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Does the continuum theory of dynamic fracture work?
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We investigate the validity of the linear elastic fracture mechanics approach to dynamic fracture. We first test
the predictions in a lattice simulation, using a formula of Eshelby for the time-dependent stress intensity factor.
Excellent agreement with the theory is found. We then use the same method to analyze the experiment of
Sharon and Fineberg. The data here are not consistent with the theoretical expectation.
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There has been renewed interest in the physics com
nity concerning the problem of dynamic fracture. This int
est was kindled by experiments@1,2# showing a universa
transition to crack branching and the realization that o
could not approach this question within the confines of t
ditional fracture mechanics@3#. Since then, there have bee
other novel experimental findings@4# as well as further evi-
dence of theoretical inadequacies.

In the standard approach~see, for example, Ref.@5#!,
dubbed linear elastic fracture mechanics~LEFM!, one as-
sumes that continuum elasticity is valid everywhere outs
of an microscopically sized process zone. The instantane
crack tip velocity is then postulated to depend only on
singular part of the stress field obtained by solving this m
roscopic continuum problem. This singularity of the stre
field is universal in nature, up to an overall multiplicativ
factor, the so-called stress-intensity factor~SIF!. Even if
there is a well-defined relationship between the crack ve
ity and the SIF, the theory cannot predict the form of t
relationship, as that depends explicitly on physics at the s
of the process zone. As realized initially by Slepyan@6#, one
way to remedy this deficiency is to model the entire syst
as a lattice of mass points connected by nonlinear spri
On scales larger compared to the lattice spacing, the
placement approaches that predicted by the continu
theory; on the scale of the crack tip, the stress field div
gence is regularized, thereby allowing for the imposition o
physically sensible breaking criterion. This criterion is us
ally in the form of a critical spring displacement, as th
allows for the possibility of analytical solutions of the mod
@7–12#.

Thus, the lattice model provides a self-consistent real
tion of the basic assumption underlying engineering fract
mechanics, the ability to separate the linear elasticity ca
lation from the microscopic physics controlling the tip.
general, however, it is hard to test the LEFM since it
difficult to reliably measure the SIF in a lattice calculatio
as this requires an extremely~and impractically! large sys-
tem. Only then is there an appreciable range of scales
which one is both sufficiently far from the crack tip th
lattice effects are unimportant and sufficiently close that
fairly weak square-root singularity dominates. However,
the case of a crack accelerating from rest, the approac
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Kostrov @13# and Eshelby@14# provides an analytic predic
tion of the SIF, independent of the details of the dynami
With this first-principles determination of the SIF, it is po
sible to test the LEFM picture. Specifically, we will sho
that in the lattice model, in accord with expectations, t
stress-intensity factor governing the strength of the str
singularity is the only information passed from the mac
scopic field to the process-zone dynamics of the crack tip
fact, this separation is quantitatively accurate even for rat
small lattices where one might have questioned the effic
of the continuum approach. Moreover, these results allow
to construct a test of the theory based on the actual frac
data presented by Sharon and Fineberg@15# for the same
case of a crack accelerating from rest. Here, however,
data do not appear to conform to theoretical expectations
the end, we discuss possible avenues for resolving the
flict.

We begin with the lattice model. We work with a two
dimensional~2D! square lattice with unit spacing betwee
the mass points. These masses are coupled via both nea
neighbor~nn! and next-nearest neighbor~nnn! ideally brittle
central force springs with spring constantsk1 andk2, respec-
tively. It is easy to show that with the choicek152k252m
52l2d , the continuum linear elastic limit of this model i
isotropic with the aforementioned Lame’ constants; hen
the Poisson ration2d51/4. We will assume that the actua
3D system exhibits plane stress and so can be approxim
via a 2D system withl2D52ml/(2m1l); the actual Pois-
son ratio of the material being modeled isn5n2D /(1
2n2D)51/3. The dynamics arising from this force is take
to include the possibility of a Kelvin viscosity term. The fin
equation of motion is therefore

]2uW ~xW !

]t2
5S 11h

]

]t D Fk1

2 (
n̂Pnn

$@uW ~xW1n̂!2uW ~xW !#•n̂%n̂

1
k2

2 (
n̂Pnnn

$@uW ~xW1n̂!2uW ~xW !#•n̂%n̂G . ~1!

As discussed in Refs.@8,16#, the damping due to nonzer
Kelvin viscosity occurs only inside the process zone ifh is
©2003 The American Physical Society18-1
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chosen0(1). Finally, any bond whose length goes above
breaking threshold, which we take to be 1, has its spr
constant set to zero.

As discussed above, we study in detail a finite len
crack accelerating from rest. Initially, a crack is placed alo
the midline of a sample~here between rows 0 and 1 of ou
lattice!, extending a length,0 from the left edge. The top an
bottom rows of the lattice have fixed~and opposite! displace-
mentsuW 5D ŷ and the lateral edges are free. The loading
chosen to be just below the critical value at which the cra
will start to propagate; since this loading is a decreas
function of crack length, a crack with one additional brok
bond will in fact start to elongate. The system is then allow
to fully relax to its equilibrium stress state; this is acco
plished via a multigrid technique described in detail el
where@17#. Once this is done, an additional bond is brok
by hand ~i.e., its spring constant is set to zero; no actu
displacement of particles is involved! and the crack tip ac-
celerates. As it moves, we monitor the bonds across the c
surfacey51/2. When all three bonds attached to a giv
point xW5(x,1) break, the crack length is deemed to ha
increased by 1 and the velocity at that time is measured
the inverse of the time interval since the last such event.
do not allow bonds off the crack line to break, thereby su
pressing any possible branching instabilities. We also enfo
symmetry across the crack surface, simulating only the up
half of the lattice. Each run is characterized by the transve
lattice sizeW, the initial length of the crack,0, damping
constanth, and the driving displacementD. Typical data
generated by this procedure for both the undamped
highly damped cases are presented in Fig. 1.

According to the classic calculation by Eshelby@14#, the
stress intensity factorK or equivalently the EshelbyB factor
~which is a constant multiple ofK), at the progressing crac
tip for a system that starts in equilibrium can, up to a cert
time, be written as a product of two factors:

BI~ t !5A„v~ t !…E
,0

,(t)

dx
seq

yy~x!

Ax2,0

. ~2!

Hereseq
yy is the normal stress on the midliney51/2 as found

from the equilibrium stress field; it diverges of course ne
the edge of the equilibrium crackx5,0 with a static-stress
intensity factor. The first factorA(v) depends only on the
instantaneousvelocity at time t, and the second facto
~which we will refer to asB0) depends on time only throug
the instantaneouscrack length,(t). This equation holds true
as long as sound waves reflected from the boundaries
not interacted with the crack tip. There are two boundar
one must be concerned with, the lateral boundaries aty5
6W/2 and the edge atx50. We take care that all our dat
come from times before these interactions occur.

Now, if the true microscopic breaking events only coup
to the macroscopic field viaBI , we expect that there will be
some fixed relationship between the tip velocity and t
number. Usually, this relationship is considered to arise
to energy conservation, being written as an equality of
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energy flux into the tip and the energy necessary to br
bonds along a unit length of crack,

G~v !5 f ~v !BI
2 . ~3!

Here f is a complicated but explicit function andG is the
breaking energy. In fact,G can be determined via the depe
dence of steady-state cracks on the driving load and ther
ter used for the accelerating crack case. For our purpo
this hypothesis leads to the existence of a universal relat
ship, independent ofW, D, and ,0 ~but dependent onh),
between the measured velocityv(t) and the Eshelby function
B0„,(t)….

To test this strong prediction of LEFM, we use our latti
model simulations discussed above. We calculate the inte
in Eq. ~2! by replacing the continuum stress with its lattic
analog@defininguW [(u,v)],

seq
yy~x!52k1veq~x,0!2

1

2
k2@ueq~x21,0!2ueq~x11,0!

1veq~x21,0!1veq~x11,0!#. ~4!

The fields that enter are the equilibrium fields present bef
the crack tip begins to move. The integral is then replaced
a sum, taking care to resolve the singularities in the in
grand. This yields a functionB0(,;W,,0) which can be plot-
ted vs the velocity. The results of this exercise are p

FIG. 1. Simulation results for velocity vs crack length for va
ous initial seed cracks. The system widthsW in lattice units are 239,
219, 415, and 1004 for the four runs for decreasing,0. For later
convenience, all lengths in the graph are scaled by a factor 440W.
Velocities are normalized to the Rayleigh velocity.
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sented in Fig. 2, demonstrating almost perfect data colla
even for fairly small transverse sizesW. Thus, the LEFM
assumption that the nonlinear structure of the process zo
only dependent on the velocity and the SIF is borne ou
the lattice model.

Given that the lattice model does indeed serve as an
stantiation of the LEFM picture developed by the fractu
community for straight accelerating cracks, the question n
is whether this carries over to the real world of experime
For this reason, we designed our simulations to reprod
the large-scale features of the experiments on poly~methyl
methacrylate! ~PMMA! carried out by Sharon and Fineber
Here too the loading is set to a point where a small per
bation~a touch of a razor blade! is enough to cause a prev
ously created notch in the material to develop into a runn
crack. For PMMA, the elastic constants arel52680 MPa,
m51150 MPa, giving n50.35. Going to the plane stres
case leads to an effective Poisson ration2d.0.259, which is
very close to the value forced upon us by the restriction to
and nnn central forces.~We did check that generalizing ou
model to include bond-bending springs and thereby obt
ing the precise value of the Poisson ratio did not alter in a
way the results which we will present below.! In addition, the
aspect ratio was fixed to that of the experiment~a width of
440 mm and a length of 380 mm!. The lengths of the initial
seed cracks were also chosen to be in the same ratio to
width as in the experiment. This constraint fixed our cho

FIG. 2. Eshelby data collapse, 1/B0 vs v for the runs shown in
Fig. 1 ~both h50 andh51). Notice the slight systematic depen
dence on,0 for the h51 data, presumably arising from the larg
process zone in this case@9#.
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of the width in lattice units, as we wanted the initial crack
be large~of order 10! on the lattice scale.

Now, it is a simple matter to use the EshelbyB0 function
calculated as described above to process the actual c
velocity and length data from the Sharon-Fineberg exp
ments. Figure 3 shows our attempt to verify the continu
hypothesis for the PMMA data; note that each graph is
beled by the initial crack length which via the experimen
protocol is in one-to-one correspondence with the total
plied energy. In our opinion, the data are quite convincin
inconsistent with the universality of thev-B0 relationship.
Note that this is the opposite conclusion from that reached
the experimentalists themselves, as discussed in Ref.@15#.
There, the exact Eshelby function was replaced by an
proximate form based on thestaticstress-intensity factor for
a crack of length,(t). Note that these functions, while clos
for ,',0, become quite different for larger length crack
The static stress-intensity factor saturates for,@W/2,
whereas the exact Eshelby function increases linearly in
regime. We have checked that the use of this approxima
happens to push the data into closer agreement with
theory and could lead to a mistaken impression of data
lapse. This does not happen with the exact expression
conversely the approximate form does not lead to a v
good data collapse for the simulation study discussed ab
The same situation pertains to the Sharon-Fineberg meas
ments on fracture in glass~results not shown!. There the data
collapse is, if anything, even worse.

It should be noted that the agreement between the la
theory and LEFM is very dependent on our absolute supp
sion of off-axis cracking. If all bonds are allowed to brea
then above a critical velocity the crack no longer propaga
in a straight line, and the assumptions implicit in the Eshe
calculation of the instantaneous SIF break down complet
At that point, there is no longer any way to reliably measu
the SIF and thus test LEFM. Needless to say, LEFM in
simplest formulation does not predict the direction
branching, and thus cannot address to the post-instability
namics of the crack. The effects of the instability in the e
periment~which appear to exhibit different dynamics than
the lattice model in this regime! are clearly visible at later

FIG. 3. Attempted data collapse for the Sharon-Fineberg PM
experiment. Initial crack lengths are given in mm.
8-3
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times~larger velocities!, but cannot explain the apparent fa
ure of the data collapse at smaller velocities.

The question remains how to explain this failure of LEF
in the Sharon-Fineberg experiment. Putting aside for the
ment the obvious possibility of systematic errors in the
termination of the velocity or position of the crack, or alte
natively of the existence of an incredibly large process zo
the only simple explanation that suggests itself is that refl
tion from the free edge of the sample is sufficient to ren
inaccurate the Eshelby calculation of the stress-intensity
tor. In support of this possibility, we determined that all t
experimental data~except for the first point or two! are taken
from times after a boundary-reflected wave~emitted initially
as the tip begins accelerating! would catch up to the tip.
e

-

r-
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Also, we checked that the lattice model does indeed dev
from universality if we include data from after this time@17#.
Thus, our tentative conclusion is that the current experime
offer no direct proof for the LEFM approach, unlike wh
was claimed in Ref.@15#. We are currently pursuing a
method that accounts for the side-reflected wave, and
allow us to test whether this is the cause of the failure of
data collapse.
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