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Solid-liquid transition of ultrathin lubricant film
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We represent a melting of ultrathin lubricant film by friction between atomically flat surfaces as a result of
action of spontaneously appearing elastic field of stress shear component caused by the external supercritical
heating. The kinetics of this solid-liquid transition is described by the Maxwell-type and Voigt-Kelvin equa-
tions for viscoelastic matter as well as by the relaxation equation for temperature. We show that these equations
coincide formally with the synergetic Lorenz system, where the stress acts as the order parameter, the conju-
gate field is reduced to the elastic shear strain, and the temperature is the control parameter. Using the adiabatic
approximation we find the steady-state values of these quantities. Taking into account the deformational defect
of the shear modulus, we show that lubricant melting is realized according to mechanism of the first-order
transition. The critical temperature of the friction surfaces increases with growth of the characteristic value of
shear viscosity and decreases with growth of the shear modulus value linearly.
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[. INTRODUCTION whereh is the external field and is the free energy &b
=0. The relaxation process of transition to equilibrium is
The interest in the problem of sliding friction is due to its described by the equatidi2]

applied engineering importan€g]. One of the main goals of
studies in this field is to define the conditions for low fric- b=— E(f_ )
tion. In this direction experiments were carried out with n\d¢
atomically flat mica surfaces separated by ultrathin layer of
liquid lubricant that manifested a solid-type behavior at de-Here 7 is the kinetic coefficient, which can be considered as
fined experimental conditiodg]. In particular, the stick-slip the generalized viscosity. I is close to its equilibrium
(or interrupted motion has been observed at critical yield value ¢o=0, we can use the linear approximatiéf/d¢
stress inherent in solid friction. This effect occurs when the~ ¢/x, Wherex=d¢/dh=(d*F/d¢?) ' is the susceptibil-
lubricant film consists of several molecular layers and is exity. As a result, the relaxation equati@@) takes the linear
plained as a confinement-induced freezing. The resultingorm
melting takes place when shear stress is above some critical ,
value due to “shear-induced melting” effect. Numerical Td=— ¢+ xh, ()
method studie$3,4] maintain that liquid molecular ordering
is due to wall confinement. Studies described5r7] were ~ Where
initiated for quantitative description of experimental results. _
In particular, in Ref[7] the lubricant behavior was described T=X7 ()
using the order parameter determining the melting degre

On the basis of Vi lasti e s the relaxation time.
n the basis of viscoelastic matter approximation an Equations3) and(4) were used by Landau and Khalatni-

Ginzburg-Land_au equation,_ where order parameter def'n%v to study the anomalous ultrasound absorption in the vi-
the shear melting and freezing, the observed phenomenolog:)(nity of phase transition. They held the fact that here sus-

of ultrathin fluid film in the process of friction is successfully ceptibility y— o and supposed that viscosityis practically

described in Ref[8]. Here the phase diagram is calculatedindependent of temperatufe In their theory the anoma-

defining the domains of sliding, stick-slip, and dry friction in lously large magnitude of is responsible for freezing pro-
the plane temperature—film-thickness.

. ) ; . cess.
Tthef sthartlngt pom.:. Orgollg apr?r%a_chtkl]s the synlgrgf_nc c?n— For viscoelastic matter the shear moduGiplays a role

cept of phase transi i0®,10], which is the generalization ol - of ype jnyerse susceptibility and expressi@) assumes the

phenomenological Landau theory. According to the latter, th

phase transition is controlled by an order parameter, over

@

which value ¢ a free energyF is developed in a power r=7lG. (5)
expansiorf11]. The equilibrium value ot is determined by
the condition In the cases of viscoelastic and displacement-type phase tran-

sitions(for example, of martensite typéhe modulusG goes
to zero in the vicinity of transition point and relaxation time
IFldp=h, (1) (5) diverges[13,14). There are studiessee, for example,
Ref. [15]), using the fact that generalized susceptibility is
practically independent of temperature but viscosity strongly
*Electronic address: khom@phe.sumdu.edu.ua increases with temperature at glass transition. Let us note
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that anomalously large value of equilibrium coefficiésiis- According to synergetic ideolog}9,10] for completing

ceptibility) is typical for phase transition and anomalously the equation systeni6) and (8), which contain the order

large value of kinetic coefficient is inherent in glass transi-parameterr, the conjugate field, and the control parameter

tion. T, it is necessary to add a kinetic equation for the tempera-
We are aiming to take into account, along the [iB§ that  ture. This equation can be obtained using the basic equations

the solid-liquid transition of ultrathin lubricant film occurs of elasticity theory stated in Ref17]. Thus, we should start

due to both thermodynamic and shear melting. We obtain théom the equation connecting the time derivatives of entropy

unified analytical description of these processes as a result &and internal energy) with equilibrium stressr,

the self-organization caused by the positive feedback of

shear stress and temperature on shear strain on the one hand, dS du de

as well as the negative feedback of shear stress and strain on TE B TEET

temperature on the other hand. Our approach is based on the

assumption that relaxation time—« because the shear vis- (in equilibrium, the heat variation 8Q=TdS). In nonequi-

cosity diverges at the point of transition. The feature of usindibrium case of nonuniform medium heating this equation

the synergetic approach is that it allows us to obtain théhas the form

synergetic potential, which is the analog of free energy, from

some simple equations. div g du de
—dva= Gy oqr

(10

(11)

II. BASIC EQUATIONS

i , , . Here the heat current is given by the Onsager equation
The main assumption of our approach is that relaxation

equation of the shear componemtof elastic stress tensor q=—«VT, (12
has the form similar to the Landau-Khalatnikov equati@n
. whereck is the heat conductivity constant, and the total stress
T,0=—0+GCe. (6)  g=0y+ ¢’ includes the viscous past’. Deducting Eq(11)

from Eq.(10), taking into account the equalit
Here ¢ is the corresponding component of strain, the first a.(10 J quatly

term on the right-hand side describes the Debye relaxation ds s
during time 7,=17,/G determined by values of effective q- a0
viscosity 7, and shear modulué. In the stationary case

=0 the kinetic equatiori6) is transformed into the Hooke pc, dT 19U de oy de

faw T AT d T 13

aU) dT S dU de (as) de

) 0t U ae dt ' \ze) jdt

o=Ge. ™ and supposing that a layer of lubricant and atomically flat

Relaxation behavior of viscoelastic matter is describednica surfaces have different temperatufeandTe, respec-
also by the Voigt-Kelvin equatiofi6] tively, we obtain

(90'0.

e=—¢lr,+aly, (8) -
aT

. K .
pe,T= 1 (Te-T)+o'e+T (14)

where 7, is the relaxation time of matter strain andis the

shear viscosity coefficient. The second term on the rightHere the equalities«/1)(T.—T)~ —divq and dU/de = o
hand side describes the flow of a viscous liquid caused by the- Tdo,/dT are used| is the scale of heat conductivity, is
shear components of the elastic stress. In the stationary caiee mass density, and, is the specific heat capacity. The
=0 we obtain the Hooke-type expression=G,e. It is first term on the right-hand side of EqL4) describes the
worth noting that effective values of viscosity,=7,G and  heat transfer from the layer of lubricant to friction surfaces.
modulusG,= 5/, do not coincide with the real valueg ~ The second term takes into account the effect of the dissipa-
and G. The formal reason for this difference is that thetive heating of a viscous liquid flowing under the action of
Maxwell-type equation(6) does not reduce to the Voigt- the stres$18]. The third term represents the heat source that
Kelvin equation(8) [17]. It is very important for our consid- is conditioned by the reversible mechanic-gnd-cgloric effect
eration that the value§,, G, 7, depend on temperatufe  for which in linear approximatio (doo/dT)e~oge. As a
very weakly, while the real viscosity diverges, if the tem- result, the equation of heat conductivity can be written in the
perature decreases to poit [15]. Further, we will use the form

simplest approximate temperature dependencies:

_ . K .
GolT), GT), 7,(T) =const, po,T= T (Te=T)+ 0. (15)
__ o (9)
K TIT,—1’ It is convenient to introduce the following measure units:
where o= n(T=2T,) is the typical value of viscosity. o= (pC,moT/T)Y2  es=1, T, (16
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for variableso, ¢, T, respectively ¢t=plc,/« is the time
of heat conductivity. Then, substituting in Eq15) the ex-
pression for the: from Eq. (8), the basic equation®), (8),
and(15) take the form

r,0=—0c+(gl6p)e, 17
re=—e+0)(T—1)0, (18
TTTZ(Te—T)—Us/00+0'2, (19
where we introduce the constants
G 7o
Q—G—O, GOZT_S’
o T, 1/2 CUT T, 1/2

QO:—SE(—) <—p c ) . (20

Go T 7o

It is easy to see that Eq&L7)—(19) have the form similar to
the Lorenz systerfi9,10].

I1l. CONDITIONS OF TRANSITION

PHYSICAL REVIEW E68, 036110(2003

UI:%[(Te_‘l)I V(Te—2)(Te—10]Y2

(26)

and then increases monotonicall§9]. When T.>1 the
straine increases with stress linearly at Hook domainr
<1. For values ofT, in the (1, 10 interval, thee vs o
dependence has a monotonically increasing shape with its
minimum at pointe=0. At T,=10 a plateau appears, which
for T,>10 is transformed into a maximum and a minimum
corresponding to the stresses ando . , respectively. The
temperaturd at T,<2 increases with stregsfrom the tem-
peratureT at o=0 to the horizontal asymptoie=2, and at
T.>2 control parameter decreases from the maximum value
T. at 0=0 to the same asymptofE=2. Obviously, this
decrease is caused by the negative feedback of the stress
and the straire on the temperatur@ in Eq. (19), which is
the reflection of Le Chatelier principle for the examined
problem. On the other hand, the positive feedback of the
stresso and the temperatur€ on the straire in Eq. (18) is
the reason for melting that leads to the growtheoflue to
solid phase instability. However, in accordance with Eq.
(19), the latter results in decrease bfas a consequence of
self-organization process.

The pointed out positive feedback of and T on & im-

For qualitative analysis of this system let us use the adiap)ies that the transition of lubricant from solid to fluid state is
batic approximation, when the characteristic time scales arg,quced both by heating and under influence of stress gener-

submitted to the following inequalities:

T Ty, T1<T,. (21

ated by solid surfaces at friction. This agrees with examina-
tion of solid state instability within the framework of shear
and dynamic disorder-driven melting representation in ab-

They mean that in the course of medium evolution theSe€nce of thermal fluctuation8].

straing (t) and the temperaturg(t) follow the change of the
stresso(t). The first of these conditions compares the mac-

roscopic timer,, and microscopic Debye time,~10 12 s,

so it is satisfied always. Using the definitions of the thermo-
metric conductivityy=«/c, , the effective kinematic viscos-

ity v,= 75, /p, and the sound velocity=(G/p)*?, it is con-
venient to give to the second conditi¢2l) the form

<L, (22

The insertion of Eq(24) into Eq.(17) gives the Landau-
Khalatnikov-type equation

7,0=—3Vldao, (27)
where the synergetic potential reads
1 Te
V=§(1—9)02+g 1-— In(1+ o?). (28)

according to which the characteristic length of heat conducAt steady state the conditiom=0 is realized and potential

tivity should not to exceed the value

_ XVs

= 5 23

Then, we can set the left-hand sides of HG®) and(19) to

(28) assumes a minimum. If the temperatdrg is smaller
than the critical value
T.=1+g % ¢g=G/G,<1,

Go=mnol7., (29

this minimum corresponds to the stress=0, so that the

be equal to zero. As a result, the dependencies of the strainmelting cannot take place and the solid state is realized. In

and the temperatur€ on the stress read

_1 g
O le=0—(2-Tg)—— (24)

1+0'2’

2

g
T=Te+(2-To)—.

25
1+ 02 29

the opposite cas€.>T,, the stationary shear stress has the
nonzero value

1/2

o= (w , (30

1-9

increasing withT, growth according to the root law. This
causes the melting of film and its transition into fluid state. In
accordance with Eqg€24) and (25), the corresponding sta-

According to Eq.(24), at T,<1 thee vs o dependence ac- tionary values of melting strain and temperature are as fol-

quires a minimum atr=o . , defined by the equality

lows:
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g0=(0s/G)og, To=1+g L. (31) 1%

It is interesting that, on the one hand, the melting tempera-
ture T, coincides with critical valug¢29) and, on the other
hand, its value differs from the temperatufg. The latter
circumstance takes place due to the fact at steady state the
first equation(31) is realized instead of connectiomg
=ggl6y. SinceT. is the minimum value of temperature at
which a solid-liquid transition begins, the above means that
the negative feedback of the elastic stresand the strairz
on the temperatur€ [see third term on the right-hand side of
Eqg. (19)] reduces the film's temperature so much that only in
the limit does it ensure the self-organization process. At
steady state the melting value of shear viscosity coefficient is
FIG. 1. The dependence of the synergetic potential on the elastic
m= 709- (32 streoss at variou% temperaturgsurve ) T,<T?, (curve 2 T,
There are two opposite situations depending on the pa?TC’ (curve 3 Te<Te<Te, and(curve 4 Te=Te.
rameterg=G/G, value. In the casg>1, this is realized for -\, hore the relaxation time is introduced for the plastic flow
small value of the viscosity coefficieny, and Eqs.(29)— mode[cf. Eq. (5)]
(31) take the form '

0o=(1-To? To=T.=1. (33) To=7,10, (37)

Such situation corresponds to the limit of strongly viscousand the quantity
liquid. In the opposite casg<1 (large viscosity coefficient =0/G<1 (39)
70) We have, instead of E¢33), the solid(fragile) limit,
B 12 L is the parameter describing the ratio of the tilts for the defor-
00=(9Te= )™ To=Tc=g "=n0/7.G. (34  mation curve on the plastic and the Hookean domains. Note
that the expression of the type E®6) was offered, for the
IV. INFLUENCE OF DEFORMATIONAL DEFECT first time, by Haker]9] for the description of the rigid mode
OF MODULUS of the laser radiation. We used|itQ] for the description of
the first-order phase transition kinetics, however, E2§)
had contained the square of the raiibo, (so theV vs o
dependence had the even form in R&0]). In description of
e structural phase transitions of a liquid the third-order in-

The Maxwell equation6) assumes the use of the ideal-
ized Genki model. For the dependeneg:) of the stress on
the strain, this model is represented by the Hooke expressi
o=Ge ate<ey and the constanty=Gep ate=em [0m,  \arangs, breaking the specified parity, is pregdai. There-
e are the maximal stress af?d strai; o, leads to viscous fore in approximation(36) we used the linear termr/o,,
flow with the deformation rate =(o— o)/ 7]. Actually, the  instead of the square oneo,)?. It is apparent that in the
dependence(¢) curve has two regions: first one, Hookean, fo|lowing, dependencé39) is not already even.
has the large slope fixed by the shear mod@,sand it is Within the adiabatic approximatiof21) the system of the
followed by the more gently sloping section of the plastic| orenz equationg17)—(19), where instead of the, it is
deformation whose tilt is defined by the hardening fa€lor necessary to use dependengéo), is reduced to, as well as
<G. Obviously, the above picture means that the sheagpoye of, the Landau-Khalatnikov equatit2¥) with 7, in-
modulus, introducedin terms of the relaxation time,) in  stead ofr,. However, in the synergetic potentié?8) the
Eq. (6), depends on the stress value. We use the simpleghctor g=G/G,, is replaced byge=G2/G,0 <1, which is
approximation formally supposed to be not dependent ®@nand the odd

G_0 term appears proportional ® *—1:

G(o)=0+ 1+oloy’

(39

Te _
V= E(l—g@)oz+g@ 1— 7) In(1+ 0%+ a?(61-1)
which describes the above represented transition of the elas-
tic deformation mode to the plastic one. It takes place at
characteristic value of the stresg, which does not exceed X
the valueo (in other case the plastic mode is not mani-

fested. As a result, the relaxation time, obtains the depen- Here the constant= o,/ is introduced. At small value of

(o

——Inj1+—
a

(o
(2%

. (39

dence on the stress value: temperaturel, dependence Eq39) has a monotonically in-
1 1 011 f:reasing shape with its minimum at poizmt=0 corresp_ond—
- _< 1+ _) (36) ing to steady state of a solid. As it is seen from Fig. 1 at
(o)  Tp 1+aloy values
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To=1+(gg'—1)(2\p/3ctg26)+r/3);

2 3
tga=1g"pI2)(|3|=ml4), 19p= ¢ (g) (I8I= 12,

r? 2r3 rs

P=s73 ATg gl

gL @ P ya)  a(67'-ge)
32(1-gg) 22 22x3% 2x3)" YT T 1-g,

a3 1 / 1 N a?et v? yabd ! ya N Ya

ST 1=ge)\3%(1-ge) | 2 2x3° 2x3 2x3/" 3T/

(=33 1 1 N a?0? B e B yad~ ! Yiaf™? (40)

(1-g0)°|3%(1-ge) 22  2°8° 2X3 | 331-—g,) |
|

a plateau appears, which fdi,>T? is transformed into a a(0 1—ge) 14+9e(1—Te)
minimum meeting the stresg,#0 and a maximuna™ that Y= —1_% ' = —1_%
separates minima corresponding to the valoes0 and o
=o0gy. With further growth of the temperaturg, the “or- .
dered” phase minimum, corresponding to a fluid state _alf "+ge(1-Te)] 42)
=0, grows deeper, and the height of the interphase barrier 1-0e

decreases, vanishing at the critical vallig=1+g~* (29).
The steady-state values of the stress in a fluid state have t

form (see Figs. 1 and)2

¢ Y
op=2€ COE(g) - §,

o 2 Y
m: —_—— —_——
o 26c05< 33 ) 3

e=(—yl3)Y2  cosp=— wl2€,

2 3
LY 2y L
y={ 3 ©T 333 +¢,

Go
Gm
1 pu—

llﬁ T.=T, the dependenc¥(o) has the same character as in
the absence of the modulus deféste curve 4 in Fig.)1

The specified peculiarities corresponds to the positive
stress valuegr. On the negative half-axis dt,>T., with
the increase ofo| a very weak minimum of the/ vs o
dependence is observed, which is followed by the infinite
increase of the potentidl at o= —o,. Thus, for the nega-
tive values of the elastic fields,s are not realized practi-
cally.

The characteristic circumstance of our scheme is that en-
ergy barrier inherent in the synergetic first-order transition is
displayed only in the presence of the deformational defect of
the modulus. Since latter takes place always, it follows that a
studied solid-liquid transition represents synergetic first-
order transition. The examined situation is much more com-
plex than usual phase transitions. Really, in the latter case the
steady-state value of the system’s temperaliyés reduced
to the valueT, fixed by thermostat. In our ca3g is reduced
to the critical valueT, for the synergetic second-order tran-
sition that has a place in the absence of the modulus defect
(see Sec. I). When we take into account the modulus de-
fect, the temperature

(41)

g
To=Tet (2T (43)

+0'0

FIG. 2. The dependence of the steady-state values of the stress ) ) ) o N
on the temperatur@, at go=0.2, 6=0.4, anda=0.5 (the solid is realized, whose value is defined by a minimum position of

curve corresponds to the steady-state valye the dashed curve the dependencé39). According to Eqgs(41) and (43), the

meets the unstable one)").

quantity T, smoothly decreases from the value
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T,
14—Tc
12 /710
AT
T,
10_ |‘.‘
. | .
| ()I . \
8 ] Tc! ITc
III|III|III|III
Te
10 12 14 16

FIG. 3. The dependence of the steady-state value of the systegb

temperatureT, on the temperaturd, (ge=0.2, 6=0.4, anda
=0.5).

(a)?
To=T04+(2-T9)———,
m=Te*( °)1+(ag)2
[ (7 ree-T) A
707|312\ 3 1—ge 3

atT,=TY, to Teo=1+gg" at T,—. Referring to Fig. 3,
the stationary temperatuiig, shows a linear increase from 0
to T, with T, being in the same interval and, after the jump
down atT,=T., the magnitudely smoothly decays. If the
temperaturd  then decreases, the stationary temperatgre
grows. When the poinTS [Eqg. (40)] is reached;T, under-
goes the jump fronT,,, [Eq. (44)] up to TS. For T,<TY,
again stationary temperatullgy does not differ fromT.

PHYSICAL REVIEW E68, 036110 (2003

Since the stationary values of strasg>0 are realized
only at T>1+ggt, go<1, the range of values>2 is
important for consideration. In this interval the maximum
system’s temperatur@4) is lower than the minimum tem-
perature of friction surface&t0), and as it is visible from
Fig. 3, atTe>T2 the stationary temperatuflg, of the film is
always lower than valu&,.

V. SUMMARY

The above analysis is based on the assumption that a lu-
bricant melting process is caused by the self-organization of
the shear components of the stress and the strain elastic
fields, on the one hand, and the lubricant temperature, on the
other hand. Thus, the stregsacts as the order parameter, the
conjugate field is reduced to the elastic strainand the
temperaturd is the control parameter. The initial reason for
If-organization is the positive feedback Bfand o on ¢
[see Eq(18)]. According to Egs(8) and(9), it is caused by
the temperature dependence of the shear viscosity leading to
its divergence. Accounting for the deformational defect of
the shear modulus, we obtain the expressions for tempera-
tures corresponding to absolute instability of overcooled lig-
uid TS [Eq. (40)] and stability limit of the solid stat&. [Eq.
(29)]. The real thermodynamic melting temperature is in the
(TS ,T¢) interval and can be found from the equality condi-
tion of potentials of solid and liquid phasa4,0)=V (o). It
is seen from Eq(29) that systems predisposed to melting
have large shear modul@and small characteristic value of
shear viscosityy,.

The kinetics of a considered transition is determined by
the Landau-Khalatnikov equatid27), wherer, is replaced
by 7,= 1,/® and the synergetic potential has the fo(89)
inherent in the first-order transition. In supercooled liquid

with 7,=% the freezing of system can takes place—0)
even in the nonstationary sta#®//do#0.
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