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Surface growth models with a random-walk-like nonlocality
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To understand the effects of a random-walk-like nonlocality on the dynamical scaling properties of surface
growths, a stochastic growth model in which the height differeﬁ(tgi,i+l):|hi—hi+l| of a chosen nearest
neighbor column pairi(i+ 1) is decreased by one unit is introduced and studied by simulations. The prob-
ability P i1y of choosing a column pairi{i+1) on a one-dimensional substrate is assigned@s; )
=e “Miirn/Sr_ e Nai+1. On a substrate of given site the dynamical scaling property satisfies a normal
scaling behavior ag/=L*f(t/L?), whenx is very small. Ifx becomes moderately large, the scaling property
with the dynamic exponerz=1 as in diffusion-limited erosion appears.dfbecomes very large, no surface
roughening is found.
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[. INTRODUCTION evolution process in many models depends on the local mor-
phology near the randomly selected coluftth Among such
Recently, many dynamical scaling theories for surfacemodels is the Ballistic erosiofBE) model[12,14,13 which
growth under thermal white noise have been investigated duis known to belong to EW universality class. In BE model, a
to both theoretical and experimental importance for the longparticle from outside of a material comes straight down
time, large scale surface morpholod¥]. The dynamical along a randomly selected column and it knocks out the first

scaling hypothesis used in these studies is particle which it encounter§See Fig. 1a).] In BE model
evolution processes are local processes, which make the
W=L“f(t/L?), () model belong to EW universality class.

) ) ) In contrast the model§10—13 which have been sug-
whereWis a root-mean-square fluctuation of surface heightsgested to follow the linear equatiof?) with z=1 have a
a is the roughness exponent, ants the dynamic exponent. nonjocal relaxation dynamics. The diffusion-limited erosion
The scaling function satisfie§(x) —const. forx>1 and  (DLE) model [10-12 and time-reversed dielectric break-
f(x)~x” (B=alz) for x<1[1]. Among the scaling theories down mode(TDBM) [13] have such nonlocality in selecting
[1] many studief2—-13 have been focused on the linear 3 sjte for the evolution. In DLE10-12, a particle which

growth equations starts far from the existing material undergoes a random
ohe() walk until it touches a material particle on the surface. Then
a ) . .
o =—v|q|th(t)+ 74(0), 2) the two particles disappear by the reaction suchAasB

—0 [12]. The incoming particle in DLE has more chance to
touch some protruded part of surface than a flat part because
of the nonlocal nature of random walkSee Fig. 1b).] The
DLE model thus has random-walk-like nonlocality in select-
ing a site where an evolution process takes place. This non-
In particular, Edwards-WilkinsofEW) equation withz=2  local behavior makes the surface less rough and follows Eq.
[3] and the related discrete growth modg®s4| have been (2) with z=1.
well understood now. Moreover the stochastic growth mod- The space-time dependence of dengi{,t) of random
els[4-8], which are believed to follow the Mullins-Herring walkers follows the diffusion equatiaf/dt = D¢V2¢. The
[9] equation withz=4, have now been understood to a cer-probability that an incoming particle reaches a site on the
tain maturity level. In contrast, the scaling properties for Eg. .
(2) with z=1 [10,11] have not been understood so well and
only a few stochastic growth mod€l$0-13 related to Eqg. ‘_ETF'D
(2) with z=1 have been suggested and studied. /\/\AW\A/V\

In the unit evolution process of normal surface evolution
models[1], a column is randomly selected and the evolution
occurs only around the chosen column. This randomness is (@) (b)

reflected by _the Seco_nd term of H@) as a Iocal_ white hoise, FIG. 1. Schematic diagram for comparison of the local n¢ése
where74(t) is a Fourier component of Gaussian white noisey, the random-walk-like nonlocalitgb) in erosion models(a The
that has zero mean(74(t))=0 and covariance ergsjve process in the model with local noise occurs directly at a
(ng(t) 7 (1)) = DL_daq,—q’ o(t—t"). Therefore the unit randomly chosen column as in ballistic erosion mo@®lThe ero-
sive process has more chance to occur at some protruded part of
surface when a random walker mediates the process as in DLE
*Corresponding author. Electronic address: ykim@khu.ac.kr model.

dh(x,t)
at

=— (= V?)??h(x,t)+ p(x,t). ©)
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surface is proportional tWV ¢| in the DLE model. From this  of the pair in the system depends onAts; ; , 1) through Eq.
theoretical basis we recently suggested TDRIM] in which  (4). Since the probability assignment has such nonlocal na-
the evaporation probability of a particle on the surface isture, the column pair with larger value afh; ; , 1) has more
assigned to be proportional t¥ ¢|, where¢ is the steady- chance to be selected for growth than that with smaller value
state solution of the diffusion equation with a proper bound-of Ah; i, 1y. This nonlocal nature of our model is very simi-
ary condition. In TDBM the evaporation probability at a pro- lar to those of DLE or TDBM in the sense that the more
truded part of surface is larger than at a flat part becausprotruded part can be chosen for the evolution with the more
|V ¢| becomes larger at the protruded part of surface. Thehance. Thus, the global model with an appropriate range of
dynamic scaling behavior of TDBM has been shown to bex is expected to have scaling behavior wath 1, which will
the same as that of DLE. From these models, we can undebe shown.
stand that the random-walk-like nonlocality is essential to We can also consider a local version of our model in
the scaling behavior which follows EQ) with z=1. which the pair for growth is chosen randomly as in the BE
However, these mode[40-13 with such nonlocality to model. We can establish local model as follows; first select a
give the dynamic exponerz=1 are all erosive models, columnl randomly. TherP . or P(;_1)) which selects a
where the surface height is always decreasing. Furthermomearest neighbor column pair between two column pairs
the erosive process in these models is not like a commofl,l+1) and (—1]) is defined as
process of most growth model which changes surface height

h(x,t) directly, but is dependent on a random walker or den- B e+ _
o : R - Piivy=— Pu-1n=1-Pui+1y-
sity field gradientV ¢|. This indirect process makes it very : “Ah : :
difficult to understand how the dynamical scaling behavior mgl ermiim
with z=1 arises. Thus, our purpose in this paper is to estab- - (5)

lish a more simple growth model which has the dynamical

scaling behavior witlz=1 and the random-walk-like nonlo- Of course the other growth process at the selected column

cality as DLE and TDBM. The simple growth model for our pair is the same as that of the global model. In this local

purpose means the model in which the surface height is almodel the growth process is very similar to other local mod-

ways increasing ant(x,t) is directly changed. els, because a column is randomly chosen and the growth
process centered at the chosen column always takes place.

ll. MODEL
_ . _ Ill. RESULTS
We now want to explain our growth model in detail. Our

model is defined only on a one-dimensioaD) substrate, Now let us explain the simulation results. We perform
but generalization to those on higher-dimensional substratgd/merical simulations, starting from a flat surface of linear
can be easily obtained from the definition of 1D model. AsSizeL with the lateral periodic boundary condition. We mea-
can be seen in Eq$2) and (3), the change of(x,t) for z  sure the surface fluctuation widiv as

=1 scaling behavior should depend on the magnitude of L Lt 5
local slope,|Vh(x,t)|. A discrete version of the local slope 2 _ ST .
IVh(x.1)] is Ahg - 1= |h(i,.t)—h(i=Lt)|. From this ob- WAL= 2 {[hE0- 2 hio] ). ©

servation, we can notice that the height change must depend

on the height differencéh; ; , 1) for z=1 scaling behavior. ~All data are taken by averaging over more than 100 indepen-
The growth rule for our purpose can thus be established agent runs.

what follows. Consider the surface configuration described We first want to mention simulation results for the local

by integer height variable$h(i,t)}, wherei is an integer model with assignmen() briefly. Because the unit growth

parameter which describes thth column on a 1D chain. process in the local model reduces the local slope at the

Then a column pairi(i+1) is chosen based on the prob- randomly chosen column, the local model should have the

ability assignmen®; ;) as negative local currenfl6] as the models which belong to
EW universality clas§1—3]. We can thus guess that the local
e AN i+1) model belongs to EW universality class regardless of the
Piirn=T—, (4)  value of k. We confirm it by checkingr=1/2 andB=1/4
> exthg e for any « in the simulations.
=1 Next we discuss simulation results for the global model

with the probability assignmeifd). The first result to discuss
where L is the size of substrate. Then take the followingis the dependence &V on « for a fixed system sizé. For
growth process at the chosen column paifi{1); h(i small x, a normal scaling behavior as Ed) is found. One
+1t)—h(i+1t)+1 if h(i,t)y=h(i+1t), or h(i,t) example is shown in Fig.(3). In Fig. 2a), we display the
—h(i,t)+1 if h(i,t)<h(i+1t) . This growth process early-time ¢<L?) results fork=2 andL=256. The growth
should decrease the height differenth i,y asAh i,y  exponentg is estimated by fitting the data to the relation
—Ahg i+1)— 1. Of course we use the lateral periodic condi-W=t# and obtained result i®=0.251). The power law
tion h(i +L,t)=h(i,t). Unlike local model the column pair behaviorw(t)=t# with 8 close to EW valudor B=1/4) is
for a growth process is not chosen randomly. The selectioconfirmed to exist forx=2 on substrates with sizes from

036121-2



SURFACE GROWTH MODELS WITH A RANDOM. ..

0.8 (@)k=2,L =256

0.4

In W

0.0

0.4

0.2

(b)x=6,L =256

0.2

-1.0 1 Il ] 1
-6 -4 -2 0 2

In (#/256)

FIG. 2. (a) Plot of W againstt for k=2 andL=256 in the
early-time regime f{<L%). The straight line represents the relation
W~t# with 8=0.25. The inset shows the plot &F for k=2
against_ in the saturation regimet$L?). The straight line denotes
the relation Wy~L* with «=0.49. Used system sizes ate
=25,26,27,28 29 219 and 2. (b) Plot of W>— W2 against In(256)
for k=6 andL=256. The solid curve is the fitting of data to the
relation (7) or (8), which shows thaw? follows nicely the linear
equation(2) with z=1.

=2° up to L=2% Furthermore we study the behavior of
saturatedV, Wy [ =W(t>L7?)], by using the substrates with
sizesL=2%, ... 2% We find thatw, for k=2 also satisfies
usual scaling behavioW,=L" with «=0.491), which is
also very close to EW valuea(= 1/2) as shown in the inset
of Fig. 2(@). It is also found that this kind of normal EW
scaling behavior exists for0x<«,(L) in the system with a
fixed sizeL.

For k> k(L) we find two different regimes. In the mod-
erate range ok or in x,(L) <« <« (L) the scaling behavior
of Wis found to follow Eq.(2) with z=1 as DLE or TDBM.
For the specifics see Fig(l8, where the scaling behavior of
W for k=6 (>k,) on the substrate witth =256 is dis-
played.W(t) in Fig. 2(b) is shown to nicely follow the so-
lution of Eq. (2) with z=1 [10,11],
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FIG. 3. Dependence of, and «, on the system sizk. «, and
Kk, are estimated in the systems with the sites2°,25, ... 2%
The solid lines between data points and the dashed line above
=210 are from simple interpolations and extrapolations. The shaded
area can be regarded as the crossover region from one regime to
another regime. This figure can also be the estimated phase diagram
for EW, z=1 and flat-surface regimes.

we=—>"l1nl 5] in 2 —Amit 7

T 2my n a n ex L @)
or

W2=W2+ il —Amit 8

s omy n ex L ) (8)

by plotting (WZ—Wg) against In{L). Here D comes from
the covariance| 74(t) 7/ (t))=DL "8, ¢ 8(t—t") of the
noise 774(t), v is one of the coefficients in Eq2), anda is
the short range cutoff distan¢&0,11]. a in our simulation
should be the unit lattice spacing and trass 1. Of course
k(L) also depends on the system sizdf « becomes large
or k>k.(L), no roughening regime or the flat-surface re-
gime appears.

To see the dependence gf and x, on the system sizk,
we estimatex, and , for L=2°,...,2'% The results are
displayed in Fig. 3. The solid lines between the data and the
dashed line above=21%in Fig. 3 are from simple interpo-
lations and extrapolations. Figure 3 can be also regarded as
the phase diagram for EWW=1 and flat-surface regimes in
k-L parameter space. Both, (L) and «x,(L) seem to be
monotonically increasing functions af. In the thermody-
namic limit (L — ) both «x, and«, go to infinity. The model
then always crossovers to EW universality class in the limit
L—o for a givenk. To get thez=1 regime in theL — o,
one must take the limik— o carefully, so thatl(, «) should
be in thez=1 regime while taking both the limits. It is found
that the crossover behavior between the regimes is somewhat
broad.(See the shaded regions in Fig) Because we do not
have a physically sound theory for the finite size effects, we
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FIG. 4. Plots oMW? against I for a set of {, ) combinations; FIG. 5. Plots ofw"—Wjs against In(L) for the same set ofl,

(25, 3.3, (2°, 4.0, (27, 4.9, (28, 5.9,(2°, 7.0, and (2°, 8.1). «) combinations in Fig. 4. The inset showd for each combina-

The data nicely follow Eq(9). The slope of the fitted line gives tion nicely follows Eq.(7) or (8) usingD/271=0.390(2) which is

D/27v=0.3902). obtained from Fig. 4. The main plot shows that all the data for the
set collapse well to one curve based on the scaling rel&fipwith

~ DIR7v=0.3902).
cannot tell that such a crossover comes from the intrinsic

character of the model or the finite size effects. Further study, st be taken into consideration. In E§) we seta=1

to characterize the crossover is left for future research.  \yhich is the short range cutoff distance. In Fig. 4 we display
The existence of such three regimes or the existeneg, of W,'s for a certain set of combinations &f and x values,

and «; can be understood from Eqd). Even though hich satisfies Eq(9) with a fixed value ofD/27v well.

ARy i+ Is large, the probability; 1) to choose the pair The set consists ofL(=25, k=3.3), (%, 4.0, (27, 4.9,

(i,i+1) for smallx (k<x,) cannot become large enough to (28, 5.9, (2°, 7.0, and (2°, 8.1). From the fitting of Eq(9)

have the random-walk-like nonlocality. This fact means thaty v _in Fig. 4, we geD/2mv=0.390(2) for the set ofl(

the protruded part cannot be taken with the same probabilityc) ccs)mbinatioﬁs In Fig. 5, we platv2—W? against |n(/|_3

: : : .5, s

as that in DLE or TDBM for smalk. Therefore, in the range ¢, yhe same set in Fig. 4. In Fig. 5 the solid curve from the

k<, a column pair for growth is selected almost randomlyS aling relation based on E€7) with D/27v»=0.390(2) is

and the growth process is nearly the same as that in the Iocgﬁ

del. This is the phvsical hv th dels fo own to explain the dynamical data \0f(t) for the set of
model. This 1S the physical reason why the models Aot (L, k) combinations very well. This kind of behavior is con-
<k, belong to EW universality class withk=1/2 andz

—o" For th derately |  th - firmed for other well-tuned sets of ( k) combinations. The
—<. For the moderately farg& or In € rangex,=k raqits in Figs. 4 and 5 show thatshould be varied properly
<kr, P(it1) for the largeAh i, 1) is enhanced enough to

- ; . for variousL to obtainz=1 scaling behavior with a fixed
show the random-walk-like nonlocality as in DLE or TDBM, > " "1 b E and TDBM, W shows exactly the same scal-
so that the scaling behavior witt+ 1 appears. This behavior

) . ing behavior as Fig. 5 without parameter tunings. The scalin
comes from the terreA"i.i+1) in Eq. (4). In other words the g g ; g g

q lk-like behavi b 4 qf h behavior in DLE and TDBM comes from the intrinsic
random-walk-like behavior can be understood from the sto;,,4qm_walk-like nonlocality, which comes from the steady-
chastic behaviors of the probability assignmeét in the

state diffusion equation, i.e., Laplace equatid®,11,13.
rangex,<x<k;. For k>, P i1 for Ah; i, 1,#0 be- d b quat 3

| d he | by-| The scaling behavior of DLE and TDBM thus comes from
comes very large and we can expect fhe laycr-by-layefne Laplace equation with proper boundary conditions. From
growth, where the surface becomes unroughened.

Wi h e the d J ina beh the view of our model we can consider that the nonlocality
e now want to characterize the dynamic scaling behavy, 1, the | aplace equation naturally and spontaneously se-

ior of z=1 regime more specificallyV(L,t) in z=1regime 16045 the parameters for the=1 scaling behavior with the
of Fig. 3 satisfies Eqs(7) and (8). However the constant naturally fixedD/27rv.

D/2mv varies ask varies within thez=1 regime in Fig. 3.
Furthermore to obtain one common value for the coefficient

D/2mv in different system size&, x should be carefully IV. SUMMARY AND DISCUSSIONS
tuned in theK—L2 parameter space. To see this effect, the |, summary, we studied the surface fluctuation for
dependence diVg of Egs.(7) and(8) onL growth models with the probability assignme). For «

<kp, W satisfies the normal scaling behavid with the

EW exponentgy=1/2 andz=2. Forx,<«<«,, W follows

W2=iln(L/a) =iln L 9 Eq. (7) nicely, which is the solution of the linear equatit)
S 2wy 27y ' with z=1. These results mean that the models wifjx< «
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<k; have the same random-walk-like nonlocality as DLEability assignmentP;;.1y. In EQ. (4) P 1) is set as
and TDBM. Forx>k, no surface roughening is found, P(i'iﬂ)oce"Ah(iM). One of the natural variants B; ;1)
and k, depend orl. Furthermorex should be varied prop- «xAh i, 1)+ 6, where the constant is added in order to
erly for differentL in x,<x<«k, to obtainz=1 scaling be- preventP; ;. from being everywhere zero for the initial
havior with a fixedD/27v. In conclusion the effect of the flat surface or the surface with ati(i)=0. We confirmed
random-walk-like nonlocality on dynamical structure can bethat the variant model shoves=1 scaling behavior i5 be-
understood directly from Eq4). The range of« in which ~ comes moderately small. 16— 0 limit, we also confirmed
the scaling behavior with=1 or the random-walk-like non- the layer-by-layer growth.
locality occurs is determined by the factef”"ii+1) in Eq. Final discussion is on another possible way to make the
(4), because*""i.i+1) for a pair with largeA h¢.i+1) cannot  random-walk-like nonlocality in the surface growth model.
become large enough to show the random-walk-like nonloin the model considered so far the selection probability of a
cality whenk is small ork<x,,. column pair is proportional te<*".i+1) and the growth al-
Final discussions are on three points. One is on thevays occurs at the chosen pair. Another possible model is as
generalized version of the local model with E§). In the  what follows. First select a pair randomly. Second the growth
local model a column pair for growth is selected only at the randomly chosen pair is accepted with the rate propor-
between the two pairs centered at the randomly chosetional to e*"di+1). This modified version of the model is
column I. Instead we can considen (<L) pairs with  physically the same as the model considered in this paper.
the randomly chosen coluninat the center. Then the prob- We realized the second step in the modified version of model
ability assignment should be modified a® ;) by assigning acceptance probabilRy of the growth at the
= e ONirn/sN2 71 exANiimi+m+1) This modified version randomly chosen pair af,=e**"ii+n/e AN max  where
of the model is quite similar to the erosion model, in which Ahp, is the maximum ofAh; ;. 4y in the given surface
the incoming particle undergoes a biased random walk to theonfiguration. We also confirmed thee=1 regime in a cer-
material[12]. If the particle is biased to the material, then thetain range ofk in the modified model. This modified model
lateral distance to sweep for the particle is limited beforealso suggests another physical way to understand the
touching surface and thus the erosive process only occurs gandom-walk-like locality.
the columns within the limited lateral distance centering the
column above which the particle startsnfL— 0, the modi- This work was supported by the Korean Research Foun-
fied model with then pairs for selection is confirmed to dation through Grant No. KRF-2001-015-DP0120. Y.K. ac-
belong to EW universality class as the erosion model withknowledges Kyung-Hee University for the Sabbatical Leave
the biased random walK42]. for the Research and Korea Institute for Advanced Studies
The second one is the functional dependence of the proler the hospitality.
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