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We study in detail the dynamics of the one-dimensional symmetric trap model via a real-space renormal-
ization procedure which becomes exact in the limit of zero temperature. In this limit, the diffusion front in each
sample consists of twé peaks, which are completely out of equilibrium with each other. The statistics of the
positions and weights of thegepeaks over the samples allows to obtain explicit results for all observables in
the limit T—0. We first compute disorder averages of one-time observables, such as the diffusion front, the
thermal width, the localization parameters, the two-particle correlation function, and the generating function of
thermal cumulants of the position. We then study aging and subaging effects: our approach reproduces very
simply the two different aging exponents and yields explicit forms for scaling functions of the various two-time
correlations. We also extend the real-space renormalization group method to include systematic corrections to
the previous zero temperature procedure via a series expansibrWe then consider the generalized trap
model with parametew € [0,1] and obtain that the large scale effective model at low temperature does not
depend onx in any dimension, so that the only observables sensitive &re those that measure the “local
persistence,” such as the probability to remain exactly in the same trap during a time interval. Finally, we
extend our approach at a scaling level for the trap model=r2 and obtain the two relevant time scales for
aging properties.

DOI: 10.1103/PhysReVvE.68.036114 PACS nuntder64.60.Ak
I. INTRODUCTION T
=—. 3
A. Trap models as toy models to study aging phenomena p Ty ®

Trap models provide a simple mechanism for adibg].
The basic phenomenological idea is that the slow dynamicét low temperaturesT<Ty, the mean trapping time
of glassy systems is governed by metastable states defined &7 7q(7) is infinite and this directly leads to aging effects.
“traps” in the coarse-grained configurational complicated This mechanism shows that the presence of broad distribu-
landscape. The distribution of the energy of the traps is usution of trapping times(2) is rather generic at low tempera-
ally taken to be exponential, tures, since it simply emerges from the exponential tail of
extreme-value statistics for the energy barriers.

1
p(E)=6(E) T—e—E/Tg. (1)
g B. Previous results on aging properties in trap models

The dynamics of the trap model has been studied in detail

On one hand, this exponential form describes the lowest erin its the mean field versiofil2—15 as well as in the one-
ergies in the random energy mod8] and the distribution of ~dimensionaldirectedversion, in relation with the biased Si-
free energy of states in the replica theory of spin glagéks nai diffusion[1,16—2Q. In both the cases, aging properties
On the other hand, it appears for the largest barriers in thare characterized by scaling functions of the ratit,f) of
biased one-dimensional Sinai diffusigfh,5] as well as in  the two times involved.
more complex disordered systems such as fractals and per- More recently, it has been proposed in Réfl] to study
colation clusterg$6], elastic manifoldg7], bubble dynamics trap models on a hypercubic lattice in an arbitrary dimension
in DNA [8], and sequence alignment algorithfi®]. The d with the following generalized dynamics: the particle can
ubiquity of this exponential form actually comg$0] from  jump from sitei to any of the 21 nearest-neighbor sitgs
the exponential tail of the Gumbel distribution which repre-with a hopping rate per unit time given by
sents one universality class of extreme-value statiflith

The exponential density of energy) corresponds for the

1
o — _— atBaE;i—B(1-a)E
Arrhenius trapping timer=e”E to the algebraic law Wiej(@) 2d¢ @

in terms of the parameter [ 0,1]. The casex=0 repre-

M
q(n)=6(r>1) o 2) sents the usual trap model where the rate
r
1
I

with the temperature-dependent exponent
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depends only on the initial site via the trapping time )~/ (AT, (11)

=ePEi distributed with Eq(2): the particle spends at site

time t; distributed with the exponential distribution of mean This exponent can be found via a simple scaling argument on

T, Levy sums[25,26 or by a real-space block-RGenormal-

ized group analysis[27]. However, the scaling function it-

self g(X) is not known, but has recently been studied nu-

merically in Ref.[23] together with asymptotic behaviors

proposed in the limiju—1.

and then jumps with equal probability 1P to one of its Another important issue concerns the localization proper-

(2d) nearest-neighbor sites. Another interesting case is ties. The localization parameters

=1, where the ratav;_; depends on the energy difference

(Ej—Ej). B Y
Monte Carlo simulations and scaling argume@$] have Yk(t)_n;w P¥(n,t[0,0 (12

shown the possibility of a so-called “subaging” behavior for

the probabilityl1(t+t,,,t,) of no jump during the interval represent the disorder averaged probabilities khatepen-

[tw,twtt], dent particles starting at site O at time 0 in the same random

environment are at the same site at timk has been proven

in Ref.[22] that the limitY, () is strictly positive in the full

1
f.(t)= ;e*i’fi, (6)

+ o

(t+t,,,t,)=II

tr(a) ]’ @) domain O< u<1. The values of the limit¥ () have been
" numerically studied in Ref[23] with various approxima-
with an exponent<1 given in one dimension bj21] tions.
l-«a D. Summary of main results
v(a)=1T- 8 i . . . A .
M The aim of this paper is to provide a probabilistic descrip-

tion, sample by sample, of the symmetric trap model in the
Fimit of very low temperatureu—0. We have previously
developed a similar analysis for thirectedversion of the

This exponent was proven to be exact by mathematician
first for the usual trap modet=0 [22], and then for arbi-
trary « [24]. On the other hand, the correlation function o5 model[20]. Here in the undirected version, each site
C(t+1y,ty), defined as the probability to be att,) in 5y pe visited many times and this leads to essential
the same trap as it was at timg, was shown to present & cnanges. In particular, at tinte the important traps are the

“full aging” behavior, traps having a trapping time>R(t), where the scalR(t) is

i not_linear int as in thedirectedversion[20], but is sublinear
C(t+ty,tw)=C, t_)’ 9) in time
¢ U(1+ )
for the usual trap modet=0 [22], and then for arbitraryy R(t)=| = , (13
[24]. So there are two different time scafgsandt,, which To(u)

play a role in the aging of this model. Asymptotic forms have ~ i

also been heuristically proposed and numerically tested i¥hereTo(u) may be expanded ip as

Ref. [23] for II(t+t,,t,) and C(t+t,,t,). Finally, let us ~ e

mention a recent interesting application: these properties of To(p) = 2e 7" 7H[1+0(u)]. (14)
aging and subaging for the trap model are relevant to explain w0

the numt_arical simulations on the dynamics of denaturatiorr,q corresponding mean distance between these important
bubbles in random DNA sequencks. traps is then given by

C. Previous results on anomalous diffusion E(t) = Eo(p)tH A1), (15
and localization properties ) .
_ ) ) where the exponent agrees with previous studigs de-
Apart from aging properties discussed above, trap modelg;ineq ahove, and where the prefactor reads
are interesting for their anomalous diffusion and localization

properties. In particular, in dimensioth=1, the averaged E(m)=1+0(u). (16)
diffusion front is expected to take the following scaling form
at large timeg23,25,21%: In terms of these scales, we obtain the following explicit
L results in the limitu—0.
ST iAo n (a) Scaling function of the disorder averaged diffusion
P(n,t[0,0 = ——¢g (—) (10)
e E(1) THLE(Y) front (10)
. . . + o0 u

Wht_are the ch_aracterlstlc length scéglg) follows the subdif- 9,(X)= e—\x|J' du eV +0(w). 17)
fusive behavior 0 IX[+u
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(b) Localization parameterél 2)

2
Yi(p)= mJFO(,U«)- (18)

(c) Generating function of thermal cumulants

_— +oo S\ SA
Z,(s)=In(e’ls ”’f(t)]>=f d\ e M\ | —coth——1

# 0 2 2

+0(u). (19
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ﬁﬁf’)(g)= Joldz wzt te79, (26)
In particular, we obtain the asymptotic behavior
t M
Mttty ty) = (m [1+0(u?)].
o R
’ (27)

(f) The probabilityC(t+t,,,t,,) to be at time {+t,) in

The series expansion is yields the disorder averages of the same trap as it was at timg takes the scaling forrto)

rescaled thermal cumulants: the first ones are the thermal

width

_(n®)—(n)?
=lim————=1+0(u), 20
Co( ) im 200 (1) (20)

—

and the fourth cumulant

() = 4(n°)(n) —3(n?)?+ 12(n?)(n)?— 6(n)*

Cq(p)=lim
t—ow 54(1')
=—4+0(n), (21
and more generally
C(p) =(2k+1)! By +O(u) (22)
in terms of the Bernoulli numberB,, .
(d) Two-particle correlation function
4+ +4ow
C(l.=2> 2 P(nt0,0P(M,t0,0) o
n=0 m=0
Y()6+lcl) (23
R - ORI

- - t
cﬂ( h:To(M)t—),
(28)

~ t
C(t+tW,tW)=Cﬂ h= m) =

with the scaling function which reads at lowest ordepin

~ ~ 2u (V2R
COh)=C,(h)= f dz 272#K3(2). (29
Dm=Cum=_ 2 2. (29
In particular, we obtain the asymptotic behavior
—m
Clt+ty,tw) (— [u+O(u®]. (30
tlty—o \ "W

We also extend the real-space renormalized group
(RSRG method to include systematic corrections to the zero
temperature procedure via a series expansion;ithe cor-
rections of the order of of the observables described above
are given in Appendix C. We also extend our analysis to the
generalized trap modelg) and obtain that the only observ-
able that depends oa is the two-time correlatiodI(t,t"),
which takes the scaling form

- t
HELQ)(I-FIW,t):HELO,)(la)(vzm) (31

where the weight of thé peak at the origin corresponds as it in terms of resuli(26) for the «=0 case, but that otherwise

should to the localization paramet¥r=2/3+0O(u) (18),

all other observables described above are exactly the same as

whereas the second part presents a scaling form of the vaiiin the casea=0. The reason is that the influence @fis

able\=1/£(t). The scaling functior®,, reads

cﬂ(x)ze-hijuom).

2 (24

(e) The probabilityII(t+t,,,t,) of no jump during the
interval[t,, ,t,+t] takes the scaling forn(7)

~ t
H(t'f'tw,tw):H#(g:m)

~ ~ t
=H,L( g=[To(p) "4 tl,(lw) . (29
w

with the scaling function

purely local around a renormalized trap and does not change
the renormalized effective model at large scales. Finally, we
also extend our RSRG approach to the trap model in dimen-
siond=2 at a scaling level.

E. Organization of the paper

The paper is organized as follows. In Sec. Il, we defined
the renormalized landscape for the usual trap medel0
and study its properties: in particular, we obtain the relevant
length scale and the two relevant time scales. In Sec. Ill, we
describe the effective dynamics in the limit-0 and com-
pute one-time and two-times observables in this limit. In Sec.
IV, we study the corrections to the effective dynamics at first
order inu and we describe the hierarchical structure of the
important traps that play a role at ordef. In Sec. V, we
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extend our approach to the generalized trap with parameter I R

ae[0,1]. In Sec. VI, we extend our RSRG approach to the
trap model ind=2 at a scaling level. The conclusions are
given in Sec. VI, and the Appendixes contain more technical === —
details. \

I‘. I Ly )

II. DEFINITION AND PROPERTIES
OF THE RENORMALIZED LANDSCAPE \ !

A. Notion of renormalized landscape at scaldR . .

We wish to adapt the real-space renormalization proce- T,
dure already defined for the Sinai modB] and for the di- T
rected trap mode[20] to the undirected trap model. The - T
basic idea is that the dynamics at large time is dominated by T
the statistical properties of the large trapping times. The +
renormalized landscape at sc&tds defined as follows: all FIG. 1. Definition of the escape time from a trap in the renor-

traps with trapping timer;<R are decimated and replaced majized landscape: the trap of escape tirg@xisting in the renor-

by a “flat landscape,” whereas all traps with waiting time malized landscape at scaReis surrounded by two renormalized
7,>R remain unchanged. The distribution of the distahce traps that are at distances and|_ on each side. The escape time

between two traps of the renormalized landscape at $tale T, is the mean time needed to reach eitheror _ when starting
reads at .

! 1f+wd7- q(r), (32 distanced , andl_ on each sidésee Fig. 1. Whenever the
R particle escapes from the trap, it can escape on either side
with probability 1/2. If it escapes on the left, it will succeed
where the first parf---]'~* represents the probability that tq reach the trap_ with probability 11 and if it escapes on
(I-1) traps have a trapping timg<R, and where the last the right, it will succeed to reach the trap with probability

part represents the probability that thte trap has a trapping 1/, . Otherwise, it will be reabsorbed again by the trap
time ,.>R. So the appropriate rescaled length variable at

large scaleR is 1. Number of sojourns in a renormalized trap before escape
to a neighbor renormalized trap

PR<I>=[1—L “drq(n)

A= — (33 As a consequence, the probabilig(n) to need (1n)
R~ successive sojourns in the trag before the particle suc-

_ S _ ceeds to escape either to the trap or to the trapr, reads
and the scaling distribution is simply exponential,

n
P(N)=e". (39 Er(n)= 1_1 i+£ E £+_ (36)
200, )] 2\, 1_

The distribution of the trapping times of the traps in the

renormalized landscape at sc&des simply For largeR, since we have.=R*\. (33), the numbem
follows the same scaling: the rescaled variable
q(7) MRV
qR(T)ZH(T>R)+w—:9(T>R);(;) . n
| T ace -t 37
(35)

In the directed version of the model, the particle visitsiS distributed exponentially,

each site only once, and the RSRG analysis directly deals

with the trapping times; . However, here in the undirected gw)=a(h N_)e WAl Ao, (38)
version of the model, each site may be visited many times,

and thus, it is necessary to introduce the notion of “escapevhere the coefficient

time” as we now explain.

1
B. Notion of escape time from a renormalized trap a(hy )= §(E+ K) (39
to another renormalized trap

We now introduce the notion of the escape timfom a  depends on the two rescaled distances to the next traps. Its
trap 7o existing in the renormalized landscape at sdale distributionk(a) over the samples has the following for the
This trap is surrounded by two renormalized traps that are dtaplace transform in terms of the Bessel functiépn (E1):
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. +oo . Since the smallest trapping time existing in the renormal-
k(s)= fo da e *%(a) ized landscape at scalis 7,=R, the time spent inside the
trap o before it succeeds to escape scales as

2
=2sK3(\2s). (40 ti, ~ RUTA. (49)

R—o0

+ oo
J d\x P(\)e 52
0

In particular, the nonanalytic behavior at smallE3J), _ ) _
3. Total time spent during the unsuccessful excursions

~ 1 before the escape
k(s) = 1—s|ng+0(s), (42)

<0 Among then unsuccessful excursions, there arexcur-

sions on the left andn—m) excursions on the right, where
corresponds to the following algebraic decay at laage mis distributed with the binomial distribution2C}'. Since
n andm are large, we again have a central-limit theorem

1
k(a) = e (42) m n—m
aond tow= 2, 1 + 2t =m(t-)+(n-m){t,), (50
The decay at largs (E2),
where(t..) represents the mean time needed to return to 0
k(s) = 7T\/:ez\z (43) when starting at 1 without touching the point in a flat
S—so0 2 landscape. The asymptotic behavi@gee Appendix A for
more details
corresponds to the following essential singularity at sraall
I+
N2 <ti> = — (51)
k(a) = — e (44) e 3
a—0 a

gives that the scale df; at largeR reads
2. Total time spent inside a renormalized trap before escape
to a neighbor renormalized trap tour~nl~R2*, (52

Let us now consider the probability distributidh,(t;,)
of the total timet;, spent inside the trap, before its escape.
It can be decomposed into the numbesf sojourns, whera
is distributed with Eq(36),

1+n

which is negligible with respect tq,, (49) for u<1.

4. Time spent during the successful excursion to escape

We finally consider the diffusion timgy;;; of the success-
ful escape to the neighbor renormalized landscape. The free
tin= ;1 b 49 diffusion over a length~R* takes a time of the order of
(see Appendix A for more detajland thus the scale @fj;¢+
wheret; is the time spent during the sojouirin the trapr, at largeR,
so it is distributed with the exponential distributi¢®) with
= 1o. Actually, sincen is large in the larg® limit, we have tqits~ R (53
the central-limit theorem
is the same at,; (52) but is negligible with respect tg,
tin = n(t)=no. (46) (49 for u<1.

n—oo

This explains the numerical observatif#28] that the results 5. Conclusion

are unchanged if the particle spends a time exactly equal to So we obtain that the total time

7; at each visit to sité, instead of a random timg distrib-

uted with Eq.(6). tesc= tin T toutt taiss (54)
Since the numben is distributed with Eqs(37) and(38),

we finally obtain that;, is also exponentially distributed,  needed to escape is actually simply given by the tifge
spent inside the trap,. So the distribution of..is given by

B () ~ 1 by ITo 4 exponential47) with the escape tim&,.
in in)R:wToe ' (47) In conclusion, a trap of the renormalized landscape at
scaleR has a trapping time distributed with Eq.(35), but
with the characteristic time has an escape time proportional#p
1 1
To=_RH7o. (48) T= R, (55

036114-5



CECILE MONTHUS PHYSICAL REVIEW E68, 036114 (2003

with a factorR* that explains the occurrence of two different  Using Eq.(40), the most convenient way to characterize
time scales in this model, and with a prefactodistributed the scaling function in closed form is by the following trans-

with Eq. (40). form in terms of a variablev:

+ 00 ~
C. Distribution of escape times in the renormalized landscape f dT e wzlzTQM("T')
o . . 0
The distribution of the escape tinTein the renormalized

landscape at scalR reads 1 +o0
P =j u do v”_lj da k(al)e_(“’zlz)”a
0 0

+ oo + 1
QR(T)ZJR dr qR(T)fO da k(a)é T_aR’uT>.

2 ®
(56) =w—§: fo dz 77 24Ki(2). (63)

It thus presents the scaling form
D. Choice of the renormalization scaleR as a function of time

Qr(T)= LQ#(-T-: L) (57) For smallu, the probability distributiorQM(T') is domi-
Rt Rt~ nated by its long tai(59), and we may approximate it by
where the scaling function reads _ o L "“ro(,u) w
QuUM=0(T>To(w)z| —= : (64)
T
~ no [t k(a)
QuT)=z f da 0l a>= ( ~ o
T e o a T where the cutoffTy chosen to preserve the normalization is

B determined by the coefficient for the long tail p&®) and
In particular, for largeT, there is the same algebraic de- (60),

cay with index (t+ u) as for the distribution of trapping 2

; ~ 18—
times To(w)=[c(pu)]¥ = 27177 1+ 4 1277 +O(M2)}-
u—0
0,(T) = =—c(w), (59 o €9
Tl M For the unrescaled probability distributids?), this corre-

sponds to the cutoff
where the constart( ) may be computed from the Laplace _
transform(40) using Eq.(E4) To(u) =R #To(w). (66)

It is thus convenient to associate at titrtee renormalization

c(,u)zfmdak(a) scaleR(t) such that
0 a*
L To(m)=t, (67)
+ o0 -
= F_J ds ¢ k(s) meaning that at time, only traps with escape timeb>t
(1) Jo have been kept, whereas all traps with escape times
(1+ )31+ ) have been removed and replaced by a flat landscape. This
=2# leads to the explicit choice
r2+2u)
¢ 1U(1+ p)
=1-pu(1+ye—In2)+0(u?). (60) - (68)

5 To(m)
For smallT, we use the asymptotic behavior kofa) at

largea (42), o
gea (42) renormalization scal€33)
1 Ina+(In2—-1- Ina = - wl(1+ )
) = Ly narn2=izye) _4) 61 E(=[R() 1= g5, (69)
a—o0d a a with the prefactor
to obtain Eo(w)=[c(w)] YA M =1+ pu(1+ ye—In2) +O(u?).
70
~ M Mmoo~ 1 1 (79
QM) = 3 T o, T Inetin2=ye- 14507 lll. EFFECTIVE MODEL AT LARGE TIME
T—0 IN THE LIMIT p—0
. 1 A. Effective rules for the dynamics
+0| T2 InZ|. (62) o e
T The prescription for the dynamics is as follows.
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At time t, the particle starting at the origi® will be at  we obtain that the scaling function for the disorder averaged
time t either in the first trapgM , of the renormalized land- diffusion front (10) reads at lowest order ip
scape at scalR(t) on its right or in the first trapM _ of the
renormalized landscape on its left. The weight of the

trapM . is given by the probability to readdl . beforeM _
for a particle performing a pure random walk, so it is simply

+ oo + o
9(0)(X)=f dx+f dX_ DX, . X_)PO(X)
0 0

given by the ratio of the distances from its starting point =e“x‘f+wdu e u u (79)
0 IX|+u”
M,|0)= M-O = - 71
Prv_m,1(M+[0)= M_M, | +I_" 7, particular, its asymptotic behaviors read
(M_|0)= oM, _ I (72) g@(x) = el (79
Pim_m, (M- M_M, Ii+l_° |X‘4>oo|
This rule for the effective dynamics is consistent upon 0 1 ,, 1
iteration. Suppose there are three consecutive traps: the trap  9(X) = 1-|X| |n|7|— ve|TO[ [X] mW)-
M_ is at a distancé_ from the origin on the left, the trap X|-0 ©0)

M, is at a distancé, from the origin on the right, and the
trap M, . is at a distancé from the trapM .. on the right.
Suppose that the trad . is decimated before the trapé_
and M, , . The new weights for the trap®l _ and M, ,
become

It is interesting to compare with the simple exponential front
e X obtained in thelirectedversion of the same trap model.
At infinity, the front is reduced by the power|X| with
respect to the exponential representing the distribution of the
;o distance to a renormalized trap, because of the probability 1/
Pu_=Pim_m,1(M-|0) to escape to this trap instead of being absorbed by a nearer
renormalized trap on the other side. On the other hand, near
P w, ((M=IM)Ppu_w1(M]0) the origin, the front is enhanced by the log term because it is
more probable to be absorbed by a trap which happens to be

[, +1
- ﬁ =Pm_m,,1(M_|0), (73 very near instead of being absorbed by the renormalized trap
o on the other side.
pM++: p[M_M++](M ++|M +)p[M_M+](M +|0) C Localization parameters
(. In a given sample, the localization parameters read at this
ST Pmm, (M [0), 79 order

(0)_ k k
and thus rule$72) for the occupancies of renormalized traps Yic'=Pu, TPu_ (81)

are consistent upon decimation of traps in the renormalized . )
and thus averaging over the samples yields

landscape.
8. Diffus _ +o +o0 XK +xk
. Diffusion front Y(kO):f dx+f dX_D(X, ,X )+—
_ X K
In this effective model, the diffusion front in a given 0 0 (Xe+X)
sample thus reads 2
= 82
PO(n) 1 7><°><x n ) 5 (k+1) (82)
n)=—-= = |
! &(t) &(t)

The agreement with the numerical simulations of R&8B]
obtaining Y,—2/3 andY;—1/2 is the clearest numerical
evidence of the validity of the RSRG effective dynamics
with only two relevant traps in each sample in the limit

where the scaling function reads

P(O)(X)=X—+5(X+X )+L5(x—x ) p—0
Xo+X_ XL+ XL *

7
(76) D. Thermal width

in terms of the two rescaled distancés between the origin In a given sample, the thermal width reads at this order

and the nearest renormalized traps. Since the joint distribu- ) o 5

tion of the two rescaled distances is completely factorized, (An2(1))O=(ny_+ny )Py, Pw_=Nw Nw_, (83

D(X, , X_)=60(X,)0(X_)e X+ X (77 and thus we obtain after averaging over the samples
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A2 N 1. Probability IT(t+t,,,t,,) of no jump during the interval
_(An%(1))
Co(p—0)=lim—7—— [tw twtt]
toe &Y The probabilitylI(t+t,,,t,) of no jump during the inter-
o o val[t,, ,t,+t] is directly related to the probabilityktw(r) to
=J de dX_ DX, , X)X X_=1. be at timet,, in a trap of trapping timer via the integral
0

0

(84) o
M(t+ty,ty)= f dr g (1), (90)
E. Disorder averages of thermal cumulants 0

The generating function of disorder averages of rescaled In our approach, we have assumed as a starting point that

thermal cumulants reads at lowest order inu, the probabilityy;(7) was given by the
- trapping time distribution in the renormalized landscape at
Z(s)=In(e " SIMEMI), (85  scaleR(t) (68),
thus reads at lowest order RE(T)
(1) =gy (7) = 0(T>R(1)) T, (92)
T

+ o0 +
z<°>(s):f dx+f dX_ D(X, ,X_)
0 0
So we obtain the scaling foriY)

X_
_ 0t asXey T -sX
XIn X++X,e +X++X,e +) (86) B t

M(t+ty,t) =T1,| 9= 71
w.

+o 3 SA SA

=J' d\ e M\ | —-coth——1]. (87
0 2 2

~ - t
=HM<g=[To(u)]”(”“)tl,(w)), (92)
w

The series expansion mgives the disorder averages of the

rescaled thermal cumulantg2). and the scaling function reads at lowest ordepin
F. Two-particle correlation function ﬁ(O) fld I
. . . = G 93
The two-particle correlation function reads w9 0 Zpz (93
+oo 4o
cil,h= 2 2 P(MP(M) 8 jn_m In particular, its asymptotic behaviors read
n=0 m=0
= M
IP(g) = 1-g——+0(g, (94)
o 1 ( | g0 L1tmu
= Y378 ot ==Cul N\= 7=, 88
oY gt M (89
~ I'l+pw)
0) -
11,7(9) : (95)

where the weight of thé peak corresponds as it should to
the localization parametéfi”)= 2 discussed above, whereas
the scaling function of the long-ranged part reads at Iowest2 Probability Q(t+t

order

g—te  OH

w.ty) to be at time(t+t,,) in the same trap
as it was at time |,

© oo +oo According to the analysis of the escape time from a renor-
C,(N)= fo dX, J'O dX_ D(X4 ,X-) malized trap to a next nearest one, the total escape(Gie
is actually dominated by the timtg, spent inside the renor-
2X X A @) malized trap. As a consequence, we have
—_— =e M.
(X++X,)2 N XX 3

Clt+ty,ty) = f dT ¢, (T)e "7, (96)
G. Aging and subaging properties

As explained in the Introduction, there are two differentWhere ¢ (T) represents the probability to be in a trap of
correlation functions which present different aging propertiesescape timd in the renormalized landscape at scRlg,,).
[22—24. We now simply recover within our framework the At lowest order inu, ¢(T) is simply given by the prob-
expected subaging and aging exponents, and moreover, combility Qg()(T) given in Eq.(57). So we obtain the scaling
pute the scaling functions in the limli—0. form
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C(t+ty,t,)=C,

~ ~ t
(97)

where the scaling function reads at lowest ordepin

h=—o—
R““(tW))

C.(h)= fomcﬁ Q,(Tre " (98)

in terms of the functiorQM(T') introduced in Eq(58). Using

Eq. (63), we thus obtain the scaling function in terms of the FIG. 2. Construction of the important traps in a given sample for
Bessel functiork; as a particle starting at the origin. The dashed line separates the

“small” traps [that have a trapping time smaller th&{t)] from
_ 2u (2R the “big” traps [that have a trapping time bigger th&{t)]. The
C,(h)= f dz 21+2"Kf(z). (99) first big traps on each side calléd, andM _ are occupied with a
(2h)#Jo weight of the order oD(u°). The next big trap#, ., M__ and
the biggest small trafin the interval M _ ,M [ are occupied with
weights of the order 0O(u).

In particular, the asymptotic behaviors read

M

Cuh) = 1- mhlnﬁJrO(h)’ (100 figurations becomes rapidly much more involved than the
h=0 similar computations for the directed cd426€)]. This is due to
T(14 ) the fact that the escape time depends on both the trapping
E;M(h) T8 (101 time and the distances to the neighbor traps. So here, con-
h—e  h* trary to the directed case where we have computed correc-
tions up to orderw? [20], we will not go further into the
IV. CORRECTIONS TO THE ZERO TEMPERATURE explicit corrections of higher orders, but simply describe the
EEFECTIVE DYNAMICS hierarchical structure of the important traps that appear at a

) _ ~given order inu.
In the preceding section, to compute all observables in the

limit ©«—0, we have considered that the distribution of the

escape time was infinitely broad in the following sense: all B. Hierarchical structure of the important traps
traps withT;<t were such thafl;/t~0, whereas all traps
with T;>t were such thaTl; /t~ +9. For finite u, we have The procedure that we have described up to opd@an

to take into account that these ratios are not really zero obe generalized at an arbitrary ordeas follows: all observ-
infinite. This can be done in a systematic procedure order bgbles at ordep." can be obtained by considering dispersion

order inu as we now explain. of the thermal packet over at most{2) traps that have to
be chosen among a certain numiégy of possible configu-
A. Corrections at order p rations of the traps. Our aim here is simply to get some

At first order in u, we need to consider the following iqsight into the set of important traps that play a role at a
effects(see Fig. 2 given ordem. . _

(a) A trap M of the renormalized landscape has an escape Atorderu”, the important traps are the following) the
time Ty, which is not infinite. There is a small probability Main trapsM_ andM ., ; (b) The nextn large renormalized
(1—e Y™m) that the particle has already escaped from thigraps on each sideM,. , ... M1y on the half line
trap at timet. IMi,+[, Mpiyy—,...,M- on the half line

If it has escaped, it has been absorbed by one of the twp—o,M _[; (c) the n biggest trapss{”, . .. S among the
renormalized neighbors, with probabilities given by the ra-small traps in the intervall _ ,M_[; (d) the (n— 1) biggest

tios of the distances. We will say that the particle is “in trapssg(l)’ L ,S:(l) among the small traps in the interval
advance” with respect to the effective dynamics of the Iimit] M. ,M,.[ and the 6—1) biggest trap§g(l), o ,S;(l)
p—0. . . _ among the small traps in the interval,_ ,M_[; (e) the

_ (b) The blgg_est trap in an interval between two renormal-(n_z) biggest traps; @, . .. S’ among the small traps
ized traps, which we will callS has an escape timBs<t ) . )

which is not zero and thus there is a small probability of them_g')e mterv_a(lz)]\/lh M3 [ and the (—2) biggest traps
order ofe~Ts that the particle is still trapped iSat imet. ~ 53+ ---Sn ~ among the small traps n _t[}e interval
We will say that the particle is “late” with respect to the 1Ms- M2 [; (f) so on;(g) the biggest trais; "~*) among
effective dynamics of the limigz— 0. the small traps in the intervaM ;1)1 ,Mp.[ and the big-

The first corrections of the order @f for various observ- gest trapS;(”’l) among the small traps in the interval
ables are given in Appendix C. From a technical point of[M,_ ,M,_1)_[.
view, it turns out that the computation of averages over con- The total number of traps is thus
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n - ~

T,=2+n+2> i=2+n(n+2), (102 ; .
i=1

which generalizes the numb&g=2 (M_,M,) at ordern B—2/ B—l A B+1‘\ B+2
=0 and the numbef,;=5 (M_, M. ,M__ M, ,S) ator- [ —
dern=1.

With theseT,, traps, one has to construct the possifile
configurations of (2-n) traps, that are ordered in positions,
and that contribute up to ordex", as explained in more
detail in Appendix D.

r
I
C. Discussion !

T 7
In conclusion, the effective dynamics for the trap model
valid in the limit u—0 is also a good starting point to study
th? full f’:lging phas'e a_'“<1' since one can build a system- FIG. 3. Definition of the two escape times: a deep #aqf the
a_t'c Series expansion 1a for all Observables_' Moreover, the enormalized landscape has for nearest neighBersand for next
hierarchical structure of the traps that are important at ordefqgrest heighboB.. ,. In the caser>0, the trapping time~ of A

n give a clear insight into the structure of the dynamics forgone depends or, whereas the trapping timet of the interval

.

P *
Tg

-
-
-
-
’
’

finite u. made with the three consecutive traps;AB.; does not depend
on a.
V. PROPERTIES OF THE RENORMALIZED LANDSCAPE
FOR THE GENERALIZED MODEL with the cutoff
We now consider the generalized model defined by the rr=efl-al (107

hopping rates(4) with parametera €[0,1] and study the

changes with respect to the usual trap model correspondingnd with the new exponent
to the special case=0 that we have studied in the previous
sections. w
mla)=3——, (108
A. Definition of the renormalized landscape

Here, the renormalized landscape is defined for the energ')rllstead of Ea(3).

variable: at scald’, all traps with energye<I" are deci- o o )
mated and replaced by a flat landscape, whereas all traps C: Trapping-time of the vicinity of a renormalized trap
with energyE>T" remain unchanged. So the distribution of  The hopping rates from the sit®, ( or B_;) nearest
the energy in the renormalized landscape simply réaps neighbor of the renormalized traf of energyE read
1 w =3ePE 109
pF(E)za(E>F)T—e*<E*F>’Tg. (103 BioAT 2 (109
9
WB]_HBZZ %l (110)

B. Trapping time of a renormalized trap

Let us consider a trap calledlwith energyE>T" existing tsr?etz(eare% Itsr;mvery high probability to rewim immediately to

in the renormalized landscape: it is surrounded by traps We are interested into the probability distributiBy (t*)

(EBwle(Z) on ;he r:;igfx andg_;,B_) on t?he l?]ﬁ which ha;ve ¢ of the total timet* spent atA before the first passageBj or
see Fg. S @ consequence, the hopping rates OB_2 when starting atA. We may decompos&* into the

escape fromA are numberk of sojourns atA needed

Wa_g,,= 3 Al-aE (109 K
_ o t=>t, (112)
SO we may associate to the traghe trapping time i=1
Tg=efmE, (105  wheret; is the time spent irA in one sojourn, so it is dis-

tributed withf,_(t;) (6). Denotingp, the probability to hop

The distribution ofrg in the renormalized landscape at scale,[0 B, when starting aB;,

I" reads

(@) Wg, B, 1 -
= — g~ BaE
qi(7)=o(r> TF)M(H) ( TF) , P2 e (112

(108 :WBlﬂBz_’_WBlHA 14ethaE ’

T T
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we may express the probability distributioV(k) of k
=1,2,..., as

W(K)=(1—p2)* *p,. (113
The Laplace transform df* (111) thus reads
+o0 * i k 1
* *\a—St" — —
fo dt* P, (t*)e™>" = 2 W(k) Trsme =
2
(114
sot* is exponentially distributed
1 * %
P, (t)=—e "7, (115
TE
with the mean time
x_TE_ _BE —BaE\ _ BE
TE e’=(1+e )=eFF, (116

P2

which is independent of the parameterand exactly coin-

cides with the trapping time of the usual trap model (

=0) distributed with Eq(2). In conclusion, ag grows from
0 to 1, the mean sojourn timg: (105 in the trapA decays,

PHYSICAL REVIEW EG68, 036114 (2003

where the cutoff is related to the RG scakt) (68) via
(107 and(116)

’Tr(t):eﬁ(lia)r(t):[R(t)]lia. (119)
So we obtain the scaling form
M@ (t+t,,,t) =119 (v= ;) (120
s O Rty

in terms of the scaling functio(®3) with the modified expo-
nent(108).

F. Effect of e in arbitrary dimension d

It is clear that the analysis presented abovelinl can
easily be generalized for the trap model on a hypercubic
lattice in arbitrary dimensiod: a very deep trap\ of energy
E has a trapping timeg (105 distributed with an algebraic
law of exponenju(a) = u/(1— a) (108), whereas the cluster
made out ofA and its (1) nearest-neighbor sites has for
trapping time 7t =efE (116) distributed with an algebraic
law of exponentu(0)= «. This explains why the quenched
model and the annealed model remain different even in arbi-
trary dimensiord whena>0, as was found in the numerical
simulations[21]: in the quenched model, the exponenin
the distribution ofrf comes from the very high probability

but this is exactly compensated by the large probability tao return immediately to a deep trap when leaving it, and
return immediately back t& when on nearest-neighbor sites thys in the annealed model where these returns are absent,

Bil'

D. Escape time from a renormalized trap

Since we have found that the trapping timg (116) of
the regionB_;AB. ; containing a renormalized traj with

its two neighbors was exactly the same as the trapping time
7 of the usual trap modela=0) studied in the previous
sections, we obtain that the escape properties from a ren
malized trap to another renormalized trap are exactly the

same as for=0. So the distribution of the escape timés
given by Eq.(57), where the RG scalB(t) for the trapping
times 7£ is related to the energy RG scdlét) via (116

R(t)=efT®, (117

E. Conclusions ind=1

All results based on the escape timiesn the renormal-
ized landscape do not depend a@nin particular, the diffu-

sion front, the localization parameters, the disorder averag

of thermal cumulants, and the correlatiGit’,t) do not de-

pend ona. Among the observables we have considered, the

only change will be for the probabilityI(t,,+t,t,) of no
jump betweent,, andt,,+t, since it directly involves the
distribution of trapping timerg (90). At lowest order inu,
we have that the probability distributiofp(7) to be in a trap
of trapping timer at timet is now given by(106)

m(a) ( (1)

m(a)
Y1) =0 (1) = 007> 7r()— T) . (119

€

the only relevant exponent jg(a) = u/(1— «). As noted in

Ref. [21], this effect is particularly clear in the region O
<u<l<wl(l—a): the annealed model is above its glass
transition, whereas the quenched model is below its glass
transition.

In conclusion, in the glassy phage<1 in arbitrary di-
mensiond, the diffusion front, the localization parameters,
the disorder averages of thermal cumulants, and the correla-

Ofion C(t',t) do not depend omr, and the only observables

Sensitive toa will be again those that measure the “local
persistence,” such as the probabiliti(t,,+t,t,,) to remain
exactly on the same site betwegpandt,,+t. This conclu-
sion is in agreement with the qualitative argument given in
Appendk B 3 of Ref. [21].

G. Generalization to arbitrary jump rates satisfying
detailed balance

It has been recently argued in R¢28] how the decay
time for the functionlI(t,,+t,t,,) should depend on the form
o the jump rates satisfying detailed balance
efEiw(E; to E;))=effiw(E; to Ej), (121
when they are not of the special for@). It is thus interest-
ing to consider this question from the RSRG perspective.

The arguments presented in detail above for the special
form (4) of the rates may be straightforwardly generalized as
follows. The trapping time associated to a trapith energy
E>T existing in the renormalized landscafi5) is more
generally given by
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1 from the scale of trapping times. On the contrary, tbr
“WE 0 0)’ (122 >2, the random walk is not recurrent, and there will be only
one-time scale given by the trapping times.

whereas the trapping time of the vicinity of this renormalized

TE

trap (116) reads more generally A. Renormalized landscape
7= w(0 to 0)+w(0 to E) As before, we define the renormaliz_ed landscape at_scale
TE=—= (123 R as follows: all traps with trapping time;<R are deci-

P2 W(E to O)w(0 to 0) - mated and replaced by a “flat landscape,” whereas all traps

The detailed balance conditiqti2l) for the special casg; ~ With waiting time 7;>R remain unchanged.
—E andE;=0 thus gives We now consider the probabilityg(l) that the renormal-
! ized trap closest to the origin is at a distaricklom the
. efE 1 efE origin. At large scale, this means that the disc of surface
"ETW(0 to 0) T W(E to 0) w(0 to 0) T TE. =2 is empty of renormalized traps, whereas the disc of
(124 radiusl +dl is not, yielding

So the condition to have exactly the same properties on large (L
scales as in the usual trap mod4) with «=0, is simply PR(I): on © ' (129

— 00

lim (e AErp)<+oo, (129

E—o

which generalizes Eq$33) and (34). Given a renormalized
trap 79, Pgr(l) also describes the distribution of the distance
since this condition is sufficient to gef ~e”F. In this case, | of the nearest-neighbor renormalized trap.

the only observable sensitive to the precise form of the rates

will be again the probabilityI(t,,+t,t,) to remain exactly B. Escape time for a renormalized trap ind=2

on the same site betwegp andt,,+t. Indeed, this probabil- We thus define the escape from a renormalized tgaas

ity will be a scaling function of the ratipt/ ,(ty) ] , Where o ovent where a particle startingatreaches for the first

Tw(tw) is the cutoff7r ) of the renormalized landscape at {jmg the circle of distanckof the nearest renormalized trap:

time t,,, i.e., at scaleR(t,) (68). In terms of the energy of course, contrary to the one-dimensional case, this does not

cutoff I'(t,,) (117), mean that the particle has been really absorbed, but we ex-

pect that the particle has then a finite probability to be ab-

In R(tw) - Inty (126) sorbed by a renormalized trap different fram

B B(l+u)’ The probability to escape to the distariogithout return-

ing to 7o when starting nearby behavesdéln|), wherec is

a constantsee Appendix B for more detajlsand thus the

I(ty)=

we thus obtain122) the general prediction

1 1 numbern of sojourns atry before the particle succeeds to
= = = escape scales as
()= Tr0,) = W) 0 0) nt, R P
w B(1+u) to n~Inl~InR#?2, (130

(127) So the time spent inside the trap before the escape scales
Vice versa, if one is interested in constructing a model with aas
given decay timg28] 7,,(t,,) for the functionII(t,,+t,t,), ) )
it is sufficient to choose a form for the rates that satisfies the tin~N7o~ 7o NR¥*>RINR*, (131

followin mptoti havior: . .
ollowing asymptotic behavio The mean tim€t), of one unsuccessful excursion scales

as(see Appendix B for more detajls

(128 .
<t>|lfw0 1’ (132

w(E to 0) ~ W

E—o Ty

In particular, to obtain the ultraslow logarithmic aging dy-
namicsr,(t,,) = (Int,)*, the jump rates have to behave as the

power laww(E to 0)~E X for E—, in agreement with so that the total time,,; during the unsuccessful excursion

Ref. [28]. scales before the escape scales as
12 Re
VI. SCALING ANALYSIS FOR THE TRAP MODEL tout~N(t)~ TYRRE=TL (133
IN DIMENSION d=2 nt InR*

Since the random walk on a square lattice in dimensiorit is thus negligible with respect tg, (131) at large scale.
d=2 is recurrent, we expect that here also, the scale of es- Finally, the timety;s; of the successful excursion over the
cape times in the renormalized landscape will be differentengthl scales as
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tgis~12~R-, (134)  ber of visited sites behaves &= N/(InN) and each site is
typically visited InN times, which yields the correspondence
and is thus also negligible with respecttip (131) at large
scale. S YREZ
In conclusion, the total time needed to escape from a trap t”Z 7i(INN)~(In N)(m) : (141
7o Of the renormalized landscape at scBle =t
Since the typical distance reached aftesteps scales as

~ N, this yields in terms of the timeafter the inversion of

is dominated byt;, alone at large scale, and thus we mayEq' (141 at leading order
associate to the trap, an escape time 2

r(t)

tesc=tint Loutt taifs » (139

To=ar, INR*?, (136) (142

wherea is a random variable of the order of 1 that charac-So here, in contrast with thé=1 case, the typical distance
terizes the geometry of the neighboring renormalized traps(t) reached after time does not coincide with the typical
aroundg. distanceé(t) (140 between two renormalized traps. As a
consequence, the numbeft) of important traps contained
C. Choice of the renormalization scaleR as a function of time in the disk of radiug (t) will not remain finite but will grow

The distribution of the escape tinTe(136) in the renor- logarithmically in time,
malized landscape at scalR will thus present the scaling

ra(t
form n(t)~ 2( ) Cinte, (143
) &4(1)
Qr(T)= WQ” T= RnRE) (137 This is in agreement with the absence of localizatiordin

=2 ast—o [30].

However, in the regime where—o and u—0 with t*
fixed (143, we expect that the diffusion front in a given
sample may be described as a sundqfeaks that are out of

So the renormalization scalRhas to be chosen as a function
of time with the scaling

t~R(t)In R¥/(t) (139 equilibrium with respect to each other, i.e., that their weights
' depend on the geometry of the renormalized traps in the
i.e., by inversion at leading order region around the origin but not on their energies. It would

be, of course, very interesting to build some RSRG effective
dynamics ford=2 case in this regime, but this goes beyond

R(t)~ (139  the scope of this paper.

Int#2’
So the recurrence properties of the random walk 2 VII. CONCLUSION

induces again a different scaling for trapping times and es- We have studied in detail the properties of the one-

cape times in the renormalized landscape. As a consequenatimensional trap model via a disorder-dependent real-space

the correlationII(t+t,,,t,) will be a scaling function of renormalization procedure. The RSRG approach provides the

t/R(t,) with Eq. (139, whereas the correlatiorC(t  correct exponents for the relevant length scale and the two

+1ty,ty) will be a scaling function oft/t,,, in agreement relevant time scales in the full domainsQu<1, and then

with the results obtained in Refg29,30. allows to compute scaling functions in a systematic series
expansion inu. Since we have already summarized our main
D. Number of important traps results for disorder averages of observables in Sec. | D, we

will not describe them again but instead discuss the physical
meaning of our construction.

We have seen that at lowest orderinin a given sample,
the particle can be only on two sites, which are the two
nearest renormalized trapb, andM _ existing at RG scale
ﬁ(t), and that the weights of these traps are simply given by
the probabilities to reach one before the other one. This
wl2 means that the dynamics remains out of equilibrium forever:

(140 the weights are not given by Boltzmann factors, they do not
even depend on the energies of these two traps, but they only
depend on the ratio of the distances to the origin. When

On the other hand, let us now recall the scaling analysisncluding the first corrections im to this picture, we have
using Levy sums[21,25,26 in d=2: afterN steps, the num- taken into account the biggest trap in the interval

However, in contrast with thel=1 case, there are two
important length scales id=2 as we now explain.

On one hand, given choidd 39 for the renormalization
scaleR(t) as a function of time, the length scale for the
distance between two renormalized traps is then given b
(129

In t~2

E()~[R(1)]#*~
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IM_,M,[, and the next renormalized tragd __ and P (1) =[Py 1(t)+ Py_1(t)— 2P (1)], (A1)
M, ., but the dynamics still remains out of equilibrium

since the weights are still determined by the lengths betweewith the boundary conditionBy(t) = 5(t) andP,(t)=0. So
these traps and by escape rates of the ferfi". This out-  the Laplace transform with respecttio

of-equilibrium character will thus persist in the whole local-

ized phase &u<1 where these deep traps keep finite
weights. This explains why the numerical studied,23

have found that the ideas of “partial equilibrium” and “ef-

fective temperature” were not able to capture the long-timesatisfies
properties of the trap model. This is similar to what happens

in the directed trap model or in the related biased Sinai dif- Pyi1(S)+P,_1(S)—(2+5)P,(s)=0, (A3)
fusion, where the thermal packet is also broken into subpack-

ets that remain out of equilibrium with each other even in they,  — 1,...1—1 with the boundary conditionﬁ’o(s):l
infinite time limit [20]; this is in contrast with the unbiased
Sinai diffusion, where the thermal packet is asymptotically
localized in one single infinite valle)81], in which particles

P,(s)= fomdt e SP(1), (A2)

and I5,(s)=0. The solution reads

X _ 2l—-x
are at equilibrium with each oth¢82]. P (s)= p(s)—p” (s) (Ad)
From the point of view of numerical simulations on ran- X 1-p?(s) '
dom walks in random media, this shows that to study the
localization and the convergence or not to a quasiequilibrium 2+s—\s?+4s
regime at long times, it is interesting to study the dynamics p(s)= - (A5)

in a single disordered sample, and not only disorder-
averaged quantities: for instance, the pictures of a thermal
packet in a given sample obtained in R3] for the Sinai
diffusion and in Ref[19] for the directed trap model, seems
to give the clearer insight into the question of localization in +oo
one valley or in typically a few traps with finite weights. And O (x)= f dt tXPy(t). (AB)
whenever the structure of the thermal packet consists of a 0
few subpackets, whose positions and weights are sample de- . .
pendent, it is a very strong indication that some appropriat orn=0, the probability to reach 0 befotavhen starting at
real-space RG description can be constructed to study tHéreads as expected
dynamics. | —x

In a forthcoming papef34], we will show how the Oo(X)= ——. (A7)
present RSRG approach for the unbiased trap model can be '
generalized to obtain explicit results in the limit—0 for

In particular, the series expansionsiyields the first mo-
ments

the linear and nonlinear response to an external bias, when forn= 12
is applied from the very beginning &t 0 or after a waiting x(1—x)(21 —x)
timet,,. Recently, this problem has been studied via scaling 6,(x)= , (A8)
arguments and numerical simulations in R&5], and was 6l
shown to satisfy a nonlinear fluctuation theorgsg].
x(1=x)(21 —x)(41%+ 6x1—3x%+5)
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APPENDIX A: STATISTICAL PROPERTIES 1
OF EXCURSIONS IN d=1 Oo(1)=1— T (A10)

As explained in the text, to study the excursions in the
renormalized landscap®0) and (53), we have to study the
following standard problem: what is the probability distribu-
tion P,(t) of the timet of the first passage at=0 without
having touched the other boundaey: | before, for a particle

I—1)(21—-1 |
01(1)=—( )él )25, (A11)

| —o

~ (I-1)(21-1)(41%+ 61 —3+5) N 3

in a pure trap model? (1) ~ —.
For x=1,...)—1 this probability distribution satisfies 360 |00 45
the equation (A12)
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The leading terms can be understood as follows: the tiime
of the order ofi? with a probability 1¥, which is the prob-
ability to arrive very near the forbidden extremity=1.

To get the leading behavior inof all moments, we thus
need to consider the rescaled Laplace transform
1
12

. 1
P1<I%)I: =1—|—(\/Ecoth\/6—1)+0

(A13)

which corresponds to the following leading behavior at large

| for the moments:

2I'(k+1)Z(2k)

(Al4)
2k

f(1) = 123
|

— 00

2. Successful excursions

For the successful excursion presentgn; (53), we need
to consider the special cage=1—1. Since in this case, the
normalization is

1
Oo(1=1)= T (A15)
we consider the normalized first moments
0,(1-1) 12
o(1-1),_.6" (A16)
0>(1—1 714
o011 7" (AL7)

(1 —1), .. 360

To get the leading behavior Irof all moments, we thus need
to consider the rescaled Laplace transform

. 1 1
P|,1 B = = \/B +O - .
12), .. | sinhyp 12

So the timetg;;; for the successful diffusion scales kEsas
expected.

(A18)

APPENDIX B: STATISTICAL PROPERTIES
OF EXCURSIONS IN d=2

To study the scaling properties of excursions in the renor-

malized landscape in dimensial+2, we have to study the
following problem: what is the probability distributida, (t)
of the timet of the first passage on the cirale=1 without
having touched the other circle=1 before, for a particle
starting at radius and diffusing freely?

For 1<r <R, this probability distribution satisfies the dif-
fusion equation in radial coordinates

d2

1d
atpr(t):APr(t):( +Fa> P (1), (B1)

dr2

with the boundary conditionB(t) = 6(t) and P,(t)=0.
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So the Laplace transform with respecttfo

A +o

Pr(s)EJ0 dt e S'P (1), (B2)
satisfies

d> 1 d

ﬁ—’_F a_s Pr(S):O, (83)

for 1<r<R with the boundary conditionsﬁ’o(s)=1 and
P/(s)=0.

In particular, the moments appearing in the series expan-
sion of P,(s) in's

+ 00
9k(r)sf dtt“P,(t) (B4)
0
may be computed by the recurrence
d> 1d B 85
ﬁJrF ar | o)== b (r). (BS)

For k=0, the probabilitydy(r) to reach first =1 before
r=1| when starting at is the solution of

d> 1 d o 86

FJFFE 0o(r)=0, (B6)

with the boundary conditiongy(1)=1 and 6,(I)=0, and
thus reads

1 Inr B7
Oo(r)= n (B7)
Fork=1, 64(r) is the solution of
d> 1d _ 4 Inr B8
EJFFJ 01(r)=— “nil (B8)

with the boundary conditiong,(1)=0 and 6,(l1)=0, and
thus reads

121 (r2—1)(ln|£—1)
041(r)= 21 Inr+

AT (B9)

In particular, to study the unsuccessful excursions, we
may consider =2 for starting point. The probability to es-
cape is then

In2
0o(2)=1—

Inl”’ (B19)

and the mean time of an unsuccessful excursion has for lead-
ing behavior inl,
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2 Dy m.m, (X_NoN,Ty)
0,(2) = In2. (B11)

|4 In?] dry,

= 0(O<x_<)\0)0()\)0(7M>R(t)),u7—

M

APPENDIX C: EFFECTIVE MODEL R(t)|#
AT FIRST ORDER IN x| — ) e Mo (Co)
M

In this Appendix, we compute the corrections at first order

in 1 by taking into account the two effects described in in 10 compute the average of an observable
Sec. IV A. A(X_ \g,\,7y) With respect to this measure, it is more

convenient to first integrate oveX_ e (0,\y) and then to

integrate over the remaining variables with the following no-
1. Statistical properties for particles in advance at orderp tations:

There is a probability, o
A(X,)\0,)\,TM):<<f dXx_ A(X,)\o,)\,TM)>> )
0

ma=(1—e YTm), (C1) .
_ (o)
fchat a particle has alr_eady escaped at tifrem a renormal- where the notatio( - - - ), denotes
ized trap of escape timg,; .
We consider a particle starting &t that was in the trap oo dry [R(t)\# [+
M in the effective dynamics of the preceding section. With <<f()\0,)\,TM)>>a=f ()drM [ 7_—) f d\g
R(t M M 0

probability 7v,, the particle has already escaped from the
trap M . at timet, and then it has been absorbedMy or +oo
by M, . , the two nearest renormalized traps, with probabili- Xf d\ e o M(Ng,\, 7). (C8)
ties given by the ratios of the distances.

We note as beforX.. the rescaled distances between the
origin andM .. , and we note\ the rescaled distance between
M, and M, .. The joint probability distribution of

(X_,X,,N\,7y) is completely factorized

0

For the simplest observables, we will need integrals of the
following form, which can be computed in terms of Bessel
functions via(E1)

Wp,q(#)z«(l_ ef(tIZR“-rM)(l/}\+1/}\0)))\8)\q>>a
Dy m,m,  (Xo XN, 7y)

_, on(u)dz z |2 (1t o)1
= 6(X.) 6(X_) B(\) B(7y>R(t) =20 Zlzw) [TEtPTA+e)
d7y R(t))”“ NN 2+p+q
X——| ——| e 77274, Cc2 z
| ©2 —WKHp(z)KHq(z)l, (9
~ Since the escape tinBy is proportional to the trapping where the parametey, depends only o via T, introduced
time, in the explicit choice of the renormalization sc&tét) (69),
1 2t =
Tu=—R*7ry, (C3) Zo(p)= o= V2To(w). (C10
am R™#(1)

In particular, in the limit of vanishingx, z has for
with a prefactoray that depends on the positions via the it (%5) 9. Zo(1)

prefactor

75(0)=2e" (1*792=0.908 95, (C11

ang(ﬁjua, (C4)  so that the integrals read at lowest ordemin
L+ X
z0(0)d z
it is more convenient to use the variable Wp,q(,u)l:OZ,uL 7 |TApi+a)
No=X_+X cs 22 P
0= X_+X, (C5) ~ pra Kirp(2Kai(2) [ +0(u).

instead ofX, . So measuréC2) becomes (C12
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As the first example, let us consider the probability of The measure for the positions alone reads
having already escaped from a renormalized trap at time

ma=1—e UTn=1—e (R It N (C13) f d7s Dy _sm, (X- Xs, X4 ,79)
Its average over the configurations can be computed via = 0(X,)O(X_)O(—X_<Xg<X.)
L _ a— (2R 7)) (g + 1/)\)
ma= (Nl 1—e (PRIt 1Y) (C19 b ok, 19
X, +X_

which corresponds to fornfC9) for the special casep(

=1,0=0) and is thus of the order C12,
a=0) o (€12 whereas the measure for the trapping time alone reads
3
z
1- 5 Ka(2)Ky(2)

_ 2e7(1+7E)/2dZ
ma= Wy o) = ZML

z 2
w0 f dx+f dx_f dXs Dy_swm, (X— . Xs, X4 ,7s)
+0(u?)=u0.678 238 O(u?). (C15
2u—1
-

Let us now write the diffusion front in a given sample: it =0(7s<R(1))2u ZM . (C20
is a linear combination of the two possibiliti€a2) and(74), R=(t)
Pf\ﬁ)),JRA(i)MH(”):e_t/TM[p[M_MA(M -10)3nn,, Since the associated escape time

+p[M,M+](M+|0)5n,nM+]+(1_97UTM) 1
Ts=—R¥7g (C2)
X[p[M7M++](M7|O)5n,nM7 as
+Pm M, (M ++|0)5n,nM++]i (C18  depends on the positions via the prefactor
and thus in rescaled distances, the correction with respect to 1 1 1
the zeroth orde(76) reads (C22

as= + ,
72| (Xi X9 T (X_+Xg)
Piwm,  CO=PRY O, =P

-V My 4

X_ e .
1oty 2 ey (X_,X,) betweenM. and the origin by the rescaled dis-
(1=e7) \o SX=(Ro=X)) tances betweeM .. and the trafs,
AX_ _
J— )\+—X+_Xsy (C23)
+ oA+ o) S(X+X_)
_ A_=X_+Xs. (C24
+ S(X—=(N+Ng—X_))|, (C1D)
N+

o . With these new variables, measyf&18 becomes
where the parameters are distributed with measG6.

Similarly, if the particle has escaped froM _, it has Dy sm. (Xs,7sih 4 A_)
been absorbed byl , or by M __ and the properties are the o
same as above by the symmekty- — X. =0\ )ON_)O(— N <Xg<A_)O(75<R(1))
- . . w ) m(R(VA "
2. Statistical properties of particles “in delay X | —2| @~ (N +A)[R(t)/ 7 (C25
7s\ Ts

We are now interested in the tr&with the biggest trap-
ping time 75 in the interval M_ ,M,[. Its position is uni-

it is more convenient to replace the rescaled distances

formly distributed in this interval, so the joint distribution of ~ To  compute the average of an observable

(X_ ,Xs,X, 7o) reads A(Xs, N1, N _,7g) with respect to this measure, it is conve-
nient to first integrate oveXge[ —\ . ,A_] and then aver-
Dy _sm, (X=  Xs, X4, Ts) age over the remaining variables
= 0(X,) 0(X_) (= X_<Xs<X,) 0(1s<R(1)) ,
A(XS,)\,+,A7,TS): f dXSA(Xs,)\Jr,)\,,Ts) y
M R(t) " _ ® Ay
<= e (X4 +X)[R(t)/ 7g] ) (C18) d
Ts\ Ts (C26
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where the notatior(- - - ))4 is defined by PWE(@(X)=e_t/T59(Xs>0)[p[M,S](M _|0) Sy
RO (R(L)\# [+ +pm_g(Sl0)8, 0 ]+e YTsh(Xs<0)
{FOv e A7) )= fo dTST—S<T—S) fo di. (M-S "Ns
X[Prsm, (M +|0)5n,nM+
+ o0
— (N4 +N)[R()/ g * _
x fo dx_ e” (AR +Prsm,1(S]0) 8y n ] +(1—e7YTs)
XE(N 4 N, Tg). (c27 X[Pm_m, (M-[0)n 0,
For the simplest observables, we will need integrals of the +Pm_m,1(M +10) 5n,nM+]’ (C33
following form, which can be computed in terms of Bessel
functions via(El), and thus in rescaled distances, the correction with respect to

the zeroth orde(76) reads

0 q()=((e UTAEAT)) P sm, X)=PR . (X)—POX)

2u ZBZM/1+M](1+D+Q)(M)

X
=e YTsg(Xs>0) )\—S S(X+(N_—Xg))

- 1+up 2ptq
» (A-—Xs) _
xf+ dz AL W/ (L+wp)(1+p+a) +—)\ S(X—=Xg)|+e t/ng(xS<0)
zo(m) B
-X N +X
XKy (2K 12 o(2), (29 W X9 sk (ny 4+ xg)+ RS
A A
where the parametey, has been introduced in EGC10). At N Xs
lowest order inu, we thus obtain X 8(X—Xg) |—e YTy o O
+ -
X9+ 2% six—(n . +x C34
s) NS (X=(N 1 +Xg))|, (C39

2m [t
Qp,q(ﬂ) = ﬁjz (O)dz él+p+q)K1+p(Z)K1+q(z)
w0 0 where the parameters are distributed with mea¢Gg5).
+0(u?). (C29

3. Correction of the order of u to the averaged diffusion front

Let us first consider the probability a. Contribution of particles in advance

To compute contributiofC17) to the diffusion front of
the configurationd "M , M , . , we first integrate oveK _
my=e UTs= e~ (V2RETg(IA +1N_) (C30) < [Ono], A
that a particle that has been trappedig still in the trapS
at timet. Its average with respect to measu@25 can be f )\OdX »

. _

1
computed as W, (X)

mg=(((\ Ao (RITANFIAD) (C3Y) =(1-e "Tw) ——M;'X' H0<X<\o)
0
It is of form (C28) and is thus of the order gi (C29), X A+Xo—|X|
m0(0<—x<)\0)+ )\+—)\0
20w = 2 42 2Ko(2K(2 |
u—0 e & X ON<X<N+Ng) | (C3H
+0(u?) 2()#1.202(5 ..+ O(u?). (C32
p—

So taking into account the configuratiohd_ _M_M |
via the symmetrX— — X, we finally get that averaging with

Let us now write the diffusion front in a given sample at measurdC6) yields the following contribution of particles in
this order: advance to the scaling function at orger

036114-18
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gP(X)= V“f dxof dxf —e (ot M)

X (1— e~ To(0)2W(INg+ 1)y

No—|X]
x| -2 H(0<X<\)
Ao

N+ No—|X]

< X<\t
i 0<X<Aho)

+0(u).

(C36

b. Contribution of particles in delay

To compute the average of the specific contributicB4)
of the configuration$_M S, with respect to measu(€25),
we first integrate oveKs,

f dXs 0=\ <Xg<A_)P{;) "sm, (X)

Ao —|X]

A_
()\+_|X|)
Ay

=e UTg g(|X|<\_)

+O(IX[<\ )

P
—O(|X|<Ni+N)

W} (€37

so that the correction to the averaged diffusion front reads

+tedw
g{P(x)= “f dxf dxf - &

% e(TI'O(O)IZ)W(lh\++1/}\_){ a(|X|<\_)

A_—|X] (N =1X])
X (X <N
O(IX| <\, +\ Ath X +0(u?
(| | + —) )\++)\_ (,U« )
(C39)

c. Total correction at first order in p

The two contribution§C36) and (C398) yield the follow-
ing total contribution at first order ip:

PHYSICAL REVIEW EG68, 036114 (2003

gD (xX)=gM(X)+g{M(x)

—Mf dxf dx e (otN)

A+
Ao\

To(o)

ye+In

[ 2 _| |a(o<x<>\0)

N+ No—|X]

<X<\N+
TR, H(O<X<\+\o)

+0(p?).
(C39

4. Correction of the order of p to the thermal width
a. Contribution of particles in advance

The specific contribution of the configurations
M_M M, to the thermal width reads with measuyre6)

_[Cz](0)+(l)

0
M_M M, , [Cz]l(\A),M+

=(1—e YTM)X_X\.

AR MM,

(C40

After the integration oveX_ (C7), we thus obtain an inte-
gral of type(C9) for the valuesp=2,0=1,

A3 1
< <(1_et/TM)?O)\> > = EWz'l(’u)'

(C41

1
[Cz]|(v|) M M, ~

By symmetry, the configurations!__M_M, give ex-

actly the same contribution, and thus the total contribution of
particles in advance reads at lowest ordejitiC12)

[Cz]gl)zwz,l(,u) = u -

fze‘ (1+re)i2dz

n—0 z
75
X| 4= 5 Ks(2)Ko(2)| +0(1?)
= 10.5383. (C42

b. Contribution of particles in delay

The specific contribution of the configuratiofs_SM.

to the thermal width reads with measu(@25

[ea]§P=Tcal@ i —[cal@ m, =

=—e T 9(Xs>0)\ (A - — Xg) + O(Xs<O)A_(\ 4+ Xg)].

(C43
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After integration oveiXg, we thus obtain the integral of type 27,
. o m_ cno _ Aty _
(C28) for the special valuef=2,q=1) (Y25 3 |(1-e ™) o) 2)
A
A2 A2 +(1_et/TM)22(1_—O) >>
1y_ _ —tT o= o=
[c.] <<e A5 A 2}>>d (A +Xo)? .
(C48
2N
=—Qy4(p) = _ZJ _a+ )/zdz ZK3(2)K5(2)
n—0 2e e b. Contribution of particles in delay
+0(u?) For a given configuratiodM _SM, , the localization pa-
rameters readC34) for the caseXs>0
=—u2.212...+0(u?). (C44
(0)+(1) _yr M- X%s “ —tT —Xs*
c. Total correction of the order of pu for the thermal width [Yk]M,SM+: e S)\— (1-e S)ﬁ
Adding the contributions of particles in advance and in
delay, we get the total correction at orger + 1_e7t/TS)\*_XS
1) —re @ B e Ao Xs ]
[CZ]totaI_[CZ]a +[C2]d —(1-e S)T (C49
+

=p

5
5" 2+ 274 =-—unl1.6789. (C4H
and a similar expression fofs<0.
The integration oveXgse [0\ _] (C26) yields

5. Correction of the order of p to the localization parameters

_— . . A
a. Contribution of particles in advance f dXd Yy ]§v(|))+s(|\? _ — e—k(t/Ts)+(1_e—t/Ts)k
For a given configuratiotM "M, M, ., the localization (
parameters reaC17) K k

X+ > (1—e UTsm
(A +A)K m=0
X k
e VTmIZ| &+
Ao

m

[Yy ](0)+(1)

—t/T
+Ma 4 +|(1-e ")

A
S

Aot A

X (C50

J’_

X_
A tUTy T /Ty —
l-e Ty, ~(1-e )x Y _ o
The caseXge[ — A\, ,0] leads to the symmetric contribution
(€40 yia the exchange betweeR ( ,\ ), and thus the average of

the specific contribution reads

The average of the specific contribution may be computed
with Eqg. (C7), so that taking into account the similar contri- A
vidi= f XY S DY )
d

bution of the configuration® __M _M , , we finally obtain [Yila M_SM,
@ (0)+(1) ©) = ! (e XUT—1)(NA_+X\,)
[Yida"=2(Yidm v v, —[Yidmiwm,) “\\ (k+1) -
Ao K 7\5 k+1 k+1 k
- MO | k(T _ ATk _ B
e 1+(1-e ) +(1—e UTs)k 1—e UTgym
<<k+1 (No+N)K ( ) (o h )k mE ( )
k
A m m m
/ N ANTHANT
2: ~UTw) (7\+)\0) l> > . (Cav) X ( +—+m) . (C51)
a ()\++)\7) d
In particular, it reads fok=2 In particular, it reads fok=2
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— 2
[Y,1)= —< <§e“’TS(1— e UTs)| N_+.

),

6. Correction to aging and subaging properties

ANy

W (€52

a. Probability I (t,,+t,t,) of no jump during the interval
[tw, tutt]

Since the probabilityI(t,,+t,t,) of no jump during the
interval [t ,t,+t] is directly related to the probability
i, (7) to be at timet,, in a trap of trapping timer via (90),
the configurationgM _M M , , do not give any correction,
since the trapping time dfl . | has the same statistical prop-
erties as the trapping times M_ andM , .

On the contrary, the configuratiomd _SM, will give a
correction toy( 7). For the caseXs>0, we have

(0)+(1)
M_SM,

[¢(7)]

A_—X
= e_t/TS—)\ 55(7— )

)\7_
A

Xs
+N_

+(1-e"Ts) S(t—7w,)

X
+ > (1-eTs)

)\7_
_a-tTgs = S

1-e N
N_—Xg

X
VES

(C53

o(t—7m_),

PHYSICAL REVIEW E68, 036114 (2003
wt(f)]—u):f”ﬁ(@)“<<e
™

R(t) ™™
><[5(T—7'5)—5(7'—TM_)]>> .
d

r AT
2

(C59

We thus finally obtain at first order ip
(D= Lad
[(7) = 60(r<R(1))

5 R(t)>3l2
2720(0)<T

R(t) 1/2
XKy T) )Kz(zo(o)(

R(t)) 1/2)
-

20(0)<

(C56)
.

R(t)\#
_Qo,l(M)G(R(t)<T)§(L) ,

with Eq. (C11). The prefacto)y,(«) (C28 of the second
term represents the probability to be in a trap of tfpat
time t and is of the order ofu (C32). So in the domainr
>R, the total distributiorf ;(7)](®* () of 7 keeps the same
form that at zeroth order, but the amplitude [d
=800 4(p)]. There is now a contribution of the domain
<R which was absent at zeroth order. In particular, in the
limit 7— 0, we obtain the essential singularity

nrzy(0)R(1)

e~ 220(0)RM/NY
472

[(1)]M) = (C57)

7—0

_ We now compute the correction to the scaling function
IT(v) (92) at first order inu,

so that the specific contribution yields after integration over

Xse [0,)\,]

A_
| axd .

(0)+(1)
M_SM,

A_
:JO dXs{[ (7] _[wt(T)]l(\/IO)_MJr}

—e TS 87— g~ 3y )]

2

+e UTs T—TM_)—5(T—TM+)].

(C59

2(>\+;>\,)[5(

After averaging overry and 7y , the second term will

vanish. Since the cas€s<0 gives the symmetric contribu-
tion via the exchange\(, ,\_), we finally obtain that the
full correction to the probability distribution reads with mea-
sure(C27)

i)~ [

2

dz ZKy(2)Ky(z)e 12201
0)
1
g [ dy wyste . (cog

_ So for largev, the only correction to the scaling function
1©(v) (93) comes from the second term

MOw) = —Qgy(p)

v—®

(C59

el
pH

which corresponds to a correction of the ordengffor the
amplitude of the algebraic decayv?/.

b. Probability Q(t+t,,,t,,) to be at time(t+t,) in the same trap
as it was at time J,

Since in our frameworkC(t+t,,,t,) is determined by
the probability¢tW(T) to be at timet,, in a trap of escape
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time T (96), we obtain as foll(t,,+1,t,) that the configu- A "

rationsM_M M . . do not give any correction because the fo dX_[ (1) ]\’ sm,

escape time oM , , has the same statistical properties as the

escape times o¥1_ andM . . A O+D) ©
The correction due to the configuratiok_SM,. can be = fo dX_ AL DI s, ~[de(D)In’ m

written for the caseXg>0 as

N
A —X —a tTg__— _ _ _
(DI =e VTe——5(T-Tg) © T LT el )]

A2
“tTg__ = _ _ _
+e 52()\++)\7)[5(T Tm )—o(T TM+)].

A_—X

F(1-e T 25T Ty )
S

(Cé1

+l1— e—t/Ts)\_)\;XS —(1-e YTy

After averaging ovefTy andTy , the second term will
(T—Ty ), (C60  vanish. Since the cases<<0 gives the symmetric contribu-
tion via the exchangel(, ,\_), we finally obtain that the

so that the specific contribution yields after integration overfull correction to the probability distribution reads with mea-
Xse[ON_] sure(C27)

)\*_XS

X
NN

+e dry [ R\# N_+Ng
[¢t<T>]‘”=<<fR M_M(_) e‘“TsTw(T—Ts)—5<T—TM_>]>>

™ \ ™™ d
:MfRd_TS R Mfﬂcd)\ fﬂod)\ o O PAORMI o UT g T 2R 7g
0 Ts \Ts/ Jo “Jo - - 1 N 1
N A
R M 0 o)
_MJ’ d_TS(E) J'+ d)\+j+ dh_ e~ (s PNIRMOITGH) o= (U2RET(UN, +1N )
0 Ts \7s 0 0
+oo +o dry [ R\* 2R* T,
xf dr e"‘f LY A I (B o U (c62)
0 R ™ ™ l+ 1
N NN

APPENDIX D: SET OF THE IMPORTANT

so the correction to the scaling functi&h(h) (97) reads
CONFIGURATIONS AT ORDER n

~ +
Cill)(h)zf dT[ py(T)]De T With the T, traps described in text102), we have to
0 construct the possibl@ , configurations of (2-n) traps, that
are ordered in positions, and that contribute up to opefer

+oodv + 00 +
=,uf —v"f d)\+f dr_ e (e tA We have
1 v 0 0

SN e~ (AT (To(0)/2u(LN ; +1N ) N

e . N Q=05 1+ a)n=izo w;i, (D1
_;Lf —gv“f dk*l[ dh_ em (e th”
1 v 0 0
wherew,, represents the number of configurations that begin

><Lef(?o(O)IZ)v(llxﬁlm_)f+md)\ e\ to contribute at orden. We may decompose
0

1 -
XJ Md_VVWMe—h(To(O)/z)w[llm1/(>\++>\,)]. (C63 w,= aE]MkflMH), (D2)
o W |
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WhereaﬁMk* M) is the number of configurations that con- which generalize what we have found before for the lowest

tain M,_ as leftmost trap andl,, as rightmost trap. For orders with wg=1 corresponding toNI_,M.), and o,
(k=1)=1+n), there is onlya™- M )=1 configura- =3 corresponding toNM—— . M_,M.,), (M_ .M, M),
tion {M_,M, Mz, ... M1y}, Whereas for k=1 and M_,S,M ).
=1), there are

APPENDIX E: USEFUL PROPERTIES

a(M, My) nl (D3) OF BESSEL FUNCTIONS
n

configurations, since we have to order in spacerthieaps The following integrals yield Bessel function of tyjse
S, ... 89 in the interval M_,M,[. More generally, at
order (1), to construct the configurations of ¢ 2) traps
containing My _My-1y—,....M_ M My, ... My,
which representK+1) fixed traps, we have to choosa (
+2—k—1) traps among thek1—1) available intervals
and to count the possible positional orders in each interval

(1+v)/2

> Ki:,(2Vab). (ED)

+ oo
f dx Xvefaxfb/x: 2(_
0 a

The asymptotic behavior at infinity is independent:of
and reads

+ oo + o k+1-1 K _ a 5 E2
NSRRI D 5( pi=n+2—k—l) V(Z)Z:w V2,€ ™ (E2)

p1=0 Pk+1-1=0 i=1

XPg! .. Prsr—q!- (D4) Near the origin, the behavior dependsanie will need the

behavior forv=1,
The final result is thus that the number of new configura-

tions that appear at orderreads

+oo +oo
o= >
k=1|=1k+I<2+n | p;=0 Pk+1-1=0
Ktl-1
) Izl pi=n+2—k—l)p1! . pk+|_1!},

(D5)

1 z| z 3
E+E |ﬂ§+ Yeuler— 1/2|+0O(Z° Inz). (E3)

Ki(z) =
z—0

Another useful integral is

JalD (KT (k+ v)T (k=)
AT (k+ 1) ’

f+wdz 2 K3(2)=
0
(E4
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