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Lyapunov exponent of many-particle systems: Testing the stochastic approach

Celia Anteneodd, Raphael N. P. Maid,and RaliO. Vallejos
Centro Brasileiro de Pesquisas $icas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil
(Received 5 June 2003; published 22 September)2003

The stochastic approach to the determination of the largest Lyapunov exponent of a many-particle system is
tested in the so-called mean-fieldY Hamiltonians. In weakly chaotic regimes, the stochastic approach relates
the Lyapunov exponent to a few statistical properties of the Hessian matrix of the interaction, which can be
calculated as suitable thermal averages. We have verified that there is a satisfactory quantitative agreement
between theory and simulations in the disordered phases of Yheodels, either with attractive or repulsive
interactions. Part of the success of the theory is due to the possibility of predicting the shape of the required
correlation functions, because this permits the calculation of correlation times as thermal averages.
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[. INTRODUCTION From a theoretical point of view, it represents a large im-
provement over its predecessor, the phenomenological/mean-

In a recent papel] we presented a theoi§the stochas- field “geometric method’[2,3]. However, as a counterpart to
tic approach’) that allows to estimate the largest Lyapunov its generality, the stochastic approach is not easy to imple-
exponent of many-particle systems having a smooth Hamilment. The example we analyze in this paper is probably the
tonian. This theory is inspired by and complementary to thesimplest conceivable one: We are just beginning to gain
work of Pettini and co-workerf2,3], and Barnetet al.[4]. some intuition and to develop the tools that more sophisti-

Starting from the linear equations that describe the evolucated applications will require.
tion of tangent vectors, we used in REF] the techniques of The paper is organized in the following way. For reasons
stochastic linear differential equations to obtain an averagef self-containedness, we begin by presenting a short review
propagator whose diagonalization provides the desire@f the theory in Sec. Il. The systems to be studied are intro-
Lyapunov exponent. Even though the result obtained in thigluced in Sec. lll, where we also work out the predictions of
way is formally (almos} exact, approximations must be in- the theory for these particular systems. Section IV contains
voked in practical situations to calculate a concretethe critical comparison of theoretical results with numerical
Lyapunov exponent. simulations. Section V presents a summary and the conclud-

The aim of this paper is to show that, even if one makedng remarks.
several crude approximations, the theory still keeps the
strength to describgguantitatively some weakly chaotic Il. REVIEW OF THE THEORY
many-particle systems.

In applications, it is necessary to invoke two main ap- The theory developed in Refl] can, in principle, be
proximations. First, the average propagator is obtained bypplied to any dynamical system. However, given that the
truncating a perturbative expansion at the second order. Seapproach is perturbative, its success will in general depend
ond, the propagator is diagonalized in a small subspace. Wen the choice of the unperturbed system. Here we restrict
have chosen the infinite-rang€Y Hamiltonian[5,6] as our ~ ourselves to perturbations of ballistic motion, i.e., Hamilto-
test system because diagonalization can be carried out eRians of the type
actly here. In this way one isolates the unavoidable effects of
truncating the perturbative series from other unessential 1 )
sources of error. We have compared the predictions of the H=5r Izl pi+ WAy, ... AN, (1)
“stochastic approach” with numerical simulations of the
many-particle dynamics, verifying that the theory works very
well in the disordered phases. In principle, this approach ca
also be applied to the ordered phases of the infinite-range . .
Hamiltonian and to other Hamiltonians, e.g., the chains oithe interactiorl’ that we assume to be small. :
nonlinearly coupled oscillators of Ref2,3], but this would Let us denote phase space points by
require some adjustments in the theory, and will not be at—:(ql' <+ NP1y - PR) andT tanggnt vgctprs byg
tempted here. =(5q1, - ,5q,\_, 0P, - - ,5pN_) : D|ﬁereqt|at|ng _the

Except for being perturbative, the “stochastic approach”Ham'Iton equations, one obtains the evolution equations for
is a very general scheme, user friendly, and upgradeabl@ngent vectors:

N

Hvith g; and p; the conjugate position-momentum coordi-
nates,| the masgor moment of inertipof the particles, and

E=A(NE. (2
*Email address: celia@cbpf.br
"Email address: rapha@cbpf.br For a Hamiltonian of the special forfd), the operatoA has
*Email address: vallejos@cbpf.br the simple structure,
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oV (e6T) () =eeog], (10
AV v o ) © )
where A is a time-independent superoperator given by the
HereV is the Hessian matrix of potentidl, namely perturbative expansion:
?V o x X o )
Vi=3gaa. @) A=Ag+(A)+ | dr(SA,(t)e™osA (t—r)e Aoy + ...,
i qj 0
Once initial conditionsx, and &, have been specified, the 1D
Lyapunov exponenk is found by calculating the limit7], with
1 " . R
A= Iimz—tln|§(t;x0,§0)|2. (5) SAL()=A()—(Ay). (12
t—oo

A clear exposition of this derivation, together with a detailed

We assume that for any initial conditiog in phase space, giscussion of its domain of validity, has been given by van
the trajectoryx(t;X,) is ergodic on its energy shell. This Kampen[8].

implies that\ depends only on energy and other system LetL

garalmeters, CE).Ut ntot t?]mo' V.Vh'Ch can.th?ré.bf.t():htpsen_rrﬁn- part. Taking the trace of Eq10), one sees that the largest
omly according to thé microcanonical distribution. ereLyapunov exponenk is related to the real part df,,, by
will also be no dependence on initial tangent vectors, be-

cause if¢, is also chosen randomly, it will have a nonzero 1

component along the most expanding direction. Moreover, if A= =ReL a0 - (13
the corrections to the exponential law implicit in E§) are 2

neglected, one can write

max D€ the eigenvalue ok which has the largest real

In Eg. (11), we give explicitly only the first two cumu-
1 lants, the dots stand for third cumulants and higher-order
imzln(|§(t;x0,§o)|2), (6)  ones. If all cumulants were summed up, Et0) would be
- exact in the long-time regime> 7. [8]. From now on, we

brackets meaning microcanonical averages ayefThis ap- restrict our analysis to th_e propagathrtruncated_ at the sec-.
proximation will be analyzed in Sec. IV with the help of ond order. Th_e p(_arturbatwe parameter contr_o_llmg the quality
numerical simulations. of the truncation is the product of two quantities, the “Kubo

By letting X, be a random variable/(t:x,) becomes a number” o7.. The first fac:tor,cr, characterizes the ampli-
stochastic process, and H@) can be treated as a stochastic tude of the fluctuations of(t). The secondy., is the
differential equation. However, as we are interested in theorrelation time ofA,(t).

A=
t

square of the norm of, we focus not on Eq2) itself, but in To proceed further one needs the matrix ofin some
theT.reIated equation for the evolution of the “density matrix basis. The crudest approximation consists in restrich
&6 the subspace spanned by the following three matrices:
d "
qr(eeN=AgE + e AT=AeET, (7) L[t oy (o0 (o1 y
1= O O ’ 2= 0 Jl ’ 3™ Jl O . ( )

the rightmost identity defining the linear superopera@or _ S ) ] S
For the purpose of the perturbative approximations to be his choice is equivalent to mean-field approximation in
done, the operatoh is split into two parts tangent spacgl]. After some lengthy algebra, one arrives at

the corresponding 8 3 matrix for A:

A=Ay +A (1), 8
otAL(t) 8 0 0 )
where A, corresponds to the evolution in the absence of A= 2027V -20%78  —2u |, (19
interactions. In our casAy, andA, are associated with —u+t 202ng) 1 _202723)

0! d 0 0 with the definitions
Ro=lg o) @ A=l _yqy o) ©

1
respectively(we have set=1, but it can be brought back at w= NTr (V), (16
any moment by dimensional consideratipn§Vhenever
A;(t) is small, it is possible to manipulate E() to derive L
an explicit expression for the evolution of tleverage of 2_ T 2
£ET: o NTr((é‘V) ), (17)
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(k1) ) gravitational mode[5]). But the HMF is also interesting for
T¢ :fo drrf(7), (18)  jts anomalies, be them model specific or not. Especially
worth of mention are the long-lived quasiequilibrium states

where we have introduced the normalized correlation funcobserved in the ferromagnetic HMF. These states exhibit
tion f(7): breakdown of ergodicity, anomalous diffusion, and non-
Maxwell velocity distributiond9]. The explanation of these
unusual behaviors may require an extension of the standard
statistical mechanics, e.g., along the lines proposed by Tsallis
[10]. (Interesting anomalies are also present in the antiferro-
[A Lyapunov exponent with the correct uniieverse tim¢ ~ magnetic HMF11].)
is obtained by making the substitutionps o— w/l,a/l in The simplicity of the HMF makes possible a full analysis
Eq. (15).] of its statistical properties either in the canonifal or mi-

In the mean-field approximation, the Lyapunov exponentcrocanonical ensembld2,13. If interactions are attractive
is expressed in terms of the set of four parameferand  (J>0), the system exhibits a ferromagnetic transition at the
027"V, k=0,1,2. The parameterg and o are, respec- critical energyE.=3JN/4. In the case)<0 there is no or-
tively, the mean and variance of the stochastic prov&ss, dered phase with finite magnetization and, for not too low
and can in principle be obtained analytically by calculatingtemperatures, the system behaves like the disordered phase

f(r)= ﬁTr (8V(0)8V(7)). (19

the corresponding miqroc(alglonic_al averages. of the J>0 case. However, at small energies, some kind of
The characteristic time; ™= is naturally interpreted as  order appears, leading to a complex dynamical behdgidr
the correlation time of the proce¥4t). For instance, if(7) Lyapunov exponents have been studied in detail, both nu-

is approximately Gaussian, the expansion(¥f0)V(7))  merically and analytically. For the ferromagnetic case, the
around 7=0 gives an explicit formula for the correlation sjmuylations[6,14,19 show that in the magnetized phase the

time, namely Lyapunov exponent remains finite in the thermodynamic
o\ 112 limit N—o. In contrast, ifE>E_, A goes to zero whelN

1 LTr< (d_v) > (200 —*; the same behavior is also observed in the antiferromag-

e | 7wo®N dt netic case in all the energy ranp®16]. The first theoretical

_ @) @) o _ studies were due to Firpl7], who derived analytical ex-

In this caser¢” and 7™ are trivially related tor: pressions using the geometric meth@cd] (see also the dis-

2 cussion in Ref[16]). Scaling laws in the high-energy re-
7@2)=;7§, (21 gimes were derived as well using a random-matrix approach

[18]. At low temperatures the predictions of the geometric
method for the HMF’s Lyapunov exponent are not satisfac-
3 (22) tory. There is solid evidence that the geometric method pre-
¢ dicts wrong scaling laws at low temperatures for both ferro-
magnetic and antiferromagnetic interactiofist,16. This
IIl. THE INEINITE-RANGE XY HAMILTONIAN means that there are important gaps in the theoretical de-
scription of the Lyapunov exponent of the HM@&and of
In this section we start the application of the perturbatiVE/many_partide systems, in gene[aFurther studies are nec-
mean-field theory of Sec. Il to a specific model. Consider thesssary for understanding the precise domain of validity of the
one-dimensional Hamiltonian existing theories: this knowledge will be used to make the
N corresponding improvements.
_ i 2 i Going back to the stochastic approach, it was proven in
214 2N Ref. [1] that the mean-field approximation is exact in the
HMF (this agrees with the supersymmetric analysis of
This is the so-called mean-fieldY Hamiltonian(HMF). It ~ Tanase-Nicola and Kurchafl9]). In the disordered phases
represents a lattice of classical spins with infinite-range inof the HMF the fluctuations are smaliee beloy, so it is
teractions. Each spin rotates in a plane and is therefore dexpected that the second-order perturbative approximation
scribed by an angle €6,<27, and its conjugate angular will work well, irrespective of the sign od.
momentumL;, withi=1,... N. The constants andJ are In order to test the stochastic approach, in its mean-field
the moment of inertia and the interaction strength, respecsecond-order perturbative version, one has to calculate the
tively. (Of course, one can also think of point particles of average, variance, and correlation function of the Hessian
massl moving on a circle. V(t), i.e., Egs.(16), (17), and (19). These ingredients are
The HMF has been extensively studied in the last fewmicrocanonical averages of the appropriate observables. In
years(see Ref[6] for a review. The reasons for the interest the disordered regimes, we will consider that microcanonical
in this model are various. From a general point of view, theand canonical averages are equivaléntleading order in
HMF can be considered the simplest prototype for complexN), so we will prefer the simpler canonical averaging. Any-
systems with long-range interactions such as galaxies anday, we will verify numerically that canonical and time av-
plasmag(in fact, the HMF is a descendant of the mass-sheegrages coincide.

HMZ

[1_C039i_0j)]. (23)
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A. Calculation of p antiferromagnetic case. In the cake0, it is satisfied if the
Before embarking in the calculation of canonical aver-EN€rgy is above the critical value=3J/4, but not very close

ages, it is convenient to write Hamiltonid&3) in the sim- to It. .
plified form: Putting together formula31) and(32), we get the prob-

ability distribution ofm. To leading order in M, we have

1 N

JN
H 2 i:EJ_LI+ 2 (1 m )1 (24) P(m)ocexr{_N 1_’87)m2} (34)
where we have introduced the magnetization per particle And then we arrive at
1 N
m=— > r, (25) N~
N (O =N(1=pn2) (39
with (here and in the following= means “equal to leading order
- ) in 1/N"). This expression, together with ER4) and the
ri=(cosé; ,sind). (26)  equipartition theoremkT=(L?/I), allows us to obtain the

relationship between the temperatdreand the energy per

In terms ofm and{r;} the elements of the Hessian matrix particle s = E/N:

read
. kT~2s—J. (36)
Vii :‘]< m- ri_N)' @7 As a function ofe, the averageu reads
Vi=—Jdr-r;, i#j. (28) - -
! - #= N @sl1-3)" St

Then one has

Combining Egs.(29) and (35) one sees that is a finite-
temperature correction to thE=c magnetization. So, for
fixed N, u goes to zero as the energy is increased. Equation
(37) coincides with the result obtained by Firpo using a dif-
Our next objective is the averagem?). The interacting part ferent techniqué17].

of the canonical partition function reads

ul3=()— <. (29

B. Calculation of o

Z(B)= j dgePINnT2 (30 Given that all degrees of freedom are statistically equiva-
lent, the definition ofo?, Eq.(17), can be expressed as
The integration over the angles can be reduced to an integra-
tion over the possible magnetizations:

N
oz=<[<5v>2]n>=§1 ((8V1))?), (39)

BINNE2
Z(,B)ocf dmg(m)e ' (3Y) the rightmost identity following from the symmetry &f.

. ) The above mentioned equivalence can be used once more,
Here g(m) represents the density of statesérspace with together with the definition o¥;: , to obtain
magnetizatiorm. The problem of findingg(m) has a long
history and is known as Pearson’s random-walk problem 2 . R 1 .. o
[20]. There are no simple closed expressionsgtm), but —=((m-r)?)—(m-ry)?+ AR r2)?)—(ry-15)?].
as we are interested in the disordered phases, wheseof J

jo

the order of 1{/N, it suffices to use the central-limit approxi- (39
mation: To proceed with the evaluation @f?, one needs the prob-
N ability distributions for two and three particleB,( 6, 65)
g(m)xe "M (832 andP4(6,,6,,65). Consider firstP,, which is just
The relative error of this approximation [i20] 2
P2(01,02)0<f d03 . -dﬁNeﬁJN /2. (40)
1—i 1—2Nm2+EN2m4 o (33
2N 2 ' To do the integrations we split the magnetization into two

) ) parts: the contribution from particles 1 and 2, and the re-
So, we can safely use expressi@®) if N>1 and the rel-  mainder

evant configurations are such tHdtn?~1. The last condi-
tion is synonymous with disorder. It is always satisfied in the M= my,+Msy, (41
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where o2 1 o
. ?~N+<(rl'r2)(rl'r3)>- (52
mlzzﬁ(rl"‘rz), (42
The three-body average is quickly dofwith the help of
1 N MATHEMATICA [21]) by expandingP5 in powers ofe«:
m3N:N 2 Fi . (43)
1=3 A A A A a
<(r1'r2)(|’1'r3)>”2- (53
We outline the final steps. Like done before, we introduce a
density of configurationg(may): So, the final expression far? is
BIN 2
Pa( 91ﬂz)°‘f deNg(m3N)eXF{T(mlz+ Man)?|. o2~ Jﬁ( 1+ %) (54)
(44)
Now invoke the central-limit theorem to approximate C. Caorrelation function and correlation time

g(msy); switch to polar coordinates; integrate over the polar
angle, and then over the modulugy (the upper limit of
integration can be extended to infinityThe final result is

Above the transition, the relative importance of the inter-
actions decreases with increasingndN, and the dynamics
is dominated by the kinetic part of the Hamiltonian. The
A oa picture is that of particles rotating almost freely during times
Pa(61,62)~Aexd a(ry-ry)], (49 \which are long as compared to the mean rotation period. If
the system is in equilibrium, the dynamics can be modeled

whereA is a normalization constant and by the free-motion equations

2

2 B~ 0(t=0)+ Lt/l, 1<k=N, (55)
= N(2e/1-3)" (46

where {6,(t=0)} and{L,} are independent random vari-
The parametew is the relevant perturbative quantity in this ables with uniform and Maxwell distributions, respectively.
problem. It is small wheneveX>1 andthe energy exceeds This is a first approximation valid only during short times.
the transition value by a finite, large enough, amoUNbte  Then it is easy to show that the correlation functions of the
thata=2u/J.) elements of the Hessian are directly related to the character-
Proceeding in the same way, one also finds the threestic function of the momentum distribution, i.e.,
particle distribution function:
o 2(cog 6 6;)(7)cog 6= 6;)(0))~ |(exp( —iL7/1))|>.
Pg( 01,02,03)~B eXF[a(r1~ I’2+ Mo I’3+ rg- rl)]. (47) (56)

With the distribution functiond®, and P in our hands, we In equilibrium the characteristic function is Gaussian:
go back to the calculation af?, Eq. (39). The moments of ) 5 5
[(exp(—iLyr/1))|*=exd —(7/7,)*], (57)

r,-r, are immediate:

o with
F1-fo)~—=, (48
< 1 2> 2 |
L Ty = ﬁ (58)
((F1-1)?)~ . (49 o _ _ _
2 After using definition(18) we arrive at the simplest estimate

- of the correlation time in the high-energy regime,
In addition one has

[ ol
<m'Fl>%%+<F1'F2>=O(l/N). (50) 7~ V2T (59)

The correlation timer, is of the order of the mean period of
rotation. It is independent of the system size because it is not
5 directly associated with interactions. Of course, interactions
g - 1 ible for the Maxwell equilibrium distributions
(M- T+ = (51  are responsible fo I equilib | ]
J? 2N and for the extinction of the ballistic regime and its substi-
tution by a random-walk one. However, the time scales in-
Splitting m into its N parts, and using that particles are sta-volved in these processes are much longer thanthe first
tistically equivalent, we arrive at one is the relaxation time for the one-body momentum dis-

Then it is easy to verify that Eq39) becomes
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tribution and the second is the momentum correlation time=20; (b) renormalizations were made at equally spaced in-

Both times grow withN, and are not related with, . stants, the interval between successive renormalizations cor-
A more precise estimate fat, can be derived if the cor- responding, in average, to expansion factiorsl0,20.

relation function is indeed Gaussian. Then the correlation Numerically, the Lyapunov exponent is estimated by av-

time is that given by Eq(20). We will not detail the calcu- eraging over initial conditions which are propagated during a

lation of the canonical averages of E80) because they are finite time:

very similar to those of Sec. Il B. We just show the result:

1
7l [1+Nald (1) = 5 (Inl €(t5x0, £0) %) (62
7 N kT 1+ Na/8)’ (60
. ) We usually considered ten pairs of randomly chosen initial
very close to the simple estimate of H§9). conditions. Each pair was propagated until a titeet,op,
when we judged that (f)In|§ had converged to a limiting
D. The Lyapunov exponent value. Typically, t,,,e[1000,5000. Remember, however,

Gathering the results of previous sections, one can corfhat our theoretical scheme commutes logarithm and aver-
struct the 3<3 matrix A associated to the average propaga-29€- In order to test this approximation, we also computed
tor for the HMF. The Lyapunov exponent is extracted fromthe average
the eigenvalue ofA with the largest real part. Though the 1

eneral expression far might be written down explicitly, its * (1) — . 2
gontent WOFl)J|d not justify i?s extension. Notwithstgndigg, it is NO=5 In{€(t:x0,0)[%)- 63
worth exhibiting the leading term in N/ Note that bothu
ando? are of order I, and that=¥=0(1) (once the cor- In many cases we run tests to verify that our numerical
relation function is assumed GausSi_a'ﬁhen one gets results are robust against suitable changes of initial condi-
tions, renormalization procedure, or the set of parameters

’ {teqrtorop At,do. f}.

Tc

2

13
+O(N"?R)=0(N"13), (61)

g
A=~

. 2 . A. Ferromagnetic case
with o= and 7, given by Eqs(54) and(60). The absence of

u in the leading-order expression faris a reflection of the Figure 1 shows the largest Lyapunov exponent of the fer-
fact that in the disordered phases of the HMF, fluctuationéomagnetic HMF as a function of system s for some
are much larger than the average, ices; «, and dominate selected energies. The symbols correspond to the simula-

the tangent dynamics. tions of Refs[23] (¢=5.0) and22] (¢=1.0,10.0,50.0). We
have considered large particle numbeks=100) and ener-
IV. NUMERICAL STUDIES gies well above the transitiore >1.0) to ensurdi) the va-

lidity of the approximations invoked in calculating the aver-

For comparing the theory with simulations, we will use ages of Sec. lll, and als@i) to guarantee that we are in a
the data existing in the literatufé&6,22,23 as well as some disordered, quasiballistic regime. Full lines correspond to the
additional data generated by us. We give a succinct descrifitheoretical Lyapunov exponent obtained by diagonalizing the
tion of how our simulations were made. Hamilton’s equa-3x 3 matrix of Sec(ll), but we could as well have used the
tions of theN-particle system were evolved using the Neri- asymptotic expression of E¢61) (minor differences would
Yoshida fourth-order symplectic algorithfi2z4]. The time  only be visible in the case=1). Dotted lines correspond to
step was fixed through all simulations Ad=0.1 (units are  the geometric prediction, as calculated by Firpo, i.e., Egs.
such thatl=1 and|J|=1). Initial conditions were chosen (1)—(3) and(21) and(22) of Ref.[17]. An inspection of Fig.
randomly: angles with a uniform distribution [i9,27] and 1 allows us to verify that there is a satisfactory agreement
angular momenta Gaussian distributed. Then all momentbetween theory and simulation, especially fé=500. For
were shifted by a fixed amount to set to zero the total modarger systems numerical data deviate upward from theory.
mentum(a constant of motion Finally, velocities were mul-  (Nobre and Tsallis also observed deviations from khe/
tiplied by an appropriate factor to fix the total energy at alaw in the three-dimensional version of th¢r Hamiltonian
chosen valueNe. The initial one-body distributions gener- [25].) This is the opposite to natural expectation “the larger
ated in this way are close to their equilibrium values in thethe system, the better the approximations.” We believe that
disordered regimes defined fey>3J/4 andJ>0, ore>0  the reason for this deviation may be that the system has not
and J<0. Anyway, before doing any “measurements” the reached microcanonical equilibrium—as far as the Lyapunov
systems were allowed to relax during a time we dgl, exponent is concerned.
typically teqe[1000,10000. Concerning Lyapunov expo- It is well known that the HMF relaxes very slowly, e.g.,
nents, we used Benettin's standard algorifth The initial ~ Latora, Rapisarda, and Ruffd@4] noticed that fore=1, the
Euclidean distance between a trajectory and its companiosystem may get trapped in quasiequilibrium states similar to
were set tady=10 8. We used two alternative renormaliza- those observed below the transition. A very slow relaxation
tion procedures(a) the distance vector was compressed eaclied the same authors to conclude that dynamics is ballistic
time the distance exceedet}f, usually with f=10 or f  for e=5.0, N=1000, t<10° [26]. If slow relaxation is rul-
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0.1 i
0.09 {
0.08 4 0.01 0.10 1.00 10.00
0.07 - T
0.06 | . . .
FIG. 3. Correlation functions foll=200 and several energies,
0.05 - from right to left,e=1.0,5.0,50.0 J=1). Symbols correspond to
0.04 simulations witht,,=10 000 and averaging over 100 initial condi-
’ tions. The lines represent our theoretical predictiGaussians
0.03 | satisfactory overall agreement. However, a close inspection
reveals deviations. We have observed that, in general, the
relative deviations are larger far than fora? (not shown.
0.02 - This behavior can be understood by noting that the initial

value of ¢ is already very close to the canonical value,
I N within a few percent for the cases considered. On the con-
100 1000 10000 trary, the initial value foru is zero, far from its equilibrium
value(the slow growth ofu is one of the aspects of the slow
N relaxation to equilibrium In any case we verifiegraphics

not shown that the errors inw ando? do not account for the
deviations of Lyapunov exponents, i.e., feeding the theory

Eiglclitoenl"llzr: i%::1)Flfmat2unigogo?t];2/5tfr;OSI5ZN6 i%rosgg‘g Sree' with the numericalu and o® does not improve the agree-
giew. P A ment between theoretical and simulatesd.

spectively. Symbols correspond to numerical simulations of Hamil- . . )
P Y- oY P In order to discuss the correlation times, let us now look

ton’s equations. Full lines are our theoretical results; dotted Iinestth lation functi fFig. 3. Th d simulati
correspond to the prediction of the “geometric methdgée text at the correlation tunctions of F1g. 5. 1heory and simufations

agree almost perfectly in the central part of the distributions.
. ) ] ) . ) _ There are long tails which cannot be appreciated in the figure
ing, the numerical simulations are likely to provide “quasi- pyt might be responsible for larger-than-predicted correlation
equilibrium” Lyapunov exponents, rather than the microca-tjmes /¢ \We recall that the quantities®) are moments of
nonical ones. Actually, as energies and/or system sizes afge correlation functiorf(r), and as such very sensitive to
increased, the system becomes progressively more integraligs precise shape of the tails. We verified that a pure numeri-
and deviations from microcanonical predictions will be nec-.4 evaluation of¥ fails due to poor convergence of the
essarily observed. _ o _ corresponding integrals—this effect is stronger kor 1,2.

At, this point it is desirable to verify if the canonical gal- So, at present we cannot say with certainty if the theoretical
culations of u, o?, and T(,k) reproduce the corresponding estimates for~¥, which assume a Gaussian correlation
dynamical averages. In Fig. 2, we display numerical valueg,nction, agree with the corresponding dynamical ones. To
for x ando?, obtained by averaging over 1000 initial con- yesolve this issue, one should make a very careful study of
ditions, and in the time windoy5000,10000. There is a  he tails of the correlation functions. Though desirable such
analysis exceeds the scope of this pafleteresting infor-
mation about correlation functions, and, in general, about the
geometric method, can be found in R€f27,28].)

In passing, let us comment that, for the theory to work,
f(7) must decay fast enough, e.g., a correlation function
such asl'(7)=sinow7wo7 [3,27] would explode the second
cumulant.

To conclude the analysis of the ferromagnetic case, a pos-
sible difference between and\* [Egs.(62) and(63)] can-
not be the explanation for the observed deviations between
theory and simulations because it is expected thaf\*

(see below, and Ref29]).

FIG. 1. Largest Lyapunov exponent of the mean-fi dtf

05

0.0

FIG. 2. Numericalsymbolg and analyticallines) values ofyu,
o2, andr, for the HMF model §=1) as functions of energy and
system sizéN=100,200,500,1000. Error bars are of the order of the  Figure 4 shows the results of numerical simulationsxor
symbol size, or smaller. and\*. (The numerical results fox, in the caseN=100,

B. Antiferromagnetic case
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0.16 - . 1.0 +
0.14 | i
0.5 -
012 | i
0.10 |- i
0.0
A B 0 1 2 3 4 5
0.08 | ¢ - €
FIG. 5. Numerical and analytical values gf and o for the
0.06 - 1 mean-fieldX Y Hamiltonian model as functions of energyfor N
=100 J=—1). The results shown are time averages in the win-
0.04 | . _ dow t €[5000,10 000, and over 100 initial conditions. Lines cor-
! respond to the corresponding canonical averages.
0.02 |- 4
For the sake of completeness, we exhibit in Figs. 5 and 6
0.00 the comparison of canonical and dynamical averageg:.for
4 0 1 2 3 4 5 6 7 8 9 10 o, andf(7): no significant differences can be seéhgain,
£ the tails of the correlation functions may deserve a deeper
analysis).

FI_G. 4_. Lyapunov exponent_of the antiferromagnetic mean-field Figure 4 also displays the predictions of the geometric
Hamiltonian model as a function of energy Symbols are the method[17]. In the high-temperature regime, the relative
result of simulations using Benettin's algorithm. Open symbols COarror of the geometric prediction is somewhat larger than
respond to the usual Lyapunov exponanand hollow symbols to s At |ow temperatures, the geometric method predicts a

\* (see text We used,=1000 and twin trajectories were propa- - . .
gated during ,,,;=3000. Full lines correspond to our theory, dotted gg;lilrt]agu;/:\llvy)\io-lr-rzef ;_75) ?nhs"’;‘é:g‘(;}&TE’,‘jt[ 1Vé|]th the wrong
ones to the geometric method. ) ’

are consistent with those obtained in Réf6].) Though not V. SUMMARY AND CONCLUDING REMARKS
shown, as temperature goes to zete«— 1/2), the numeri-

cal A's go to zero too, the empirical scaling law beiig In a previous papefl], we proposed a theoretical ap-

«TY2[16]. Note that the relative differences betweemnd proach to the dett_armmaﬂon Of. the largest Lyapunov expo-
. ) o . nent of many-particle Hamiltonian systems. Despite several
\* are indeed small, and decrease with increasingNVe S hat h ;
have not analyzed the behavior Xt at very low tempera- crude approximations that had to be made, it was not com-
tures: in particular. we cannot sav whether the scalin IaV\Pletely clear whether the resulting perturbative/mean-field
\* :x'l,'llz ig verified,or not y 9 script could be carried out for a specific system, one of the
. Lo . - obstacles being the analytical determination of the correla-
For high energies, i.eg>1, our theoretical predictions tion functions
agree r?asgnatblytwell W'tg stlmtulatltl)ns. tki\;\éever, v;/r?en the Now we have verified that the stochastic recipe can in-
entfarglyLen S to 1ts groun t—saa eva BS'_) t', cl)lurf €0~ " deed be executed, and works satisfactorily in the quasiballis-
retical Lyapunov: exponent diverges dramatically Trom €x-;. regimes of the infinite-rang€Y Hamiltonians. These sys-

periments. These behaviors can be easily undgrstood b[ ms are especially useful for testing the theory because they
looking at the energy dependence of the perturbative paraml e the “mean-field” diagonalization exact. However
eter o7. Figure 5 shows that, for a fixed system sizé, '

remains bounded for all energies, growing by a factor of 2 as
T goes from zero to infinity. On the other sidescales with
temperature like 3/T, and theng < 1/y/T. This means that
the theory must fail a3 —0. The divergence of the Kubo
number atT=0 is a manifestation of the complexity of the
dynamics close to the antiferromagnetic ground dté#1].
Notwithstanding the overall agreement at high temperatures,
we must point out a nonresolved source of annoyance. At a
fixed energy the Kubo parameter scales with the system size R
like o71/\/N. Consequently, the relative error of the theo- 0.1 10 10.0
retical prediction should decrease with increasiglike
1/JN. However, e.g., if we take=7.5, and compare theory FIG. 6. Correlation functions foN=100 and several energies
versus\*, we see that the relative error is about 11%, insen{J=—1). Averaged over 100 initial conditions. Equilibration time
sitive to variations ofN from 100 to 2500. teq=10000. Solid lines are our analytical results.
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three additional sources of error have to be considered. Firsiverage Hessian. Instead, we have chosen the free-rotator
of all, we made the simplification of taking the logarithm out representation. That is, in constructing the “free propagator,”
of the averag¢Eq. (6)]. That is, using a spin-glass analogy, we neglected the average Hessian of the interaction potential.
we are estimating an “annealed” Lyapunov expongfitin-  As long as the motion is quasiballistic, this approximation
stead of the usual “quenchedt [19]. Quenched averages seems justified. It will be certainly wrong, e.g., in the low-
can be calculated, as shown byriEae-Nicola and Kurchan temperature phase of the ferromagnetic HMF, where the qua-
[19], but they require more sophisticated tools, such as thdratic part of the interaction is really important. We are cur-
replica trick or the supersymmetric approach. In the casegently working on the implementation of the best interaction
considered in this paper, we verified that the difference berepresentation for the infinite-rang€Y models. The results
tween both Lyapunov exponents is very small. Then it waswill be presented in a forthcoming paper.
not necessary to go beyond the annealed averaging. The mean-field diagonalization is exact for the systems
The second approximation, and the most important one, isonsidered here. In other cases, it represents just a truncation

the truncation of the cumulant expansion at the second ordegf the basis for diagonalizing [Eq. (11)]. Note, however,

By doing so, we introduce a relative error of the order of thethat we are dealing with a Hermitian problem, i.e., finding
Kubo numberO'TC . This explainS the failure of the theory in the |argest eigenva|ue QE§T>(I) [Eq (10)] Truncation of
the low-temperature regime of the antiferromagnetic HMFithe basis will produce a lower bound to the largest Lyapunov

given that the amplitude of the fluctuations remains oy onengprovided thath is calculated accuratelySo, this

bounded_ but the thermal tim_diverges. It is not clear at _problem is analogous to finding the ground-state energy of a
present if the theory can be improved to account for th'EJantum Hamiltonian. Any small subspace can be consid-
regime. Further StUd'e.S aré necessary. In partpular, we hay ed, the choice being guided by the special characteristics of
to understand what kind of dynamical correlations develop[he system under study.

as the system approaches the ground state. There is another; ;. s quantum analog, the Lyapunov problem seems

phroblem that regwres an ra]mswer: \é\/e_ha\1e not otk))served tr:‘?éluctant to admit simple general solutions. Each class of
the agreement between theory and simulations betters Whef)ctems may require special consideration,

the size of the system is increased, for fixed energy. This is in
contradiction with the Kubo number decreasing like/N!/

The difficulties of the preceding paragraph may be related
to the third approximation, which concerns the interaction We are grateful to F. V. Roig and C. Tsallis for fruitful
representation we have used. In order to isolate the fluctuadiscussions. We acknowledge Brazilian Agencies CNPq,
tions, one should work in the representation associated to tHeAPERJ, and PRONEX for financial support.
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