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Does the continuum theory of dynamic fracture work?
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We investigate the validity of the linear elastic fracture mechanics approach to dynamic fracture. We first test
the predictions in a lattice simulation, using a formula of Eshelby for the time-dependent stress intensity factor.
Excellent agreement with the theory is found. We then use the same method to analyze the experiment of
Sharon and Fineberg. The data here are not consistent with the theoretical expectation.
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There has been renewed interest in the physics commu<ostrov [13] and Eshelby14] provides an analytic predic-
nity concerning the problem of dynamic fracture. This inter-tion of the SIF, independent of the details of the dynamics.
est was kindled by experimeni&,2] showing a universal With this first-principles determination of the SIF, it is pos-
transition to crack branching and the realization that onesible to test the LEFM picture. Specifically, we will show
could not approach this question within the confines of trathat in the lattice model, in accord with expectations, the
ditional fracture mechanids]. Since then, there have been Stress-intensity factor governing the strength of the stress
other novel experimental findindd] as well as further evi- Singularity is the only information passed from the macro-
dence of theoretical inadequacies. scopic _f|eld to th(_a process-zone dynamics of the crack tip. In

In the standard approactsee, for example, Ref5]), fact, this separation is quantnauvely accurate even for rather
dubbed linear elastic fracture mechanitEFM), one as- small Iattlc_es where one might have questioned the efficacy
sumes that continuum elasticity is valid everywhere outsid®f the continuum approach. Moreover, these results allow us
of an microscopically sized process zone. The instantaneod@ construct a test of the theory based on the actual fracture
crack tip velocity is then postulated to depend only on thedata presented by Sharon and Finebj§] for the same
singular part of the stress field obtained by solving this mac¢@se of a crack accelerating from rest. Here, however, the
roscopic continuum problem. This singularity of the stressdata do not appear to conform to theoretical expectations. At
field is universal in nature, up to an overall multiplicative the end, we discuss possible avenues for resolving the con-
factor, the so-called stress-intensity fact®IF). Even if  flict o _ _
there is a well-defined relationship between the crack veloc- We begin with the lattice model. We work with a two-
ity and the SIF, the theory cannot predict the form of thedlmen5|onaI(2D) square lattice with unit spacing between
relationship, as that depends explicitly on physics at the scal$'® mass points. These masses are coupled via both nearest-
of the process zone. As realized initially by Slepy&h one  neighbor(nn) and next-nearest neighbann) ideally brittle
way to remedy this deficiency is to model the entire systenfentral force springs with spring constakisandk, respec-
as a lattice of mass points connected by nonlinear springdiVely. It is easy to show that with the choiég=2k,=2u
On scales larger compared to the lattice spacing, the dis=2\2q, the continuum linear elastic limit of this model is
placement approaches that predicted by the continuurigotropic with the aforementioned Lame’ constants; hence
theory; on the scale of the crack tip, the stress field diverthe Poisson ratior,g=1/4. We will assume that the actual
gence is regularized, thereby allowing for the imposition of a3D system exhibits plane stress and so can be approximated
physically sensible breaking criterion. This criterion is usu-Via & 2D system with\;p=2u\/(2u+N); the actual Pois-
ally in the form of a critical spring displacement, as thisson ratio of the material being modeled is=v,p/(1
allows for the possibility of analytical solutions of the model — v2p) = 1/3. The dynamics arising from this force is taken
[7-12. to include the possibility of a Kelvin viscosity term. The final

Thus, the lattice model provides a self-consistent realizagguation of motion is therefore
tion of the basic assumption underlying engineering fracture

mechanics, the ability to separate the linear elasticity calcu- _,- -
lation from the microscopic physics controlling the tip. In u(x) 9 )| ke JX+EM —ax)T-ntn
ros e tip. Ir =1+ || 5 2 {lu(x+n)—u(x)]-nin
general, however, it is hard to test the LEFM since it is at atNN 2 5
difficult to reliably measure the SIF in a lattice calculation, ‘
as this requires an extremef{gind impractically large sys- 2 T TR T
q egnd imp y large sy T2 S UGN -G0T AR @)

tem. Only then is there an appreciable range of scales for
which one is both sufficiently far from the crack tip that
lattice effects are unimportant and sufficiently close that the
fairly weak square-root singularity dominates. However, forAs discussed in Refd8,16], the damping due to nonzero
the case of a crack accelerating from rest, the approach d¢felvin viscosity occurs only inside the process zoneyiis
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chosen0(1). Finally, any bond whose length goes above a
breaking threshold, which we take to be 1, has its spring
constant set to zero.

As discussed above, we study in detail a finite length
crack accelerating from rest. Initially, a crack is placed along
the midline of a sampléhere between rows 0 and 1 of our
lattice), extending a lengtlfiy from the left edge. The top and
bottom rows of the lattice have fixéend oppositedisplace-

mentsG=A§/ and the lateral edges are free. The loading is

chosen to be just below the critical value at which the crack [
will start to propagate; since this loading is a decreasing % 20 40 60 30
function of crack length, a crack with one additional broken Total Crack Length

bond will in fact start to elongate. The system is then allowed
to fully relax to its equilibrium stress state; this is accom-
plished via a multigrid technique described in detail else-
where[17]. Once this is done, an additional bond is broken
by hand(i.e., its spring constant is set to zero; no actual
displacement of particles is involvednd the crack tip ac-
celerates. As it moves, we monitor the bonds across the crack
surfacey=1/2. When all three bonds attached to a given

point >Z=(x,1) break, the crack length is deemed to have
increased by 1 and the velocity at that time is measured as ]
the inverse of the time interval since the last such event. We ope—e—sbe L — L
do not allow bonds off the crack line to break, thereby sup- Total Crack Length
pressing any possible branching instabilities. We also enforce
symmetry across the crack surface, simulating only the upper FIG. 1. Simulation results for velocity vs crack length for vari-
half of the lattice. Each run is characterized by the transverseus initial seed cracks. The system widWsn lattice units are 239,
lattice sizeW, the initial length of the crack,, damping 219, 415, and 1004 for the four runs for decreasfiyg For later
constantzy, and the driving displacement. Typical data convenience, all lengths in the graph are scaled by a factok40/
generated by this procedure for both the undamped andelocities are normalized to the Rayleigh velocity.
highly damped cases are presented in Fig. 1. . ]

According to the classic calculation by Esheliyl], the ~ €nergy flux into the tip and the energy necessary to break
stress intensity factdk or equivalently the Eshelbl factor ~ bonds along a unit length of crack,
(which is a constant multiple df), at the progressing crack 5
tip for a system that starts in equilibrium can, up to a certain I'(v)=1(v)Bf. ()
time, be written as a product of two factors:

Heref is a complicated but explicit function anld is the
breaking energy. In facl; can be determined via the depen-

B (M ogy(x) dence of steady-state cracks on the driving load and thereaf-
Bi(t)=A(v(t)) . dx\/x——ec,' () ter used for the accelerating crack case. For our purposes,

this hypothesis leads to the existence of a universal relation-
ship, independent o, A, and ¢, (but dependent omy),
Hereag}; is the normal stress on the midliye=1/2 as found  between the measured velocityt) and the Eshelby function
from the equilibrium stress field; it diverges of course nearB,({(t)).

the edge of the equilibrium crack= €, with a static-stress To test this strong prediction of LEFM, we use our lattice
intensity factor. The first factoA(v) depends only on the model simulations discussed above. We calculate the integral
instantaneousvelocity at timet, and the second factor in Eq. (2) by replacing the continuum stress with its lattice
(which we will refer to asB,) depends on time only through analog[definingu=(u,v)],

theinstantaneousrack length?(t). This equation holds true

as long as sound waves reflected from the boundaries have 1

not interacted with the crack tip. There are two boundaries Oay(X)=—K1veq(X,0)— 5 KalUeg(X = 1,00~ Ueg(x+ 1,0

one must be concerned with, the lateral boundarieg=at

+WI/2 and the edge at=0. We take care that all our data TUe(X— 1,0 +veg(X+1,0]. (4)
come from times before these interactions occur.

Now, if the true microscopic breaking events only coupleThe fields that enter are the equilibrium fields present before
to the macroscopic field viB,, we expect that there will be the crack tip begins to move. The integral is then replaced by
some fixed relationship between the tip velocity and thisa sum, taking care to resolve the singularities in the inte-
number. Usually, this relationship is considered to arise dugrand. This yields a functioBqy(¢;W,€,) which can be plot-
to energy conservation, being written as an equality of theéed vs the velocity. The results of this exercise are pre-

036118-2



DOES THE CONTINUUM THEORY OF DYNAMC . .. PHYSICAL REVIEW E 68, 036118 (2003

h=0 7 T T T T T T T T
T T T T 5
6 .
g 0.15F %
a A sl 4
3 ge]
& o1 5]
o [}
< o
= S 4 .
o] —
Q 0.05F 8
3 .
L Ene
) ) ]
0 0.2 04 0.6 0.8

v/vR

0.2

FIG. 3. Attempted data collapse for the Sharon-Fineberg PMMA
experiment. Initial crack lengths are given in mm.
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of the width in lattice units, as we wanted the initial crack to
be large(of order 10 on the lattice scale.

Now, it is a simple matter to use the EsheBy function
calculated as described above to process the actual crack
velocity and length data from the Sharon-Fineberg experi-
L ments. Figure 3 shows our attempt to verify the continuum
92703 04 05 06 07 08 09 hypothesis for the PMMA data; note that each graph is la-
beled by the initial crack length which via the experimental
protocol is in one-to-one correspondence with the total ap-

FIG. 2. Eshelby data collapse,BY vs v for the runs shown in  plied energy. In our opinion, the data are quite convincingly
Fig. 1 (both »=0 and=1). Notice the slight systematic depen- inconsistent with the universality of the-B, relationship.
dence o, for the »=1 data, presumably arising from the larger Note that this is the opposite conclusion from that reached by
process zone in this caf@]. the experimentalists themselves, as discussed in [RBF.

There, the exact Eshelby function was replaced by an ap-
sented in Fig. 2, demonstrating almost perfect data collapsgroximate form based on trstatic stress-intensity factor for
even for fairly small transverse siz&8. Thus, the LEFM  a crack of lengti (t). Note that these functions, while close
assumption that the nonlinear structure of the process zonefsr ¢~¢,, become quite different for larger length cracks.
only dependent on the velocity and the SIF is borne out irThe static stress-intensity factor saturates fosW/2,
the lattice model. whereas the exact Eshelby function increases linearly in this

Given that the lattice model does indeed serve as an inegime. We have checked that the use of this approximation
stantiation of the LEFM picture developed by the fracturehappens to push the data into closer agreement with the
community for straight accelerating cracks, the question nowheory and could lead to a mistaken impression of data col-
is whether this carries over to the real world of experimentjapse. This does not happen with the exact expression and
For this reason, we designed our simulations to reproduceonversely the approximate form does not lead to a very
the large-scale features of the experiments on (podyhyl  good data collapse for the simulation study discussed above.
methacrylatg (PMMA) carried out by Sharon and Fineberg. The same situation pertains to the Sharon-Fineberg measure-
Here too the loading is set to a point where a small perturments on fracture in glagsesults not shown There the data
bation(a touch of a razor bladés enough to cause a previ- collapse is, if anything, even worse.
ously created notch in the material to develop into a running It should be noted that the agreement between the lattice
crack. For PMMA, the elastic constants are-2680 MPa, theory and LEFM is very dependent on our absolute suppres-
n=1150MPa, giving »=0.35. Going to the plane stress sion of off-axis cracking. If all bonds are allowed to break,
case leads to an effective Poisson ratjg=0.259, which is  then above a critical velocity the crack no longer propagates
very close to the value forced upon us by the restriction to nrin a straight line, and the assumptions implicit in the Eshelby
and nnn central forcegWe did check that generalizing our calculation of the instantaneous SIF break down completely.
model to include bond-bending springs and thereby obtainAt that point, there is no longer any way to reliably measure
ing the precise value of the Poisson ratio did not alter in anythe SIF and thus test LEFM. Needless to say, LEFM in its
way the results which we will present belgun addition, the  simplest formulation does not predict the direction of
aspect ratio was fixed to that of the experiméntwidth of  branching, and thus cannot address to the post-instability dy-
440 mm and a length of 380 muiThe lengths of the initial namics of the crack. The effects of the instability in the ex-
seed cracks were also chosen to be in the same ratio to tiperiment(which appear to exhibit different dynamics than in
width as in the experiment. This constraint fixed our choicethe lattice model in this regimeare clearly visible at later
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times(larger velocitiey but cannot explain the apparent fail- Also, we checked that the lattice model does indeed deviate
ure of the data collapse at smaller velocities. from universality if we include data from after this tifi&7].

The question remains how to explain this failure of LEFM Thus, our tentative conclusion is that the current experiments
in the Sharon-Fineberg experiment. Putting aside for the mooffer no direct proof for the LEFM approach, unlike what
ment the obvious possibility of systematic errors in the dewas claimed in Ref[15]. We are currently pursuing a
termination of the velocity or position of the crack, or alter- method that accounts for the side-reflected wave, and will
natively of the existence of an incredibly large process zongjiow us to test whether this is the cause of the failure of the
the only simple explanation that suggests itself is that reflecgiq collapse.
tion from the free edge of the sample is sufficient to render
inaccurate the Eshelby calculation of the stress-intensity fac- The authors wish to thank J. Fineberg and E. Sharon for
tor. In support of this possibility, we determined that all the providing the raw data from their experiment, and for exten-
experimental datéexcept for the first point or twaare taken  sive discussions. The work of D.A.K. was supported in part
from times after a boundary-reflected waieenitted initially by the Israel Science Foundation. The work of H.L. was
as the tip begins acceleratingvould catch up to the tip. supported in part by the NSF, Grant No. DMR-0101793.
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