups tend to h
higher degree and are also connected to one another. T
the model should give rise to assortative mixing provid

FIG. 1. The structure of the network model studied in Sec.
~a! We represent individuals (A–K) and the groups~1–4! to which
they belong by a bipartite graph structure.~b! The bipartite graph is
projected onto the individuals only, giving a network with edg
between any pair of individuals who share a group.~c! The actual
social connections between individuals are chosen by bond pe
lation on this projection with bond occupation probabilityp. The net
result is that individuals have probabilityp of knowing others with
whom they share a group.
2-4
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there is enough variation in the sizes of groups. As we w
see, this is indeed the case.

In addition to the parameterp, we characterize the mode
by two probability distributions:r m is the probability that an
individual belongs tom groups andsn is the probability that
a group containsn individuals. Subject to the constrain
imposed by these distributions, the assignment of individu
to groups is entirely random.

To proceed we calculate the joint distributionejk of the
excess degrees of vertices at the ends of an edge. Noting
the total number of edges in groups of sizen goes as
snn(n21), we write

ejk5e0(
n

snn~n21!P~ j ,kun!, ~13!

whereP( j ,kun) is the probability that an edge that belon
to a group of sizen connects vertices of excess degreesj and
k, ande0 is a constant whose value can be calculated fr
the requirement thatejk be normalized, so that( jkejk51.

We now decomposej and k in the form j 5 j in1 j out, k
5kin1kout, wherej in , kin are the numbers of connections
vertices within the group to which the edge in question
longs, andj out, kout are the numbers of connections outsi
that group. The distributions ofj in andkin are simply bino-
mial, and henceP( j ,kun) factors into terms depending sep
rately on j in , j out andkin , kout thus

P~ j ,kun!5(
j in

S n22
j in

D pj inqn222 j inP~ j out!

3(
kin

S n22
kin

D pkinqn222kinP~kout!, ~14!

whereP( j out) is the probability distribution ofj out, which is
independent ofj in , and similarly forkout.

To evaluate this expression we introduce the followi
generating functions for the distributionsr m andsn :

f 0~z!5 (
m50

`

r mzm, f 1~z!5
1

f 08~1!
(

m50

`

mrmzm21,

~15!

g0~z!5 (
n50

`

snzn, g1~z!5
1

g08~1!
(
n50

`

nsnzn21. ~16!

Physically,f 0(z) is the generating function for the number
groups an individual belongs to andf 1(z) is the generating
function for the number groups that an individual in a ra
domly selected group belongs to, other than the rando
selected group itself. Similarlyg0(z) generates the grou
sizes andg1(z) generates the number of other individuals
a group to which a randomly selected individual belongs.
these, our randomly selected individual is connected t
number binomially distributed according to the probabil
03612
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p and thus generated by the simple generating functionpz
1q, whereq512p. Averaging over the group sizes, th
number of neighbors of a randomly chosen individual with
one of the groups to which they belong is generated
g1(pz1q), and an individual belonging to a randomly ch
sen group will have a number of neighbors in other grou
generated byf 1„g1(pz1q)…. This then gives us the quantit
P( j out) of Eq. ~14!, which is equal to the coefficient ofzj out

in f 1„g1(pz1q)…, and similarly forP(kout).
Combining Eqs.~13! and ~14! we find thatejk is gener-

ated by the double probability generating function

E~x,y!5(
jk

ejkxjyk

5g2„~px1q!~py1q!…f 1„g1~px1q!…

3 f 1„g1~py1q!…, ~17!

where

g2~z!5
1

g09~1!
(
n50

`

snn~n21!zn22. ~18!

Then, making use of Eqs.~1! and ~2! and the fact that
qk5( jejk , we can write the assortativity coefficientr as

r 5
]x]yE2~]xE!~]yE!

]x~x ]xE!2~]xE!~]yE!
U

x5y51

5
P
Q , ~19!

where the numerator and denominatorP andQ are

P5pm1
2n1

2@~n42n3!~n22n1!2~n32n2!2#, ~20a!

Q5m1n1~n22n1!@~m22m1!~n22n1!2

1m1n1~2n123n21n3!#1p@~m1
22m2

22m1m21m1m3!

3~n22n1!41m1m2n1~n22n1!2~2n123n21n3!

1m1
2n1$n1

2~2n21n32n4!2n1~n32n2!2

2n1n2~n425n2!1n2
2~3n22n3!%#. ~20b!

In this expression the quantitiesm i and n i are thei th mo-
ments of the distributionsr m and sn , respectively. Thus,
given the distributions and the probabilityp it is elementary,
if tedious, to calculater. Below we apply this expression t
two real-world example networks. First, however, a fe
points are worth noting.

It is straightforward to show, though certainly not obvio
to the eye, that the expression forr, Eq. ~19!, is non-negative
for all distributions r m and sn , so that our model always
produces an assortatively mixed network, as our intuit
suggests.

Now consider the simple case in which each individu
belongs to exactly one group, and the group sizes hav
Poisson distribution. In this case, Eq.~19! gives r 5p, and
we can achieve any value ofr by tuning the parameterp. In
2-5
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particular, if each individual knows all others in their grou
thenp51 and we have perfect assortativity. This is reas
able, since in this case each individual in a group has
exact same number of neighbors. This case is a rather pa
logical one, however, since if everyone belongs to only o
group, then the network consists of many isolated groups
most people are not connected to one another. To m
things more realistic, let us allow the number of groups
which individuals belong also to vary according to a Poiss
distribution. Then we find that

r 5
p

11m1nmp
, ~21!

wherem[m1 andn[n1 are the means of the two distribu
tions. Thus as the two means increase, the correlation
creases. The decrease withm is easily understood—the mor
groups an individual belongs to, the less the relative with
group degree correlation upon which the assortativity
pends: the within-group correlation is diluted by all the oth
groups the individual belongs to. The behavior withn is a
little more subtle. The width of the Poisson distribution
group sizes goes as 1/An as a fraction of the mean, and hen
the effective variation in size between groups decreases
increasingn. It is this decrease that drivesr towards zero.

V. EXAMPLES

We now apply our model to two real-world example ne
works. In the first case, as we will see, it gives a value ofr in
excellent agreement with the real network. In the secon
underestimatesr by about a factor of 2, indicating that grou
structure can account for only a portion of the observed
sortativity, the rest, we conjecture, being due to true so
effects.

A. Collaboration network

Networks of coauthorship of scientists or other academ
provide some of the best-documented examples of social
works @25,33#. Using bibliographic databases it is possible
construct large coauthorship networks with high reliabili
and these networks are true social networks, in the sense
it seems highly likely that two authors who write a pap
together are acquainted.

Figure 2 shows a coauthorship network of physicists w
conduct research on networks. The network was constru
using names drawn from the bibliography of the recent
view by Newman@4# and coauthorship data from preprin
submitted to the condensed matter section of the Phy
E-print Archive at arxiv.org between Jan 1, 1995 and Ju
30, 2003. To find the groups in the network, we fed
through the community structure algorithm of Girvan a
Newman@29#, producing the division shown by the colors
the figure@42#. The figure shows only the largest compone
of the network. There are also 41 smaller components, wh
are not shown but which were included in our calculation

The moments of the distributionsr m and sn are easily
extracted from the network by direct summation. To find t
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value ofp, we counted the number of edges in the netwo
and divided by the total number of possible within-gro
edges, givingp50.168. Feeding this value and our figur
for the moments into Eqs.~19! and ~20!, we then find a
predicted value ofr 50.183. The measured value for the re
network is 0.15460.044. ~The error is calculated accordin
to the prescription given in Ref.@17#.! These two figures are
in agreement within the statistical error on the latter@43#.

This result by no means proves that the group structur
responsible for assortativity in this network. Certainly it
reasonable to suppose that the actual process of forming
laborative contacts is more complicated than that depicte
our model. The value ofp, for example, could vary with
group size, or there could be a nonzero probability of cont
with individuals outside the groups to which one belong
However, our results tell us that no more complicated mo
is necessary to explain the observed value ofr. With group
structure as shown in the figure and otherwise random m
ing, we would get a network with exactly the assortativ
that is observed in reality, within expected error.

B. Boards of directors

Davis and co-workers@27,34# have studied networks o
the directors of companies in which two directors are co
sidered connected if they sit on the board of the same c
pany. They studied the Fortune 1000, the one thousand
companies with the highest revenues, for 1999, and
sembled a near-complete director network from publi
available data. The network consists of 7673 directors sitt
on 914 boards. It provides a particularly simple example
our method, for two reasons. First, the groups in the netw
through which individuals are acquainted are provided
us—they are the boards of directors. Second, it is assu
that directors are acquainted with all those with whom th
share a board, so that the parameterp in our model is 1.

The distributions of boards per director and directors
board have been studied before@13#. We note that most di-
rectors~79%! sit on only one board and that there is cons
erable variation in the size of boards~from 2 to 35 members!.
Thus we would expect strong assortative mixing in the n
work, and indeed we find thatr 50.27660.004. Taking the
moments of the measured distributionsr m and sn for the
network and settingp51, Eq. ~19! gives a value ofr
50.116 for our model. So it appears that the presence
groups in the network can explain about 40% of the asso
tivity we observe in this case, but not all of it. There is som
further assortativity in addition to the purely topological e
fect of the groups, and we conjecture that this is due to t
sociological or psychological effects in the way in whic
acquaintanceships are formed. One possibility is sugge
by the analysis of the directorships data by Newmanet al.
@13#, who found that directors who sit on many boards te
to sit on them with others who sit on many boards. Sin
those who sit on many boards will also tend to have h
degree, we would expect this effect to add assortativity to
network, but the effect is missing from our model in whic
board membership is assigned at random.
2-6
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FIG. 2. ~Color online! The largest component of the network of coauthorships described in the text. This component conta
scientists, and there are 41 other components, of sizes ranging from 1 to 5, containing 90 more. The vertices are grouped accor
communities found using the algorithm of Ref.@29#. The communities correspond reasonably closely to geographical and institu
divisions between the scientists shown.
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In a sense, our model is giving a baseline against whic
measure the value ofr; it tells us when the value we see
simply what would be expected by random chance, as in
collaboration network above, and when there must be a
tional effects at work, as in the boards of directors.

VI. CONCLUSIONS

In this paper we have argued that social and nonso
networks differ in two important ways. First, they show d
tinctly different patterns of correlation between the degr
of adjacent vertices, with degrees being positively correla
~assortative mixing! in most social networks and negative
correlated ~disassortative mixing! in most nonsocial net-
works. Second, social networks show high levels of clus
ing or network transitivity, whereas clustering in many no
social networks is not higher than one would expect on
basis of pure chance, given the observed degree distribu
03612
to
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al

s
d

r-
-
e
n.

We have shown that both of these differences can be
plained by the same hypothesis, that social networks are
vided into communities and nonsocial networks are not.
have studied a simple model of community structure in
cial networks in which individuals belong to groups and a
acquainted with others with whom they share those grou
The model is exactly solvable using generating funct
techniques, and we have shown that it gives predictions
are in reasonable and sometimes excellent agreement
empirical observations of real-world social networks.
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