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Collapses and explosions in self-gravitating systems
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Collapse and explosiofteverse to collapgdransitions in self-gravitating systems are studied by molecular
dynamics simulations. A microcanonical ensemble of point particles confined to a spherical box is considered.
The particles interact via an attractive soft Coulomb potential. It is observed that a collapse indeed takes place
when the energy of the uniform state is set near or below the metastability-instability thrésbtiégbse
energy as predicted by the mean-field theory. Similarly, an explosion occurs when the energy of the core-halo
state is increased above the explosion energy, where according to the mean-field predictions the core-halo state
becomes unstable. For systems consisting of 125-500 particles, the collapse takes alsmgldparticle
crossing times to complete, while a typical explosion is by an order of magnitude faster. A finite lifetime of
metastable states is observed. It is also found that the mean-field description of the uniform and core-halo states
is exact within the statistical uncertainty of the molecular dynamics data.
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I. INTRODUCTION 1/r interaction based on a Smoluchowski equation was de-
veloped by Chavanist al. [8]. Their theory predicts a self-

Systems of particles interacting via a potential with attrac-similar evolution of the central part of the density distribu-
tive nonintegrable large asymptoticsU(r)~—r~%, 0<a  tion to a finite-time singularity. The application of the
<3, and sufficiently short-range smallregularization ex- overdamped limit used to obtain the Smoluchowski equation
hibit gravitational phase transition between a relatively uni-makes their approach essentially a tractable model of gravi-
form high-energy state and a low-energy state with a coretational collapses with interesting properties rather than a
halo structurd1-12]. Extensive mean-fielMF) studies of MF description of stellar encounters. The precise nature of
the equilibrium propertieg1—11] have revealed that in a the random force and friction terms in the corresponding
microcanonical ensemble during such a transition entropy-okker-Plank equation are not entirely understood, however.
has to undergo a discontinuous jump from a state that just A more rigorous approach based on the Fokker-Plank
ceases to be a local entropy maximum to a state with thequation with the Landau collision integral was used by Lan-
same energy but different temperature. This state is the orgellotti and Kiesslind 13] to prove a scaling property of the
with the maximum global entropy. Due to the long-rangecentral part of the density profile of a collapsing system. The
nature of gravitational interaction, the MF studies are beimodel considered by them, however, allows the particles to
lieved to provide asymptoticallgin the infinite system limit ~ escape to infinity, and therefore it does not have an equilib-
exact information about the density and velocity distributionsfium or even a metastable state.
and other thermodynamic parameters of the uniform state. There exists a vast amount of literature on cosmologically
The applicability of the MF theory to the core-halo state isand astrophysically motivated studies of the temporal evolu-
less obvious as the properties of the core are controlled bjon of naturally occurring self-gravitating systeitsee, e.g.,
the short-range asymptotics of the potential. Ref. [14] and references therginThe selection of systems

Relatively little is known about how such a transition ac-and their initial and final conditions is typically astrophysi-
tually occurs, however. Youngkins and Millpt] performed  cally motivated; the considered systems are often too com-
a molecular dynamicéVD) study of a one-dimensional sys- plex for making general conclusions about phase diagrams
tem consisting of concentric spherical shells. Their main emand phase transitions in such systems.
phasis was to check the MF description of the stable and In this paper we present MD studies of gravitational col-
metastable states rather than to study the dynamics of tHgpse, and reverse to collapse, i.e., explosion, transitions in a
phase transition itself. Cerruti-Sola, Cipriani, and Peftli] microcanonical ensemble of self-attracting particles. Besides
studied the phase diagram of a more realistic threetheir pure statistical mechanical implications, these studies
dimensional particle system by using Monte Carlo and MDrepresent our attempt to bridge the gap between the usually
methods. Their studies again focused on the equilibriuncomplicated MD and hydrodynamic simulations of the real-
properties of the system rather than on the dynamics of thistic astrophysical systems and the MF analysis of the phase
transitions. In addition, their general conclusions about theliagram of simple self-gravitating models.
second order of the gravitational phase transition apparently A system with soft Coulomb potentiat (r2+r
contradict the MF resultf2,5,6,9. Here, we attempt to re- wherer is the soft core radius, is considered. Such systems
solve this contradiction. have been studied using both MF thedsee, e.g., Refs.

A MF description of the dynamics of collapse in en-[5,9]) and simulationg12]. We chose the microcanonical
sembles of self-gravitating Brownian particles with a bareensemble as it is the most fundamental one for the long-
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3 , lapse and explosion transitions. A discussion concludes the
paper.
5 Il. SIMULATIONS
We consider a system consistinghfdentical particles of
— unit mass confined to a spherical container of radRusith
w . . .
= i reflecting walls. The Hamiltonian of the system reads
w N 2 N
7] Pi 1
H=S 0> ®
g | =12 S rE+rd
Using the traditional convention for self-gravitating systems
(see, for example, Reff1]) in which the equilibrium proper-
€0l ties of such systems become universal, we define rescaled
- L ch sy . )
-1 0 1 energye, inverse temperaturg, distancex, velocity u, and
time 7 as
€
__R
FIG. 1. Plots of entropy(e) (solid line) and inverse tempera- GZEW’
ture B(e)=ds/de (dashed ling vs energye for a system with a
gravitational phase transition and a short-range cutoff. r
X=—,
range interacting systems. It has to be noted that the consid- R
ered system is strongly ensemble dependent: While the na-

ture of the uniform state is the same in both microcanonical B
and canonical ensembléapart from the difference in their
stability range due to existence of the canonically unstable
interval with negative specific heathe core-halo states and \F
the collapse in these ensembles have very little in common U=v\y
with each othef6,8].

A MF phase diagram of the system is presented in Fig. 1
[5,9]. High- and low-energy branches terminating at the en- r=t——o )
ergies e, and eqyp correspond to the uniform and core- R3/2
halo states. The energy*, at which the entropies of the
core-halo and uniform states are equal, is the energy of th€he unit of time, often referred to as the crossing tifrtg,
true phase transition. The uniform and the core-halo states R¥%YN2 is obtained by dividing the unit of lengtR by
are metastable in the energy intervalg.q,e*) and the unit of velocity\N/R. This unit of time is also propor-
(€*,eexp), respectively. However, for the phase transition totional to the period of plasma oscillations in a medium with
occur at or neag*, fluctuations at macroscopic length scalescharge concentratioN/R®. As this time unit has purely ki-
with prohibitively low entropy are required. Consequently, nematic origin, we do not expect the evolution of systems
the metastable branches are stable everywhere except in thaving differentN and R to be universal in timer. The
vicinity Ae~N~2?of their end pointse., andeeyp [9,15.  evolution, assuming that it is collisional, is expected to be
HereN is the number of particles in the system. Hence, it isuniversal in the relaxation time, = 7Iin N/N [16], where the
natural to assume that once the energy of the system in thfactor N/In N is proportional to the number of crossings a
uniform state is set sufficiently neag,, the system will  typical particle needs in order to change its velocity by a
undergo a collapse to a core-halo state with the same energagctor of 2 through weak Coulomb scattering events.
and higher entropy. Similarly, if the energy of the core-halo  The soft core radiug,=r,/R=5x10"2 is chosen to be
system is set sufficiently neag,,, the system will undergo well below the critical valuex,,~0.021, above which the
an explosion bringing it to a uniform state with the samecollapse-explosion transition is replaced by a normal first-
energy and higher entropy. Our goal here is to study if andrder phase transitiof®].
how such collapses and explosions proceed in realistic three- The MF theory of these systems is described in detail in
dimensionalN-particle dynamical systems. Ref.[5]. The equilibrium velocity distribution is Maxwellian

This paper is organized as follows. In the following sec-and isothermal, while the equilibriutsaddle point density
tion we formally introduce the system, outline the MF analy-profile p(x) corresponding to a stable or a metastable state is
sis, and describe the MD setup. Then, we present the simu spherically symmetric solution of the following integral
lation results for the equilibrium uniform and core-halo equation:
states, and compare them to the MF predictions. After that,
we describe and interpret the observed dynamics of the col- p(X)=poF[p(.),x],
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10° . . ; . was determined and the velocities were rescaled to fine-tune
the total energy. Due to the isotropicity of velocity assign-
7 ment, we always obtained states with sufficiently low total
10 ] angular momentum which collapsed to single-core states
rather than to binariegl0].
= 10 _ To implement reflective boundary conditions, at each time
o step the normal componentés of the velocities of all par-
5 ticles which had escaped from the container were reversed.
10 ) Values of the normal components were stored to evaluate the
pressure on the wall, i.e.,
0
10 o i t=t+t"/2
P B E v, (1)
10 , . . . P(t)= t'=t—t"/2 @
0.2 0.4 0.6 0.8 1 2R
X

FIG. 2. MF density profilesp,(x) of a uniform state(dashed
line) andp._,(x) of a core-halo statésolid line) for e= e, -

p(x") & ]

F[p(.),X]ZeXF{Bf \/m
0

During each simulation run we measured the following
quantities: kinetic energyy;,=3/28, the virial variableo
qguantifying deviations from the virial theoremr= e+ €,
—3PVR/N? [where P is the pressure on the wally
=47R%3 is volume of the container, and the factéf/R
rescales the volume-pressure term to the unit of energy in-
troduced in Eg.(2)], ratio of the velocity moments,

e -1 1%(v?)?/5(v*) (which should be 1 for the Maxwell distribu-
f f L Bx,dx,| tion), and the number of particles in the cofe,, of the
V(X = %2)?+XG prescribed radiug.. For the last measurement we count the
number of particlesl;, that are withinx. from theith par-
_ 3 -1 ticle and find the particle which has the largést
Po= f Flp().x]d) . (3) In addition, we measured the histograms of the velocity

distribution and radial distribution function§v(u) and

This equation replaces the Poisson-Boltzmann differentiaC(x), respectively. The latter was defined as the number of

equation for the self-consistent potent{ake, for example,

particles in a spherical layer of radiysaround each particle

Ref.[1]), since the interparticle interaction considered here imormalized by the volume of the layer and disregarding non-
not purely Coulombic. The equilibrium density profix)
obtained from this equation is then used to calculate entropy The measurements of scalar quantities such as energy, ki-

and pressure.

uniformity of the system and boundary effects.

netic energy, pressure, and velocity distribution moments

The MF phase diagram of the system is presented in Figwere taken in time intervals,,c,s. We usually choseeas
1. The collapse and explosion energies agg,~ —0.339
andeq,,~0.267. Examples of the uniform and the core-halosuch as the velocity and radial distribution functions, was
density profiles fore= €., are shown in Fig. 2.
In the MD simulations we consider systems consisting oftime period s~ (10-10) 7eas.

to be of the order of the crossing time. The histogram data,

incremented at each,,.,s and accumulated over a longer

N=125-500 particles in a spherical container of radius Our attempts to resolve the high-density part of the radial
=1. All interparticle forces are calculated directly at eachdensity profile of the system turned out to be fruitless due to
time stepdt. This is done in order to avoid any mean-field- the strong fluctuations in its position. These fluctuations
like effects inevitably present in any truncated multipole orsmear the central peak in both core-halo and low-energy uni-
Fourier potential expansion. The particle velocities and coorform states. Considering the center of mass system of refer-
dinates are updated according to the standard velocity Verleince does not resolve this difficulty as, despite being dense,
algorithm which is symplectic and time reversilpnd cor-  the core typically contains only 10—20 % of the total mass of
rect up to includingd(dt®)], as can be shown by a straight- the systen{see below; and the positions of the core and the
forward application of the Trotter expansiph7]. center of mass of the system do not usually coincide.
Systems were initialized by randomly distributing par- To control the quality of simulations, we monitored the
ticles according to a spherically symmetric density profile.total energye and the total angular momentum The time
Typically the appropriate MF density profifgx) was used. stepdt was chosen to be small enough in order to keep the
The potential energy of the initial configuration was cal- total energy variation within 0.05% of its initial value. Typi-
culated and the target kinetic enerfy=E—U was deter- cally we useddt=10"° or d7~10"* in rescaled units. For
mined. The particle velocities were randomly generated fronsuch time steps, the relative deviation of the angular momen-
a distribution(usually Maxwel) with the appropriate square tum was within 104,
average. Finally, the deviation of the total energy from its All the measurements below are presented in the rescaled
target value, caused by stochasticity in velocity assignmentlimensionless units as defined in Eg).
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FIG. 3. Plots of time dependence of kinetic enesgy, (solid
line), virial variables (dashed ling and total energy (dotted line
for a uniform system oN=250 particles at=—0.3.

IIl. UNIFORM AND CORE-HALO EQUILIBRIUM STATES:
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TABLE II. Equilibrium MD and MF results for a core-halo state
at e=—0.339,N=250, and G< 7<1500.

MD MF
€ —0.3392:2x107* —0.339
€xin 2.9+0.1 2.94
o -15+0.1 —1.46
1%v2)?/5(v%) 0.99+0.03 1
Neore 48+2 47.6

where the last term comes from the pressure at the container
wall, P=2p(x=1)¢,;,/3. Since the interparticle potential is
not purely Coulombic, the virial variable is nonzero. The
difference is prominent for the core-halo states in which
more particles “probe” the short-range part of the potential.
To evaluate the core radius and the number of core par-
ticles in a core-halo system, we considered an integrated MF
density profile,f(x) = f54my?p(y)dy (see Fig. 4 As it fol-
lows from Fig. 4, the MF core-halo state indeed contains a
distinct core with a sharp boundary of radig~ 102 rela-
tively insensitive to the energy in the range we considered

(]€e|]<0.5). Using this MF core radius, we located cores in
the MD core-halo systems. The number of core particles in
To check our simulation procedure and to attempt to reMD systems turned out to follow very closely the MF pre-
solve the apparent contradiction between the MF and thdictions(see Table |l. Using a smaller core radius resulted in
particle simulation resultgl2], we first considered a system a significant reduction in the number of MD core patrticles. A
which we expected to be in a stable or a metastable state fagasonably small overestimation of the core radius did not
away from any transition point. Since we are interested in theffect the results of the MD measurements. We observed that
equilibrium properties, we initiated the MD simulations ac- even in a sphere of twice the core radius, the number of
cording to the corresponding MF predictions, i.e., the densityarticles was only marginallfat most by 8% larger than in
profiles were initialized using the MF profiles and the initial the core.
velocities were assigned according to the Maxwell distribu- To check if the system has more than one core, we per-
tion. We observed that initializing the density profiles thisformed searches for the second-largest core of the same ra-
way virtually eliminated the transitory period. The method ofdius x.. We looked for the largest group of particles which
velocity assignment turned out to be practically unimportantare withinx. from a single particle with none of these par-
provided that the correct value for the total kinetic energyticles belonging to the first, i.e, to the largest core. We never
was obtained. For example, for a system initialized with aobserved the second-largest core containing more than two
flat velocity distribution[W(u)=consi, it took aboutr  particles. Most of the time no second core was observed.
~ 7, to evolve to the Maxwell distribution. In Fig. 5 we present the MD velocity distribution func-

A typical plot of the steady state time dependence of thdions W(u) for core-halo and uniform states. The measured
kinetic energy, virial variable, and the total energy is pre-W(u) confirms the MF prediction for the Maxwellian form.
sented in Fig. 3. Comparison between the MD measurements

COMPARISON TO MEAN-FIELD THEORY

and the MF results for the uniform and core-halo states is 1.0
presented in Tables | and Il. The comparison reveals a per-
fect agreement between these two sets of data. 08 I
The MF virial variable was calculated using
0.6 |
omr= €t €inl 1—-8mp(1)/3], 5 z
04 |
TABLE |. Equilibrium MD and MF results for a uniform state
for e=—0.3, N=250, and 6= 7<5000. -
MD MF
0.0 : - : :
€xin 0.66+0.05 0.644 X
o 0+0.03 0.012 FIG. 4. Integrated MF density profilds(x) of a uniform state
1%v2)2/5(v?) 1.01+0.04 1 (dashed ling and f._,(x) of a core-halo statésolid line) for e

= €coll -
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FIG. 5. The MD velocity distribution functiong/(u) of a core-
halo state withe=—0.339 (solid line) and a uniform state witle
=—0.3 (dashed ling In both casedN=250.

FIG. 7. Time dependence of the kinetic eneegy, (top) and the
virial variable o (bottom of the collapsing uniform state witk
=—0.5 andN=125. The dashed horizontal lines indicate the equi-

As we mentioned in the preceding section, we were uniibrium values ofe,;, and o of the corresponding core-halo state.
able to resolve the high-density part of the radial density
profile due to core motion. However, an indirect comparison
between the MF and MD radial distributions of particles was  To summarize, for all the quantities considered, we ob-

made using the radial distribution function. The MF radial served no Systematic deviations between the MF theory and

distribution functionCyr(x) was computed as the MD data.
1
Cue(X)= Zf p(X")p(x+x")dx’. (6) IV. COLLAPSE
4mx

The MF theory predicts that if the energy of the uniform

The good agreement between the MF and the MD radiaftate becomes lower than,,~ —0.339, the system should
distribution functions is illustrated in Fig. 6. This indicates Undergo a collapse to a core-halo state. To study the collapse,

that the mutual distribution of particles is correctly predictedWe considered several uniform systems with energies rang-
by the MF theory. ing betweene=—0.5 ande=—0.3. The systems were ini-

tialized according to the MF density distributions. For sys-
tems withe< e, the particles were distributed according to
the MF density profile fofe.q, .

In perfect agreement with the MF theory, a uniform state
10 l with e<e.y undergoes a gradual transition to a core-halo
state with a typical time scale ofr.,~10* for N
=125-250 particles. An example of the time dependence of

10* , , '

0

100 |

C®x)

—2

10°

4

10"

_6

10

0

0.5

1
X

1.5

the kinetic energy and the virial variable for a collapsing
system is shown in Fig. 7. We observe that if the number of
particles is increased but the rescaled energgy kept fixed,
it takes generally a longer tim@inrescaled time) for the
collapse to be complete. Our resulsge Fig. 8 qualitatively
confirm that the characteristic time for the full collapse
scales as, [16]. However, detailed quantitative study of the
dependence of the collapse dynamics on the number of par-
ticles requires much faster simulation code.

In the above examples, the energy was set+o—0.5
which is well belowe.,,,~ —0.339, and, as a consequence,
the collapse started immediately a0 in all simulation

FIG. 6. MF (dashed lintand MD (solid line) radial distribution ~ runs. If the system energy ig, a noticeable increase in
functions C(x) of a core-halo state witkk=0.25. The step akx the kinetic energy, and a decrease in the virial variable char-

=1 in the MFC(x) is caused by the localization of the core exactly acteristic for a collapse, starts after a small de(gig. 9.
atx=0 and a sharp boundary of the container. The delay varies from run to run from almost zero to about
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FIG. 10. Plots of the kinetic energy;, (top) and virial variable
FIG. 8. Collapse in systems wita=—0.5 and different num- o (bottom) vs time 7 for a system withe= — 0.3 andN = 250.
bers of particlesN=125 (dashed ling and N=250 (solid line),
shown in relaxation time units;In N/N [16]. Horizontal line shows tive variabIeSE{(- (7), cr{<- (1), andN_., () are plotted in
the kinetic energy of the target core-halo state. The data is averagqﬂg_ 11 Theym are dgfined fO||O$/\(;ir;g€{<m(t) —Lewn(t)

over §7=100 time intervals.
— €&in(U) /[ €in(C—h) — €in(U) . The valuese,;,(u) and €,(c

7~1500. The observed uncertainty is likely to be due to the_ ) correspond to the uniform and core-halo states in equi-
relatively small number of particles. "b”‘%m- . . -

As we increase the energy abowg,, the stability of the Figure 11 indicates that during the |n|_t|al _stages of a col-
uniform state increases, leading to a longer lifetime of such &PS€ the core evolves faster than the kinetic energy and the
state. Figure 10 displays the evolution of a systemeat virial variable. In addition, one can observe large reversible
:_0'3 The system stays in the uniform state for absut fluctuations in the number of core particléhe core grows
~5000 before the collapse starts, after which the evolutior}!P 0 12% of its final value and then disapp¢anat are not

proceeds qualitatively similarly to the collapses in system atched' t_)y quqtuanns of Comparable. scale in kinetic en-
with lower energies. ergy or virial variable. All these observations suggest that the

To compare the temporal evolution of the kinetic energy,dens'ty evolution causing the core formation plays the lead-

the virial variable, and the number of core particles, the relalnd role in the process of collapse while the relaxation of

kinetic energy follows. Once the collapse has started, the

3
0.7 |
2
1 5 031 ' * wll w M ‘W
o I LK
F “ iR
W v 03 LU
0 E UM m‘wv'wh‘
“ i
1| 0.1 | P,
“ 'n’ | ‘wf\‘
-3 \ ‘ 0.1 ‘
0 10000 20000 0 2000 4000
T

T

FIG. 9. Plots of the kinetic energy;, (top) and the virial vari-
able o (bottom) vs time 7 for a system withe= €., ~ — 0.339 and
N=250.

FIG. 11. Plots of the relative values @fom top to the bottomn
number of core particlebl.,,(7), virial variable oy;,(7), and ki-
netic energyey;,(7) for the system withe=—0.339 andN = 250.
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FIG. 12. Plots of the kinetic energy;,(7) (top) and relative

number of core particleBl;, (7) (bottom (defined as in Fig. J1 FIG. 13. Same as in Fig. 12 but with=0.4.
vs time 7 for a system withe=0.5 andN=250.

ber of core particles changes only slightly during the first
stages of evolution and rapidly decreases at the final stages.
In the example presented in Fig. 12, the explosion is com-

core grows to about half of its final size in onty-10° for
systems withN=125-500 particles. Changes in kinetic en-

ergy during this time interval are small. After this rapid ini- : ~ S X
tial stage the system relaxes more slowly, and finally afte|lOIete after time7e,p~15000, which is co.nS|de.rany less
than the time for a collapse.,;~10° (see Fig. 8in a sys-

Teon~ 10° reaches the equilibrium core-halo state. Our ob- . :
servations strongly suggest that the growth of the core takeS™ having the. same num_ber of part|clé$:(250). How-
ver, the latter is less precisely defined due to larger fluctua-

place through a sequential absorption of single particle ons in a core-halo than in a uniform state

rather than through a hierarchical merging of smaller cores: Similarly to a collapse, the system remaiﬁs thermalized in
We never detected other cores containing more than two pa{- . o . L

; S : : .~ the velocity space during an explosion. The velocity distri-
ticles. Although the kinetic energy relaxation trails behmdbution rerrxllainps Maxwell?an throFl)Jghout the evolutioyn with

the core formation, the velocity distribution function remainsth i t ding to th t val f Kineti
Maxwellian throughout the whole evolution with the tem- € temperature corresponding to the current valué of Kinetic
nergy. As an illustration, Fig. 14 shows the ratio of the

perature corresponding to the respective value of the kineti Lo T o N2 4
o . : moments of the MD velocity distribution, 18%)</5(v®),
energy. This is caused by the fast velocity relaxatiep,( which should be 1 for a Gaussian distribution.

~1) as discussed in the preceding section. It is evident from a comparison between Figs. 12 and 13

that ase gets closer toe,;, the explosion takes longer to
V. EXPLOSION

It is natural to assume that if a system exhibits a collapse, 1.3 . .
it should also exhibit an explosion which is the reverse to the
collapse transition. According to the MF theory, such an ex-
plosion should take place when the core-halo state become 1.2
unstable, i.e., wher= € ,~0.267. To check this predic-
tion, we initialized the MD system according to the MF equi- «

v >

librium core-halo state and followed its evolution. As in the ¥ 11
study of the collapse, for initial states wit> €.,, we used =g \
the MF density profiles of théocally) stable state with the “5 1
highest possible energy, i.e., of the state vatheqyp,. )

We observe that a system with sufficiently high energy,
such ase=0.5 in Fig. 12 ore=0.4 in Fig. 13, indeed under- 09
goes an explosion which brings it to the uniform equilibrium
state. During such an explosion, the state variables such a . .
kinetic energy and the virial variable continuously change 0.8 0 5000 10000 15000
from their equilibrium core-halo state values to the uniform
state ones, and the core gradually sheds particles until only
one particle is left. The main features of an explosibiys. FIG. 14. Plot of the ratio of the moments of velocity distribu-
12 and 13 resemble those of a time-reversed collapse. Theion, 19v?)%/5(v*), vs time 7 for a system withe=0.5 andN
kinetic energy evolves relatively uniformly, while the num- =250.

T
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initiate. We have observed that even fer 0.3, which is lomb potential, we speculate that a likewise similarity be-
noticeably larger thar,,,~0.267, the explosion does not tween the mean-field and molecular dynamics equilibrium
occur for7<<30000. This suggests that either the MF valueproperties of the core-halo state exists for all “soft” long-
for eqyp is incorrect or the initialization does not put the range (such as a Fourier- or spherical harmonic-truncated
system exactly into equilibriunfimetastablecore-halo state. Coulomb potentials. We attribute this to the fact that all soft
If the latter is the case, deviations from equilibrium would potentials are effectively longer ranged than the bare Cou-
most probably take place in the core. Due to its compactnedsmb one. When the interparticle distance becomes small
and strongly correlated nature, its equilibration with the restompared to the respective softening radigisen byr, or

of the system may take a rather long time. Using the currentdetermined by the order of truncation in the expansions men-
MD setup, we were unable to determine the reason for thitioned abovgall these soft potentials tend to a constant, and

apparent discrepancy. the interparticle force vanishes continuously. Another simi-
larity between the soft potentials is that a core radius is in-
VI. CONCLUSIONS dependent of the number of core particles, unlike, for ex-

ample, radius of a core consisting of impenetrable particles
In the previous sections we have presented the followings finite radius. The core-halo state in a system with a
molecular dynamics results for self-attracting systems with\narder” short-range cutoff may have completely different
soft Coulomb potential. properties from the one considered above and mean-field
(1) A collapse from a uniform to a core-halo state wastheory may become inadequate. As for uniform states, their
observed. The time scale for the collapse in systems consisgroperties are virtually independent of the nature of the cut-
ing of 125-500 partiCles is of the order OfﬁOOSSing times off (See’ for examp|e’ Rel['g]) and their mean-field descrip-
and is by the same factor longer than the time scale of thgon is universally correct.
velocity relaxation. The collapse starts with a fast growth of The main goal in this paper was to check the existence of
a core via absorption of single particles and continues withrgllapses and explosions and the validity of the mean-field
more gradual relaxation towards an equilibrium core-data for self-gravitating systems with short-range cutoff. For
halo state. Metastable states exhibit finite lifetimes beforqhis goa| a few molecular dynamics runs for each System
collapsing. were sufficient. However, to be able to study the dynamical
(2) Areverse to collapse, i.e., an explosion transition fromfeatures of collapses and explosions in more detail and to
a core-halo to a uniform state was observed. The explosioBompare the simulation results to various theoretical models,
time is considerably shorter than the collapse time, being opne needs to study the relaxation averaged over many initial
the order of 10 crossing timeg125-500 particlgs An ex-  configurations. For example, an interesting question is
plosion resembles a time-reversed collapse; the core dgyhether a collapséor an explosionindeed consists of two
crease, which proceeds by shedding individual particles, istages: The first fast stage of collisionless “violent relax-
trailing the kinetic energy evolution until the last stagesation” with particle number-independent rate and the slower
when the core rapidly disappears. second stage of soft collisional relaxation with characteristic
(3) Molecular dynamics results for the equilibrium and time 7, (see, for example, Ref16] and references thergin
the metastable uniform and core-halo states are found to bﬂnother important question is to resolve the apparent contra-
equal within statistical uncertainty to the correspondinggiction between the mean-field prediction fag,,, and the
mean-field predictions. These quantities include kinetic enmolecular dynamics observations outlined at the end of the
ergy, wall pressure, number of core particles, particle-particlgyreceding section. Such studies require a more efficient
radial distribution fUnCtion, and VE|OCity distribution simulation code. The main improvement may possib|y come
function. _ _ _ _ from a better force calculator that could include various
The long collapse time observed in our simulations apmean-field-like potential expansions, which are qualitatively

pears to be an explanation for the apparent discrepancy bgsstified by this study. We leave this for the future research.
tween the phase diagram presented in R&2] and the

mean-field phase diagrafsee, for example, Ref9]). The

relaxation time allowed for a system to reach a steady state
in Ref. [12] was t,,;=3N/|EN|®? which is apparently The authors are thankful to P.-H. Chavanis and E. G. D.
equivalent tor,o;<1 in rescaled unit$Eq. (2)]. This is in-  Cohen for helpful and inspiring discussions and gratefully
sufficient for a system to collapse. Therefore, discontinuitiesicknowledge the support of Chilean FONDECYT under
in caloric curvesB vs e, typical for collapse and explosion Grant Nos. 1020052 and 7020052. M.K. would like to thank
gravitational transitions, were not observed in R&g]. the Department of Physics at Universidad de Santiago for

Although we considered systems only with the soft Cou-warm hospitality.
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