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Why social networks are different from other types of networks
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We argue that social networks differ from most other types of networks, including technological and bio-
logical networks, in two important ways. First, they have nontrivial clustering or network transitivity and
second, they show positive correlations, also called assortative mixing, between the degrees of adjacent verti-
ces. Social networks are often divided into groups or communities, and it has recently been suggested that this
division could account for the observed clustering. We demonstrate that group structure in networks can also
account for degree correlations. We show using a simple model that we should expect assortative mixing in
such networks whenever there is variation in the sizes of the groups and that the predicted level of assortative
mixing compares well with that observed in real-world networks.
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[. INTRODUCTION generate high levels of clustering. Here we show that it can
also explain the presence of correlations between the degrees
The last few years have seen a burst of interest within thef adjacent vertices. In Sec. V we compare the model’s pre-
statistical physics community in the properties of networkeddictions concerning degree correlations against two real-
systems such as the Internet, the World Wide Web, and soci#forld social networks, of collaborations between scientists
and biological networkfl—4]. Researchers’ attention has, to and between business people. In the former case we find that
a large extent, been focused on properties that seem to ae model is in good agreement with empirical observation.
common to many different kinds of networks, such as then the latter we find that it can predict some but not all of the
so-called “small-world effect” and skewed degree distribu- observed degree correlation, and we conjecture that the re-
tions [5—7]. In this paper, by contrast, we highlight some mainder is due to true sociological or psychological effects,
apparent differences between networks, specifically betweeds distinct from the purely topological effects contained in
social and nonsocial networks. Our observations appear t$€ model. In Sec. VI we give our conclusions.
indicate that social networks are fundamentally different
from other types of networke.d systems. Il. DEGREE CORRELATIONS
We focus on two properties of networks that have re-
ceived attention recently. First, we consider degree correla- In studies of the network structure of the Internet at the
tions in networks. It has been observed that the degrees dgvel of autonomous systems, Pastor-Satoetas. [10] have
adjacent vertices in networks are positively correlated in sorecently demonstrated that the degrees of adjacent vertices in
cial networks but negatively correlated in most other netthis network appear to be anticorrelated. They measured the
works[8]. Second, we consider network transitivity or clus- mean degreék,,) of the nearest neighbors of a vertex as a
tering, the propensity for vertex pairs to be connected if theyfunction of the degredk of that vertex and found that the
share a mutual neighbB]. We argue that the level of clus- resulting curve falls off withk approximately as(kp.
tering seen in many nonsocial networks is not greater than-k~ Y2 Thus, vertices of high degree tend to be connected,
one would expect by chance, given the observed degree disn average, to others of low degree and vice versa. A simple
tribution. For social networks, however, clustering appears tovay of quantifying this effect is to measure a correlation
be far greater than we expect by chance. coefficient of the degrees of adjacent vertices in a network,
We conjecture that the explanation for both of these phedefined as follows.
nomena is in fact the same. Using a simple network model, Suppose thap, is the degree distribution of our network,
we argue that if social networks are divided into groups ori.e., the fraction of vertices in the network with degteer
communities, this division alone can produce both degreequivalently the probability that a vertex chosen uniformly at
correlations and clustering. random from the network will have degré&eThe vertex at
The outline of the paper is as follows. In Sec. Il we dis-the end of a randomly chosen edge in the network will have
cuss the phenomenon of degree correlation and summarizkegree distributed in proportion tp,, the extra factor ok
some empirical results for various networks. In Sec. Il wearising becaus& times as many edges end at a vertex of
do the same for clustering. We also present theoretical argudegreek than at a vertex of degree opl—-13. Commonly
ments that suggest that the clustering seen in nonsocial netre are interested not in the total degree of the vertex at the
works is of about the magnitude one would expect for aend of an edge, but in the “excess degree,” which is the
random graph model with parameters similar to real netnhumber of edges attached to the vertex other than the one we
works. Then in Sec. IV we present analytic results for aarrived along, which is obviously one less than the total
simple model of a social network divided into groups. Thisdegree. The properly normalized distribution of the excess
model, which was introduced previous|§], is known to  degree is

1063-651X/2003/68)/0361228)/$20.00 68 036122-1 ©2003 The American Physical Society



M. E. J. NEWMAN AND J. PARK PHYSICAL REVIEW E68, 036122 (2003

(k+1)pys1 the highest-degree vertices in the network need to have de-
k= - @ gree of the order ofyn, wheren is the total number of
; Kpx vertices, so that there is a substantial probability of some

vertex pairs sharing two or more edgé3bviously if there is
negligible probability of a double edge occurring anywhere

We then define the quantigy , which is the joint probabil- gﬂ the network, then the restriction of having no double edges

ity that a randomly chosen edge joins vertices with exces . .
Id)égreesj andk y ge will have no effect. The Internet is a particularly good ex-
Now consider a network in which the vertices have given@MPle of the effect, since it has a degree distribution that
degrees(the values of the degrees being called the “degreéPPears approximately to follow a power lapy~k™* with
sequence), but which is in all other respects random. That @ constan{16,20, and the fat tail of the power law produces
is, the network is drawn uniformly at random from the en-many vertices of sufficiently high degree. However, a num-
Semb'e Of a” possib|e networks W|th the given degree Seber Of Other netWOka alSO f|t the b|”: the World W|de Web,
quence. This is the so-called configuration mofdel—15,  Peer-to-peer networks, food webs, neural networks, and
Wh|Ch we can use as a handy nu” mode| for testing ouﬂnetabohc networks all have vertices of SuffICIently h|gh de-
results. In the configuration model the expected value of thgree, at least in some cases. In their most common represen-
quantity ey is simply e;=q;dy, and by its deviation from tathns these networks also have only single edges between
this value we can quantify the level of degree correlationvertices, and hence we would expect them to hav@, and

present relative to the null model. We defiig3 calculations ofr from structural data confirm that this is the
case[17].
1 In fact, most networks have only single edges between
r=— 2 jk(€jx—a;aw), (2)  their vertices. Although it is possible to have double edges in
Tq Ik some networks, in practice these are usually ignored even

) ) - ) _ . where they exist and all edges are represented as single. For
where o= k“q—[2,kq,]” is the variance of the distri- jnstance, in the World Wide Web it is possible, and even
bution gy. The quantityr will be positive or negative for common, for a Web page to link twice or more to the same
networks with positive or negative degree correlations, repther page, creating a multiple link. Such links are however
spectively. In the ecology and epidemiology literatures thes@ormally recorded as single by Web crawler programs, and
two cases are called “assortative” and “disassortative” mix- nence any information about multiple links is lost. Thus
ing by degree, and this nomenclature has been adopted byany networks may have single edges only because that is
many physicists also. . the way researchers have chosen to represent them, and ob-

The flndlngS Of PaStor-Satorl’BBaL[lO] d|SCU.SS€d abOVe Served properties SUCh as disassortativity may be pure'y a
suggest that the Internet should have a negative valug, for product of this choice of representation rather than a funda-
and this indeed is the case. The most recent structural meﬁq‘enta| law of nature. Other networks may tru|y have Sing'e
surements of the autonomous-system graph of the Intern@lyges—metabolic networks and food webs are possible ex-
[16] yield a value ofr = —0.193+0.002. It now appears that amples of this.
similar results apply to essentially all other netwoeksept Social networks also usually have only single edges be-
social networks. In Refs[8,17] we found that almost all tween vertex pairs. Two people are either acquainted with
networks seem to be disassortatively mixed, i.e., have neggmne another or not—we do not normally have a concept of
tive values of the coefficient, except for social networks, peing “doubly acquainted” with a person. Nonetheless, the
which are normally assortative. A small number of ”etWOkaassortativity coefficient is positive, and sometimes very
yield inconclusive results because the errorrois bigger  positive, for almost all social networks measuf8d.7]. This
than its value, but other than these few, the pattern appeagppears to indicate some special structure in social networks
essentially perfect. that distinguishes them from other types of networks. A re-

~Here we propose that this striking pattern arises becausgealing clue about what this special structure might be comes
disassortativity is the natural state for all networks, in a sensgom network transitivity, as we now describe.

that we will make clear shortly. Left to their own devices, we
conjecture, networks normally have negative values. dh
order to show a positive value of a network must have
some specific additional structure that favors assortative mix-
ing. In Sec. IV we suggest a possible candidate for such a Watts and Strogatg5] have pointed out that most net-
structure in social networks. works appear to have high transitivity, also called clustering.
Our conjecture that most networks will be disassortativeThat is, the presence of a connection between vericasd
is motivated by work of Maslowet al.[18]. Using computer B and another betweeB and C, makes it likely that there
simulations, they showed that on small networks disassortawill also be a connection betweénandC. To put it another
tive mixing is produced if one restricts the network topology way, if B has two network neighbors,andC, they are likely
to having at most one edge between any pair of vertices. Th® be connected to one another, by virtue of their common
same result can be demonstrated analytically as {#@].  connection withB. In topological terms, there is a high den-
How small a network needs to be to show this effect dependsity of triangles ABC, in the network, and clustering can be
on the degree distribution; to see significant disassortativityguantified by measuring this density:

Ill. CLUSTERING
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3X (number of triangles on the graph " In
- i ces @ he= 2, | [pR(A=P™™
number of connected triples of vertices K== \m) Pk K
— _ n__ _ n
where a “connected triple” means a vertex connected di- = (Pt 1-P"=(1-Py", ©®)

rectly to an unordered pair of others. In physical ter@3$$  ,4 the expected value of the highest deareek.i
the probability, averaged over the network, that two of yourzzkth_ P ¢ g i

friends will be friends also of one anothénhis is in fact
only one definition of the clustering coefficient. An alterna-
tive definition, given in Ref[5], has also been widely used.

The value ofh, tends to zero for both small and large
values ofk, and the sum ovek is dominated by the terms
L e X close to the maximum. Thus, in most cases, a good approxi-
The latter however is difficult to evaluate analytically, and SO hation to the expected value of the maximum degree is

we avoid it here. . - . . given by the modal value. Differentiating and observing that
_The value of the clustering cogfﬁment in the null conﬁgy— dP./dk=p,, we find that the maximum df, occurs when
ration model can be calculated in a straightforward fashion
[21,22. Suppose that two neighbors of the same vertex have dpy
excess degregsand k. The probability that one particular (W_pk (Pt 1=P)" T+ p(1-PY" =0, (7)
edge in the network falls between these two vertices is
2(j/2m)(k/2m), wheremis the total number of edges in the or k__ is a solution of

network. The total number of edges between the two vertices

in question ism times this quantity, ojk/(2m). Bothj and dpy "

k are distributed according to E€lL), since both vertices are ak - NPk ®)
neighbors ofA and, averaging over this distribution, we then
get an expression for the clustering coefficient: where we have made the assumption thais sufficiently
small fork=k,,, thatnp,<1 andP,<1. For a degree dis-

' 1 [(K®)—(k)]? tribution with a power-law taip,~k™“, we then find that

C=55 4 qujqk:ﬁTv (4) I
K Kimas~ NV 1), 9

where averages are over all vertices and we have made u%’%s shown by Cohest al. [24], & simple rule of thumb that

of 2m=n(k). eads to the same result is that the maximum degree is
Normally this quantity goes as and so is very small "0ughly the value ok that solvesiP,=1.) - )

for large graphs. However, some graphs are not large, and "MOSt ngf"(‘y’)(,)(gfsl)()f interest have<3, which meangk®)

henceC is not negligible. Consider, for example, the food ~ Kmax~" and(k) is independent of.. Then Eq.

web of organisms in Little Rock Lake, W1, which was origi- (4) gives

nally analyzed by Martine23] and has been widely studied

in the networks literature. This network has=92, (k)

=21.0, and(k?)=655.2. Plugging these figures into B4) |t 4~ this means tha€ tends to zero as the graph be-

gives C=0.47. The measured value @ is 0.40. Thus it comes large, although it does so slower than the explicit

appears that we need invoke no special clustering process 10,,-1 of Eq. (4). At =%, C becomes constar logarith-

explain the clustering in this network. Similar results can bemic) in the graph size. And remarkably, fer<Z it actually

found for other small networks. increases with increasing system size, becoming arbitrarily
This argument can also be applied to some larger Nefpge aq oo, Thus fora=<2, we might expect to see quite
works as well, particularly those with power-

ol . ' power-law degree dis-5ge yalues of even in large networks.
tributions. The fat tail of the degree distribution in power-law Taking the case of the World Wide Web, for example, we

networks can affect the value of the clustering coefficienting the predicted value of the clustering coefficient for the

strongly. To see this consider first how the degree of the,qsguration model i<C=0.048[21], while the measured
highest-degree vertex in the configuration model varies with | ;e is 0.11—certainly not perfect agreement, but of the

system siz¢4]. i . ; .
o . , ght order of magnitude. Other examples err in the opposite
The probability of there being exactly vertices of de-  qirection, Maslowet al.[18], for instance, cite the example of
gr_eeﬁ In 'Lhe netwgl:n and no vertices of degree greater thany,e Internet, for which they show using numerical simula-
Kis (m)Pi (1= Py" ", where tions that the observed clustering is actually lower than that
expected for an equivalent random graph model.

C~n(7—3a)/(a—l). (10)

* It is worth noting that Eq(10) implies the clustering co-
Py= 2 Py’ (5) efficient can be greater than 1df< %. Physically this means
k'=k that there will be more than one edge on average between

two vertices that share a common neighbor. This is perhaps
is the probability that a vertex has degree greater than cat odds with the conventional interpretation of the clustering
equal tok. Then the probabilith, that the highest degree in coefficient as the probability that there existsy edge be-
the network isk is tween the given two vertices—normally one would not dis-
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tinguish between the case where there are two edges and the
case where there is on@ndeed, as mentioned in Sec. Il, in
many networks, one ignores double edges altogettieme

takes this approach, then the value of the clustering coeffi-
cient is modified for networks that would otherwise have

>1 as follows.

Consider again two vertices that are neighbors of vertex
A, with excess degregsand k. The probability that a par-
ticular edge falls between them isj2Zm)(k/2m), as before,
and the probability that it does not is 1 minus this quantity.
Then the probability that no edge falls between this pair is

m
~ e*jk/Zm, (11)

J
[1‘W

where the equality becomes exact in the limit of large
Thus the probability of any edge falling between the two
vertices is +e 2™ and the correct expression for the
clustering coefficient is the average of this

C=2 qial-e km). (12
3

In fact, however, using this expression makes only the small-
est of differences to the expected valueGobn, for example,
the World Wide Web.

Ak” O].c tTIS .den;ons”ates th?]t for many nons%ual nelt' FIG. 1. The structure of the network model studied in Sec. IV.
works, including food webs, the Internet, and the Word(a) We represent individualsA—K) and the group$1—4) to which

Wide Web, clustering can be explained by a simple randoney helong by a bipartite graph structufie) The bipartite graph is
model. The same however is not true for social networks. 'brojected onto the individuals only, giving a network with edges

turns out that social networks in general have a far highepetween any pair of individuals who share a gro(g.The actual
degree of clustering than the corresponding random modeéocial connections between individuals are chosen by bond perco-
We give four examples: the widely studied network of film- |ation on this projection with bond occupation probabifityThe net
actor collaborationg5,7], collaboration networks of math- result is that individuals have probabilityof knowing others with
ematiciang 25,26 and company directof27], and an email whom they share a group.

network[28]. For these four networks the theory presented

above predicts values of the clustering coefficient of 0.0098, In our model the network is divided into groups and each
0.000 15, 0.0035, and 0.017. The actual measured values arglividual can belong to any number of groups. Individuals
0.20, 0.15, 0.59, and 0.17, in each case at least an order dp not necessarily know all those with whom they share a
magnitude greater than the prediction. The implication apgroup, but instead have probabilipyof acquaintance. They
pears to be that there is some mechanism producing clustdtave probability zero of knowing those with whom they do
ing in social networks that is not present at a significant levehot share a group. Mathematically the model can be repre-
in nonsocial networkgor not at least in the examples studied sented as a bond percolation process with occupation prob-
here. Recent work9,29—37 suggests a possible candidate ability p on the network formed by the projection of a suit-
theory that social networks contain groups or “communityable bipartite graph of individuals and groups onto just the

structure”[41]. individuals, as shown in Fig. 1. The percolation properties of
the model can be solved exactly using generating function
IV. COMMUNITY STRUCTURE IN NETWORKS methods.

In Ref. [9] the model was studied in a simple version in

In Ref. [9] one of us proposed a simple model of a net-which the size of all groups was assumed the same. This case
work with community structure and showed that this struc-can account for the presence of clustering in the network,
ture produces substantial clustering, with value€dahat do  and is straightforward to treat mathematically. However, it is
not go to zero as the network size becomes large. Thus theadequate for our purposes here, since it does not produce
results of the preceding section could be explained if sociaany degree correlation. Degree correlation arises because in-
networks possess community structure and other types dafividuals who belong to small groups tend to have low de-
networks do nofor they possess it to a lesser degrable  gree and are connected to others in the same group, who also
now show that the same distinction can also explain the obhave low degree. Similarly those in large groups tend to have
served difference in degree correlations between social aniigher degree and are also connected to one another. Thus,
nonsocial networks. the model should give rise to assortative mixing provided
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there is enough variation in the sizes of groups. As we willp and thus generated by the simple generating fungbian
see, this is indeed the case. +q, whereq=1-p. Averaging over the group sizes, the
In addition to the parametey, we characterize the model number of neighbors of a randomly chosen individual within
by two probability distributionsr , is the probability that an one of the groups to which they belong is generated by
individual belongs tan groups ands, is the probability that g;(pz+q), and an individual belonging to a randomly cho-
a group contain: individuals. Subject to the constraints sen group will have a number of neighbors in other groups
imposed by these distributions, the assignment of individualgenerated by,(g;(pz+q)). This then gives us the quantity
to groups is entirely random. P(jouw Of Eq. (14), which is equal to the coefficient afout
To proceed we calculate the joint distributieq) of the in f;(g;(pz+q)), and similarly forP(ko).
excess degrees of vertices at the ends of an edge. Noting that Combining Eqs(13) and (14) we find thatey, is gener-
the total number of edges in groups of simegoes as ated by the double probability generating function
s,n(n—1), we write

E(x,y)=_§kl exlyX
ex=e0>, S,n(n—1)P(j,kln), (13) :
" =g2((px+q)(py+a))f1(g1(px+a))

whereP(j,k|n) is the probability that an edge that belongs X f1(91(py+0a)), 17
to a group of sizen connects vertices of excess degrgaad
k, ande, is a constant whose value can be calculated fromvhere
the requirement tha;, be normalized, so that ;e =1.

We now decomposg and k in the form j=j;;+jou, K
=Kin+ Kout, Whereji,, ki, are the numbers of connections to 92(2)=
vertices within the group to which the edge in question be-
longs, andj ., Koyt are the numbers of connections outside
that group. The distributions gf, andk;, are simply bino-
mial, and hencé(j,k|n) factors into terms depending sepa-
rately onjiy, jour @andKk;,, Koy thus

s,n(n—1)z""2, (18
9o(1) nzo

Then, making use of Eqgl) and (2) and the fact that
dx=2j€jx, We can write the assortativity coefficientis

 0,0E—(5E)(3yE) P
=B -(oEeD | o 19

. n—-2 . o . x=y=1
P(j.k n)zz ( i )pj'nqn 2 JmP(]out)
fin % 20N where the numerator and denominafand Q are
n—2
> ( ki )pk‘”q”‘z‘k‘”P(kouOY (14 P=puZvil(va—vs)(vy—v1)— (vs—1,)2], (209

= — _ _ 2
whereP(j..) is the probability distribution of ., whichis = #1712 vl{ka= s (va= 1)

independent of ,,, and similarly forkg,. + w1 (20— 3vp+ vg) 1+ (e — m3— papp+ pips)
To evaluate this expression we introduce the following . )
generating functions for the distributiong, ands, : X(vo=v1)"+ papovi(vo—v1)(2vy—3vp+v3)

o + pE v {13205+ va— vg) — v (V3= 1)?
t(1) mE—O mrmszl, —v1vo(va—5vy) + V§(3V2—y3)}]_ (20b)
o =
(15

fo(z):mE:O rm2™,  fi(z)=

In this expression the quantities; and v; are theith mo-
ments of the distributions,, and s,, respectively. Thus,
given the distributions and the probabiliyit is elementary,
; E ns,z""*. (16) if tedious, to calculate. Below we apply this expression to
go(1) n=0 two real-world example networks. First, however, a few
points are worth noting.
Physically,fy(z) is the generating function for the number of It is straightforward to show, though certainly not obvious
groups an individual belongs to arfd(z) is the generating to the eye, that the expression foiEq. (19), is non-negative
function for the number groups that an individual in a ran-for all distributionsr,, ands,, so that our model always
domly selected group belongs to, other than the randomlyproduces an assortatively mixed network, as our intuition
selected group itself. Similarlgy(z) generates the group suggests.
sizes andy,(z) generates the number of other individuals in  Now consider the simple case in which each individual
a group to which a randomly selected individual belongs. Otelongs to exactly one group, and the group sizes have a
these, our randomly selected individual is connected to #oisson distribution. In this case, E4Q.9) givesr=p, and
number binomially distributed according to the probability we can achieve any value ofby tuning the parameteg. In

©

go(z>=n§O $:2"  01(2)=
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particular, if each individual knows all others in their group value ofp, we counted the number of edges in the network
thenp=1 and we have perfect assortativity. This is reason-and divided by the total number of possible within-group
able, since in this case each individual in a group has thedges, givingp=0.168. Feeding this value and our figures
exact same number of neighbors. This case is a rather pathfpor the moments into Eqs19) and (20), we then find a
logical one, however, since if everyone belongs to only ongyedicted value of =0.183. The measured value for the real
group, then the network consists of many isolated groups anfetwork is 0.154:0.044. (The error is calculated according
most people are not connected to one another. To mak, the prescription given in Ref17].) These two figures are
things more realistic, let us allow the number of groups 10, agreement within the statistical error on the lafes].

which individuals belong also to vary according to a Poisson This result by no means proves that the group structure is

distribution. Then we find that responsible for assortativity in this network. Certainly it is
reasonable to suppose that the actual process of forming col-

= b laborative contacts is more complicated than that depicted in

r , (21) 4
1+pu+wvup our model. The value op, for example, could vary with

o group size, or there could be a nonzero probability of contact

whereu=u, andv=v, are the means of the two distribu- jith individuals outside the groups to which one belongs.
tions. Thus as the two means increase, the correlation deiowever, our results tell us that no more complicated model

creases. The decrease wiihis easily understood—the more g necessary to explain the observed value.diith group
groups an individual belongs to, the less the relative within-

; i - structure as shown in the figure and otherwise random mix-
group degreg c_:orrelatlon upon Wh.'Ch.the assortativity deing, we would get a network with exactly the assortativity
pends: the v.\nth'm'-group correlation is diluted by aII.th.e Otherthat is observed in reality, within expected error.
groups the individual belongs to. The behavior withis a
litle more subtle. The width of the Poisson distribution of
group sizes goes as\I# as a fraction of the mean, and hence
the effective variation in size between groups decreases with Davis and co-worker$27,34] have studied networks of
increasingv. It is this decrease that drivestowards zero.  the directors of companies in which two directors are con-
sidered connected if they sit on the board of the same com-
V. EXAMPLES pany. They studied the Fortune 1000, the one thousand U.S.
companies with the highest revenues, for 1999, and as-
We now apply our model to two real-world example net-sembled a near-complete director network from publicly
works. In the first case, as we will see, it gives a valueiof  ayajlable data. The network consists of 7673 directors sitting
excellent_ agreement with the real net\_Nor_k. I_n the second iy, 914 poards. It provides a particularly simple example of
underestimates by about a factor of 2, indicating that group o, method, for two reasons. First, the groups in the network
structure can account for or_wly a portion of the observed a through which individuals are acquainted are provided for
sortativity, the rest, we conjecture, being due to true soci s—they are the boards of directors. Second, it is assumed
effects. that directors are acquainted with all those with whom they
share a board, so that the parametén our model is 1.
A. Collaboration network The distributions of boards per director and directors per

Networks of coauthorship of scientists or other academic®oard have been studied befdts]. We note that most di-
provide some of the best-documented examples of social netectors(79% sit on only one board and that there is consid-
works[25,33. Using bibliographic databases it is possible toerable variation in the size of boarsom 2 to 35 membejs
construct large coauthorship networks with high reliability, Thus we would expect strong assortative mixing in the net-
and these networks are true social networks, in the sense thabrk, and indeed we find that=0.276+ 0.004. Taking the
it seems highly likely that two authors who write a papermoments of the measured distributiong and s, for the
together are acquainted. network and settingp=1, Eq. (19) gives a value ofr

Figure 2 shows a coauthorship network of physicists who=0.116 for our model. So it appears that the presence of
conduct research on networks. The network was constructegioups in the network can explain about 40% of the assorta-
using names drawn from the bibliography of the recent retivity we observe in this case, but not all of it. There is some
view by Newman[4] and coauthorship data from preprints further assortativity in addition to the purely topological ef-
submitted to the condensed matter section of the Physidgct of the groups, and we conjecture that this is due to true
E-print Archive at arxiv.org between Jan 1, 1995 and Junesociological or psychological effects in the way in which
30, 2003. To find the groups in the network, we fed itacquaintanceships are formed. One possibility is suggested
through the community structure algorithm of Girvan andby the analysis of the directorships data by Newnearal.
Newman[29], producing the division shown by the colors in [13], who found that directors who sit on many boards tend
the figure[42]. The figure shows only the largest componentto sit on them with others who sit on many boards. Since
of the network. There are also 41 smaller components, whicthose who sit on many boards will also tend to have high
are not shown but which were included in our calculations. degree, we would expect this effect to add assortativity to the

The moments of the distributions,, and s,, are easily network, but the effect is missing from our model in which
extracted from the network by direct summation. To find theboard membership is assigned at random.

B. Boards of directors
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FIG. 2. (Color online The largest component of the network of coauthorships described in the text. This component contains 145
scientists, and there are 41 other components, of sizes ranging from 1 to 5, containing 90 more. The vertices are grouped according to the
communities found using the algorithm of R¢29]. The communities correspond reasonably closely to geographical and institutional
divisions between the scientists shown.

In a sense, our model is giving a baseline against which to We have shown that both of these differences can be ex-
measure the value aof it tells us when the value we see is plained by the same hypothesis, that social networks are di-
simply what would be expected by random chance, as in theided into communities and nonsocial networks are not. We
collaboration network above, and when there must be addihave studied a simple model of community structure in so-

tional effects at work, as in the boards of directors. cial networks in which individuals belong to groups and are
acquainted with others with whom they share those groups.
VI. CONCLUSIONS The model is exactly solvable using generating function

) _ _techniques, and we have shown that it gives predictions that
In this paper we have argued that social and nonsocCigre jn reasonable and sometimes excellent agreement with
networks differ in two important ways. First, they show dis- empjrical observations of real-world social networks.
tinctly different patterns of correlation between the degrees

of adjacent vertices, with degrees being positively correlated
(assortative mixingin most social networks and negatively
correlated (disassortative mixing in most nonsocial net-
works. Second, social networks show high levels of cluster- The authors thank Duncan Watts for useful conversations.
ing or network transitivity, whereas clustering in many non-This work was funded in part by the National Science Foun-
social networks is not higher than one would expect on thelation under Grant No. DMS-0234188 and by the James S.
basis of pure chance, given the observed degree distributioMcDonnell Foundation and the Santa Fe Institute.
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