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Anomalous diffusion, localization, aging, and subaging effects
in trap models at very low temperature
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~Received 18 March 2003; published 19 September 2003!

We study in detail the dynamics of the one-dimensional symmetric trap model via a real-space renormal-
ization procedure which becomes exact in the limit of zero temperature. In this limit, the diffusion front in each
sample consists of twod peaks, which are completely out of equilibrium with each other. The statistics of the
positions and weights of thesed peaks over the samples allows to obtain explicit results for all observables in
the limit T→0. We first compute disorder averages of one-time observables, such as the diffusion front, the
thermal width, the localization parameters, the two-particle correlation function, and the generating function of
thermal cumulants of the position. We then study aging and subaging effects: our approach reproduces very
simply the two different aging exponents and yields explicit forms for scaling functions of the various two-time
correlations. We also extend the real-space renormalization group method to include systematic corrections to
the previous zero temperature procedure via a series expansion inT. We then consider the generalized trap
model with parameteraP@0,1# and obtain that the large scale effective model at low temperature does not
depend ona in any dimension, so that the only observables sensitive toa are those that measure the ‘‘local
persistence,’’ such as the probability to remain exactly in the same trap during a time interval. Finally, we
extend our approach at a scaling level for the trap model ind52 and obtain the two relevant time scales for
aging properties.

DOI: 10.1103/PhysRevE.68.036114 PACS number~s!: 64.60.Ak
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I. INTRODUCTION

A. Trap models as toy models to study aging phenomena

Trap models provide a simple mechanism for aging@1,2#.
The basic phenomenological idea is that the slow dynam
of glassy systems is governed by metastable states defin
‘‘traps’’ in the coarse-grained configurational complicat
landscape. The distribution of the energy of the traps is u
ally taken to be exponential,

r~E!5u~E!
1

Tg
e2E/Tg. ~1!

On one hand, this exponential form describes the lowest
ergies in the random energy model@3# and the distribution of
free energy of states in the replica theory of spin glasses@4#.
On the other hand, it appears for the largest barriers in
biased one-dimensional Sinai diffusion@1,5# as well as in
more complex disordered systems such as fractals and
colation clusters@6#, elastic manifolds@7#, bubble dynamics
in DNA @8#, and sequence alignment algorithms@9#. The
ubiquity of this exponential form actually comes@10# from
the exponential tail of the Gumbel distribution which repr
sents one universality class of extreme-value statistics@11#.

The exponential density of energy~1! corresponds for the
Arrhenius trapping timet5ebE to the algebraic law

q~t!5u~t.1!
m

t11m
, ~2!

with the temperature-dependent exponent
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T

Tg
. ~3!

At low temperaturesT,Tg , the mean trapping time
*dt tq(t) is infinite and this directly leads to aging effect
This mechanism shows that the presence of broad distr
tion of trapping times~2! is rather generic at low tempera
tures, since it simply emerges from the exponential tail
extreme-value statistics for the energy barriers.

B. Previous results on aging properties in trap models

The dynamics of the trap model has been studied in de
in its the mean field version@12–15# as well as in the one-
dimensionaldirectedversion, in relation with the biased S
nai diffusion @1,16–20#. In both the cases, aging propertie
are characterized by scaling functions of the ratio (t/tw) of
the two times involved.

More recently, it has been proposed in Ref.@21# to study
trap models on a hypercubic lattice in an arbitrary dimens
d with the following generalized dynamics: the particle c
jump from site i to any of the 2d nearest-neighbor sitesj
with a hopping rate per unit time given by

wi→ j~a!5
1

2d
e1baEj 2b(12a)Ei ~4!

in terms of the parameteraP@0,1#. The casea50 repre-
sents the usual trap model where the rate

wi→ j~a50!5
1

2dt i
~5!
©2003 The American Physical Society14-1
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depends only on the initial site via the trapping timet i
5ebEi distributed with Eq.~2!: the particle spends at sitei a
time t i distributed with the exponential distribution of mea
t i ,

f t i
~ t i !5

1

t i
e2t i /t i, ~6!

and then jumps with equal probability 1/(2d) to one of its
(2d) nearest-neighbor sites. Another interesting case ia
5 1

2 , where the ratewi→ j depends on the energy differenc
(Ej2Ei).

Monte Carlo simulations and scaling arguments@21# have
shown the possibility of a so-called ‘‘subaging’’ behavior f
the probabilityP(t1tw ,tw) of no jump during the interva
@ tw ,tw1t#,

P~ t1tw ,tw!.PS t

tw
n(a)D , ~7!

with an exponentn,1 given in one dimension by@21#

n~a!5
12a

11m
. ~8!

This exponent was proven to be exact by mathematicia
first for the usual trap modela50 @22#, and then for arbi-
trary a @24#. On the other hand, the correlation functio
C(t1tw ,tw), defined as the probability to be at (t1tw) in
the same trap as it was at timetw , was shown to present
‘‘full aging’’ behavior,

C~ t1tw ,tw!.CmS t

tw
D , ~9!

for the usual trap modela50 @22#, and then for arbitrarya
@24#. So there are two different time scalestw

n and tw which
play a role in the aging of this model. Asymptotic forms ha
also been heuristically proposed and numerically tested
Ref. @23# for P(t1tw ,tw) and C(t1tw ,tw). Finally, let us
mention a recent interesting application: these propertie
aging and subaging for the trap model are relevant to exp
the numerical simulations on the dynamics of denatura
bubbles in random DNA sequences@8#.

C. Previous results on anomalous diffusion
and localization properties

Apart from aging properties discussed above, trap mod
are interesting for their anomalous diffusion and localizat
properties. In particular, in dimensiond51, the averaged
diffusion front is expected to take the following scaling for
at large times@23,25,27#:

P~n,tu0,0! .
t→`

1

j~ t !
gmS n

j~ t ! D , ~10!

where the characteristic length scalej(t) follows the subdif-
fusive behavior
03611
s,

in
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n

j~ t !;tm/(11m). ~11!

This exponent can be found via a simple scaling argumen
Lévy sums@25,26# or by a real-space block-RG~renormal-
ized group! analysis@27#. However, the scaling function it
self g(X) is not known, but has recently been studied n
merically in Ref. @23# together with asymptotic behavior
proposed in the limitm→1.

Another important issue concerns the localization prop
ties. The localization parameters

Yk~ t !5 (
n52`

1`

Pk~n,tu0,0! ~12!

represent the disorder averaged probabilities thatk indepen-
dent particles starting at site 0 at time 0 in the same rand
environment are at the same site at timet. It has been proven
in Ref. @22# that the limitY2(`) is strictly positive in the full
domain 0<m,1. The values of the limitsYk(`) have been
numerically studied in Ref.@23# with various approxima-
tions.

D. Summary of main results

The aim of this paper is to provide a probabilistic descr
tion, sample by sample, of the symmetric trap model in
limit of very low temperaturem→0. We have previously
developed a similar analysis for thedirectedversion of the
trap model@20#. Here in the undirected version, each s
may be visited many times and this leads to essen
changes. In particular, at timet, the important traps are th
traps having a trapping timet.R(t), where the scaleR(t) is
not linear int as in thedirectedversion@20#, but is sublinear
in time

R~ t !5S t

T̃0~m!
D 1/(11m)

, ~13!

whereT̃0(m) may be expanded inm as

T̃0~m! .
m→0

2e212gE@11O~m!#. ~14!

The corresponding mean distance between these impo
traps is then given by

j~ t !5j0~m!tm/(11m). ~15!

where the exponent agrees with previous studies~11! de-
scribed above, and where the prefactor reads

j0~m!511O~m!. ~16!

In terms of these scales, we obtain the following expli
results in the limitm→0.

~a! Scaling function of the disorder averaged diffusio
front ~10!

gm~X!5e2uXu E
0

1`

du e2u
u

uXu1u
1O~m!. ~17!
4-2
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~b! Localization parameters~12!

Yk~m!5
2

~k11!
1O~m!. ~18!

~c! Generating function of thermal cumulants

Zm~s![ ln^e2@s n/j(t)#&5E
0

1`

dl e2llS sl

2
coth

sl

2
21D

1O~m!. ~19!

The series expansion ins yields the disorder averages o
rescaled thermal cumulants: the first ones are the the
width

c2~m![ lim
t→`

^n2&2^n&2

j2~ t !
511O~m!, ~20!

and the fourth cumulant

c4~m![ lim
t→`

^n4&24^n3&^n&23^n2&2112̂ n2&^n&226^n&4

j4~ t !

5241O~m!, ~21!

and more generally

ck~m!5~2k11!!B2k1O~m! ~22!

in terms of the Bernoulli numbersBn .
~d! Two-particle correlation function

C~ l ,t ![ (
n50

1`

(
m50

1`

P~n,tu0,0!P~m,tu0,0!d l ,un2mu

.
t→`

Y2~m!d l ,01
1

j~ t !
CmS l

j~ t ! D , ~23!

where the weight of thed peak at the origin corresponds as
should to the localization parameterY252/31O(m) ~18!,
whereas the second part presents a scaling form of the
ablel5 l /j(t). The scaling functionCm reads

Cm~l!5e2l
l

3
1O~m!. ~24!

~e! The probabilityP(t1tw ,tw) of no jump during the
interval @ tw ,tw1t# takes the scaling form~7!

P~ t1tw ,tw!5P̃mS g5
t

R~ tw! D
5P̃mS g5@ T̃0~m!#1/(11m)

t

tw
1/(11m)D , ~25!

with the scaling function
03611
al

ri-

P̃m
(0)~g!5E

0

1

dz mzm21e2zg. ~26!

In particular, we obtain the asymptotic behavior

P~ t1tw ,tw! .
t

tw
1/(11m) →1`

S t

tw
1/(11m)D 2m

@m1O~m2!#.

~27!

~f! The probabilityC(t1tw ,tw) to be at time (t1tw) in
the same trap as it was at timetw takes the scaling form~9!

C~ t1tw ,tw!5C̃mS h5
t

R11m~ tw!
D 5C̃mS h5T̃0~m!

t

tw
D ,

~28!

with the scaling function which reads at lowest order inm,

C̃m
(0)~h!5C̃m~h!5

2m

~2h!mE0

A2h
dz z112mK1

2~z!. ~29!

In particular, we obtain the asymptotic behavior

C~ t1tw ,tw! .
t/tw→`

S t

tw
D 2m

@m1O~m2!#. ~30!

We also extend the real-space renormalized gro
~RSRG! method to include systematic corrections to the z
temperature procedure via a series expansion inm; the cor-
rections of the order ofm of the observables described abo
are given in Appendix C. We also extend our analysis to
generalized trap models~4! and obtain that the only observ
able that depends ona is the two-time correlationP(t,t8),
which takes the scaling form

Pm
(a)~ t1tw ,t !5P̃m/(12a)

(0) S v5
t

@R~ tw!#12aD ~31!

in terms of result~26! for the a50 case, but that otherwis
all other observables described above are exactly the sam
in the casea50. The reason is that the influence ofa is
purely local around a renormalized trap and does not cha
the renormalized effective model at large scales. Finally,
also extend our RSRG approach to the trap model in dim
sion d52 at a scaling level.

E. Organization of the paper

The paper is organized as follows. In Sec. II, we defin
the renormalized landscape for the usual trap modela50
and study its properties: in particular, we obtain the relev
length scale and the two relevant time scales. In Sec. III,
describe the effective dynamics in the limitm→0 and com-
pute one-time and two-times observables in this limit. In S
IV, we study the corrections to the effective dynamics at fi
order inm and we describe the hierarchical structure of t
important traps that play a role at ordermn. In Sec. V, we
4-3
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extend our approach to the generalized trap with param
aP@0,1#. In Sec. VI, we extend our RSRG approach to t
trap model ind52 at a scaling level. The conclusions a
given in Sec. VII, and the Appendixes contain more techn
details.

II. DEFINITION AND PROPERTIES
OF THE RENORMALIZED LANDSCAPE

A. Notion of renormalized landscape at scaleR

We wish to adapt the real-space renormalization pro
dure already defined for the Sinai model@5# and for the di-
rected trap model@20# to the undirected trap model. Th
basic idea is that the dynamics at large time is dominated
the statistical properties of the large trapping times. T
renormalized landscape at scaleR is defined as follows: all
traps with trapping timet i,R are decimated and replace
by a ‘‘flat landscape,’’ whereas all traps with waiting tim
t i.R remain unchanged. The distribution of the distancl
between two traps of the renormalized landscape at scaR
reads

PR~ l !5F12E
R

1`

dt q~t!G l 21E
R

1`

dt q~t!, ~32!

where the first part@•••# l 21 represents the probability tha
( l 21) traps have a trapping timet i,R, and where the las
part represents the probability that thel th trap has a trapping
time t i.R. So the appropriate rescaled length variable
large scaleR is

l5
l

Rm
, ~33!

and the scaling distribution is simply exponential,

P~l!5e2l. ~34!

The distribution of the trapping times of the traps in t
renormalized landscape at scaleR is simply

qR~t!5u~t.R!
q~t!

E
R

1`

dt8 q~t8!

5u~t.R!
m

t S R

t D m

.

~35!

In the directed version of the model, the particle vis
each site only once, and the RSRG analysis directly d
with the trapping timest i . However, here in the undirecte
version of the model, each site may be visited many tim
and thus, it is necessary to introduce the notion of ‘‘esc
time’’ as we now explain.

B. Notion of escape time from a renormalized trap
to another renormalized trap

We now introduce the notion of the escape timeT from a
trap t0 existing in the renormalized landscape at scaleR.
This trap is surrounded by two renormalized traps that ar
03611
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distancesl 1 and l 2 on each side~see Fig. 1!. Whenever the
particle escapes from the trapt0, it can escape on either sid
with probability 1/2. If it escapes on the left, it will succee
to reach the trapt2 with probability 1/l 2 and if it escapes on
the right, it will succeed to reach the trapt1 with probability
1/l 1 . Otherwise, it will be reabsorbed again by the trapt0.

1. Number of sojourns in a renormalized trap before escape
to a neighbor renormalized trap

As a consequence, the probabilityER(n) to need (11n)
successive sojourns in the trapt0 before the particle suc
ceeds to escape either to the trapt2 or to the trapt1 reads

ER~n!5F12
1

2 S 1

l 1
1

1

l 2
D Gn 1

2 S 1

l 1
1

1

l 2
D . ~36!

For largeR, since we havel 65Rml6 ~33!, the numbern
follows the same scaling: the rescaled variable

w5
n

Rm
~37!

is distributed exponentially,

E~w!5a~l1 ,l2!e2wa(l1 ,l2), ~38!

where the coefficient

a~l1 ,l2!5
1

2 S 1

l1
1

1

l2
D ~39!

depends on the two rescaled distances to the next traps
distributionk(a) over the samples has the following for th
Laplace transform in terms of the Bessel functionK1 ~E1!:

FIG. 1. Definition of the escape time from a trap in the ren
malized landscape: the trap of escape timet0 existing in the renor-
malized landscape at scaleR is surrounded by two renormalize
traps that are at distancesl 1 and l 2 on each side. The escape tim
T0 is the mean time needed to reach eithert1 or t2 when starting
at t0.
4-4
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k̂~s![E
0

1`

da e2sak~a!

5F E
0

1`

dl _P~l!e2s/2lG2

52sK1
2~A2s!. ~40!

In particular, the nonanalytic behavior at smalls ~E3!,

k̂~s! .
s→0

12s ln
1

s
1O~s!, ~41!

corresponds to the following algebraic decay at largea:

k~a! .
a→`

1

a2
. ~42!

The decay at larges ~E2!,

k̂~s! .
s→`

pAs

2
e22A2s ~43!

corresponds to the following essential singularity at smala:

k~a! .
a→0

A2p

a5/2
e22/a. ~44!

2. Total time spent inside a renormalized trap before escape
to a neighbor renormalized trap

Let us now consider the probability distributionPin(t in)
of the total timet in spent inside the trapt0 before its escape
It can be decomposed into the numbern of sojourns, wheren
is distributed with Eq.~36!,

t in5 (
i 51

11n

t i , ~45!

wheret i is the time spent during the sojourni in the trapt0,
so it is distributed with the exponential distribution~6! with
t i5t0. Actually, sincen is large in the largeR limit, we have
the central-limit theorem

t in .
n→`

n^t i&5nt0 . ~46!

This explains the numerical observation@23# that the results
are unchanged if the particle spends a time exactly equa
t i at each visit to sitei, instead of a random timet i distrib-
uted with Eq.~6!.

Since the numbern is distributed with Eqs.~37! and~38!,
we finally obtain thatt in is also exponentially distributed,

P̂in~ t in! .
R→`

1

T0
e2t in /T0, ~47!

with the characteristic time

T05
1

a
Rmt0 . ~48!
03611
to

Since the smallest trapping time existing in the renorm
ized landscape at scaleR is t05R, the time spent inside the
trap t0 before it succeeds to escape scales as

t in ;
R→`

R11m. ~49!

3. Total time spent during the unsuccessful excursions
before the escape

Among then unsuccessful excursions, there arem excur-
sions on the left and (n2m) excursions on the right, wher
m is distributed with the binomial distribution 22nCn

m . Since
n andm are large, we again have a central-limit theorem

tout5(
i 51

m

ti
21 (

j 51

n2m

t j
1.m^t2&1~n2m!^t1&, ~50!

where^t6& represents the mean time needed to return t
when starting at 1 without touching the pointl 6 in a flat
landscape. The asymptotic behavior~see Appendix A for
more details!

^t6& .
l 6→`

l 6

3
~51!

gives that the scale oftout at largeR reads

tout;nl;R2m, ~52!

which is negligible with respect tot in ~49! for m,1.

4. Time spent during the successful excursion to escape

We finally consider the diffusion timetdi f f of the success-
ful escape to the neighbor renormalized landscape. The
diffusion over a lengthl;Rm takes a time of the order ofl 2

~see Appendix A for more details! and thus the scale oftdi f f
at largeR,

tdi f f;R2m ~53!

is the same astout ~52! but is negligible with respect tot in
~49! for m,1.

5. Conclusion

So we obtain that the total time

tesc5t in1tout1tdi f f ~54!

needed to escape is actually simply given by the timet in
spent inside the trapt0. So the distribution oftesc is given by
exponential~47! with the escape timeT0.

In conclusion, a trap of the renormalized landscape
scaleR has a trapping timet distributed with Eq.~35!, but
has an escape time proportional tot,

T5
1

a
Rmt, ~55!
4-5
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with a factorRm that explains the occurrence of two differe
time scales in this model, and with a prefactora distributed
with Eq. ~40!.

C. Distribution of escape times in the renormalized landscape

The distribution of the escape timeT in the renormalized
landscape at scaleR reads

QR~T!5E
R

1`

dt qR~t!E
0

1`

da k~a!dS T2
1

a
Rmt D .

~56!

It thus presents the scaling form

QR~T!5
1

R11m
QmS T̃5

T

R11mD , ~57!

where the scaling function reads

Qm~ T̃!5
m

T̃11mE0

1`

da
k~a!

am
uS a.

1

T̃
D . ~58!

In particular, for largeT̃, there is the same algebraic d
cay with index (11m) as for the distribution of trapping
times

Qm~ T̃! .
T̃→`

m

T̃11m
c~m!, ~59!

where the constantc(m) may be computed from the Laplac
transform~40! using Eq.~E4!

c~m![E
0

1`

da
k~a!

am

5
1

G~m!
E

0

1`

ds sm21k̃~s!

52m
~11m!G3~11m!

G~212m!

512m~11gE2 ln 2!1O~m2!. ~60!

For small T̃, we use the asymptotic behavior ofk(a) at
largea ~42!,

k~a! .
a→0

1

a2
1

ln a1~ ln 2212gE!

a3
1OS ln a

a4 D ~61!

to obtain

Qm~ T̃! .
T̃→0

m

11m
1

m

21m
T̃S ln

1

T̃
1 ln 22gE211

1

21m D
1OS T̃2 ln

1

T̃
D . ~62!
03611
Using Eq.~40!, the most convenient way to characteri
the scaling function in closed form is by the following tran
form in terms of a variablev:

E
0

1`

dT̃ e2v2/2T̃Qm~ T̃!

5E
0

1

m dv vm21E
0

1`

da k~a!e2(v2/2)va

5
2m

v2mE0

v

dz z112mK1
2~z!. ~63!

D. Choice of the renormalization scaleR as a function of time

For smallm, the probability distributionQm(T̃) is domi-
nated by its long tail~59!, and we may approximate it by

Qm~ T̃!.u„T̃.T̃0~m!…
m

T̃
S T̃0~m!

T̃
D m

, ~64!

where the cutoffT̃0 chosen to preserve the normalization
determined by the coefficient for the long tail part~59! and
~60!,

T̃0~m!5@c~m!#1/m .
m→0

2e212gEF11m
182p2

12
1O~m2!G .

~65!

For the unrescaled probability distribution~57!, this corre-
sponds to the cutoff

T0~m!5R11mT̃0~m!. ~66!

It is thus convenient to associate at timet the renormalization
scaleR(t) such that

T0~m!5t, ~67!

meaning that at timet, only traps with escape timesT.t
have been kept, whereas all traps with escape timesT,t
have been removed and replaced by a flat landscape.
leads to the explicit choice

R~ t !5S t

T̃0~m!
D 1/(11m)

. ~68!

The corresponding mean distance between traps reads a
renormalization scale~33!

j~ t ![@R~ t !#m5j0~m!tm/~11m), ~69!

with the prefactor

j0~m!5@c~m!#21/(11m)511m~11gE2 ln 2!1O~m2!.

~70!

III. EFFECTIVE MODEL AT LARGE TIME
IN THE LIMIT µ\0

A. Effective rules for the dynamics

The prescription for the dynamics is as follows.
4-6
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At time t, the particle starting at the originO will be at
time t either in the first trapM 1 of the renormalized land
scape at scaleR(t) on its right or in the first trapM 2 of the
renormalized landscape on its left. The weightpM1

of the

trap M 1 is given by the probability to reachM 1 beforeM 2

for a particle performing a pure random walk, so it is simp
given by the ratio of the distances from its starting point

p[ M2M1]~M 1u0!5
M 2O

M 2M 1
5

l 2

l 11 l 2
, ~71!

p[ M2M1]~M 2u0!5
OM1

M 2M 1
5

l 1

l 11 l 2
. ~72!

This rule for the effective dynamics is consistent up
iteration. Suppose there are three consecutive traps: the
M 2 is at a distancel 2 from the origin on the left, the trap
M 1 is at a distancel 1 from the origin on the right, and the
trap M 11 is at a distancel from the trapM 1 on the right.
Suppose that the trapM 1 is decimated before the trapsM 2

and M 11 . The new weights for the trapsM 2 and M 11

become

pM2
8 5p[ M2M1]~M 2u0!

1p[ M2M11]~M 2uM 1!p[ M2M1]~M 1u0!

5
l 11 l

l 21 l 11 l
5p[ M2M11]~M 2u0!, ~73!

pM11
8 5p[ M2M11]~M 11uM 1!p[ M2M1]~M 1u0!

5
l 2

l 21 l 11 l
5p[ M2M11]~M 11u0!, ~74!

and thus rules~72! for the occupancies of renormalized tra
are consistent upon decimation of traps in the renormali
landscape.

B. Diffusion front

In this effective model, the diffusion front in a give
sample thus reads

Pt
(0)~n!5

1

j~ t !
P (0)S X5

n

j~ t ! D , ~75!

where the scaling function reads

P (0)~X!5
X1

X11X2
d~X1X2!1

X2

X11X2
d~X2X1!

~76!

in terms of the two rescaled distancesX6 between the origin
and the nearest renormalized traps. Since the joint distr
tion of the two rescaled distances is completely factorize

D~X1 ,X2!5u~X1!u~X2!e2X12X2, ~77!
03611
rap

d

u-

we obtain that the scaling function for the disorder averag
diffusion front ~10! reads at lowest order inm

g(0)~X!5E
0

1`

dX1E
0

1`

dX2_D~X1 ,X2!P (0)~X!

5e2uXu E
0

1`

du e2u
u

uXu1u
. ~78!

In particular, its asymptotic behaviors read

g(0)~X! .
uXu→`

1

uXu
e2uXu, ~79!

g(0)~X! .
uXu→0

12uXuF ln
1

uXu
2gEG1OS uXu2 ln

1

uXu D .

~80!

It is interesting to compare with the simple exponential fro
e2X obtained in thedirectedversion of the same trap mode
At infinity, the front is reduced by the power 1/uXu with
respect to the exponential representing the distribution of
distance to a renormalized trap, because of the probabilityl
to escape to this trap instead of being absorbed by a ne
renormalized trap on the other side. On the other hand, n
the origin, the front is enhanced by the log term because
more probable to be absorbed by a trap which happens t
very near instead of being absorbed by the renormalized
on the other side.

C. Localization parameters

In a given sample, the localization parameters read at
order

Yk
(0)5pM1

k 1pM2

k , ~81!

and thus averaging over the samples yields

Yk
(0)5E

0

1`

dX1E
0

1`

dX2 D~X1 ,X2!
X1

k 1X2
k

~X11X2!k

5
2

~k11!
. ~82!

The agreement with the numerical simulations of Ref.@23#
obtaining Y2→2/3 and Y3→1/2 is the clearest numerica
evidence of the validity of the RSRG effective dynami
with only two relevant traps in each sample in the lim
m→0.

D. Thermal width

In a given sample, the thermal width reads at this ord

^Dn2~ t !& (0)5~nM1
1nn2

!2pM1
pM2

5nM1
nM2

, ~83!

and thus we obtain after averaging over the samples
4-7
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c2~m→0![ lim
t→`

^Dn2~ t !&

j2~ t !

5E
0

1`

dX1E
0

1`

dX2_D~X1 ,X2!X1X251.

~84!

E. Disorder averages of thermal cumulants

The generating function of disorder averages of resca
thermal cumulants reads

Z~s![ ln^e2s@n/j(t)#&, ~85!

thus reads at lowest order

Z(0)~s!5E
0

1`

dX1E
0

1`

dX2_D~X1 ,X2!

3 lnS X1

X11X2
esX21

X2

X11X2
e2sX1D ~86!

5E
0

1`

dl e2llS sl

2
coth

sl

2
21D . ~87!

The series expansion ins gives the disorder averages of th
rescaled thermal cumulants~22!.

F. Two-particle correlation function

The two-particle correlation function reads

C~ l ,t ![ (
n50

1`

(
m50

1`

P~n!P~m!d l ,un2mu

.
t→`

Y2
(0)d l ,01

1

j~ t !
CmS l5

l

j~ t ! D , ~88!

where the weight of thed peak corresponds as it should
the localization parameterY2

(0)5 2
3 discussed above, wherea

the scaling function of the long-ranged part reads at low
order

C m
(0)~l!5E

0

1`

dX1E
0

1`

dX2_D~X1 ,X2!

3
2X1X2

~X11X2!2
dl,X11X2

5e2l
l

3
. ~89!

G. Aging and subaging properties

As explained in the Introduction, there are two differe
correlation functions which present different aging propert
@22–24#. We now simply recover within our framework th
expected subaging and aging exponents, and moreover,
pute the scaling functions in the limitT→0.
03611
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1. Probability P„t¿tw ,tw… of no jump during the interval
†tw ,tw¿t‡

The probabilityP(t1tw ,tw) of no jump during the inter-
val @ tw ,tw1t# is directly related to the probabilityc tw

(t) to

be at timetw in a trap of trapping timet via the integral

P~ t1tw ,tw!5E
0

1`

dt c tw
~t!e2t/t. ~90!

In our approach, we have assumed as a starting point
at lowest order inm, the probabilityc t(t) was given by the
trapping time distribution in the renormalized landscape
scaleR(t) ~68!,

c t~t!5qR(t)~t!5u„t.R~ t !…m
Rm~ t !

t11m
. ~91!

So we obtain the scaling form~7!

P~ t1tw ,tw!5P̃mS g5
t

R~ tw! D
5P̃mS g5@ T̃0~m!#1/(11m)

t

tw
1/(11m)D , ~92!

and the scaling function reads at lowest order inm

P̃m
(0)~g!5E

0

1

dz mzm21e2zg. ~93!

In particular, its asymptotic behaviors read

P̃m
(0)~g! .

g→0
12g

m

11m
1O~g2!, ~94!

P̃m
(0)~g! .

g→1`

G~11m!

gm
. ~95!

2. Probability C„t¿tw ,tw… to be at time„t¿tw… in the same trap
as it was at time tw

According to the analysis of the escape time from a ren
malized trap to a next nearest one, the total escape time~54!
is actually dominated by the timet in spent inside the renor
malized trap. As a consequence, we have

C~ t1tw ,tw!5E dT f tw
~T!e2t/T, ~96!

where f tw
(T) represents the probability to be in a trap

escape timeT in the renormalized landscape at scaleR(tw).
At lowest order inm, f t(T) is simply given by the prob-

ability QR(t)(T) given in Eq.~57!. So we obtain the scaling
form
4-8
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C~ t1tw ,tw!5C̃mS h5
t

R11m~ tw!
D 5C̃mS h5T̃0~m!

t

tw
D ,

~97!

where the scaling function reads at lowest order inm

C̃m~h!5E
0

1`

dT̃ Qm~ T̃!e2h/T̃ ~98!

in terms of the functionQm(T̃) introduced in Eq.~58!. Using
Eq. ~63!, we thus obtain the scaling function in terms of t
Bessel functionK1 as

C̃m~h!5
2m

~2h!mE0

A2h
dz z112mK1

2~z!. ~99!

In particular, the asymptotic behaviors read

C̃m~h! .
h→0

12
m

11m
h ln

1

h
1O~h!, ~100!

C̃m~h! .
h→`

G~11m!

hm
. ~101!

IV. CORRECTIONS TO THE ZERO TEMPERATURE
EFFECTIVE DYNAMICS

In the preceding section, to compute all observables in
limit m→0, we have considered that the distribution of t
escape time was infinitely broad in the following sense:
traps withTi,t were such thatTi /t;0, whereas all traps
with Ti.t were such thatTi /t;1`. For finitem, we have
to take into account that these ratios are not really zero
infinite. This can be done in a systematic procedure orde
order inm as we now explain.

A. Corrections at order µ

At first order in m, we need to consider the followin
effects~see Fig. 2!.

~a! A trap M of the renormalized landscape has an esc
time TM which is not infinite. There is a small probabilit
(12e2t/TM) that the particle has already escaped from t
trap at timet.

If it has escaped, it has been absorbed by one of the
renormalized neighbors, with probabilities given by the
tios of the distances. We will say that the particle is ‘‘
advance’’ with respect to the effective dynamics of the lim
m→0.

~b! The biggest trap in an interval between two renorm
ized traps, which we will callS, has an escape timeTS,t
which is not zero and thus there is a small probability of
order ofe2t/TS that the particle is still trapped inS at time t.
We will say that the particle is ‘‘late’’ with respect to th
effective dynamics of the limitm→0.

The first corrections of the order ofm for various observ-
ables are given in Appendix C. From a technical point
view, it turns out that the computation of averages over c
03611
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figurations becomes rapidly much more involved than
similar computations for the directed case@20#. This is due to
the fact that the escape time depends on both the trap
time and the distances to the neighbor traps. So here,
trary to the directed case where we have computed cor
tions up to orderm2 @20#, we will not go further into the
explicit corrections of higher orders, but simply describe t
hierarchical structure of the important traps that appear
given order inm.

B. Hierarchical structure of the important traps

The procedure that we have described up to orderm can
be generalized at an arbitrary ordern as follows: all observ-
ables at ordermn can be obtained by considering dispersi
of the thermal packet over at most (21n) traps that have to
be chosen among a certain numberVn of possible configu-
rations of the traps. Our aim here is simply to get so
insight into the set of important traps that play a role a
given ordern.

At ordermn, the important traps are the following:~a! the
main trapsM 2 andM 1 ; ~b! The nextn large renormalized
traps on each side,M21 , . . . ,M (n11)1 on the half line
] M 1 ,1`@ , M (n11)2 , . . . ,M22 on the half line
] 2`,M 2@ ; ~c! the n biggest trapsS1

(0), . . . ,Sn
(0) among the

small traps in the interval ]M 2 ,M 1@ ; ~d! the (n21) biggest
trapsS2

1(1) , . . . ,Sn
1(1) among the small traps in the interva

] M 1 ,M21@ and the (n21) biggest trapsS2
2(1) , . . . ,Sn

2(1)

among the small traps in the interval ]M22 ,M 2@ ; ~e! the
(n22) biggest trapsS3

1(2) , . . . ,Sn
1(2) among the small traps

in the interval ]M21 ,M31@ and the (n22) biggest traps
S3

2(2) , . . . ,Sn
2(2) among the small traps in the interva

] M32 ,M22@ ; ~f! so on;~g! the biggest trapSn
1(n21) among

the small traps in the interval ]M (n21)1 ,Mn1@ and the big-
gest trapSn

2(n21) among the small traps in the interva
] Mn2 ,M (n21)2@ .

The total number of traps is thus

FIG. 2. Construction of the important traps in a given sample
a particle starting at the origin. The dashed line separates
‘‘small’’ traps @that have a trapping time smaller thanR(t)] from
the ‘‘big’’ traps @that have a trapping time bigger thanR(t)]. The
first big traps on each side calledM 1 andM 2 are occupied with a
weight of the order ofO(m0). The next big trapsM 11 , M 22 and
the biggest small trapS in the interval ]M 2 ,M 1@ are occupied with
weights of the order ofO(m).
4-9
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Tn521n12(
i 51

n

i 521n~n12!, ~102!

which generalizes the numberT052 (M 2 ,M 1) at ordern
50 and the numberT155 (M 2 ,M 1 ,M 22 ,M 11 ,S) at or-
der n51.

With theseTn traps, one has to construct the possibleVn
configurations of (21n) traps, that are ordered in position
and that contribute up to ordermn, as explained in more
detail in Appendix D.

C. Discussion

In conclusion, the effective dynamics for the trap mod
valid in the limit m→0 is also a good starting point to stud
the full aging phase 0,m,1, since one can build a system
atic series expansion inm for all observables. Moreover, th
hierarchical structure of the traps that are important at or
n give a clear insight into the structure of the dynamics
finite m.

V. PROPERTIES OF THE RENORMALIZED LANDSCAPE
FOR THE GENERALIZED MODEL

We now consider the generalized model defined by
hopping rates~4! with parameteraP@0,1# and study the
changes with respect to the usual trap model correspon
to the special casea50 that we have studied in the previou
sections.

A. Definition of the renormalized landscape

Here, the renormalized landscape is defined for the en
variable: at scaleG, all traps with energyE,G are deci-
mated and replaced by a flat landscape, whereas all t
with energyE.G remain unchanged. So the distribution
the energy in the renormalized landscape simply reads~1!

rG~E!5u~E.G!
1

Tg
e2(E2G)/Tg. ~103!

B. Trapping time of a renormalized trap

Let us consider a trap calledA with energyE.G existing
in the renormalized landscape: it is surrounded by tr
(B1 ,B2) on the right and (B21 ,B22) on the left which have
E;0 ~see Fig. 3!. As a consequence, the hopping rates
escape fromA are

wA→B61
5 1

2 e2b(12a)E, ~104!

so we may associate to the trapA the trapping time

tE5eb(12a)E. ~105!

The distribution oftE in the renormalized landscape at sca
G reads

qG
(a)~t!5u~t.tG!

m~a!

t S tG

t D m(a)

, ~106!
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with the cutoff

tG5eb(12a)G, ~107!

and with the new exponent

m~a!5
m

12a
, ~108!

instead of Eq.~3!.

C. Trapping-time of the vicinity of a renormalized trap

The hopping rates from the siteB1 ~ or B21) nearest
neighbor of the renormalized trapA of energyE read

wB1→A5 1
2 ebaE, ~109!

wB1→B2
5 1

2 , ~110!

so there is a very high probability to return immediately
the deep trapA.

We are interested into the probability distributionP* (t* )
of the total timet* spent atA before the first passage atB2 or
B22 when starting atA. We may decomposet* into the
numberk of sojourns atA needed

t* 5(
i 51

k

t i , ~111!

where t i is the time spent inA in one sojourn, so it is dis-
tributed with f tE

(t i) ~6!. Denotingp2 the probability to hop

to B2 when starting atB1,

p25
wB1→B2

wB1→B2
1wB1→A

5
1

11e1baE
;e2baE, ~112!

FIG. 3. Definition of the two escape times: a deep trapA of the
renormalized landscape has for nearest neighborsB61 and for next
nearest neighborsB62. In the casea.0, the trapping timetE of A
alone depends ona, whereas the trapping timetE* of the interval
made with the three consecutive trapsB21AB11 does not depend
on a.
4-10
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we may express the probability distributionW(k) of k
51,2, . . . , as

W~k!5~12p2!k21p2 . ~113!

The Laplace transform oft* ~111! thus reads

E
0

1`

dt* P* ~ t* !e2st* 5 (
k51

1`

W~k!S 1

11stE
D k

5
1

11s
tE

p2

,

~114!

so t* is exponentially distributed

P* ~ t* !5
1

tE*
e2t* /tE* , ~115!

with the mean time

tE* 5
tE

p2
5ebE~11e2baE!.ebE, ~116!

which is independent of the parametera and exactly coin-
cides with the trapping time of the usual trap modela
50) distributed with Eq.~2!. In conclusion, asa grows from
0 to 1, the mean sojourn timetE ~105! in the trapA decays,
but this is exactly compensated by the large probability
return immediately back toA when on nearest-neighbor site
B61.

D. Escape time from a renormalized trap

Since we have found that the trapping timetE* ~116! of
the regionB21AB11 containing a renormalized trapA with
its two neighbors was exactly the same as the trapping t
t of the usual trap model (a50) studied in the previous
sections, we obtain that the escape properties from a re
malized trap to another renormalized trap are exactly
same as fora50. So the distribution of the escape timeT is
given by Eq.~57!, where the RG scaleR(t) for the trapping
timestE* is related to the energy RG scaleG(t) via ~116!

R~ t !5ebG(t). ~117!

E. Conclusions indÄ1

All results based on the escape timesT in the renormal-
ized landscape do not depend ona: in particular, the diffu-
sion front, the localization parameters, the disorder avera
of thermal cumulants, and the correlationC(t8,t) do not de-
pend ona. Among the observables we have considered,
only change will be for the probabilityP(tw1t,tw) of no
jump betweentw and tw1t, since it directly involves the
distribution of trapping timetE ~90!. At lowest order inm,
we have that the probability distributionc t(t) to be in a trap
of trapping timet at time t is now given by~106!

c t~t!5qG
(a)~t!5u~t.tG(t)!

m~a!

t S tG(t)

t D m(a)

, ~118!
03611
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where the cutoff is related to the RG scaleR(t) ~68! via
~107! and ~116!

tG(t)5eb(12a)G(t)5@R~ t !#12a. ~119!

So we obtain the scaling form

Pm
(a)~ t1tw ,t !5P̃m(a)

(0) S v5
t

@R~ tw!#12aD ~120!

in terms of the scaling function~93! with the modified expo-
nent ~108!.

F. Effect of a in arbitrary dimension d

It is clear that the analysis presented above ind51 can
easily be generalized for the trap model on a hypercu
lattice in arbitrary dimensiond: a very deep trapA of energy
E has a trapping timetE ~105! distributed with an algebraic
law of exponentm(a)5m/(12a) ~108!, whereas the cluste
made out ofA and its (2d) nearest-neighbor sites has fo
trapping timetE* .ebE ~116! distributed with an algebraic
law of exponentm(0)5m. This explains why the quenche
model and the annealed model remain different even in a
trary dimensiond whena.0, as was found in the numerica
simulations@21#: in the quenched model, the exponentm in
the distribution oftE* comes from the very high probability
to return immediately to a deep trap when leaving it, a
thus in the annealed model where these returns are ab
the only relevant exponent ism(a)5m/(12a). As noted in
Ref. @21#, this effect is particularly clear in the region
,m,1,m/(12a): the annealed model is above its gla
transition, whereas the quenched model is below its g
transition.

In conclusion, in the glassy phasem,1 in arbitrary di-
mensiond, the diffusion front, the localization parameter
the disorder averages of thermal cumulants, and the corr
tion C(t8,t) do not depend ona, and the only observable
sensitive toa will be again those that measure the ‘‘loc
persistence,’’ such as the probabilityP(tw1t,tw) to remain
exactly on the same site betweentw and tw1t. This conclu-
sion is in agreement with the qualitative argument given
Appendix B 3 of Ref. @21#.

G. Generalization to arbitrary jump rates satisfying
detailed balance

It has been recently argued in Ref.@28# how the decay
time for the functionP(tw1t,tw) should depend on the form
of the jump rates satisfying detailed balance

ebEiw~Ei to Ej !5ebEjw~Ei to Ej !, ~121!

when they are not of the special form~4!. It is thus interest-
ing to consider this question from the RSRG perspective

The arguments presented in detail above for the spe
form ~4! of the rates may be straightforwardly generalized
follows. The trapping time associated to a trapA with energy
E.G existing in the renormalized landscape~105! is more
generally given by
4-11
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tE5
1

w~E to 0!
, ~122!

whereas the trapping time of the vicinity of this renormaliz
trap ~116! reads more generally

tE* 5
tE

p2
5

w~0 to 0!1w~0 to E!

w~E to 0!w~0 to 0!
. ~123!

The detailed balance condition~121! for the special caseEi
5E andEj50 thus gives

tE* 5
ebE

w~0 to 0!
1

1

w~E to 0!
5

ebE

w~0 to 0!
1tE .

~124!

So the condition to have exactly the same properties on la
scales as in the usual trap model~4! with a50, is simply

lim
E→`

~e2bEtE!,1`, ~125!

since this condition is sufficient to gettE* ;ebE. In this case,
the only observable sensitive to the precise form of the ra
will be again the probabilityP(tw1t,tw) to remain exactly
on the same site betweentw andtw1t. Indeed, this probabil-
ity will be a scaling function of the ratio@ t/tw(tw)# , where
tw(tw) is the cutofftG(tw) of the renormalized landscape

time tw , i.e., at scaleR(tw) ~68!. In terms of the energy
cutoff G(tw) ~117!,

G~ tw!5
ln R~ tw!

b
;

ln tw

b~11m!
, ~126!

we thus obtain~122! the general prediction

tw~ tw![tG(tw)5
1

w„G~ tw! to 0…
5

1

wS ln tw

b~11m!
to 0D .

~127!

Vice versa, if one is interested in constructing a model wit
given decay time@28# tw(tw) for the functionP(tw1t,tw),
it is sufficient to choose a form for the rates that satisfies
following asymptotic behavior:

w~E to 0! ;
E→`

1

tw~ebE(11m)!
. ~128!

In particular, to obtain the ultraslow logarithmic aging d
namicstw(tw)5(ln tw)x, the jump rates have to behave as t
power law w(E to 0);E2x for E→`, in agreement with
Ref. @28#.

VI. SCALING ANALYSIS FOR THE TRAP MODEL
IN DIMENSION dÄ2

Since the random walk on a square lattice in dimens
d52 is recurrent, we expect that here also, the scale of
cape times in the renormalized landscape will be differ
03611
ge

s

a

e

n
s-
t

from the scale of trapping times. On the contrary, ford
.2, the random walk is not recurrent, and there will be on
one-time scale given by the trapping times.

A. Renormalized landscape

As before, we define the renormalized landscape at s
R as follows: all traps with trapping timet i,R are deci-
mated and replaced by a ‘‘flat landscape,’’ whereas all tr
with waiting timet i.R remain unchanged.

We now consider the probabilityPR( l ) that the renormal-
ized trap closest to the origin is at a distancel from the
origin. At large scale, this means that the disc of surfacS
5p l 2 is empty of renormalized traps, whereas the disc
radiusl 1dl is not, yielding

PR~ l ! .
R→`

2p l

Rm
e2p l 2/Rm

, ~129!

which generalizes Eqs.~33! and ~34!. Given a renormalized
trap t0 , PR( l ) also describes the distribution of the distan
l of the nearest-neighbor renormalized trap.

B. Escape time for a renormalized trap indÄ2

We thus define the escape from a renormalized trapt0 as
the event where a particle starting att0 reaches for the first
time the circle of distancel of the nearest renormalized trap
of course, contrary to the one-dimensional case, this does
mean that the particle has been really absorbed, but we
pect that the particle has then a finite probability to be
sorbed by a renormalized trap different fromt0.

The probability to escape to the distancel without return-
ing to t0 when starting nearby behaves asc/( ln l), wherec is
a constant~see Appendix B for more details!, and thus the
numbern of sojourns att0 before the particle succeeds
escape scales as

n; ln l; ln Rm/2. ~130!

So the time spent inside the trapt0 before the escape scale
as

t in;nt0;t0 ln Rm/2>R ln Rm/2. ~131!

The mean timê t& l of one unsuccessful excursion scal
as ~see Appendix B for more details!

^t& l .
l→`

c8
l 2

ln2 l
, ~132!

so that the total timetout during the unsuccessful excursio
scales before the escape scales as

tout;n^t& l;
l 2

ln l
;

Rm

ln Rm/2
. ~133!

It is thus negligible with respect tot in ~131! at large scale.
Finally, the timetdi f f of the successful excursion over th

length l scales as
4-12
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tdi f f; l 2;Rm, ~134!

and is thus also negligible with respect tot in ~131! at large
scale.

In conclusion, the total time needed to escape from a
t0 of the renormalized landscape at scaleR,

tesc5t in1tout1tdi f f , ~135!

is dominated byt in alone at large scale, and thus we m
associate to the trapt0 an escape time

T05at0 ln Rm/2, ~136!

wherea is a random variable of the order of 1 that chara
terizes the geometry of the neighboring renormalized tr
aroundt0.

C. Choice of the renormalization scaleR as a function of time

The distribution of the escape timeT ~136! in the renor-
malized landscape at scaleR will thus present the scaling
form

QR~T!5
1

R ln Rm/2
Q̂mS T̃5

T

R ln Rm/2D . ~137!

So the renormalization scaleR has to be chosen as a functio
of time with the scaling

t;R~ t !ln Rm/2~ t !, ~138!

i.e., by inversion at leading order

R~ t !;
t

ln tm/2
. ~139!

So the recurrence properties of the random walk ind52
induces again a different scaling for trapping times and
cape times in the renormalized landscape. As a conseque
the correlationP(t1tw ,tw) will be a scaling function of
t/R(tw) with Eq. ~139!, whereas the correlationC(t
1tw ,tw) will be a scaling function oft/tw , in agreement
with the results obtained in Refs.@29,30#.

D. Number of important traps

However, in contrast with thed51 case, there are two
important length scales ind52 as we now explain.

On one hand, given choice~139! for the renormalization
scaleR(t) as a function of time, the length scale for th
distance between two renormalized traps is then given
~129!

j~ t !;@R~ t !#m/2;F t

ln tm/2Gm/2

. ~140!

On the other hand, let us now recall the scaling analy
using Lévy sums@21,25,26# in d52: afterN steps, the num-
03611
p
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ber of visited sites behaves asS5N/( ln N) and each site is
typically visited lnN times, which yields the correspondenc

t;(
i 51

S

t i~ ln N!;~ ln N!S N

ln ND 1/m

. ~141!

Since the typical distance reached afterN steps scales asr
;AN, this yields in terms of the timet after the inversion of
Eq. ~141! at leading order

r ~ t !;
tm/2

~ ln tm!(m21)/2
. ~142!

So here, in contrast with thed51 case, the typical distanc
r (t) reached after timet does not coincide with the typica
distancej(t) ~140! between two renormalized traps. As
consequence, the numbern(t) of important traps contained
in the disk of radiusr (t) will not remain finite but will grow
logarithmically in time,

n~ t !;
r 2~ t !

j2~ t !
; ln tm. ~143!

This is in agreement with the absence of localization ind
52 ast→` @30#.

However, in the regime wheret→` and m→0 with tm

fixed ~143!, we expect that the diffusion front in a give
sample may be described as a sum ofd peaks that are out o
equilibrium with respect to each other, i.e., that their weig
depend on the geometry of the renormalized traps in
region around the origin but not on their energies. It wou
be, of course, very interesting to build some RSRG effect
dynamics ford52 case in this regime, but this goes beyo
the scope of this paper.

VII. CONCLUSION

We have studied in detail the properties of the on
dimensional trap model via a disorder-dependent real-sp
renormalization procedure. The RSRG approach provides
correct exponents for the relevant length scale and the
relevant time scales in the full domain 0<m,1, and then
allows to compute scaling functions in a systematic se
expansion inm. Since we have already summarized our ma
results for disorder averages of observables in Sec. I D,
will not describe them again but instead discuss the phys
meaning of our construction.

We have seen that at lowest order inm, in a given sample,
the particle can be only on two sites, which are the t
nearest renormalized trapsM 1 andM 2 existing at RG scale
R(t), and that the weights of these traps are simply given
the probabilities to reach one before the other one. T
means that the dynamics remains out of equilibrium forev
the weights are not given by Boltzmann factors, they do
even depend on the energies of these two traps, but they
depend on the ratio of the distances to the origin. Wh
including the first corrections inm to this picture, we have
taken into account the biggest trapS in the interval
4-13
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] M 2 ,M 1@ , and the next renormalized trapsM 22 and
M 11 , but the dynamics still remains out of equilibrium
since the weights are still determined by the lengths betw
these traps and by escape rates of the forme2t/T. This out-
of-equilibrium character will thus persist in the whole loca
ized phase 0<m,1 where these deep traps keep fin
weights. This explains why the numerical studies@21,23#
have found that the ideas of ‘‘partial equilibrium’’ and ‘‘ef
fective temperature’’ were not able to capture the long-ti
properties of the trap model. This is similar to what happe
in the directed trap model or in the related biased Sinai
fusion, where the thermal packet is also broken into subpa
ets that remain out of equilibrium with each other even in
infinite time limit @20#; this is in contrast with the unbiase
Sinai diffusion, where the thermal packet is asymptotica
localized in one single infinite valley@31#, in which particles
are at equilibrium with each other@32#.

From the point of view of numerical simulations on ra
dom walks in random media, this shows that to study
localization and the convergence or not to a quasiequilibr
regime at long times, it is interesting to study the dynam
in a single disordered sample, and not only disord
averaged quantities: for instance, the pictures of a ther
packet in a given sample obtained in Ref.@33# for the Sinai
diffusion and in Ref.@19# for the directed trap model, seem
to give the clearer insight into the question of localization
one valley or in typically a few traps with finite weights. An
whenever the structure of the thermal packet consists
few subpackets, whose positions and weights are sample
pendent, it is a very strong indication that some appropr
real-space RG description can be constructed to study
dynamics.

In a forthcoming paper@34#, we will show how the
present RSRG approach for the unbiased trap model ca
generalized to obtain explicit results in the limitm→0 for
the linear and nonlinear response to an external bias, wh
is applied from the very beginning att50 or after a waiting
time tw . Recently, this problem has been studied via sca
arguments and numerical simulations in Ref.@35#, and was
shown to satisfy a nonlinear fluctuation theorem@36#.
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APPENDIX A: STATISTICAL PROPERTIES
OF EXCURSIONS IN dÄ1

As explained in the text, to study the excursions in t
renormalized landscape~50! and ~53!, we have to study the
following standard problem: what is the probability distrib
tion Px(t) of the timet of the first passage atx50 without
having touched the other boundaryx5 l before, for a particle
in a pure trap model?

For x51, . . . ,l 21 this probability distribution satisfie
the equation
03611
n
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] tPx~ t !5@Px11~ t !1Px21~ t !22Px~ t !#, ~A1!

with the boundary conditionsP0(t)5d(t) andPl(t)50. So
the Laplace transform with respect tot,

P̂x~s![E
0

1`

dt e2stPx~ t !, ~A2!

satisfies

P̂x11~s!1 P̂x21~s!2~21s!P̂x~s!50, ~A3!

for x51, . . . ,l 21 with the boundary conditionsP̂0(s)51
and P̂l(s)50. The solution reads

P̂x~s!5
rx~s!2r2l 2x~s!

12r2l~s!
, ~A4!

r~s!5
21s2As214s

2
. ~A5!

In particular, the series expansion ins yields the first mo-
ments

uk~x![E
0

1`

dt tkPx~ t !. ~A6!

For n50, the probability to reach 0 beforel when starting at
x reads as expected

u0~x!5
l 2x

l
. ~A7!

For n51,2

u1~x!5
x~ l 2x!~2l 2x!

6l
, ~A8!

u2~x!5
x~ l 2x!~2l 2x!~4l 216xl23x215!

360l
. ~A9!

1. Unsuccessful excursions

For the unsuccessful excursions present intout ~50!, we
need to consider the special casex51, where the first mo-
ments read

u0~1!512
1

l
, ~A10!

u1~1!5
~ l 21!~2l 21!

6l
.

l→`

l

3
, ~A11!

u2~1!5
~ l 21!~2l 21!~4l 216l 2315!

360l
.

l→`

l 3

45
.

~A12!
4-14
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The leading terms can be understood as follows: the timet is
of the order ofl 2 with a probability 1/l , which is the prob-
ability to arrive very near the forbidden extremityx5 l .

To get the leading behavior inl of all moments, we thus
need to consider the rescaled Laplace transform

P̂1S p

l 2D .
l→`

512
1

l
~Ap cothAp21!1OS 1

l 2D ,

~A13!

which corresponds to the following leading behavior at la
l for the moments:

uk~1! .
l→`

l 2k21
2G~k11!z~2k!

p2k
. ~A14!

2. Successful excursions

For the successful excursion present intdi f f ~53!, we need
to consider the special casex5 l 21. Since in this case, th
normalization is

u0~ l 21!5
1

l
, ~A15!

we consider the normalized first moments

u1~ l 21!

u0~ l 21!
.

l→`

l 2

6
, ~A16!

u2~ l 21!

u0~ l 21!
.

l→`

7l 4

360
. ~A17!

To get the leading behavior inl of all moments, we thus nee
to consider the rescaled Laplace transform

P̂l 21S p

l 2D .
l→`

5
1

l

Ap

sinhAp
1OS 1

l 2D . ~A18!

So the timetdi f f for the successful diffusion scales asl 2 as
expected.

APPENDIX B: STATISTICAL PROPERTIES
OF EXCURSIONS IN dÄ2

To study the scaling properties of excursions in the ren
malized landscape in dimensiond52, we have to study the
following problem: what is the probability distributionPr(t)
of the timet of the first passage on the circler 51 without
having touched the other circler 5 l before, for a particle
starting at radiusr and diffusing freely?

For 1,r ,R, this probability distribution satisfies the dif
fusion equation in radial coordinates

] tPr~ t !5DPr~ t !5S d2

dr2
1

1

r

d

dr D Pr~ t !, ~B1!

with the boundary conditionsP1(t)5d(t) andPl(t)50.
03611
e

r-

So the Laplace transform with respect tot,

P̂r~s![E
0

1`

dt e2stPr~ t !, ~B2!

satisfies

S d2

dr2
1

1

r

d

dr
2sD Pr~s!50, ~B3!

for 1,r ,R with the boundary conditionsP̂0(s)51 and
P̂l(s)50.

In particular, the moments appearing in the series exp
sion of Pr(s) in s

uk~r ![E
0

1`

dt tkPr~ t ! ~B4!

may be computed by the recurrence

S d2

dr2
1

1

r

d

dr D uk~r !52uk21~r !. ~B5!

For k50, the probabilityu0(r ) to reach firstr 51 before
r 5 l when starting atr is the solution of

S d2

dr2
1

1

r

d

dr D u0~r !50, ~B6!

with the boundary conditionsu0(1)51 andu0( l )50, and
thus reads

u0~r !512
ln r

ln l
. ~B7!

For k51, u1(r ) is the solution of

S d2

dr2
1

1

r

d

dr D u1~r !52S 12
ln r

ln l D , ~B8!

with the boundary conditionsu1(1)50 andu1( l )50, and
thus reads

u1~r !5
l 221

4 ln2 l
ln r 1

~r 221!S ln
r

l
21D

4 ln l
. ~B9!

In particular, to study the unsuccessful excursions,
may considerr 52 for starting point. The probability to es
cape is then

u0~2!512
ln 2

ln l
, ~B10!

and the mean time of an unsuccessful excursion has for l
ing behavior inl,
4-15
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u1~2! .
l→`

l 2

4 ln2 l
ln 2. ~B11!

APPENDIX C: EFFECTIVE MODEL
AT FIRST ORDER IN µ

In this Appendix, we compute the corrections at first ord
in m by taking into account the two effects described in
Sec. IV A.

1. Statistical properties for particles in advance at orderµ

There is a probability,

pa5~12e2t/TM!, ~C1!

that a particle has already escaped at timet from a renormal-
ized trap of escape timeTM .

We consider a particle starting atO that was in the trap
M 1 in the effective dynamics of the preceding section. W
probability pa , the particle has already escaped from t
trap M 1 at time t, and then it has been absorbed byM 2 or
by M 11 , the two nearest renormalized traps, with probab
ties given by the ratios of the distances.

We note as beforeX6 the rescaled distances between t
origin andM 6 , and we notel the rescaled distance betwee
M 1 and M 11 . The joint probability distribution of
(X2 ,X1 ,l,tM) is completely factorized

DM2M1M11
~X2 ,X1 ,l,tM !

5u~X1!u~X2!u~l!u„tM.R~ t !…m

3
dtM

tM
S R~ t !

tM
D m

e2X12X22l. ~C2!

Since the escape timeTM is proportional to the trapping
time,

TM5
1

aM
RmtM , ~C3!

with a prefactoraM that depends on the positions via th
prefactor

aM5
1

2 S 1

~X11X2!
1

1

l D , ~C4!

it is more convenient to use the variable

l05X21X1 ~C5!

instead ofX1 . So measure~C2! becomes
03611
r

e

-

DM2M1M11
~X2 ,l0 ,l,tM !

5u~0,X2,l0!u~l!u„tM.R~ t !…m
dtM

tM

3S R~ t !

tM
D m

e2l02l. ~C6!

To compute the average of an observab
A(X2 ,l0 ,l,tM) with respect to this measure, it is mor
convenient to first integrate overX2P(0,l0) and then to
integrate over the remaining variables with the following n
tations:

A~X2 ,l0 ,l,tM !5K K E
0

l0
dX2 A~X2 ,l0 ,l,tM !L L

a

,

~C7!

where the notation̂^•••&&a denotes

^^ f ~l0 ,l,tM !&&a5E
R(t)

1`

dtM m
dtM

tM
S R~ t !

tM
D mE

0

1`

dl0

3E
0

1`

dl e2l02l f ~l0 ,l,tM !. ~C8!

For the simplest observables, we will need integrals of
following form, which can be computed in terms of Bess
functions via~E1!

Wp,q~m![^^~12e2(t/2RmtM)(1/l11/l0)!l0
plq&&a

52mE
0

z0(m)dz

z S z

z0~m! D
2mFG~11p!G~11q!

2
z21p1q

2p1q
K11p~z!K11q~z!G , ~C9!

where the parameterz0 depends only onm via T̃0 introduced
in the explicit choice of the renormalization scaleR(t) ~68!,

z0~m![A 2t

R11m~ t !
5A2T̃0~m!. ~C10!

In particular, in the limit of vanishingm, z0(m) has for
limit ~65!

z0~0!52e2(11gE)/250.908 95, ~C11!

so that the integrals read at lowest order inm

Wp,q~m! .
m→0

2mE
0

z0(0)dz

z FG~11p!G~11q!

2
z21p1q

2p1q
K11p~z!K11q~z!G1O~m2!.

~C12!
4-16
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As the first example, let us consider the probability
having already escaped from a renormalized trap at timet:

pa512e2t/TM512e2(t/2RmtM)(1/l011/l). ~C13!

Its average over the configurations can be computed via

pa5^^l0@12e2(t/2RmtM)(1/l01 1/l)#&&a , ~C14!

which corresponds to form~C9! for the special case (p
51,q50) and is thus of the order ofm ~C12!,

pa5W1,0~m! .
m→0

2mE
0

2e2(11gE)/2dz

z F12
z3

2
K2~z!K1~z!G

1O~m2!5m0.678 2381O~m2!. ~C15!

Let us now write the diffusion front in a given sample:
is a linear combination of the two possibilities~72! and~74!,

P M2M1M11

(0)1(1) ~n!5e2t/TM@p[ M2M1]~M 2u0!dn,nM2

1p[ M2M1]~M 1u0!dn,nM1

#1~12e2t/TM!

3@p[ M2M11]~M 2u0!dn,nM2

1p[ M2M11]~M 11u0!dn,nM11
#, ~C16!

and thus in rescaled distances, the correction with respe
the zeroth order~76! reads

P M2M1M11

(1) ~X![P M2 ,M1 ,M11

(0)1(11) ~X!2P (0)~X!

5~12e2t/TM!F2
X2

l0
d„X2~l02X2!…

1
lX2

l0~l1l0!
d~X1X2!

1
X2

l1l0
d„X2~l1l02X2!…G , ~C17!

where the parameters are distributed with measure~C6!.
Similarly, if the particle has escaped fromM 2 , it has

been absorbed byM 1 or by M 22 and the properties are th
same as above by the symmetryX→2X.

2. Statistical properties of particles ‘‘in delay’’

We are now interested in the trapS with the biggest trap-
ping time tS in the interval ]M 2 ,M 1@ . Its position is uni-
formly distributed in this interval, so the joint distribution o
(X2 ,XS ,X1 ,tS) reads

DM2SM1
~X2 ,XS ,X1 ,tS!

5u~X1!u~X2!u~2X2,XS,X1!u„tS,R~ t !…

3
m

tS
S R~ t !

tS
D m

e2(X11X2)[R(t)/tS] m
. ~C18!
03611
f

to

The measure for the positions alone reads

E dts_DM2SM1
~X2 ,XS ,X1 ,tS!

5u~X1!u~X2!u~2X2,XS,X1!

3
1

X11X2
e2(X11X2), ~C19!

whereas the measure for the trapping time alone reads

E dX1E dX2E dXS_DM2SM1
~X2 ,XS ,X1 ,tS!

5u„tS,R~ t !…2m
ts

2m21

R2m~ t !
. ~C20!

Since the associated escape time

TS5
1

aS
RmtS ~C21!

depends on the positions via the prefactor

aS5
1

2 S 1

~X12XS!
1

1

~X21XS! D , ~C22!

it is more convenient to replace the rescaled distan
(X2 ,X1) betweenM 6 and the origin by the rescaled dis
tances betweenM 6 and the trapS,

l15X12XS , ~C23!

l25X21XS . ~C24!

With these new variables, measure~C18! becomes

DM2SM1
~XS ,tS ;l1 ,l2!

5u~l1!u~l2!u~2l1,XS,l2!u„tS,R~ t !…

3
m

tS
S R~ t !

tS
D m

e2(l11l2)[R(t)/tS] m
. ~C25!

To compute the average of an observab
A(XS ,l1 ,l2 ,tS) with respect to this measure, it is conv
nient to first integrate overXSP@2l1 ,l2# and then aver-
age over the remaining variables

A~XS ,l1 ,l2 ,tS!5K K E
2l1

l2

dXS A~XS ,l1 ,l2 ,tS!L L
d

,

~C26!
4-17
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where the notation̂^•••&&d is defined by

^^ f ~l1 ,l2 ,tS!&&d5E
0

R(t)

dtS

m

tS
S R~ t !

tS
D mE

0

1`

dl1

3E
0

1`

dl2 e2(l11l2)[R(t)/tS] m

3 f ~l1 ,l2 ,tS!. ~C27!

For the simplest observables, we will need integrals of
following form, which can be computed in terms of Bess
functions via~E1!,

Vp,q~m![^^e2t/TSl1
p l2

q &&d

5
2m

11m

z0
[2m/11m](11p1q)~m!

2p1q

3E
z0(m)

1`

dzz(12m)/(11m)(11p1q)

3K11p~z!K11q~z!, ~C28!

where the parameterz0 has been introduced in Eq.~C10!. At
lowest order inm, we thus obtain

Vp,q~m! .
m→0

2m

2p1qEz0(0)

1`

dz z(11p1q)K11p~z!K11q~z!

1O~m2!. ~C29!

Let us first consider the probability

pd5e2t/TS5e2(t/2RmtS)(1/l111/l2), ~C30!

that a particle that has been trapped byS is still in the trapS
at time t. Its average with respect to measure~C25! can be
computed as

pd5^^~l11l2!e2(t/2RmtS)(1/l111/l2)&&d . ~C31!

It is of form ~C28! and is thus of the order ofm ~C29!,

pd52V1,0~m! .
m→0

2mE
2e2(11gE)/2

1`

dz z2K2~z!K1~z!

1O~m2! .
m→0

m1.202 05 . . .1O~m2!. ~C32!

Let us now write the diffusion front in a given sample
this order:
03611
e
l

P M2SM1

(0)1(1) ~X!5e2t/TSu~XS.0!@p[ M2S]~M 2u0!dn,nM2

1p[ M2S]~Su0!dn,nS
#1e2t/TSu~XS,0!

3@p[SM1]~M 1u0!dn,nM1

1p[SM1]~Su0!dn,nS
#1~12e2t/TS!

3@p[ M2M1]~M 2u0!dn,nM2

1p[ M2M1]~M 1u0!dn,nM1

#, ~C33!

and thus in rescaled distances, the correction with respe
the zeroth order~76! reads

P M2SM1

(1) ~X![P M2SM1 ,
(0)1(1) ~X!2P (0)~X!

5e2t/TSu~XS.0!F XS

l2
d„X1~l22XS!…

1
~l22XS!

l2
d~X2XS!G1e2t/TSu~XS,0!

3F ~2XS!

l1
d„X2~l11XS!…1

l11XS

l1

3d~X2XS!G2e2t/TSF l11XS

l11l2
d~X1l2

2XS!1
l22XS

l11l2
d„X2~l11XS!…G , ~C34!

where the parameters are distributed with measure~C25!.

3. Correction of the order of µ to the averaged diffusion front

a. Contribution of particles in advance

To compute contribution~C17! to the diffusion front of
the configurationsM 2M 1M 11 , we first integrate overX2

P@0,l0#,

E
0

l0
dX2P M2M1M11

(1) ~X!

5~12e2t/TM!F2
l02uXu

l0
u~0,X,l0!

1
luXu

l0~l1l0!
u~0,2X,l0!1

l1l02uXu
l1l0

3u~l,X,l1l0!G . ~C35!

So taking into account the configurationsM 22M 2M 1

via the symmetryX→2X, we finally get that averaging with
measure~C6! yields the following contribution of particles in
advance to the scaling function at orderm:
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ga
(1)~X!5mE

0

1`

dl0E
0

1`

dlE
0

1dw

w
e2(l01l)

3~12e2„T̃0(0)/2…w(1/l011/l)!

3F22
l02uXu

l0
u~0,X,l0!

1
l1l02uXu

l1l0
u~0,X,l1l0!G10~m2!.

~C36!

b. Contribution of particles in delay

To compute the average of the specific contribution~C34!
of the configurationsS2MS1 with respect to measure~C25!,
we first integrate overXS ,

E dXS u~2l1,XS,l2!P M2SM1

(1) ~X!

5e2t/TSFu~ uXu,l2!
l22uXu

l2

1u~ uXu,l1!
~l12uXu!

l1

2u~ uXu,l11l2!
l21l12uXu

l11l2
G , ~C37!

so that the correction to the averaged diffusion front read

gd
(1)~X!5mE

0

1`

dl1E
0

1`

dl2E
1

1`dw

w
e2(l11l2)

3e2„T̃0(0)/2…w(1/l111/l2)Fu~ uXu,l2!

3
l22uXu

l2
1u~ uXu,l1!

~l12uXu!
l1

2u~ uXu,l11l2!
l21l12uXu

l11l2
G1O~m2!.

~C38!

c. Total correction at first order in µ

The two contributions~C36! and ~C38! yield the follow-
ing total contribution at first order inm:
03611
g(1)~X![ga
(1)~X!1gd

(1)~X!

5mE
0

1`

dl0E
0

1`

dl e2(l01l)FgE1 ln
T̃0~0!

2

3S l1l0

l0l D G F22
l02uXu

l0
u~0,X,l0!

1
l1l02uXu

l1l0
u~0,X,l1l0!G1O~m2!.

~C39!

4. Correction of the order of µ to the thermal width

a. Contribution of particles in advance

The specific contribution of the configuration
M 2M 1M 11 to the thermal width reads with measure~C6!

@c2#M2M1M11

(1) [@c2#M2M1M11

(0)1(1) 2@c2#M2M1

(0)

5~12e2t/TM!X2l. ~C40!

After the integration overX2 ~C7!, we thus obtain an inte-
gral of type~C9! for the valuesp52,q51,

@c2#M2M1M11

(1) 5K K ~12e2t/TM!
l0

2

2
lL L

a

5
1

2
W2,1~m!.

~C41!

By symmetry, the configurationsM 22M 2M 1 give ex-
actly the same contribution, and thus the total contribution
particles in advance reads at lowest order inm ~C12!

@c2#a
(1)5W2,1~m! .

m→0
mE

0

2e2(11gE)/2dz

z

3F42
z5

4
K3~z!K2~z!G1O~m2!

5m0.5383. ~C42!

b. Contribution of particles in delay

The specific contribution of the configurationsM 2SM1

to the thermal width reads with measure~C25!
@c2#d
(1)[@c2#M2SM1

(0)1(1) 2@c2#M2M1

(0) 52e2t/TS@u~XS.0!l1~l22XS!1u~XS,0!l2~l11XS!#. ~C43!
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After integration overXS , we thus obtain the integral of typ
~C28! for the special value (p52,q51)

@c2#d
(1)52K K e2t/TSFl1

l2
2

2
1l2

l2
2

2 G L L
d

52V2,1~m! .
m→0

2
m

4E2e2(11gE)/2

1`

dz z4K3~z!K2~z!

1O~m2!

52m2.2172 . . .1O~m2!. ~C44!

c. Total correction of the order of µ for the thermal width

Adding the contributions of particles in advance and
delay, we get the total correction at orderm

@c2# total
(1) 5@c2#a

(1)1@c2#d
(1)

5mF2
5

6
2212gEG52m1.6789. ~C45!

5. Correction of the order of µ to the localization parameters

a. Contribution of particles in advance

For a given configurationM 2M 1M 11 , the localization
parameters read~C17!

@Yk#M2M1M11

(0)1(1) 5Fe2t/TM
X2

l0
Gk

1F ~12e2t/TM!
X2

l01lGk

1F12e2t/TM
X2

l0
2~12e2t/TM!

X2

l01lGk

.

~C46!

The average of the specific contribution may be compu
with Eq. ~C7!, so that taking into account the similar contr
bution of the configurationsM 22M 2M 1 , we finally obtain

@Yk#a
(1)52~@Yk#M2M1M11

(0)1(1) 2@Yk#M2M1

(0) !

52K K l0

k11 Fe2k~ t/TM !211~12e2t/TM!k
l0

k

~l01l!k

1 (
m51

k

~12e2t/TM!mS l

l1l0
D mG L L

a

. ~C47!

In particular, it reads fork52
03611
d

@Y2#a
(1)5K K 2l0

3 F ~12e2t/TM!S l

~l1l0!
22D

1~12e2t/TM!22S 12
ll0

~l1l0!2D G L L
a

.

~C48!

b. Contribution of particles in delay

For a given configurationM 2SM1 , the localization pa-
rameters read~C34! for the caseXS.0

@Yk#M2SM1

(0)1(1) 5Fe2t/TS
l22XS

l2
Gk

1F ~12e2t/TS!
l22XS

l11l2
Gk

1F12e2t/TS
l22XS

l2

2~12e2t/TS!
l22XS

l11l2
Gk

, ~C49!

and a similar expression forXS,0.
The integration overXSP@0,l2# ~C26! yields

E
0

l2

dXS@Yk#M2SM1

(0)1(1) 5
l2

~k11! Fe2k~ t/TS!1~12e2t/TS!k

3
l2

k

~l11l2!k
1 (

m50

k

~12e2t/TS!m

3S l1

l11l2
D mG . ~C50!

The caseXSP@2l1,0# leads to the symmetric contributio
via the exchange between (l1 ,l2), and thus the average o
the specific contribution reads

@Yk#d
(1)[K K E

2l1

l2

dXS~@Yk#M2SM1

(0)1(1) 2@Yk#M2M1

(0) !L L
d

5K K 1

~k11! F ~e2k~ t/TS!21!~l21l1!

1~12e2t/TS!k
l2

k111l1
k11

~l11l2!k
1 (

m51

k

~12e2t/TS!m

3S l2l1
m1l1l2

m

~l11l2!m D G L L
d

. ~C51!

In particular, it reads fork52
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@Y2#d
(1)52 K K 2

3
e2t/TS~12e2t/TS!Fl21l1

2
l2l1

l21l1
G L L

d

. ~C52!

6. Correction to aging and subaging properties

a. Probability P„tw¿t,tw… of no jump during the interval
†tw ,tw¿t‡

Since the probabilityP(tw1t,tw) of no jump during the
interval @ tw ,tw1t# is directly related to the probability
c tw

(t) to be at timetw in a trap of trapping timet via ~90!,

the configurationsM 2M 1M 11 do not give any correction
since the trapping time ofM 11 has the same statistical prop
erties as the trapping times ofM 2 andM 1 .

On the contrary, the configurationsM 2SM1 will give a
correction toc t(t). For the caseXS.0, we have

@c t~t!#M2SM1

(0)1(1) 5e2t/TS
l22XS

l2
d~t2tS!

1~12e2t/TS!
l22XS

l11l2
d~t2tM1

!

1F12e2t/TS
l22XS

l2
2~12e2t/TS!

3
l22XS

l11l2
Gd~t2tM2

!, ~C53!

so that the specific contribution yields after integration o
XSP@0,l2#

E
0

l2

dXS@c t~t!#M2SM1

(1)

5E
0

l2

dXS$@c t~t!#M2SM1

(0)1(1) 2@c t~t!#M2M1

(0) %

5e2t/TS
l2

2
@d~t2tS!2d~t2tM2

!#

1e2t/TS
l2

2

2~l11l2!
@d~t2tM2

!2d~t2tM1
!#.

~C54!

After averaging overtM1
and tM2

, the second term will

vanish. Since the caseXS,0 gives the symmetric contribu
tion via the exchange (l1 ,l2), we finally obtain that the
full correction to the probability distribution reads with me
sure~C27!
03611
r

@c t~t!# (1)5E
R(t)

1` m

tM
S R~ t !

tM
D mK K e2t/TS

l21l2

2

3@d~t2tS!2d~t2tM2
!#L L

d

. ~C55!

We thus finally obtain at first order inm

@c t~t!# (1)5u„t,R~ t !…
m

2t
z0

3~0!S R~ t !

t D 3/2

3K1S z0~0!S R~ t !

t D 1/2DK2S z0~0!S R~ t !

t D 1/2D
2V0,1~m!u„R~ t !,t…

m

t S R~ t !

t D m

, ~C56!

with Eq. ~C11!. The prefactorV0,1(m) ~C28! of the second
term represents the probability to be in a trap of typeS at
time t and is of the order ofm ~C32!. So in the domaint
.R, the total distribution@c t(t)# (0)1(1) of t keeps the same
form that at zeroth order, but the amplitude is@1
2V0,1(m)#. There is now a contribution of the domaint
,R which was absent at zeroth order. In particular, in t
limit t→0, we obtain the essential singularity

@c t~t!# (1) .
t→0

mpz0
2~0!R~ t !

4t2
e22z0(0)„R(t)/t…1/2

. ~C57!

We now compute the correction to the scaling functi
P̃(v) ~92! at first order inm,

P̃ (1)~v !5mE
z0(0)

1`

dz z2K1~z!K2~z!e2v[z/z0(0)]2

2V0,1~m!E
0

1

dy mym21e2yv. ~C58!

So for largev, the only correction to the scaling functio
P̃ (0)(v) ~93! comes from the second term

P̃ (1)~v ! .
v→`

2V0,1~m!
m

vm
, ~C59!

which corresponds to a correction of the order ofm2 for the
amplitude of the algebraic decay 1/vm.

b. Probability C„t¿tw ,tw… to be at time„t¿tw… in the same trap
as it was at time tw

Since in our framework,C(t1tw ,tw) is determined by
the probabilityf tw

(T) to be at timetw in a trap of escape
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time T ~96!, we obtain as forP(tw1t,tw) that the configu-
rationsM 2M 1M 11 do not give any correction because t
escape time ofM 11 has the same statistical properties as
escape times ofM 2 andM 1 .

The correction due to the configurationsM 2SM1 can be
written for the caseXS.0 as

@f t~T!#M2SM1

(0)1(1) 5e2t/TS
l22XS

l2
d~T2TS!

1~12e2t/TS!
l22XS

l11l2
d~T2TM1

!

1F12e2t/TS
l22XS

l2
2~12e2t/TS!

3
l22XS

l11l2
Gd~T2TM2

!, ~C60!

so that the specific contribution yields after integration o
XSP@0,l2#
03611
e

r

E
0

l2

dX2@f t~t!#M2SM1

(1)

5E
0

l2

dX2$@f t~T!#M2SM1

(0)1(1) 2@f t~t!#M2M1

(0) %

5e2t/TS
l2

2
@d~T2TS!2d~T2TM2

!#

1e2t/TS
l2

2

2~l11l2!
@d~T2TM2

!2d~T2TM1
!#.

~C61!

After averaging overTM1
and TM2

, the second term will

vanish. Since the caseXS,0 gives the symmetric contribu
tion via the exchange (l1 ,l2), we finally obtain that the
full correction to the probability distribution reads with me
sure~C27!
[f t~T!] (1)5K K E
R

1`

m
dtM

tM
S R

tM
D m

e2t/TS
l21l1

2
@d~T2TS!2d~T2TM2

!#L L
d

5mE
0

RdtS

tS
S R

tS
D mE

0

1`

dl1E
0

1`

dl2 e2(l11l2)[R(t)/tS] m
l2e2 t/TdS T2

2RmtS

S 1

l1
1

1

l2
D D

2mE
0

RdtS

tS
S R

tS
D mE

0

1`

dl1E
0

1`

dl2 e2(l11l2)[R(t)/tS] m
l2e2(t/2RmtS)(1/l111/l2)

3E
0

1`

dl e2lE
R

1`

m
dtM

tM
S R

tM
D m

dS T2
2RmtM

S 1

l
1

1

l11l2
D D , ~C62!
gin
so the correction to the scaling functionC̃m(h) ~97! reads

C̃m
(1)~h!5E

0

1`

dT[f t~T!] (1)e2ht/T

5mE
1

1`dv
v

vmE
0

1`

dl1E
0

1`

dl2 e2(l11l2)vm

3l2e2(11h)„T̃0(0)/2…v(1/l111/l2)

2mE
1

1`dv
v

vmE
0

1`

dl1E
0

1`

dl2 e2(l11l2)vm

3l2e2„T̃0(0)/2…v(1/l111/l2)E
0

1`

dl e2l

3E
0

1

m
dw

w
wme2h„T̃0(0)/2…w[1/l11/(l11l2)] . ~C63!
APPENDIX D: SET OF THE IMPORTANT
CONFIGURATIONS AT ORDER n

With the Tn traps described in text~102!, we have to
construct the possibleVn configurations of (21n) traps, that
are ordered in positions, and that contribute up to ordermn.
We have

Vn5Vn211vn5(
i 50

n

v i , ~D1!

wherevn represents the number of configurations that be
to contribute at ordern. We may decompose

vn5 (
k>1,l>1,k1 l<21n

an
(Mk2 ,Ml 1) , ~D2!
4-22



n-

a

ra

est

ANOMALOUS DIFFUSION, LOCALIZATION, AGING . . . PHYSICAL REVIEW E68, 036114 ~2003!
wherean
(Mk2 ,Ml 1) is the number of configurations that co

tain Mk2 as leftmost trap andMl 1 as rightmost trap. For
(k51,l 511n), there is onlyan

(M2 ,M (11n)1)
51 configura-

tion $M 2 ,M 1 ,M21 , . . . ,M (n11)1%, whereas for (k51,l
51), there are

an
(M2 ,M1)

5n! ~D3!

configurations, since we have to order in space then traps
S1

(0) , . . . ,Sn
(0) in the interval ]M 2 ,M 1@ . More generally, at

order (k,l ), to construct the configurations of (n12) traps
containing Mk2M (k21)2 , . . . ,M 2 ,M 1 ,M21 , . . . ,Ml 1 ,
which represent (k1 l ) fixed traps, we have to choose (n
122k2 l ) traps among the (k1 l 21) available intervals
and to count the possible positional orders in each interv

an
(Mk2 ,Ml 1)

5 (
p150

1`

. . . (
pk1 l 2150

1`

dS (
i 51

k1 l 21

pi5n122k2 l D
3p1! . . . pk1 l 21!. ~D4!

The final result is thus that the number of new configu
tions that appear at ordern reads

vn5 (
k>1,l>1,k1 l<21n

F (
p150

1`

. . . (
pk1 l 2150

1`

3dS (
i 51

k1 l 21

pi5n122k2 l D p1! . . . pk1 l 21! G ,

~D5!
e
er,

nt

,
-

03611
l

-

which generalize what we have found before for the low
orders with v051 corresponding to (M 2 ,M 1), and v1
53 corresponding to (M 22 ,M 2 ,M 1), (M 2 ,M 1 ,M 11),
and (M 2 ,S,M 1).

APPENDIX E: USEFUL PROPERTIES
OF BESSEL FUNCTIONS

The following integrals yield Bessel function of typeK:

E
0

1`

dx xne2ax2b/x52S b

aD (11n)/2

K11n~2Aab!. ~E1!

The asymptotic behavior at infinity is independent ofn
and reads

Kn~z! .
z→`

Ap

2z
e2z. ~E2!

Near the origin, the behavior depends onn. We will need the
behavior forn51,

K1~z! .
z→0

1

z
1

z

2 F ln
z

2
1gEuler21/2G1O~z3 ln z!. ~E3!

Another useful integral is

E
0

1`

dz z2k21Kn
2~z!5

ApG~k!G~k1n!G~k2n!

4G~k1 1
2!

.

~E4!
nn.
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