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Lyapunov exponent of many-particle systems: Testing the stochastic approach

Celia Anteneodo,* Raphael N. P. Maia,† and Rau´l O. Vallejos‡
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The stochastic approach to the determination of the largest Lyapunov exponent of a many-particle system is
tested in the so-called mean-fieldXY Hamiltonians. In weakly chaotic regimes, the stochastic approach relates
the Lyapunov exponent to a few statistical properties of the Hessian matrix of the interaction, which can be
calculated as suitable thermal averages. We have verified that there is a satisfactory quantitative agreement
between theory and simulations in the disordered phases of theXY models, either with attractive or repulsive
interactions. Part of the success of the theory is due to the possibility of predicting the shape of the required
correlation functions, because this permits the calculation of correlation times as thermal averages.

DOI: 10.1103/PhysRevE.68.036120 PACS number~s!: 02.50.Ey, 05.45.2a, 05.20.2y
ov
m
th

lu

ag
ire
th
-

et

e
th

p
b

Se
. W

t e
s
ti
th
e
ry
ca

o

a

h
b

m-
ean-
o
ple-
the
ain
sti-

ns
iew
tro-
of
ins
al
lud-

the
end
trict
o-

i-

for
I. INTRODUCTION

In a recent paper@1# we presented a theory~‘‘the stochas-
tic approach’’! that allows to estimate the largest Lyapun
exponent of many-particle systems having a smooth Ha
tonian. This theory is inspired by and complementary to
work of Pettini and co-workers@2,3#, and Barnettet al. @4#.

Starting from the linear equations that describe the evo
tion of tangent vectors, we used in Ref.@1# the techniques of
stochastic linear differential equations to obtain an aver
propagator whose diagonalization provides the des
Lyapunov exponent. Even though the result obtained in
way is formally ~almost! exact, approximations must be in
voked in practical situations to calculate a concr
Lyapunov exponent.

The aim of this paper is to show that, even if one mak
several crude approximations, the theory still keeps
strength to describequantitatively some weakly chaotic
many-particle systems.

In applications, it is necessary to invoke two main a
proximations. First, the average propagator is obtained
truncating a perturbative expansion at the second order.
ond, the propagator is diagonalized in a small subspace
have chosen the infinite-rangeXY Hamiltonian@5,6# as our
test system because diagonalization can be carried ou
actly here. In this way one isolates the unavoidable effect
truncating the perturbative series from other unessen
sources of error. We have compared the predictions of
‘‘stochastic approach’’ with numerical simulations of th
many-particle dynamics, verifying that the theory works ve
well in the disordered phases. In principle, this approach
also be applied to the ordered phases of the infinite-rangeXY
Hamiltonian and to other Hamiltonians, e.g., the chains
nonlinearly coupled oscillators of Refs.@2,3#, but this would
require some adjustments in the theory, and will not be
tempted here.

Except for being perturbative, the ‘‘stochastic approac
is a very general scheme, user friendly, and upgradea
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From a theoretical point of view, it represents a large i
provement over its predecessor, the phenomenological/m
field ‘‘geometric method’’@2,3#. However, as a counterpart t
its generality, the stochastic approach is not easy to im
ment. The example we analyze in this paper is probably
simplest conceivable one: We are just beginning to g
some intuition and to develop the tools that more sophi
cated applications will require.

The paper is organized in the following way. For reaso
of self-containedness, we begin by presenting a short rev
of the theory in Sec. II. The systems to be studied are in
duced in Sec. III, where we also work out the predictions
the theory for these particular systems. Section IV conta
the critical comparison of theoretical results with numeric
simulations. Section V presents a summary and the conc
ing remarks.

II. REVIEW OF THE THEORY

The theory developed in Ref.@1# can, in principle, be
applied to any dynamical system. However, given that
approach is perturbative, its success will in general dep
on the choice of the unperturbed system. Here we res
ourselves to perturbations of ballistic motion, i.e., Hamilt
nians of the type

H5
1

2I (
i 51

N

pi
21V~q1 , . . . ,qN!, ~1!

with qi and pi the conjugate position-momentum coord
nates,I the mass~or moment of inertia! of the particles, and
the interactionV that we assume to be small.

Let us denote phase space points byx
5(q1 , . . . ,qN ,p1 , . . . ,pN) and tangent vectors byj
5(dq1 , . . . ,dqN ,dp1 , . . . ,dpN)T. Differentiating the
Hamilton equations, one obtains the evolution equations
tangent vectors:

j̇5A~ t !j. ~2!

For a Hamiltonian of the special form~1!, the operatorA has
the simple structure,
©2003 The American Physical Society20-1
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A~ t !5S 0 1/I

2V~ t ! 0 D . ~3!

HereV is the Hessian matrix of potentialV, namely

Vi j 5
]2V

]qi]qj
. ~4!

Once initial conditionsx0 and j0 have been specified, th
Lyapunov exponentl is found by calculating the limit@7#,

l5 lim
t→`

1

2t
lnuj~ t;x0 ,j0!u2. ~5!

We assume that for any initial conditionx0 in phase space
the trajectoryx(t;x0) is ergodic on its energy shell. Thi
implies that l depends only on energy and other syst
parameters, but not onx0, which can then be chosen ran
domly according to the microcanonical distribution. The
will also be no dependence on initial tangent vectors,
cause ifj0 is also chosen randomly, it will have a nonze
component along the most expanding direction. Moreove
the corrections to the exponential law implicit in Eq.~5! are
neglected, one can write

l' lim
t→`

1

2t
ln^uj~ t;x0 ,j0!u2&, ~6!

brackets meaning microcanonical averages overx0. This ap-
proximation will be analyzed in Sec. IV with the help o
numerical simulations.

By letting x0 be a random variable,V(t;x0) becomes a
stochastic process, and Eq.~2! can be treated as a stochas
differential equation. However, as we are interested in
square of the norm ofj, we focus not on Eq.~2! itself, but in
the related equation for the evolution of the ‘‘density matri
jjT:

d

dt
~jjT!5AjjT1jjTAT[ÂjjT, ~7!

the rightmost identity defining the linear superoperatorÂ.
For the purpose of the perturbative approximations to
done, the operatorÂ is split into two parts

Â5Â01Â1~ t !, ~8!

where Â0 corresponds to the evolution in the absence
interactions. In our caseÂ0 and Â1 are associated with

A05S 0 1

0 0D and A15S 0 0

2V~ t ! 0D , ~9!

respectively~we have setI 51, but it can be brought back a
any moment by dimensional considerations!. Whenever
A1(t) is small, it is possible to manipulate Eq.~7! to derive
an explicit expression for the evolution of theaverageof
jjT:
03612
-

if

e

e

f

^jjT&~ t !5etL̂j0j0
T , ~10!

where L̂ is a time-independent superoperator given by
perturbative expansion:

L̂5Â01^Â1&1E
0

`

dt^dÂ1~ t !etÂ0dÂ1~ t2t!e2tÂ0&1•••,

~11!

with

dÂ1~ t !5Â1~ t !2^Â1&. ~12!

A clear exposition of this derivation, together with a detail
discussion of its domain of validity, has been given by v
Kampen@8#.

Let Lmax be the eigenvalue ofL̂ which has the largest rea
part. Taking the trace of Eq.~10!, one sees that the large
Lyapunov exponentl is related to the real part ofLmax by

l5
1

2
Re~Lmax!. ~13!

In Eq. ~11!, we give explicitly only the first two cumu-
lants, the dots stand for third cumulants and higher-or
ones. If all cumulants were summed up, Eq.~10! would be
exact in the long-time regimet@tc @8#. From now on, we
restrict our analysis to the propagatorL̂ truncated at the sec
ond order. The perturbative parameter controlling the qua
of the truncation is the product of two quantities, the ‘‘Kub
number’’ stc . The first factor,s, characterizes the ampli
tude of the fluctuations ofÂ1(t). The second,tc , is the
correlation time ofÂ1(t).

To proceed further one needs the matrix ofL̂ in some
basis. The crudest approximation consists in restrictingL̂ to
the subspace spanned by the following three matrices:

I15S 1 0

0 0D , I25S 0 0

0 1 D , I35S 0 1

1 0D . ~14!

This choice is equivalent to amean-field approximation in
tangent space@1#. After some lengthy algebra, one arrives
the corresponding 333 matrix for L̂:

L5S 0 0 2

2s2tc
(1) 22s2tc

(3) 22m

2m12s2tc
(2) 1 22s2tc

(3)
D , ~15!

with the definitions

m5
1

N
Tr ^V&, ~16!

s25
1

N
Tr ^~dV!2&, ~17!
0-2



nc

en

ng

n

ve
th

in
d

r

e
o

ew
t

th
le
a
e

r
lly
es
ibit
n-

dard
allis
rro-

is

the

ow
hase
of

nu-
the
he

ic

ag-

-
ach
ric
ac-
re-

ro-

de-

-
the
the

in
he
of
s

tion

eld
the
ian

. In
ical

y-
-

LYAPUNOV EXPONENT OF MANY-PARTICLE . . . PHYSICAL REVIEW E 68, 036120 ~2003!
tc
(k11)5E

0

`

dttkf ~t!, ~18!

where we have introduced the normalized correlation fu
tion f (t):

f ~t!5
1

Ns2
Tr ^dV~0!dV~t!&. ~19!

@A Lyapunov exponent with the correct units~inverse time!
is obtained by making the substitutionsm,s→m/I ,s/I in
Eq. ~15!.#

In the mean-field approximation, the Lyapunov expon
is expressed in terms of the set of four parametersm and
s2tc

(k11) , k50,1,2. The parametersm and s are, respec-
tively, the mean and variance of the stochastic processV(t),
and can in principle be obtained analytically by calculati
the corresponding microcanonical averages.

The characteristic timetc
(1)[tc is naturally interpreted as

the correlation time of the processV(t). For instance, iff (t)
is approximately Gaussian, the expansion of^V(0)V(t)&
around t50 gives an explicit formula for the correlatio
time, namely

1

tc
5F 2

ps2N
TrK S dV

dt D
2L G 1/2

. ~20!

In this casetc
(2) andtc

(3) are trivially related totc :

tc
(2)5

2

p
tc

2 , ~21!

tc
(3)5

2

p
tc

3 . ~22!

III. THE INFINITE-RANGE XY HAMILTONIAN

In this section we start the application of the perturbati
mean-field theory of Sec. II to a specific model. Consider
one-dimensional Hamiltonian

H5
1

2I (
i 51

N

Li
21

J

2N (
i , j 51

N

@12cos~u i2u j !#. ~23!

This is the so-called mean-fieldXY Hamiltonian~HMF!. It
represents a lattice of classical spins with infinite-range
teractions. Each spin rotates in a plane and is therefore
scribed by an angle 0<u i,2p, and its conjugate angula
momentumLi , with i 51, . . . ,N. The constantsI andJ are
the moment of inertia and the interaction strength, resp
tively. ~Of course, one can also think of point particles
massI moving on a circle.!

The HMF has been extensively studied in the last f
years~see Ref.@6# for a review!. The reasons for the interes
in this model are various. From a general point of view,
HMF can be considered the simplest prototype for comp
systems with long-range interactions such as galaxies
plasmas~in fact, the HMF is a descendant of the mass-sh
03612
-
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gravitational model@5#!. But the HMF is also interesting fo
its anomalies, be them model specific or not. Especia
worth of mention are the long-lived quasiequilibrium stat
observed in the ferromagnetic HMF. These states exh
breakdown of ergodicity, anomalous diffusion, and no
Maxwell velocity distributions@9#. The explanation of these
unusual behaviors may require an extension of the stan
statistical mechanics, e.g., along the lines proposed by Ts
@10#. ~Interesting anomalies are also present in the antife
magnetic HMF@11#.!

The simplicity of the HMF makes possible a full analys
of its statistical properties either in the canonical@5# or mi-
crocanonical ensemble@12,13#. If interactions are attractive
(J.0), the system exhibits a ferromagnetic transition at
critical energyEc53JN/4. In the caseJ,0 there is no or-
dered phase with finite magnetization and, for not too l
temperatures, the system behaves like the disordered p
of the J.0 case. However, at small energies, some kind
order appears, leading to a complex dynamical behavior@11#.

Lyapunov exponents have been studied in detail, both
merically and analytically. For the ferromagnetic case,
simulations@6,14,15# show that in the magnetized phase t
Lyapunov exponent remains finite in the thermodynam
limit N→`. In contrast, ifE.Ec , l goes to zero whenN
→`; the same behavior is also observed in the antiferrom
netic case in all the energy range@6,16#. The first theoretical
studies were due to Firpo@17#, who derived analytical ex-
pressions using the geometric method@2,3# ~see also the dis-
cussion in Ref.@16#!. Scaling laws in the high-energy re
gimes were derived as well using a random-matrix appro
@18#. At low temperatures the predictions of the geomet
method for the HMF’s Lyapunov exponent are not satisf
tory. There is solid evidence that the geometric method p
dicts wrong scaling laws at low temperatures for both fer
magnetic and antiferromagnetic interactions@14,16#. This
means that there are important gaps in the theoretical
scription of the Lyapunov exponent of the HMF~and of
many-particle systems, in general!. Further studies are nec
essary for understanding the precise domain of validity of
existing theories: this knowledge will be used to make
corresponding improvements.

Going back to the stochastic approach, it was proven
Ref. @1# that the mean-field approximation is exact in t
HMF ~this agrees with the supersymmetric analysis
Tănase-Nicola and Kurchan@19#!. In the disordered phase
of the HMF the fluctuations are small~see below!, so it is
expected that the second-order perturbative approxima
will work well, irrespective of the sign ofJ.

In order to test the stochastic approach, in its mean-fi
second-order perturbative version, one has to calculate
average, variance, and correlation function of the Hess
V(t), i.e., Eqs.~16!, ~17!, and ~19!. These ingredients are
microcanonical averages of the appropriate observables
the disordered regimes, we will consider that microcanon
and canonical averages are equivalent~to leading order in
N), so we will prefer the simpler canonical averaging. An
way, we will verify numerically that canonical and time av
erages coincide.
0-3
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A. Calculation of µ

Before embarking in the calculation of canonical av
ages, it is convenient to write Hamiltonian~23! in the sim-
plified form:

H5
1

2I (
i 51

N

Li
21

JN

2
~12m2!, ~24!

where we have introduced the magnetization per particle

m5
1

N (
i 51

N

r̂ i , ~25!

with

r̂ i5~cosu i ,sinu i !. ~26!

In terms ofm and $ r̂ i% the elements of the Hessian matr
read

Vii 5JS m• r̂ i2
1

ND , ~27!

Vi j 52Jr̂ i• r̂ j , iÞ j . ~28!

Then one has

m/J5^m2&2
1

N
. ~29!

Our next objective is the average^m2&. The interacting part
of the canonical partition function reads

Z~b!}E duebJNm2/2. ~30!

The integration over the angles can be reduced to an inte
tion over the possible magnetizations:

Z~b!}E dmg~m!ebJNm2/2. ~31!

Here g(m) represents the density of states inu space with
magnetizationm. The problem of findingg(m) has a long
history and is known as Pearson’s random-walk probl
@20#. There are no simple closed expressions forg(m), but
as we are interested in the disordered phases, wherem is of
the order of 1/AN, it suffices to use the central-limit approx
mation:

g~m!}e2Nm2
. ~32!

The relative error of this approximation is@20#

12
1

2N S 122Nm21
1

2
N2m4D1•••. ~33!

So, we can safely use expression~32! if N@1 and the rel-
evant configurations are such thatNm2;1. The last condi-
tion is synonymous with disorder. It is always satisfied in t
03612
-

ra-

e

antiferromagnetic case. In the caseJ.0, it is satisfied if the
energy is above the critical value«53J/4, but not very close
to it.

Putting together formulas~31! and~32!, we get the prob-
ability distribution ofm. To leading order in 1/N, we have

P~m!}expF2NS 12
bJ

2 Dm2G . ~34!

And then we arrive at

^m2&'
1

N~12bJ/2!
~35!

~here and in the following,' means ‘‘equal to leading orde
in 1/N’’ !. This expression, together with Eq.~24! and the
equipartition theorem,kT5^Li

2/I &, allows us to obtain the
relationship between the temperatureT and the energy pe
particle«5E/N:

kT'2«2J. ~36!

As a function of«, the averagem reads

m/J'
1

N~4«/J23!
. ~37!

Combining Eqs.~29! and ~35! one sees thatm is a finite-
temperature correction to theT5` magnetization. So, for
fixed N, m goes to zero as the energy is increased. Equa
~37! coincides with the result obtained by Firpo using a d
ferent technique@17#.

B. Calculation of s2

Given that all degrees of freedom are statistically equi
lent, the definition ofs2, Eq. ~17!, can be expressed as

s25^@~dV!2#11&5(
j 51

N

^~dV1 j !
2&, ~38!

the rightmost identity following from the symmetry ofV.
The above mentioned equivalence can be used once m
together with the definition ofVi j , to obtain

s2

J2
5^~m• r̂1!2&2^m• r̂1&

21
1

N
@^~ r̂1• r̂2!2&2^ r̂1• r̂2&

2#.

~39!

To proceed with the evaluation ofs2, one needs the prob
ability distributions for two and three particles,P2(u1 ,u2)
andP3(u1 ,u2 ,u3). Consider firstP2, which is just

P2~u1 ,u2!}E du3•••duNebJNm2/2. ~40!

To do the integrations we split the magnetization into tw
parts: the contribution from particles 1 and 2, and the
mainder

m5m121m3N , ~41!
0-4



e

te
la

is
s

re

ta

er-

e
es
. If
led

i-
ly.
s.
the
ter-

e

f
not
ns

s,
ti-
in-

is-

LYAPUNOV EXPONENT OF MANY-PARTICLE . . . PHYSICAL REVIEW E 68, 036120 ~2003!
where

m125
1

N
~ r̂11 r̂2!, ~42!

m3N5
1

N (
i 53

N

r̂ i . ~43!

We outline the final steps. Like done before, we introduc
density of configurationsg(m3N):

P2~u1 ,u2!}E dm3Ng~m3N!expFbJN

2
~m121m3N!2G .

~44!

Now invoke the central-limit theorem to approxima
g(m3N); switch to polar coordinates; integrate over the po
angle, and then over the modulusm3N ~the upper limit of
integration can be extended to infinity!. The final result is

P2~u1 ,u2!'A exp@a~ r̂1• r̂2!#, ~45!

whereA is a normalization constant and

a5
2

N~4«/J23!
. ~46!

The parametera is the relevant perturbative quantity in th
problem. It is small wheneverN@1 and the energy exceed
the transition value by a finite, large enough, amount.~Note
that a52m/J.!

Proceeding in the same way, one also finds the th
particle distribution function:

P3~u1 ,u2 ,u3!'B exp@a~ r̂1• r̂21 r̂2• r̂31 r̂3• r̂1!#. ~47!

With the distribution functionsP2 and P3 in our hands, we
go back to the calculation ofs2, Eq. ~39!. The moments of
r̂1• r̂2 are immediate:

^ r̂1• r̂2&'
a

2
, ~48!

^~ r̂1• r̂2!2&'
1

2
. ~49!

In addition one has

^m• r̂1&'
1

N
1^ r̂1• r̂2&5O~1/N!. ~50!

Then it is easy to verify that Eq.~39! becomes

s2

J2
'^~m• r̂1!2&1

1

2N
. ~51!

Splitting m into its N parts, and using that particles are s
tistically equivalent, we arrive at
03612
a

r

e-

-

s2

J2
'

1

N
1^~ r̂1• r̂2!~ r̂1• r̂3!&. ~52!

The three-body average is quickly done~with the help of
MATHEMATICA @21#! by expandingP3 in powers ofa:

^~ r̂1• r̂2!~ r̂1• r̂3!&'
a

4
. ~53!

So, the final expression fors2 is

s2'
J2

N S 11
Na

4 D . ~54!

C. Correlation function and correlation time

Above the transition, the relative importance of the int
actions decreases with increasing« andN, and the dynamics
is dominated by the kinetic part of the Hamiltonian. Th
picture is that of particles rotating almost freely during tim
which are long as compared to the mean rotation period
the system is in equilibrium, the dynamics can be mode
by the free-motion equations

uk'uk~ t50!1Lkt/I , 1<k<N, ~55!

where $uk(t50)% and $Lk% are independent random var
ables with uniform and Maxwell distributions, respective
This is a first approximation valid only during short time
Then it is easy to show that the correlation functions of
elements of the Hessian are directly related to the charac
istic function of the momentum distribution, i.e.,

2^cos~uk2u j !~t!cos~uk2u j !~0!&'u^exp~2 iL kt/I !&u2.
~56!

In equilibrium the characteristic function is Gaussian:

u^exp~2 iL kt/I !&u25exp@2~t/t* !2#, ~57!

with

t* 5A I

kT
. ~58!

After using definition~18! we arrive at the simplest estimat
of the correlation time in the high-energy regime,

tc;A pI

4kT
. ~59!

The correlation timetc is of the order of the mean period o
rotation. It is independent of the system size because it is
directly associated with interactions. Of course, interactio
are responsible for the Maxwell equilibrium distribution
and for the extinction of the ballistic regime and its subs
tution by a random-walk one. However, the time scales
volved in these processes are much longer thantc : the first
one is the relaxation time for the one-body momentum d
0-5
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tribution and the second is the momentum correlation tim
Both times grow withN, and are not related withtc .

A more precise estimate fortc can be derived if the cor
relation function is indeed Gaussian. Then the correlat
time is that given by Eq.~20!. We will not detail the calcu-
lation of the canonical averages of Eq.~20! because they are
very similar to those of Sec. III B. We just show the resu

tc'A pI

4kT S 11Na/4

11Na/8D , ~60!

very close to the simple estimate of Eq.~59!.

D. The Lyapunov exponent

Gathering the results of previous sections, one can c
struct the 333 matrix L associated to the average propag
tor for the HMF. The Lyapunov exponent is extracted fro
the eigenvalue ofL with the largest real part. Though th
general expression forl might be written down explicitly, its
content would not justify its extension. Notwithstanding, it
worth exhibiting the leading term in 1/N. Note that bothm
ands2 are of order 1/N, and thattc

(k)5O(1) ~once the cor-
relation function is assumed Gaussian!. Then one gets

l'S s2tc

2 D 1/3

1O~N22/3!5O~N21/3!, ~61!

with s2 andtc given by Eqs.~54! and~60!. The absence o
m in the leading-order expression forl is a reflection of the
fact that in the disordered phases of the HMF, fluctuatio
are much larger than the average, i.e.,s@m, and dominate
the tangent dynamics.

IV. NUMERICAL STUDIES

For comparing the theory with simulations, we will us
the data existing in the literature@16,22,23# as well as some
additional data generated by us. We give a succinct desc
tion of how our simulations were made. Hamilton’s equ
tions of theN-particle system were evolved using the Ne
Yoshida fourth-order symplectic algorithm@24#. The time
step was fixed through all simulations toDt50.1 ~units are
such thatI 51 and uJu51). Initial conditions were chosen
randomly: angles with a uniform distribution in@0,2p# and
angular momenta Gaussian distributed. Then all mome
were shifted by a fixed amount to set to zero the total m
mentum~a constant of motion!. Finally, velocities were mul-
tiplied by an appropriate factor to fix the total energy a
chosen valueN«. The initial one-body distributions gene
ated in this way are close to their equilibrium values in t
disordered regimes defined by«.3J/4 andJ.0, or «.0
and J,0. Anyway, before doing any ‘‘measurements’’ th
systems were allowed to relax during a time we callteq,
typically teqP@1000,10 000#. Concerning Lyapunov expo
nents, we used Benettin’s standard algorithm@7#. The initial
Euclidean distance between a trajectory and its compa
were set tod051026. We used two alternative renormaliza
tion procedures:~a! the distance vector was compressed e
time the distance exceededd0f , usually with f 510 or f
03612
.

n

n-
-

s

ip-
-

ta
-

n

h

520; ~b! renormalizations were made at equally spaced
stants, the interval between successive renormalizations
responding, in average, to expansion factorsf '10,20.

Numerically, the Lyapunov exponent is estimated by a
eraging over initial conditions which are propagated durin
finite time:

l~ t ![
1

2t
^ lnuj~ t;x0 ,j0!u2&. ~62!

We usually considered ten pairs of randomly chosen ini
conditions. Each pair was propagated until a timet5tprop,
when we judged that (1/t)lnuju had converged to a limiting
value. Typically, tpropP@1000,5000#. Remember, however
that our theoretical scheme commutes logarithm and a
age. In order to test this approximation, we also compu
the average

l* ~ t ![
1

2t
ln^uj~ t;x0 ,j0!u2&. ~63!

In many cases we run tests to verify that our numeri
results are robust against suitable changes of initial co
tions, renormalization procedure, or the set of parame
$teq,tprop,Dt,d0 , f %.

A. Ferromagnetic case

Figure 1 shows the largest Lyapunov exponent of the
romagnetic HMF as a function of system sizeN, for some
selected energies«. The symbols correspond to the simul
tions of Refs.@23# («55.0) and@22# («51.0,10.0,50.0). We
have considered large particle numbers (N>100) and ener-
gies well above the transition («.1.0) to ensure~i! the va-
lidity of the approximations invoked in calculating the ave
ages of Sec. III, and also~ii ! to guarantee that we are in
disordered, quasiballistic regime. Full lines correspond to
theoretical Lyapunov exponent obtained by diagonalizing
333 matrix of Sec.~II !, but we could as well have used th
asymptotic expression of Eq.~61! ~minor differences would
only be visible in the case«51). Dotted lines correspond to
the geometric prediction, as calculated by Firpo, i.e., E
~1!–~3! and~21! and~22! of Ref. @17#. An inspection of Fig.
1 allows us to verify that there is a satisfactory agreem
between theory and simulation, especially forN<500. For
larger systems numerical data deviate upward from the
~Nobre and Tsallis also observed deviations from theN21/3

law in the three-dimensional version of theXY Hamiltonian
@25#.! This is the opposite to natural expectation ‘‘the larg
the system, the better the approximations.’’ We believe t
the reason for this deviation may be that the system has
reached microcanonical equilibrium—as far as the Lyapun
exponent is concerned.

It is well known that the HMF relaxes very slowly, e.g
Latora, Rapisarda, and Ruffo@14# noticed that for«51, the
system may get trapped in quasiequilibrium states simila
those observed below the transition. A very slow relaxat
led the same authors to conclude that dynamics is balli
for «55.0, N51000, t,105 @26#. If slow relaxation is rul-
0-6
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ing, the numerical simulations are likely to provide ‘‘quas
equilibrium’’ Lyapunov exponents, rather than the microc
nonical ones. Actually, as energies and/or system sizes
increased, the system becomes progressively more integ
and deviations from microcanonical predictions will be ne
essarily observed.

At this point it is desirable to verify if the canonical ca
culations ofm, s2, and t (k) reproduce the correspondin
dynamical averages. In Fig. 2, we display numerical val
for m ands2, obtained by averaging over 1000 initial co
ditions, and in the time window@5000,10 000#. There is a

FIG. 1. Largest Lyapunov exponent of the mean-fieldXY
Hamiltonian (J51) as a function of system sizeN, for some se-
lected energies«. From top to bottom,«51.0,5.0,10.0,50.0, re
spectively. Symbols correspond to numerical simulations of Ham
ton’s equations. Full lines are our theoretical results; dotted li
correspond to the prediction of the ‘‘geometric method’’~see text!.

FIG. 2. Numerical~symbols! and analytical~lines! values ofm,
s2, andtc for the HMF model (J51) as functions of energy« and
system sizeN5100,200,500,1000. Error bars are of the order of
symbol size, or smaller.
03612
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satisfactory overall agreement. However, a close inspec
reveals deviations. We have observed that, in general,
relative deviations are larger form than fors2 ~not shown!.
This behavior can be understood by noting that the ini
value of s2 is already very close to the canonical valu
within a few percent for the cases considered. On the c
trary, the initial value form is zero, far from its equilibrium
value~the slow growth ofm is one of the aspects of the slo
relaxation to equilibrium!. In any case we verified~graphics
not shown! that the errors inm ands2 do not account for the
deviations of Lyapunov exponents, i.e., feeding the the
with the numericalm and s2 does not improve the agree
ment between theoretical and simulatedl ’s.

In order to discuss the correlation times, let us now lo
at the correlation functions of Fig. 3. Theory and simulatio
agree almost perfectly in the central part of the distributio
There are long tails which cannot be appreciated in the fig
but might be responsible for larger-than-predicted correlat
timest (k). We recall that the quantitiest (k) are moments of
the correlation functionf (t), and as such very sensitive t
the precise shape of the tails. We verified that a pure num
cal evaluation oft (k) fails due to poor convergence of th
corresponding integrals—this effect is stronger fork51,2.
So, at present we cannot say with certainty if the theoret
estimates fort (k), which assume a Gaussian correlati
function, agree with the corresponding dynamical ones.
resolve this issue, one should make a very careful stud
the tails of the correlation functions. Though desirable su
analysis exceeds the scope of this paper.~Interesting infor-
mation about correlation functions, and, in general, about
geometric method, can be found in Refs.@27,28#.!

In passing, let us comment that, for the theory to wo
f (t) must decay fast enough, e.g., a correlation funct
such asG(t)5sinvt/vt @3,27# would explode the second
cumulant.

To conclude the analysis of the ferromagnetic case, a p
sible difference betweenl andl* @Eqs.~62! and~63!# can-
not be the explanation for the observed deviations betw
theory and simulations because it is expected thatl,l*
~see below, and Ref.@29#!.

B. Antiferromagnetic case

Figure 4 shows the results of numerical simulations fol
and l* . ~The numerical results forl, in the caseN5100,

l-
s

e

FIG. 3. Correlation functions forN5200 and several energies
from right to left, «51.0,5.0,50.0 (J51). Symbols correspond to
simulations withteq510 000 and averaging over 100 initial cond
tions. The lines represent our theoretical prediction~Gaussians!.
0-7
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are consistent with those obtained in Ref.@16#.! Though not
shown, as temperature goes to zero («→21/2), the numeri-
cal l ’s go to zero too, the empirical scaling law beingl
}T1/2 @16#. Note that the relative differences betweenl and
l* are indeed small, and decrease with increasingN. We
have not analyzed the behavior ofl* at very low tempera-
tures; in particular, we cannot say whether the scaling
l* }T1/2 is verified or not.

For high energies, i.e.,«.1, our theoretical predictions
agree reasonably well with simulations. However, when
energy tends to its ground-state value,«→21/2, our theo-
retical Lyapunov exponent diverges dramatically from e
periments. These behaviors can be easily understood
looking at the energy dependence of the perturbative par
eter st. Figure 5 shows that, for a fixed system size,s2

remains bounded for all energies, growing by a factor of 2
T goes from zero to infinity. On the other side,t scales with
temperature like 1/AT, and then,st}1/AT. This means that
the theory must fail asT→0. The divergence of the Kubo
number atT50 is a manifestation of the complexity of th
dynamics close to the antiferromagnetic ground state@6,11#.
Notwithstanding the overall agreement at high temperatu
we must point out a nonresolved source of annoyance. A
fixed energy the Kubo parameter scales with the system
like st}1/AN. Consequently, the relative error of the the
retical prediction should decrease with increasingN, like
1/AN. However, e.g., if we take«57.5, and compare theor
versusl* , we see that the relative error is about 11%, ins
sitive to variations ofN from 100 to 2500.

FIG. 4. Lyapunov exponent of the antiferromagnetic mean-fi
Hamiltonian model as a function of energy«. Symbols are the
result of simulations using Benettin’s algorithm. Open symbols c
respond to the usual Lyapunov exponentl and hollow symbols to
l* ~see text!. We usedteq51000 and twin trajectories were propa
gated duringtprop53000. Full lines correspond to our theory, dott
ones to the geometric method.
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For the sake of completeness, we exhibit in Figs. 5 an
the comparison of canonical and dynamical averages form,
s, and f (t): no significant differences can be seen.~Again,
the tails of the correlation functions may deserve a dee
analysis.!

Figure 4 also displays the predictions of the geome
method @17#. In the high-temperature regime, the relati
error of the geometric prediction is somewhat larger th
ours. At low temperatures, the geometric method predic
qualitatively correct behavior,l→0, but with the wrong
scaling law:l}T2 @17# instead ofl}T1/2 @16#.

V. SUMMARY AND CONCLUDING REMARKS

In a previous paper@1#, we proposed a theoretical ap
proach to the determination of the largest Lyapunov ex
nent of many-particle Hamiltonian systems. Despite seve
crude approximations that had to be made, it was not co
pletely clear whether the resulting perturbative/mean-fi
script could be carried out for a specific system, one of
obstacles being the analytical determination of the corre
tion functions.

Now we have verified that the stochastic recipe can
deed be executed, and works satisfactorily in the quasiba
tic regimes of the infinite-rangeXY Hamiltonians. These sys
tems are especially useful for testing the theory because
make the ‘‘mean-field’’ diagonalization exact. Howeve

d

r-

FIG. 5. Numerical and analytical values ofm and s2 for the
mean-fieldXY Hamiltonian model as functions of energy« for N
5100 (J521). The results shown are time averages in the w
dow tP@5000,10 000#, and over 100 initial conditions. Lines cor
respond to the corresponding canonical averages.

FIG. 6. Correlation functions forN5100 and several energie
(J521). Averaged over 100 initial conditions. Equilibration tim
teq510 000. Solid lines are our analytical results.
0-8
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three additional sources of error have to be considered. F
of all, we made the simplification of taking the logarithm o
of the average@Eq. ~6!#. That is, using a spin-glass analog
we are estimating an ‘‘annealed’’ Lyapunov exponentl* in-
stead of the usual ‘‘quenched’’l @19#. Quenched average
can be calculated, as shown by Ta˘nase-Nicola and Kurchan
@19#, but they require more sophisticated tools, such as
replica trick or the supersymmetric approach. In the ca
considered in this paper, we verified that the difference
tween both Lyapunov exponents is very small. Then it w
not necessary to go beyond the annealed averaging.

The second approximation, and the most important one
the truncation of the cumulant expansion at the second or
By doing so, we introduce a relative error of the order of t
Kubo numberstc . This explains the failure of the theory i
the low-temperature regime of the antiferromagnetic HM
given that the amplitude of the fluctuationss remains
bounded but the thermal timetc diverges. It is not clear a
present if the theory can be improved to account for t
regime. Further studies are necessary. In particular, we h
to understand what kind of dynamical correlations deve
as the system approaches the ground state. There is an
problem that requires an answer: We have not observed
the agreement between theory and simulations betters w
the size of the system is increased, for fixed energy. This i
contradiction with the Kubo number decreasing like 1/AN.

The difficulties of the preceding paragraph may be rela
to the third approximation, which concerns the interact
representation we have used. In order to isolate the fluc
tions, one should work in the representation associated to
p
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average Hessian. Instead, we have chosen the free-ro
representation. That is, in constructing the ‘‘free propagato
we neglected the average Hessian of the interaction poten
As long as the motion is quasiballistic, this approximati
seems justified. It will be certainly wrong, e.g., in the low
temperature phase of the ferromagnetic HMF, where the q
dratic part of the interaction is really important. We are c
rently working on the implementation of the best interacti
representation for the infinite-rangeXY models. The results
will be presented in a forthcoming paper.

The mean-field diagonalization is exact for the syste
considered here. In other cases, it represents just a trunc
of the basis for diagonalizingL̂ @Eq. ~11!#. Note, however,
that we are dealing with a Hermitian problem, i.e., findi
the largest eigenvalue of^jjT&(t) @Eq. ~10!#. Truncation of
the basis will produce a lower bound to the largest Lyapun
exponent~provided thatL̂ is calculated accurately!. So, this
problem is analogous to finding the ground-state energy
quantum Hamiltonian. Any small subspace can be con
ered, the choice being guided by the special characteristic
the system under study.

Like its quantum analog, the Lyapunov problem see
reluctant to admit simple general solutions. Each class
systems may require special consideration.
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659 ~2000!; J. Barré, T. Dauxois, and S. Ruffo, Physica A295,
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