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Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics
and two-dimensional turbulence
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We introduce a class of generalized Fokker-Planck equations that conserve energy and mass and increase a
generalized entropy functional until a maximum entropy state is reached. Nonlinear Fokker-Planck equations
associated with Tsallis entropies are a special case of these equations. Applications of these results to stellar
dynamics and vortex dynamics are proposed. Our prime result is a relaxation equation that should offer an
easily implementable parametrization of two-dimensional turbulence. Usual parametrizaticnging a
single turbulent viscosijycorrespond to the infinite temperature limit of our model. They forget a fundamental
systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations can
have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea
of a classification of generalized entropies in “classes of equivalence” and provide an aesthetic connection
between topicgvortices, stars, bacteria. . ) which were previously disconnected.
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I. INTRODUCTION states resulting from violent relaxati¢h3]. In this context,
the aforementioned maximization problem is a condition of
The statistical mechanics of systems with long-range indynamical stability, not a condition of thermodynamical sta-
teractions is currently a topic of active reseakth Systems bility. Therefore, Tsallis entropies have not a fundamental
with long-range interactions are numerous in nature: selfjustification for stellar systems and 2D turbulence. They
gravitating systems, two-dimension&2D) vortices, non- form just a one-parameter family éf functions that leads to
neutral plasmas, metallic clusters, dipoles, fracture, etcsimple models(stellar polytropes and polytropic vortiges

These systems exhibit similar features such as negative spésallis distributions can sometimes provide a conveniint

cific heats, inequivalence of statistical ensembles, phase tranf the metaequilibrium state in case of incomplete relaxation.

sitions, and self-organization. Since they are nonextensivih that context, the parameter which can vary in space,
and nonadditive, the construction of an appropriate thermomeasures the importance of mixifig.

dynamics is a challenging problem. Among all the previous On the other hand, it has been shown that Tsallis general-

examples, self-gravitating systems and 2D vortices play &ed thermodynamics could be useful to interpret anomalous

special role because they both interact via an unshieldediffusion in complex systems and that tlgeentropies are

Newtonian potentiafin dimensiond =3 orD=2) and pos- connected to nonlinear Fokker-Planck equatid. In fact,

sess a rather similar mathematical struc{@k Tsallis entropies are just a particular class of a much larger

It has been recently argued that the classical Boltzmannlass of functionals that we shall cgleneralized entropies
entropy may not be correct for systems with long-range in-These functionals are defined 8s- — [ C(f)d3rd>v where
teractions and that Tsallis entropigs, also calledq entro-  C(f) is a convex function of the distribution function. Many
pies, should be used instead. In the context of 2D turbulencénportant properties obtained with Tsallisentropies(non-

Boghosian4] has interpreted a result of plasma phygiss  linear Fokker-Planck equations, generalitétheorem, Leg-

in terms of Tsallis generalized thermodynamics. In the astroendre transforms . .) remain valid for these more general

physical context, Plastino and Plastif® have noted that functionals. Tsallis entropies give a special importance to

the maximization of Tsallis entropies leads to stellar poly-Power laws. Power laws are indeed important in phy§its
tropes, thereby avoiding the infinite mass problem associatei@lation, among other, with multifractaliy3]) but they are
with isothermal systems obtained by maximizing the Boltz-not the most general distributions. Generalized entropies
mann entropy_ However, the arguments advocated to justi@rise natura”y when the diffusion coefficient is an arbitrary

Tsallis entropies in the context of 2D turbulence and stellafunction D(f) of the distribution function. When the diffu-

dynamics are usually unclear and misleading and were critiSion is counterbalanced by a friction or a drift, they play the

cized in our previous papef¥—9]. We have argued that role of Lyapunov functionals and satisfy ld theoremS

Tsallis entropies are particuldt functions (not true entro- =0. In this context, Tsallis entropies correspond to a power-

pies [10] whose maximization at fixed mass and energy deiaw dependance of the diffusion coefficigbtf)~f9 ! and

termines (nonlinearly dynamically stable stationary solu- the g parameter in Tsallis formalism is related to the expo-
tions of the 2D Euler or Vlasov-Poisson syste$,12. The  nent of anomalous diffusion.

H functions can be useful to describe the metaequilibrium In the first part of the paper, we develop a generalized
thermodynamical formalism for a large class of entropy
functionals encompassing Boltzmann, Fermi, and Tsallis en-

*Email address: chavanis@irsamc.ups-tlse.fr tropies. This formalism can have applications in different
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domains of physicgor biology, economy, mathematics. . )

with different interpretations. Therefore, it is relevant to re- M ZJ pd’r 2
main as general as possible. In Sec. Il A, we introduce gen-

eralized entropies that extend those introduced by Tsallis anand energy

co-workers. In Sec. Il B, we establish the conditions of gen-
eralized thermodynamical stability in microcanonical and ca-
nonical ensembles and discuss the possible inequivalence of
statistical ensembles when the caloric curve presents turning
points or bifurcations. In Secs. I C and Il D, we introduce whereK is the kinetic energy and/ the potential energy. The
generalized kinetic equationgokker-Planck and Landau conservation of angular momentums= [ f(r X v)d®rd®v and
that conserve mass and energy and increase a generalizétear impulseP= [ fvd®rd3®v can be easily incorporated in
entropy functional instead of the Boltzmann entropy. In Secthe formalism. The following results remain valid ®
[ll, we study the generalized Smoluchowski-Poisson system=®.,(r) is a fixed external potential, in which casi
and mention possible applications to bacterial populations= [ p®,d°r.

1 1
E=f§fuzd3rd3v+ Ef p® d3r=K+W, ©)

(chemotaxis We introduce a generalized entropy of the form
In the second part of the papé&ec. 1\V), we discuss the
statistical mechanics of Hamiltonian systems with long- _ 3 .3
; ) . d S=— | C(f)d°rd®v, (4)
range interactions focusing on stellar systems and 2D point

vortices(or inviscid continuous vorticity fieldsWe consider

the collisionless regime when thé— + o limit is taken be- ~ Where C(f) is a convex function, i.e.C"(f)>0. We are
fore thet— +o limit (Vlasov limit). Due to mean-field ef- interested by the distribution functidrwhich maximizes the
fects and long-range interactions, the system undergoes @€neralized entropid) at fixed mass and energy. Introducing
violent relaxation(Sec. IV A). The resulting metaequilibrium @ppropriate Lagrange multipliers and writing the variational
state is a stationary solution of the Vlas@r Eulen equation ~ Principle in the form

on the coarse-grained scale. Its nonlinear dynamical stability

can be settled via ¢hermodynamical analog{Sec. IV B). 05— BOE—adM=0, )
Generalized entropie@lso calledH functiong arise due to
the existence of fine-grained constraif@asimir invarianty
nonergodicity, and nonideal effectdorcing, dissipation,
... ). Wepropose a relaxation equati¢8ec. IV Q that can C'(f)=—Be—a, (6)
serve either as a small-scale parametrization of 2D turbu-

lence (Sec. IV B or as a powerful numerical algorithm to where e=v?/2+® is the energy of a particle by unit of
compute arbitrary nonlinearly dynamically stable stationarymass. The Lagrange multipliesand « are the generalized
solutions of the 2D Euler-Poisson systd@ec. IV D. We  inverse temperature and the generalized chemical potential.
also propose the idea of a classification of generalized entreEquation(6) can be written equivalently as

pies in “classes of equivalence” with the heuristic argument

that entropies of the same class should lead to similar results f=F(Be+a), (7)
(Sec. IV B.

we find that the critical points of entropy at fixed mass and
energy are given by

whereF(x)=(C’) " *(—x). From the identity

Il. GENERALIZED THERMODYNAMICS f'(e)=—pBIC"(f), 8

AND FOKKER-PLANCK EQUATIONS . . . .
resulting from Eq.(6), f(€) is a monotonically decreasing

A. Generalized entropies function of energy if3>0. The conservation of angular mo-

Let us consider a system bf particles in interaction and Mentum can be easily included in the variational principle
denote byf(r,v,t) their distribution function defined such (5 by introducing an appropriate Lagrange multipli€r.
that fd3rd3v gives the total mass of particles with position ~Eduation(6) remains valid provided that is replaced by the
and velocityv at timet. Let F(r,t)=—V® be the forceby ~ Jacobi energy e;=e—Q-(rxv)=3(v—QXr)?+®
unit of mass$ experienced by a particle. We assume that thevhere ®ei=®—3(Qxr)? is the effective potential ac-
potential®(r,t) is related to the density(r,t)=fd3v by a  counting for inertial forces. .
relation of the form®(r)=fp(r')u(r—r")d3"’ whereu(r Among all fgnc'uona!s of form4), some have been d_|s—
—r’) is an arbitrary binary potential. For example,tifr _cussed in detail in the literature. The most famous functional
—1")=—Gl/|r—r'|, ® is the solution of the Poisson equa- IS the Boltzmann entropy
tion

Ad=47Gp. (1) SB[f]=—J' fInfd3rd3v. 9

It leads to the isothermdbr Boltzmann distribution
We assume that the system is isolated so that it conserves
mass f=Ae Pe, (10)
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Closely related to the Boltzmann entropy is the Fermi-Dirac (81)? 1
entropy 52J=—J' C"(f)——d3rd3v— —,BJ’ Spoddir=0,
2 2
it f f V 5f|SE=6M = 1
SFD[f]:—f —In—+|1——]In| 1— —] {d°rdqy, |6E=oM=0. (16)
Mo 7o 7o 70
(12) So far, we have implicitly worked in theicrocanonical
) o o ) ensemblén which the energy is fixed. However, it may be of
which leads to the Fermi-Dirac distribution function interest to study in parallel theanonical ensembli& which
the temperatur@ = 1/ is fixed instead of the energy. In that
fo 70 12 case, the appropriate thermodynamical potential is the free
14 aePmoe’ energyF = E— T Sthat we write for convenience in the form

of Massieu function

The Fermi-Dirac distribution functiofil2) satisfies the con-
straint f < 7y which is related to Pauli’'s exclusion principle

in quantum mechanics. The isothermal distribution function,
(10) is recovered in the nondegenerate lifs€ 5. We can
also consider the case of bosons with the sign”‘in Eq. 8J=—ESB+adM. (18

(11). Recently, there was a considerable interest in function-

als of the form Therefore, the equilibrium state in the canonical ensemble is
a maximum ofJ at fixed mass and temperature. If we just
cancel the first order variations &fthis again yields relation

(6). The condition of thermodynamical stability in the ca-
nonical ensemble requires thfais a maximumof J at fixed
where g is a real number. Such functionals introduced bymass and temperature. This is equivalent to the condition that
Tsallis [3] are calledq entropies. They lead to “polytropic”  §2J is negative for all perturbations that conserve mass. This
distributions of the form can be written

J=S-E. (17)

ccording to Eq.(5), we have

sq[sz—q_ilf (f9—f)d3rd3y, (13)

5f)2 1
52J=—f C”(f)%d*”rd?’v— ng Spsddir=0,

f=AN—¢)" %2 (14

with A=[(q—1)B8/q]¥@ Y and N=[1-(q—1)a]/(q

—1)B. The indexn of the polytrope is related to the param- v 8f|SM=0. (19
eterq by the relation=3/2+1/(q—1). Isothermal distribu-

tion functions are recovered in the limg—1 (i.e., n— We note that canonical stability implies microcanonical sta-

+00), bility but the converse is wrong in general. Indeed, if in-
In any system withf =f(e), one may define a local en- equality (19) is satisfied for all perturbations that conserve
ergy dependant excitation temperature by the relation mass, it isa fortiori satisfied for perturbations that conserve
massand energy. Since the converse is wrong, this implies
1 dInf that we can “miss” some relevaitstable solutions by work-
Te)~  de (15 ing in the canonical ensemble instead of the microcanonical
one.
For the isothermal distributiof.0), T(e€) coincides with the For self-gravitating systems described by the Boltzmann

thermodynamic temperatufe= 1/8. For the polytropic dis- entropy(g), it is well known that the s_tatistical ensgmple; are
tribution (14), T(e)=(q—1)(A—e¢). This excitation tem- Non equalent[lS,qu. Indeqd, an |so'thermal d|str|bu_t|0n
perature has a constant gradiefit/de=1—gq related to (10 can be stable in the microcanonical ensemiofexi-
Tsallis g parameter(or equivalently to the index of the ~ MUM of Sz at fixedM andE) but unstable in the canonical

polytrope. The other parametex is related to the value of €NSembléminimum or saddle point aJg at fixedM andT).
energy where the temperature reaches zero. In fact, the inequivalence of statistical ensembles for systems

with long-range interactions is not limited to self-gravitating
systems nor to the Boltzmann entro®). It occurs for many
other physical systems and for various functionals of form
In the preceding section, we have just determined critical4). There will be inequivalence of statistical ensembles
points of the generalized entrofgy) by cancelling its first when the caloric curvg(E) presents turning points leading
order variations with appropriate constraints. We now turn tao regions ofnegative specific heater said differently, when
the thermodynamical stability of the solutiofia the gener-  the entropyS(E) has aconvex dip[16,17. The stability of
alized sense We must selecinaximaof § f] at fixed mass the solutions can be decided by using the turning point cri-
and energy. The condition thats a maximum ofSat fixed  terion of Katz[18] which extends the theory of Poincara
mass and energy is equivalent to the condition thal linear series of equilibria. It is found that a change of stabil-
= 5°S— BS°E is negative for all perturbations that conserveity in the series of equilibria occurs in the microcanonical
mass and energy to first order. This condition can be writteensemble when the energy is extremum and in the canonical

B. Generalized thermodynamical stability

036108-3



PIERRE-HENRI CHAVANIS PHYSICAL REVIEW E68, 036108 (2003

ensemble when the temperature is extremum. Stability is lost of
or gained depending on whether the series of equilibria turns Ji=—D| fC"(f) EVRRAAE (25
clockwise or anticlockwise at that critical point. A change of

stability along a series of equilibria can also. occur at arpe time evolution of the Lagrange multiplig(t) is deter-
branching point[18,19, where the solutions bifurcate. A ined by the conservation of energy=0, introducing Eq.

general classification of phase transitions for systems WitrE; : . S
long-range interactions has been proposed recently b 9 in the constrain(21). This yields

Bouchet and Barré&20]. f
f DfC”(f)&—V~Vd3rd3v
C. Generalized Kramers equation B(t)=—

We shall now introduce a generalized Fokker-Planck fovzdsrd3V
equation, consistent with the thermodynamical framework
developed previously, by using a maximum entropy producngte that the optimal current25) can be written J;
tion principlg MEPP) [21]. To apply the MEPP, we first write _ Dfdaldv, where
the relaxation equation for the distribution function in the

(26)

form a(r,v,t)=—C'(f)— Be, (27)
(?_f+U R f:_‘?_Jf (20) is a generalized potential which is uniform at equilibrium
ot 876 v’ according to Eq(6). Therefore, the MEPP is just a varia-

tional formulation of the linear thermodynamics of Onsager.
where Ug= (v,F) is a generalized velocity field in the six- Introducing the optimal currer25) in Eq. (20), we ob-
dimensional phase spa¢ev}, Vg=(d/dr,a/dv) is a gener-  tain the generalized Fokker-Planck equation
alized gradient, and; is the diffusion current to be deter-

mined. The form of Eq.(20) ensures the conservation of ﬂ _i " t?_f
mass provided that; decreases sufficiently rapidly for large at +U6'V6f_av Djei(r) v AV (28
|v|. From Egs.(3), (4), and(20), it is easy to put the time

variations of energy and entropy in the form Morphologically, Eq.(28) extends the usual Kramers equa-
tion introduced in the context of colloidal suspensi$gg]
. and collisional stellar dynamid®3]. The first term is a gen-
E:f Ji-vd¥rddy, (21 eralized diffusion(depending on the distribution functipn
and the second term is a friction. The functig(t) can be
of considered as a time dependant inverse temperature evolving
S= _J C"(f)J;- —d3rdy, (22)  with time so as to conserve energyicrocanonical formu-
v lation). The friction coefficient= D 3 satisfies a generalized
Einstein relation. Note thd is not determined by the MEPP
where we have used straightforward integrations by partssince it is related to the unknown bou@dr,v,t) in Eq. (23).
Following the MEPP, we shall now determine the optimal\we can use this indetermination to write E@8) in the
currentJ; which maximizes the rate of entropy production gjternative form
(22) while satisfying the conservation of ener§y=0. For
this problem to have a solution, we shall also impose a limi- of d )
tation on the current);|, characterized by a bour@(r,v,t) E+ Us- Vof ey

) . ) N C"(f)
which exists but is not known, so that

a—f+—ﬁ(t) v” (29

which will have the same general properties as(E6). This
equation involves an ordinary diffusion and a nonlinear fric-
tion. Equation(29) can be deduced from Ed28) by the
substitutionD’ =DfC"(f). One of these two forms will be

It can be shown by a convexity argument that reaching th@referred depending on the situation contemplated. Note that

bound(23) is always favorable for increasir®g so that this D OF D' can depend om,v,t without altering the general
constraint can be replaced by an equality. The variationaPTOPerties of the equations. _ _
problem can then be solved by introducing at each ttme It is straightforward to check that E(R8) with constraint

Lagrange multipliers3 and 1D for the two constraints. The (20) satisfies aH theorem for the generalized entrop).
condition From Egs.(22) and(25), we can write

i

T <C(r,v,t). (23

. . J?
55— B(t) SE— J %5(2—;)d3rd3v=0, (24)

5= f‘]f fC”f§f+ t)fv|d3rd3
= T ()E B(t)fvidird®v

+,8(t)j Ji-vd3rdiv. (30)

yields an optimal current of the form
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The last quantity vanishes due to the conservation of energgolution of the generalized Fokker-Planck equati®®) with
(21). Therefore, constantB is linearly stable if and only if it is anaximumof
free energy at fixed mass and temperaiisex Sec. Il B

We can also use the MEPP to construct a more general
relaxation equation. Assuming that the diffusion current in
Eq. (20) depends ow andr and repeating the same steps as
which is positive provided thab>0. Now, at equilibrium  pefore, we get

S=0, henceJ;=0, so that according to Eq25),

of
aC'(f) ot Tl Vef=V{DIfC"(f)Vef+B(1)fUs. I} (37)
N +Bv=0. (32

S= f J—?d3rd3v (32
Df :

) ) with
Integrating with respect tg, we get

2

n 3 3
C'(f)=—,8%+A(r). (33 j DfC"(f)VefUg, d°rd°v

B(t)=— , (39

243,43
The cancellation of the advective terdy- V¢ in Eq. (28) J Df(Ug,)°d>rd"v

combined with Eq.(33) implies thatf="f(e¢) and VA= _ o
— BV ®. Therefore A(r) = — BP(r) — @ and we recover Eq. WhereUg, =(—F,v). The generalized velocitys in phase
(6) with g=lim___p(t). Therefore, a stationary solution space is very similar to the velocity field of a two-

of Eq. (28) extremizes the entropy at fixed energy and mass(.jlmensmnal incompressible fluiee Sec. IV A We note in

1 = = 2
In addition, onlymaximaof S at fixedM andE are linearly g?g';ﬂﬁ;:&?}é?strzg; fwuzi:gil v?/2+ @ plays the role

stable with respect to the generalized Fokker-Planck equa- To conclude this section, it can be of interest to discuss

tion (28). Indeed, considering the linear stability of a station- . .
. . some special cases explicitly. For the Boltzmann enti@py
ary solution of Eqs(28) and(26), we can derive the general C"(f)=1/f and Eq.(28) has the form of an ordinary Kram-

relation (see Appendix A ers equation

2N\ 62)=62S=0, (34)
. (39

of J of
. . L Uy Vef=—|D| =+ pf
connecting the growth rate of the perturbationsf ~e to ot TYs Ve &v[ B V)
the second order variations of the free eneigyS— BE and

the second order variations of the rate of entropy productiorror the Fermi-Dirac entrop§ll), C"(f)=1/f(ne—f). In or-

825=0. Since the produck 52J is positive, we conclude der to avoid the divergence of the tefi@”(f) asf— »o, it

that a stationary solution of the generalized Fokker-PlanchS appropriate to consider the alternative fof@9) of the

equation(28) is linearly stable X<0) if and only if itis an ~ 9eneralized Kramers equation. This yields

entropy maximumat fixed mass and energgee Sec. Il B

This aesthetic formula shows the equivalence between dy-

namical and thermodynamical stability for our generalized

Fokker-Planck equations. Therefore, they only selezkima

of S not minima or saddle points. which has been initially proposed in R¢R1]. Finally, for
A relaxation equation appropriate to the canonical situathe Tsallis entropy13), C"(f)=qf9" 2 and Eq.(28) has the

tion can be obtained by maximizing=S— BE with con- form of a nonlinear Fokker-Planck equation
straint(23). The variational principle

: 1
68— f 55
This equation has been studied in detail recently in relation

of
v B o= ] 40

AR NATY
gt e e gy

I
2f

pn . 41

of UVf—ﬁDﬁfq ¢
ot e Vel =5 Dl 5y TV

)d3rd3v= 0, (35)

ot
C/(f) -+ B

again yields an optimal current of fori®25) but with con-  with Tsallis entropy and anomalous diffusiph4]. The un-
stantB. Since derlying mechanism giving rise to anomalous diffusion may
52 differ depending on the physical system:wewalkers, po-
: f rous media, vortex dipoles in 2D turbulence, etc. In such
)= _f I d’rd?v= J ad3rd3v>0, systems, the diffusion coefficientf9~1 is a power law of
(36)  the distribution function and the phase space has a fractal or
multifractal structurgthe exponeng is related to the fractal
according to Egs(21), (22), and(25), we find that the free  dimension. In fact, the nice properties of E¢41), in par-
energyJ increases monotonically unt_il an equilibrium state ticular theH theorem, go beyond the form of entropy con-
of form (6) is reached. In the canonical ensemble, we carsidered by Tsallis and remain valid for all convex function
show that 2 62J=6%J=0 and conclude that a stationary C(f) even if the results are not always explicit. In the con-
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text of anomalous diffusion, E428) can be obtained from a Finally, for the Tsallis entropy, we get
Langevin equation of the form

av F—¢&v+ 1/ 2Df C(f)}/R(t) (42) f fa f'd
T =F—&Vv — , J J Jd J
dt f — +Ug-Vgf= J d3v’K/”<f’ f )

ot _g v’ - ')
whereR(t) is a white noise. Since the function in front of (48
R(t) depends onr(v), the last term in Eq(42) is a multi-

plicative noise. WheiC(f) is a power law, Eq(42) reduces

to the stochastic equations studied by Borla2adi. This could be called thg-Landau equation. Contrary to the
nonlinear Kramers equatio@l), it seems that Eq48) has
D. Generalized Landau equation never been introduced previously. We shall study its proper-

ties more specifically in a future worlR7]. A connection
Qetween thégeneralizeglLandau equation and tigeneral-
ized Kramers equation can be found intteermal bath ap-
proximation In this context,f=f(v,t) describes a test par-

We shall now introduce another relaxation equation tend
ing to a state of maximum generalized entropy at fixed mas
and energy. This is the generalized Landau equation

of 9 of ticle and f'=f(v’,t) describes the field particles. If we
E+U6'V6f:ﬁj d3v' K#rE C”(f)F replacef’ in Eq. (43) by its equilibrium valueg(6), then Eq.
v v (43) becomes equivalent to the generalized Kramers equation
£/ (28) and the diffusion coefficient can be calculaf@d].
_C//(f/)(9 ,Vl' (43
1%

o lll. THE GENERALIZED SMOLUCHOWSKI-POISSON
A u®u

2

u A. The high-friction limit
wheref=f(r,v,t), f'=1f(r,v’,t), u=Vv'—v, Ais a constant, The Kramers-Poisson syste®9), (1) is relatively com-
andC(f) is any convex function. We shall also consider theplicated because it has to be solved in a six-dimensional
alternative form phase space. However, it is well known in Brownian theory
[22] that, in the high-friction limité— + (or equivalently
of 9 St af 1 af’ for large timest>¢~1), the velocity distribution function
§+U6'V6f_av_uf d*v'K c'() ;_C”—(f) 'l becomes close to the Maxwellian distribution and the evolu-
(45) tion of the spatial density(r,t) is governed by the Smolu-
chowski equation
Morphologically, these equations extend the usual Landau 1
equation introduced in plasma physics and collisional stellar ap
dynamics[25,26]. The generalized Landau equation satisfies E_V[E(TVPJFPVCD)} (49

the conservation of mass, energy, angular momentum, and

linear impulse and increases a generalized entrépyheo-

rem). In addition, formula(34) remains valid so that a sta- The Smoluchowski-Poisson system has been studied in Refs.
tionary solution of the generalized Landau equation is lin-{2g 29, It models the dynamics of self-gravitating Brownian
early stable if and only if it is a maximum of the generalized yariicles and the chemotactic aggregation of bacterial popu-
entropy (4). lations.

Let us consider special cases explicitly. For the Bo_ltz- We now proceed in deriving a generalized Smoluchowski
mann entropy, Eq43) reduces to the usual Landau equatlonequa'[ion by taking the high-friction limit of the generalized

of P of f Kramers equation. We shall assume tjfais constant(ca-
_+U6~V6f:_f d3v' KMl fr— — ) nonical situation Integrating Eq(28) over velocity, we get
ot vt w’ ' the continuity equation
(46)
For the Fermi-Dirac entropy, E@45) takes the form Ip
St TV (pw)=0, (50)
&f+u Vef ﬁfd“wf( f)mc
_ . —__ Vv v ! £
ot 6" Ve Jo~ 7o Jo”
y whereu=(1/p) [ fvd®v is the local velocity. Multiplying Eq.
—f(7o—F) _ (47) (28) by v and integrating over velocity, we get the momen-
'’ tum equation
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J 9 9 E10)) friction limit ¢é&=DB— +, the term in bracket in Eq28)
E(pui) + W(puiuj) o Piteo must vanish so that the distribution function satisfies(68)
! ! ' in good approximation withu=0O(&™1). Inserting relation
of 3 (58) in the continuity equatior(56), we get a generalized
:_J D fC"(f)a_vi"'BfUi d*v, (51 form of the Smoluchowski equation
whereP;; = [fw;w;d®v is the stress tensor and=v—u the ap 1
relative - velocit)J. Introducing the  notation ¢(f) il E(Vpﬂ’v(b) ' (59

= [xC"(x)dx, the first term in the collision term can be

rewrittend¢(f)/dv and, since it is a gradient of a function, it initially proposed in Ref[21]. The aesthetic form of this

vanishes by integration. We are left therefore with equation, in which the pressupaeplaces naturally the usual
termpT in the familiar Smoluchowski equation, suggests by
itself the consistency of the generalized thermodynamical
formalism. The condition of stationarity in E¢59) corre-

(52 sponds to an equilibrium between the pressure fordep

and the mean-field force- pV®. This is equivalent to Eq.

We shall close this hierarchy of equations with the local ther- .
modynamical equilibrium condition (6). Indeed, using Eq<54), (55), and(®), one has

J N J N J P+ b b
5 (pUi) ij(PUin) Frl v Bpu; .

, w? _1ffavd3_ 1faf OI3_1 f v? "
C'(H==B 5 +rrb), (53 p=3z| fo,dv=—3| o -vdv=23p G v,

. . e (60)
where\(r,t) depends only on position and time. This distri-
bution function maximizes the local density of free energy at 17 of 1 v2
fixed densityp and velocityu. The Lagrange multipliek is Vp= _f —v2div=—Z=BVd. f ddv, (61)
related to the spatial densip(r,t) through the relation 3) or 3 C"(f)

p:f fdv. (54) so that we obtain the condition of hydrostatic equilibrium
Vp=—pVo. (62

Furthermore, since the velocity distributié(w) in Eq. (53)
is isotropic, we haveP;;=p&;; wherep(r,t) is the local  Fipally, we can show that the generalized Smoluchowski-

pressure Poisson systen(b9) satisfies a form of Virial theorem
1
_- 243 1 dlI
p 3f fw2d3y, (55 Séqp = 2K+W=3pV, (63

determined by Eq(53). From these two relations, we find 53 ) )

that the fluid is barotropic in the sense thatp(r,t)  Wherel=Jpr“d"r is the moment of inertia angl, the pres-

=p[p(r,t)] where the functiorp[] is completely specified SUre on theT boXassumed uniform The proof is the same as

by C(f). We have thus obtained what might be called thethat given in Appendix D of Ref.29]. _

damped Euler-Jeans equations To conclude_ this section, we can con5|_der particular forms
of the generalized Smoluchowski equation. For the Boltz-

ap mann entropy(9), Egs. (53), (54), and (55) lead to the iso-
5t TV (pu)=0, (56)  thermal equation of state=pT and to the usual forng49)
of the Smoluchowski equation. The case of the Fermi-Dirac
du entropy (11) has been treated in Regf21]. For the Tsallis
P —Vp—pVd—£pu, (57 entropy(13), Egs.(53), (54), and(55) lead to the polytropic

equation of statp=Kp? with y=1+1/n and Eq.(59) be-

where d/dt=g/dt+u-V is the material derivative. These COM€S the nonlinear Smoluchowski equation

equations were first proposed in R¢21]. In the high-

friction limit, these equations can be simplified further since, [?_p -V E(Kpr-l—pV(I)) _ (64)
to first order in¢ !, we have ot 3
B E The nonlinear Smoluchowski-Poisson system has been stud-

pu= g(Vp+pV<I>), (58 jed in detalil in Ref[30]. It describes self-gravitating Lange-

vin particles experiencing anomalous diffusion. It is likely
which is obtained from Eq57) by neglecting the advective that anomalous diffusion occurs in biological systems so that
term. Note that the high-friction limit is consistent with the nonlinear Smoluchowski equations can also find applications
local thermodynamical equilibriung63). Indeed, in the high- in the context of chemotaxis.
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B. The Lyapunov functional

1 51 3

In Sec. Il C, it was indicated that the Lyapunov functional J=- mJ (BKp”=p)d’r= Eﬁf pbdir. (72
associated with the generalized Kramers equa@&hwith a
fixed inverse temperaturg is the free energy)=S—BE  This expression is consistent with E§1) and it reduces to
with the generalized entropg). Therefore, the Lyapunov Ed. (70) in the limit n— +c. However, it is more conve-
functional associated with the generalized Smoluchowskfient to write the free energy in the form
equation(59) will coincide with the simplified form ofJ
obtai_ned by using_ Eq53) with u=0 to expressJ[f]_ as a J=— ﬁf (py—p)d3r—lﬁf pdd3r, (73)
functional of p. Using Eq.(55), energy(3) can be written y—1 2

3 1 which is also consistent with Eqé71) and(70). Under this
E= Ef pdr+ EJ pdd3r. (65  form, we can say that in the high-friction limit @Tsallis
free energy in phase space yieldydsallis free energy in
On the other hand, it is shown in RE8] that wherf is given ~ configuration space withy=(5q—3)/(3q—1). We note
by Eq. (53), entropy(4) can be rewritten as also that—J/ can be written €-KS” which is similar to a
free energy witK playing the role of a “polytropic tempera-
5 ture” (see Ref[8]). It is not clear whether this formal result
S= Eﬂf pd3r+,8f Apd®r. (66)  bears more physical content than is apparent at first sight.
The generalized Smoluchowski equati@®) can also be
Therefore, the free energy reads written in the form
1 P 9 p o)Vt pv 74
J:Bf pd3r+'8j )\pd3r—§,8fpd>d3r. 67 7=V ElP () Vet pV ]l (74

. . If introd functio@(p) th h the relati
It is shown, furthermore, in Ref9] that Eq.(67) can be put we introduce a convex functiof(p) through the relation

in the equivalent form pC"(p)=pBp'(p), (75

we have equivalently

P ! 1
J:—ﬁfp i Pp )dp'd3r—§ﬁf pddr +C,

12
p ap
(689) — =VADIpC"(p)Vp+ BpV 1}, (76)
whereC is a constant. This is the Lyapunov functional of the

generalized Smoluchowski-Poisson system. Indeed,
straightforward calculation yields

here we have define®=1/8¢. Noting that Eq.(75) is
equivalent to

POy vcipre,, )

3= fi(v +pVD)2d%r=0 (69) C(P):BPJP

Let us consider particular cases. For the Boltzmann enth® Lyapunov functional68) can be rewritten

tropy (9), p=pT, and 1
Jz—fC(p)df’r—E/sf p®d3r, (79

1
J=—fplnpd3r——,3f pdd3r. (70)
2 where the term proportional to the mass has been dropped.

, ) Dot NS 12 o The first term in Eq(78) is a generalized entropy in configu-

Strictly speaking,/gp(p')/p’“dp" diverges logarithmically  ration space. The stationary solution of the generalized

asp’—0. This means that the general formu@8) is only  smoluchowski equatiofi76) is given by

marginally correct for an isothermal equation of state. How-

ever, assuming a Boltzmann distributiéh0) since the be- C'(p)=—Bd—a. (79

ginning (see Ref[9]), we can check that Eq70) is indeed

the right formula. On the other hand, for the Tsallis entropylt can be obtained by maximizing the free ener@p) at

(13), p=Kp? with y=1+1/n, so that fixed mass and temperature. Similarly, the generalized
Smoluchowski equatioi76) can be obtained by maximizing

1 the rate of free energy productidn(see Sec. IV ¢
J= —ﬁnf pdir Eﬁf pPdr+Cy, 7D The case of Boltzmann and Tsallis entropies in configu-

ration space has been discussed previously. The Fermi-Dirac

where the constant can dependrossuming a Tsallis dis- entropy in configuration spaceS p]=—[{pInp+(pg

tribution (14) since the beginningsee Ref[9]), we find that  —p)In(py—p)}dr leads to an equation of statp(p)=

the free energy reads —TIn(1—-plpy). For T—+o, p=pT and forT—0, p is a
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step function withp~ pgq in the core anp=0 outside. The

PHYSICAL REVIEW E 68, 036108 (2003

Tdp/dr+pd®/dr=0 and the Gauss theorem in perturbed

corresponding generalized Smoluchowski equation can brm dé®/dr=Ga/r?, we can rewrite Eq(85) as

written

a
a—’t’:V{D’[VerBp(po—p)V@]}- (80)

AN 1 d[p'(p)dq 1 1dgdp Gq
47'rpr2q_477'Pa r2 dr 47Tp2r_Zaa r2’
(86)

Coming back to the general case and expliciting the relag ajternatively,

tion betweend andp, we can rewrite Eq(76) in the form

J dJ
&—f=V[D[pC"<p>Vp+ﬂpfp<r',t>ﬁ—f<r—r'>d3r']
(81)

d
dr

> a, (87)

P'(p) da} Gq_ ¢
JE— +_:
4gpr? dr Agpr?

with q(0)=q(R)=0.

The stationary solution of this equation is determined by the Let us now determine the second order variations of the

integro-differential equation

C’(p)=—,3f p(rHu(r—r")dr’ —a. (82

generalized free energy From Eq.(68), we find that

, 1
5ZJ=—BI %ﬁf)(@p)zd%—zﬂf spo®d’r, (88)

Equation(81) is one of the most important results of this Which must be negativéwith respect to mass preserving
paper. The general study of this equation appears to be ¢ferturbations for generalized thermodynamical stability in
considerable interest in view of its different potential appli- the canonical ensemble. Adapting a procedure similar to that

cations. This project has been initiated by R¢&8-3( in
particular cases.

C. Generalized stability analysis

The equivalence between dynamical and thermodynami-

cal stability for the generalized Smoluchowski equatibg)

is proved in Appendix B. In fact, we can go further and

followed in Refs.[31,29,9, we rewrite Eq.(88) in the form

R p'(p) (dg|? 1 (Rdq
27 __ — -
6°J= ﬁfo 87-rpr2<dr dr Zﬁfo dr&bdr.

(89

Integrating by parts and using the boundary conditiong,on
we get

reduce the stability problem to an eigenvalue equation as was

done in the special case of isothermal and polytropic distri- R d[ p'(p) dq 1 (R déd
butions[28,30. Let p and® refer to a stationary solution of 5ZJ=BJ qd—( 5 d—) dr+ 5,8 qd—dr.
Eq. (59 and consider a small perturbatidp that conserves o dr\8mpre dr 0 r
mass. We restrict ourselves to spherically symmetric pertur- (90)
bations (nonspherically symmetric perturbations do not in-,,_. '
duce instability for nonrotating bodigs\riting 5p~ e and Using the Gauss theorem, we find
expanding Eq(59) to first order, we find that , R d{ p'(p) dq 1 (RGE
=8| q—=| ——==—|dr+ 58| —dr,
1 d[r?/dép dd  dod o dr|ggpr2dr 27 )0 r2
Kﬁp—r—za E W-Fb‘pm-l-pw . (83 (91
. . . . or, equivalently,
It is convenient to introduce the notation
1 (R 1G dfp'(p) d
1 d 82)== f drg| =+ — — 92
Sp=—— . (84) 28,2 0”(4wpr20'r %
4qrr? dr

Physically, g represents the mass perturbatiomn(r)
=6M(r)=[{Amr'?8p(r')dr’ within the sphere of radius
It satisfies therefore the boundary conditionf)=q(R)
=0. Substituting Eq(84) in Eq. (83) and integrating, we
obtain

r2 a= dr

N d[p'(p) dg
r2 dr

The second order variations of free energy will be positive
(implying instability) if the differential operator which oc-
curs in the integral has positive eigenvalues. We need there-
fore to consider the eigenvalue problem

{d(p'(p) d

dr 47Tpl’2 dr 53

ax(r)=Aqy(r)

+—
r2

with g, (0)=q,(R)=0. If all the eigenvalues are negative,
then the critical point is a maximum of free energy. If at least

where we have used(0)=0 to eliminate the constant of one eigenvalue is positive, the critical point is an unstable
integration. Using the condition of hydrostatic equilibrium saddle point. The point of marginal stability in the series of
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equilibria is determined by the condition that the largest ei-and the vorticity moment&quivalent to the Casimir invari-
genvalue is equal to zera &0). We thus have to solve the antg I',=[w"d?r. It also conserves the angular momentum

differential equation L=Swr?d? in a circular domain and the impuls@
= [wyd?r in a channelor in an infinite domain
d [ p'(p) dF\ GF(r) When coupled to the Poisson equation, the 2D Euler
ar dmpr? ar 2 =0 (94  equation develops very complex filaments as a result of a

mixing process. In this sense, the fine-grained vorticity
o(r,t) never converges towards a stationary solution. How-

with F(0)=F(R)=0. ever, if we introduce a coarse-graining procedure, the coarse-

We note that the eigenvalue problert&) and (93) are i = i _
similar and that they coincide for marginal stability in conti- 9rained vorticityw(r,t) rapidly relaxes towards metaequi-
nuity with our previous studie28—30. We have also found I|pr|ym state. .Th_|s is callled wolgnt rella>.<at|on, chaotic
a similar eigenvalue equation by analyzing the stability ofMixing, or inviscid relaxation. This “collisionless relax-
barotropic stars with respect to the Euler-Jeans equatiorffion” is common to all Hamiltonian systems with long-
[31,8,9. These eigenvalue equations have been solved an&ange interactions described by Viasov-type equatiste-
lytically (or by using simple graphical constructiorfer an  1&r Systems, point vortices, non-neutral plasmas, HMF
isothermal and a polytropic equation of state in Refs.mpdel - ).. It physically d|ffers from the “collisional relax-
[8,9,29-31. It is found that the case of marginal stability ation” (or viscous decaywhich takes place for much longer
(A=0) coincides with the point of minimum generalized tIMes (often_ physwally irrelevant This implies that the_ or-
temperature 3 as predicted by classical turning point argu- der of the limitst— +c andN— + (or »—0) is not in-
ments in the canonical ensemilis]. The structure of the terchangeablg2]. _ _
perturbation profile that triggers the instabiliip particular, ~_ There have been some attempts to describe the metaequi-
the number of nodegas also been determined in our previ- lorium state in terms of statistical mechan[ds,34-37. In
ous papers. The present analysis shows that the structure {6 context of 2D hydrodynamics, the statistical metaequilib-
the mathematical problem remains the same for a gener&lUm state maximizes the mixing entropy
equation of statgg=p(p) even if the solutions cannot be

obtained explicitly. Spl= —f pInp d?rdo, (98
IV. APPLICATION TO STELLAR DYNAMICS while conserving circulation, energy, and all the Casimir in-
AND 2D TURBULENCE variants. The mixing entropy is the Boltzmann entropy for

p(r,o), the density probability of finding the value= o in
r. The most probable distribution is the Gibbs state
We consider a two-dimensional incompressible and invis-
cid flow evolving in a plane perpendicular to the direction
Let u= —zX V¢ denote the velocity field satisfying the in-
compressibility conditiorV -u=0. The stream functiog is
related to the vorticitywz=V Xu by the Poisson equation Wherey(o)=exp(—,.1a,0") accounts for the conservation
A¢=— . More generally, we can consider a relation of theof the fragile moment§',..,;=[po"dod’r anda,s are the
form (r)=Sg(r—r")q(r’')d?r’ (whereq is the potential usual Lagrange multipliers fdr andE (robust integrals[9].
vorticity) like, e.g., in the quasigeostrophic modaR]. We  The “partition function” Z= [ x(o)e”#***do is deter-
assume that the dynamics is governed by the 2D Euler equanined by the local normalization conditiofpdo=1. The

A. Violent relaxation and metaequilibrium states

1
p(r,o)= mx(a)ef(ﬁwa)", (99

tion equilibrium coarse-grained VOI‘tiCithpr'dO' can be ex-
pressed as
Jw _
e > o= _Egyra—tp). (100
W= =" = a)= .
B

This equation describes the inviscid evolution of a continu-

ous vorticity flow. It also describes the mean-field evolutionsinceVw=f'()V ¢ andu= —zx V¢, this is a stationary
of N>1 point vortices before discrete correlations have desolution of the 2D Euler equation. Taking the derivative of
veloped(Vlasov limit) [2,33]. The 2D Euler equation con- Eq. (100), it is easy to shoW37] that

serves the circulation

o' ()=~ Bw,, wzzfp(o—a)zdpo, (101

= f wd?r, (96)
where w, is the centered local enstrophy. We note that the
the energy relation w=f() is always monotonic, increasing at nega-
tive temperatures and decreasing at positive temperatures.
1 _ . . .
E— _f wyd?r, 97) Thert_afore, the coarse-grained vorticity extremizes aH
2 function
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sz—f C(w)d?r, (102
at fixed circulation and energy, whe@(w) is a convex
function, i.e., C"(w)>0. Indeed, introducing appropriate
Lagrange multipliers and writing the variational principle in
the form

8S— BOE—adl'=0, (103
we find that the critical points of B function at fixed circu-
lation and energy are given by

C(w)=—By—a. (104

PHYSICAL REVIEW E 68, 036108 (2003

Other forms ofH functions compatible with the statistical
prediction(99) are presented in Sec. IV #om now on, we
drop the bar onw except in case of ambiguity

B. Dynamical stability and thermodynamical analogy

Unfortunately, the statistical theory of violent relaxation is
not very predictive because the initial conditions are not
known in practice and the Casimir invariants cannot be de-
termined from the coarse-grained field once the vorticity has

mixed (since o"# ") [38]. On the other hand, the high-
order moments ofv are altered by nonideal effectgiscos-
ity, forcing, . . .) sothat their strict conservation is abusive
[12,39. Finally, the relaxation is, in generahcompleteso

The conservation of angular momentum and impulse can pihat the ergodic hypothesis which sustains the statistical

easily included in the variational princip{@03) by introduc-
ing appropriate Lagrange multiplie® and U. Equation
(104) remains valid provided thaf is replaced by the rela-
tive stream functiony’ = ¢+ (Q/2)r>—Uy. Equation(104)
can be written equivalently as

w=F(By+a), (105
whereF (x)=(C’) (—x). From the identity
o' (¢)=—pIC" (w), (106)

resulting from Eq.(104), o(¢) is monotonically decreasing
if B3>0 and monotonically increasing f<0. Therefore, for
any Gibbs state of forn{99), there exists &d function of
form (102) that the coarse-grained vorticity extremizegat
fixed I', E). It can be shown furthermore that maximizes
this functional. We note thaZ(w) is anonuniversafunction
which depends on the initial conditions. In geneflw] is
not the ordinary Boltzmann entropg[w]= — [ wlnwd?
due to fine-grained constraint€Casimir invariants that
modify the form of entropy that we would naively expect. In
the two-levels approximatiofiory,0} of the statistical theory,

S[g] is the Fermi-Dirac entropy

_——f g| Z+ 1—;| 1—;) d?
Seole]= Jo r]0'0 0o " Jo "
(107
leading to the Fermi-like distribution
o= —20 (108
W= 7.
1+ \efoo?

In the dilute limit w<o,, one recovers the Boltzmann en-
tropy

Sglw]=— f In wd?r, (109
and the isothermal vortex

w=Ae BV (110

theory is not fulfilled everywherg7,40]. One aspect of in-
complete violent relaxation is that the metaequilibrium struc-
tures (vortices, galaxies ..) aremore confined than pre-
dicted by statistical mechanics.

The only thing that we know for sure is that the metaequi-
librium state reached by the system is a dynamically stable
stationary solution of the 2D Euler-Poisson systemis a
coarse-grained scale Ellis and collaborators[12] have
shown that a stron¢nonlineaj condition of dynamical sta-
bility is that » maximizes aH-function at fixed circulation
and energy. This condition of dynamical stability can be
written

(6w)?
2

29 _ " Z_E 2r<
6°J C'"(w) d-r 2,6’ Swoydr=<0,

V Sw|SE=6T"=0. (119
This is similar to a condition of microcanonical stability in
thermodynamics. It is therefore relevant to develother-
modynamical analogynd use the same vocabulary as in
thermodynamics to analyze the dynamical stability of 2D
flows. In this analogyS[ w] can be called a generalized en-
tropy, B a generalized inverse temperature. . Inaddition,
we can introduce a Legendre transfodm S— BE which is
similar to a free energy in thermodynamics. The condition
that w is a maximum ofJ at fixed temperature and circula-
tion can be written

Sw)? 1
52J:—fc"(w)( ;’) dzr—zﬁf Swypd’r<0,
V Sw| 8T =0. (112

This is similar to a condition of canonical stability in ther-
modynamics. The criteriél11) and(112) are not equivalent

if the “caloric curve” B(E) presents turning points or bifur-
cations. This corresponds to a situation of ensemble in-
equivalence in thermodynamics. Since canonical stability
implies microcanonical stabilitybut not the convergethe
stability criterion(111) is stronger thar{112). This has im-
portant implications in geophysical and jovian fluid dynam-
ics[12,41].
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The H function § w] maximized by the system at me- .
taequilibrium isnonuniversal It depends on the initial con- S= —j C"()J,- Vwdr, (117
ditions and on the strength of mixing. The Tsallis entropy
where we have used straightforward integrations by parts.
Following the MEPP, we now determine the optimal current
J,, which maximizes the rate of entropy producti¢tl?)
_ _ _ i _ while satisfying the conservation of ener@y=0 and the
is a particularH function thatsometimesoccurs in 2D hy-  .onstraint
drodynamicg4]. However, this is essentially fortuitous, as
discussed in Ref[7]. In addition, in this context, Tsallis J2<C(r,t). (118
functional is not a true entropy. Its maximization at fixed
circulation and energy is a condition @fonlineay dynami-  This maximization problem leads to the optimal current
cal stability, not a condition of thermodynamical stability. It
leads to garticular class of stable stationary solutions of the Jo=—D[oC"(0)Vo+B(t) oV i]. (119
2D Euler equation characterized by

Slw]=— q—ilf (09— w)d?r, (113

The time evolution of the Lagrange multiplig(t) is deter-
w=A\— )", (114 mined by introducing Eq(119 in the energy constraint
(116), usingE=0. This yields
with A=[(q—1)B/q]¥@ Y and A=[1-(q—1)a]/(q
—1)B. We shall call this class of vorticgmlytropic vortices " 5
by analogy with stellar polytropel®6]. The indexn of the f DoC’(0)Vo-Vydr
polytrope is related to the parametgrby the relationn B(t)=— . (120
=1/(g—1). Isothermal vortices are recovered in the limit f Dw(V )%d?r
g—1 (i.e.,n—+»). Forq=2, i.e.,n=1, the relationship
betweenw and ¢ is linear and Tsallis functional coincides |ntroducing the optimal currer.19) in Eq. (115), we obtain

with minus the enstrophis]. a relaxation equation of the form
To conclude this section, we note that dynamical stability
results similar to Eq(111) and(112) have been obtained for dw ,
the Vlasov-Poisson systeftil,9]. Therefore, the generalized gt +U-Vo=V{D[wC"(0)Vo+B(t) 0V}
thermodynamical formalism developed in Sec. Il can be used (121)

to study the(nonlineaj dynamical stability of collisionless
stellar systems in astrophysics and other systems with longFhe first term is a generalized diffusion and the second term

range interactions described by the Vlasov equation. is a drift. The functionB(t) can be considered as a time
dependant inverse temperatipessibly negative It evolves
C. Relaxation equations for 2D flows with time so as to conserve the total enekgjymicrocanoni-

. . . . . cal description The drift coefficientt=D g is a generalized
Apcordlng to the previous discussion, an .lmportant. prOb'Einstein relation. We shall use E(L.21) whenw=0. When
lem In 2D hydrodynamics is to ‘?O”S‘T“Ct particular _s_tatlonaryw can be positive and negative, we shall prefer the alterna-
solutions of the 2D Euler equation with strong stability prop- '

. . . 2 = tive form
erties. We shall consider solutions that maximizkl &unc-

tion Jw] at fixed circulation]' and energyE [12]. The Jo B(t)
explicit construction of such solutions is nontrivial. Exploit- —+u-Vo=V{D'|Vot+——Vy|{, (122
ing the thermodynamical analogy discussed previously and at C"(w)

using the MEPP, we can obtain relaxation equati@nsilar ) ) ) ) )
to Fokker-Planck equationghat can be used as numerical Which o obtained from Eq.(121) by setting D
algorithms to construct arbitrary stable stationary solutions= D @C"(w). It is straightforward to check that E¢121)

of the 2D Euler equation. To apply the MEPP, we write theWith constraint(120) satisfies aH theorem for the general-
relaxation equation in the form ized entropy(102). Indeed, Eq(117), (116), and (119 lead

to
Jw

—HuVo=-V.J,, (115

J2
o [ Jo
S f Dwd r, (123
where the diffusion currend, has to be determined. The _
form of Eqg. (1195 ensures the conservation of circulation where we have use=0. If =0, then Eq.(123) is posi-
provided that],,- n=0 on the domain boundafyith normal tive provided thatD=0. If we use the alternative equation
vectorn). From Egs(97), (102, and(115), it is easy to put (122, we haveDw=D'/C"(w) so that Eq(123) is positive
the time variations of energy and entropy in the form whatever the sign of provided thatD’=0. At equilibrium
S=0, hencel,, =0, which is equivalent to

Eo f 3,V yd?r, (116 VC' (0)+ BV =0, (124
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Integrating, we get (130. Note that specifyingC(w) does not directly determine
the equilibrium state because many bifurcations can occur in
C'(w)=—By—a, (129 parameter spacd’(E). There can also exidocal entropy
. . . maxima (similar to metastable states in thermodynamics
which returns Eq(104) with g=lim _ , _B(t). Therefore, as leading to a complicated notion dfasin of attraction(see
expected, a stationary solution of E(.21) extremizes the Ref.[28]in a related context These equations could be used
generalized entropyl02) at fixed energy and circulation. In to study dynamical stability problems on a new andlg].
addition, it is shown in Appendix B that relatid84) remains  Indeed, if a stationary solution of E€L29) is stable at fixed
valid so that onlymaximaof S at fixedE andI” are selected inverse temperaturg or at fixed energg, then it is dynami-
by the relaxation equation. The relaxation equation approprieally stable with respect to the 2D Euler equation. On the
ate to the canonical situation is obtained by maximizihg other hand, if a stationary solution of E129) is stable at
=5 BE with constraint(118). This again yields an optimal fixed energyE [variable 5(t)] but not at fixed inverse tem-
current of form(119 but with constanj. In addition, Egs. peraturep, then it V|0I§tes Arnol_ds sufficient cond|t|qns of
(123 and (34) remain valid withd in place ofS Hence, the ~Stability (see Appendix € but is, however, dynamically
free energyd increases monotonically until a state of maxi- StaPle with respect to the 2D Euler equation. The relaxation
mum free energy is reached. equations proposed in Sec. Il could be_used similarly as nu-
To conclude this section, we shall discuss particular case§erical algorithms to construct nonlinearly dynamically
For the Boltzmann entropyC”(w) = 1/w and Eq.(121) re- stable stationary solutions of the Vlasov equation.
duces to
E. A simplified parametrization of 2D turbulence

Jw
E+u~Vw:V[D(Vw+ﬂwV »]. (126 The generalized Fokker-Planck equations derived in Sec.
IV C can also provide a simplified parametrization of 2D

For the Fermi-Dirac entropyC”(w)=L/w(0p— ) and Eq. turbulence. The thermodynamical parametrization proposed

(122 yields by Robert and Sommeri{&2] can be written
dp
Jd = — _
AU Vo= V{D'[Vor+ Boloo—w) Vyl}. (127 — tU-Vo=V{D[Vp+B(tp(c—p)Vyl}, (13D

For the Tsallis entropyC”(w)=qw% ? and Eq.(121) be-  wherep(r,o,t) denotes the density probability of finding the
comes vorticity level o in r at timet. Equation(131) incorporates a
turbulent viscosityD and an additional term interpreted as a
systematic driff43]. The drift is due to the inhomogeneity of
the medium and is supported by arguments of kinetic theory
in simplified models(point vortices, quasilinear approxima-
tion) [43,33,44,2. Usual parametrizations including a single
) ) turbulent viscosity correspond to the infinite temperature
Due to the thermodynamical analogy, the relaxation equajmit (3=0) of the thermodynamical parametrization. Equa-
tion proposed in Sec. IV C can provide a powerful numericakjop, (131) increases the mixing entrogsf p] while conserv-
algorithm to compute arbitrary dynamically stable stationaryIng the energy and all the Casimir invariants. Fes +,
solutions of the 2D Euler equation. Since we are only inter{ne solution converges to the Gibbs stéas).
ested by the stationary solution, we can forget the advective Tpe equations of Robert and Sommed®] are compli-

term in Eq.(122) and fixD to an arbitrary positive constant. cated because they take into account the conservatiali of
We propose therefore the physical numerical algorithm  he Casimir invariants. This clearly leads to practical diffi-

Jw

o tUVo=V{D[V't BuVylh. (129

D. A physical numerical algorithm

culties. This also leads to physical difficulties because the

‘?_“’:V DI Vot B vy (129 strict conservation of all the Casimir invariants is abusive as

at C"(w) ’ discussed in Sec. IV C. We could try to simplify the problem
by writing a hierarchy of equations for the momentspof
The first equation of this hierarchy is

f VoV yd?r
t)y=— . (130 —
: (Vo)? 99 V= o
d2r W+u-Vw—V{D[Vw+,8(t)w2Vz,b]}, (132
C”(U))

These equations satisfy the conservation of circulation andvhere w, is the local centered enstrophy defined in Eqg.
energy (robust integrals and increase the generalized en-(101). However, we are now led to a difficult closure prob-
tropy (102) until the system has reachedraximumof Sat  lem. Kazantsewet al.[45] have proposed to close the hierar-
fixed I' and E. We have seen indeed that a minimum or achy of equations by a Gaussian approximation. This leads to
saddle point ofJ w] are linearly unstable via Eq$129—  an equilibrium state corresponding to a minimum enstrophy
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state. Although this state may be relevant in some particulafhe same simplifications could be introduced in the param-
oceanic problemg~ofonoff flows), this is not expected to be etrization of the gravitational Vlasov-Poisson system pro-

general. posed in Ref[21].
In this paper, we propose to close the hierarchy of mo-
ment equations by a relation of the form F. Classification of generalized entropies

1 Our parametrization involves a free functi@{w). This
- , (133  indetermination is intrinsic to the problem of 2D turbulence
C'(w) and not really a flaw of our approach: therenis universal
entropyS w] in 2D turbulence. In order to reduce this inde-
which can be deduced from Eq4.01) and (106). This rela-  termination, we shall argue that generalized entropies can be
tion is valid at statistical equilibrium but we shall use it out regrouped in “classes of equivalence” with the underlying
of equilibrium as a convenient approximation. In a senseidea that functionals of the same class will produce similar
this supposes that the Lagrange multipliers associated results. Then, for a given physical situation, it will be pos-
with the fragile constraint$',~; in the Gibbs stat€99) can  sible to pick a form ofC(w) in the corresponding class of
be treated canonically12]. Substituting Eq.(133 in Eq. equivalence and use it in the parametrizatihB4)—(136).

(132, we obtain the simplified parametrization We shall now present typical forms of “generalized entro-
pies” § w] that appeared in the literature. Specifically, we
shall prescribe analytical forms of the vorticity distribution

. (139 (o) in the Gibbs stat¢99) and compute the corresponding
C(w). These analytical expressions can be considered as
prototypical examples of more realistic distributions. Con-

f DV oV yd?r sider first the case where the fine-grained vorticity takes only

two values oy and o1>0¢ so that x(o)= xgd(o— agy)

w2

B(1)

I

Jw
—+u-Vo=V

D
ot

Vo+

v
) b

"(w

A=~ f (V)2 , ' (139 +x10(0—o01). In that casew() is the distribution
D der
C"(w) 01— 0y

S A T P ATk (379

which coincides with Eqs(122) and (120). The function 1+e 790

C(w) is a nonuniversalfunction which encapsulates the . .

. . X . : which can also be written as a tanh,

complexity of the fine-grained dynamics and which depends

on the situation contemplatédcean dynamics, jovian atmo- oot o, o1— 0y 01— 0

sphere, decaying 2D turbulence . ). For agiven physical 0= tan 5 (By+a)|. (138

situation, we propose to select a form@©fw) a priori and
compute the corresponding equilibrium state. Then, we cagor this distribution, w— 4,00 When — By—s + o, — oo,
checka posterioriwhether it was a good choice by compar- sing Eq.(104), we get

ing the result with the information that we have on the sys-

tem. This is similar to the notion gdrior vorticity distribu- C(w)=plnp+(1-p)In(1-p), o=poy+(1l—p)oyg.
tion proposed in Ref[12]. Of course, this approach is (139
essentially phenomenological and explanatory but it allows =~ =~

to deal with complex situations which were previously inac- 1 iS implies

cessible. 1 oo
To obtain an operational subgrid scale parametrization of C'(w)= In< 0)
2D turbulence, it remains for one to specify the value of the 017 0p |01~ @
diffusion coefficient. Heuristic argumen{g6,21] or more 1
formal kinetic theory{44] suggest thab =K e2w3? whereK C'w)= ———————. (140)
is a constant of order unity angis the scale of unresolved (w=09)(01~ )

fluctuations. This formula is a relatively direct Consequenceo“ubstituting Eq(140) in the general parametrizatidi34)
of the general Taylor expression of the turbulent viscosityWe obtain ' ’

[47] and it proved to be relevant in oceanic model[dd)].

Furthermore, it has been shown in previous wd#§,21] Jdw
that the spatial dependance of the diffusion coefficient is im- —-+U-Vo=V{D[Vo+ B(t)(o—00)(01~ @) Vi]},
portant to take into account the problemin¢omplete relax- (141)

ation and the formation of self-confined vorticg48]. With
the closure relatior(133), the diffusion coefficient can be with a diffusion coefficient
expressed in terms ab as

D=Ke>J(w—0g) (01— ). (142
2
D= Ke i (136)  These equations coincide with the two-levels approximation
VC"(w) of the thermodynamical parametrizatiqt31). This two-
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levels approximation has been used in relation with sheawith a diffusion coefficient

layer instability[40], vortex mergind42], and in a model of

Jupiter’s great red sp¢49]. D =Ke2 N (4AZ\2+ 0?) 14, (149
Turkington[38] has considered the distributiof{ o) = x

for og<o<o; and x(o)=0 otherwise. The choice,=0 If we assumes a Poissonian weight factdwr) = exp(—|o]/

for n>1 in Eq.(99) amounts to maximizing the entrog98)  q) in Eq. (99), we get

at fixed energy and circulation, neglecting the higher-order

vorticity moments. If we assume for simplicity thaty= 20%(By+ )

—\ ando;=+\, thenw(y) is the Langevin function w=— W (150

1
@=AL[=N(Byta)], L(x)=cothx)— . (143  Pasmantef52] has noted that this relationship yields results
similar to those obtained with the sinh relationship, so they

It does not seem possible to write down the functdfw)  fall in the same “class of equivalence.”
exp||c|t|y However, re|at|onsh|m143) is qua||tat|ve|y simi- If we now assume that the local distribution of VOftiCity is
lar to Eq. (138 so we argue that the Langevin-type model Gaussian so that(o)=¢e" @20 in Eqg. (99), then thew—
falls in the same “class of equivalence” as the Fermi-Dirac-relationship is lineaf35] and can be written
type model(i.e., they will produce the same type of equilib-
rium states and bifurcations w=—Q,(B+a), (151

Consider now a situation in which the fine-grained vortic-
ity can take three values;, o,, and 0 so thaty(o) where(),= w, is a constant equal to the centered variance of
=06(0)+ x16(0—01) + x26(0— 0). Consider furthermore the vorticity distribution. Such a linear relationship some-
the dilute limit of the statistical theory in which=1. Inthat  times occurs in geophysid$3]. The choicea,=0 for n
case, the probability of the nonzero levels is givenfy >2 is equivalent to maximizing the entrog98) at fixed
=Aiexgd—(Byta)o;] and w=pio;+p,ro,. This dilute  energy, circulation, and enstrophyeglecting the higher-
limit corresponds to the point vortex moddO]. If we as-  order moments The functionC(w) is
sume furthermore, for simplicity, thato=—\ and o=
+\ we get the sinh-Poisson relation 1

C(w)= CTON w?, (152

w=—2ANSINH N (By+ a)]. (144 2

For this distribution,w— * as —By— +. The sinh SO that the generalized entrofw] is proportional to minus
relationship is observed in the late stages of 2D turbulencéhe (coarse-grainedenstrophyl’,= Jw?d?r. Therefore, Eq.
when the initial condition is a random vorticity fie[d1]. (152) can also be obtained by minimizing the enstrophy at
This is because the vortices that form at intermediate timefixed energy and circulatiofb4]. A linear v — ¢ relationship
are very intense and isolated as in a point vortex gas. Not&s also obtained in thetrong mixing limitof the statistical
that the statistical approach based on the conservation of ateory providing an inviscid justification of the minimum
the Casimir invariants does not work in that case because @hnstrophy principlg55].

viscous effect$39]. Using Eq.(104), we find that Another choice of probability distribution has been pro-
posed by Elliset al. [12] in a model of jovian atmosphere
C'(w)= E sinh‘l(i). (145) where the skewness is expected to play a crucial role. They
\ 2AN relate y(o) in the general formuld99) to the y density
72 e % (z=<0) and find that
Then,
— QB+ a)
® 1 = 2
Clw)= 5 sinh (ZA)\) ~TNARAT WP (149 TN BY ) (153
and where ), is equal to the variance of(o) and 2032 is
equal to the skewness of(o). For this relationshipw—
1 1 —o© as —(By+a)—1N\Q, and w——1/\ as —By—
Cw)=+ T ot (147 + . Therefore, they model(153 is somewhat intermediate

between the tanh mod€ll38 and the sinh mode(144).
Therefore, in the case of 2D decaying turbulence with ran{sing Ed.(104), we find that the corresponding generalized

dom initial conditions, parametrizatiqi34) that we propose €ntropy is
is

Clw)= —%ln(l-ﬂ-)\w) . (154

N,

dw
—f U Vo= V{D[Vw+ B(t)\ VA4A \?+ 0°V ]}
(148  This yields
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w 1 tion with respect to an ideal statistical evolution. However,
Clw)=——"—, C'lo)=—"——. the infinite time limit should be described by the Boltzmann
Qa(1+hw) 0z(1+\0)? distribution.
(159 On the other hand, for times<t,g,x ahd N— +x, a

For\—0, we recover the Gaussian mode51) as a special collection of stars or point vortice@r continuous vorticity

case of they model. ParametrizatiofL34) that we propose flows) is_ described by th_e \_/Iasov or 2D Euler equation. IF
for this model is can achieve a metaequilibrium state as a result of a “colli-

sionless” (or inviscid) violent relaxation. Note that the do-
dw main of validity of the collisionless regime is huge for such
E+U'Vw:V{D[Vw+/3’(t)92(1+M))ZVlﬂ]}, systems since the collisional relaxation timeea.y
(156) ~(N/InN)tp is much larger than the dynamical timg [2].
The correct entropy is the Boltzmann entrogfp]=
with a diffusion coefficient — [pInpdyd®d3v or §p]=—[pInpdad? for p, the local
distribution of phase levels or vorticity levels. The statistical
D=Ke?Q;A(1+\w). (1579 metaequilibrium state is obtained by maximizing the Boltz-
) . i mann entropy§| p] while conserving energy, circulation, and
For A—0 (Gaussian approximatignwe recover the first ap infinite class of invariants called the Casimir invariants.

moment equation of the parametrization used by Kazantseyhe coarse-grained distribution function or coarse-grained

et al.[45] in a barotropic ocean model. vorticity also happens to maximize ld function S[f_]z

—fC(f)d3d3 or Jw]=—fC(w)d?, whereC is a con-
vex function, while conserving only massirculation and

In this paper, we have introduced a class of relaxatiorenergy(robust constrainjs Note thatg f] increases during
equations associated with a generalized thermodynamicaiolent relaxation contrary t&[ f] which is a Casimir invari-
framework. The Fokker-Planck and nonlinear Fokker-Planckant [10]. The functional maximized at equilibrium depends
equations corresponding to Boltzmann and Tsallis entropiesn the initial conditions and is therefore non-universal. In
are recovered as a special case. The potential applications thfis context, “generalized entropies” arise due to the pres-
this class of relaxation equations is considerable and corence of fine-grained constrain{€asimir invariants that
cerns various domains of physics such as stellar dynamicsnodify the macroscopic form of entropy that we would na-
2D turbulence, plasma physics, chemotaxis, porous medidvely expect. This makes the metaequilibrium state difficult
etc. For example, these equations can serve as numerigdf not impossible to predict. A classification of generalized
algorithms to compute arbitrary nonlinearly dynamically entropies inclasses of equivalencean, however, be at-
stable stationary solutions of Vlasov-Poisson or 2D Eulertempted.
Poisson systems. Physical applications of these equations Furthermore, it can happen that the mixing process during
and numerical simulations will be presented in future worksthe collisionless relaxation is not sufficient to justify the er-

We have also clarified the concept of generalized thermogodic hypothesis which sustains the statistical theory. In that
dynamics introduced by Tsalli§3] and applied to self- case, the metaequilibrium state results fromimeomplete
gravitating systems and two-dimensional vortices by Plastinwiolent relaxation. One possibility to take into account in-
and Plastind6] and Boghosiafh4]. If we consider a collec- complete mixing and nonergodicity is to introduce additional
tion of stars or point vortices and take the long time limit kinetic constraints in the statistical approach. This can be
(t— +x at fixedN>1), the statistical equilibrium state re- done by using relaxation equations with a variable diffusivity
sulting from a “collisional” evolution is correctly described related to the local fluctuations of the vorticity or distribution
by the ordinary Boltzmann entropgg[f]=— ff Infd®d3  function [46,21]. Accordingly, the physical picture that
or Sg[w]=— [ w Inwd?r, but the thermodynamic limit is un- emerges is the following: during violent relaxation, the sys-
usual (and doesnot correspond toN,V— +o with N/V  tem has théendencyto reach the most mixed state described
fixed) [2]. In the case of stellar systems, there is no trueby the Gibbs distribution. However, as it approaches equilib-
equilibrium state but this corresponds to important physicatium, the mixing becomes less and less efficient and the sys-
processegevaporation, gravothermal catastropmst to a tem settles on a stationary state which is not the most mixed
breakup of thermodynamid®]. The kinetic theory of stars state. Then, the evolution is stopped until other efféctd-
and point vortices is extremely complicated due to the longlisions, viscosity...) come into play. The state resulting
range nature of the interactions. Kinetic equations can b&om an incomplete violent relaxation is(aonlinearly dy-
derived rigorously by using projection operator technique buhamically stable stationary solution of the Vlasov or 2D Eu-
they are non-Markovian and integro-differenti&6,33. The ler equation on the coarse-grained scale. A strong condition
H theorem for the Boltzmann entropy cannot be proved with-of stability is that it maximizes & function at fixed mass
out further approximations. In addition, the diffusion coeffi- (circulation and energy11,12. Since this condition of non-
cient depends on position, velocity, and time and this carinear dynamical stability isimilar to a condition of thermo-
lead to a confinement of the structure in physical or phaselynamical stability, we can use a thermodynamical analogy
space. These complicated effetdpace and time delocaliza- to study the dynamical stability of stellar systems and 2D
tions) can induce, for intermediate collisional times, a devia-vortices. In this analogy, thid function can be regarded as a

V. CONCLUSION
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“generalized entropy.” TheH function maximized by the where we have used an integration by parts. From relation
system at metaequilibrium depends on the initial conditions(6), we find
on the efficiency of mixing, and on nonideal effects. Tsallis
entropy is just a particulad function leading to polytropic C"(f)Vef=—pUg, . (A4)
distributions. It can sometimes provide a good fit of the me-
taequilibrium state in case of incomplete relaxatjgh but ~Hence,l,=0. Using 6Us=(0,—V é®) and Eqg.(A4), the
this is not generdl7]. Most galaxies and 2D vortices are not third term in Eq.(A2) can be rewritten
described by Tsallis polytropic distribution. A better model is
a c_:o_mposite model with an iso_thermal core where mixing is o= —Bf 5fUs, - 6U6d3rd3v=ﬁf Sfv-V s d3rd3v.
efficient (q=1) and a polytropic halod# 1) where relax-
ation is incompletd9]. (A5)

In conclusion, “generalized entropies” arise whieidden . . .
constraintsare in action: Casimir invariants, kinetic con- Alter an integration by parts, the fourth term in B42) can
straints preventing mixing, forcing and dissipation, geometri-be written
cal structure of phase spackactality), etc. We can either J
work with the Boltzmann entropy and try to take into ac- |4:f 8- —[C"(f) 8 1d3rdqy, (A6)
count these additional constraints or keep only the usual con- N
straints(mass and energyand change the form of entropy.
The second possibility, while leading to some indetermina
tions, is often more convenient.

or, using Eq.(A4),

L, oast  C(f)
C'(f)——B—,—dfv

drd3v. (A7)
C//(f)

|4: J’ 5Jf .
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APPENDIX A: LINEAR STABILITY ANALYSIS (f)
OF THE GENERALIZED KRAMERS EQUATION
Hence,
Let f be a stationary solution of E¢28) and §f a small 53 (837
perturbation around this solution. Let us now linearize Eq. , f _ f
(28) around equilibrium and write the time dependance of l4= _j oJy- ﬁ+5ﬁv)d3rd3v—— Df drd?v,
the perturbation in the formdf~eM. Noting that V- Ug (A9)
=0, we get
where the last equality follows from the conservation of en-
36J; ergy (21). Inserting the foregoing relations in EGA2), we
NOf+Vg(8fUg) + V(foUg) = — o (A1) obtain
whereJ; is given by Eq.(25). Multiplying both sides of Eq. f " 243,43 f . 3,43
(A1) by C"(f)sf and integrating over phase space, we ob- A CIDNTd VS | ofv-V obdird'y
tain 2
— [ g, (A10)

Df
)\J C”(f)(5f)2d3rd3v+J C"(f) 8 Vs(8fUg)d3rd3v
We now multiply both sides of EqAL) by §® and integrate

over phase space. After straightforward integrations by parts,
+f C"(1) 8V g(f 0Ug) drdv prasesp J J yP

we get
98, .
=—f C"(f)sf——=drd. (A2) xf 5f5q>d3rd3v—f 5fv-Vodd3rdiv=0. (All1)
The second term can be rewritten Combining this relation with Eq(A10), we find
1 ” 2 3,43 " 243,43 3,43
|2=§ C"(f)V4[ (8f)“Ug]d°rd>v N | C(F)(sF)d rd°v+AB | Sfodderd°v
1 5 (5Jf)2 3.3

=—§f C"(f)(8)2Vgf - Ugd®rdiy, (A3) =—| p drdv. (A12)
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Now, the left-hand side is just proportional to the secondTaking the variation of Eq119) and using Eq(B4), we find
order variations of the free ener@?J, see Eq(16). On the that
other hand, recalling thal;=0 at equilibrium, the second
variations of the rate of entropy producti@8il) are given by

C///(w)

8J,=—Dw
C"(a))

C"(0)Vsw— B

SV i+ 3BV ¢

) 83¢)?
525= f %d%de’v, (A13)

and they are clearly positive. Therefore, E12) can be +BV Y. (B8)

rewritten in the simple forni34).

APPENDIX B: LINEAR STABILITY ANALYSIS Hence,
OF THE GENERALIZED SMOLUCHOWSKI EQUATION

Let w be a stationary solution of E¢L21) and 5w a small l4=— f 83, (% + BV S+ 58V l!/) d2r
perturbation around this solution. Let us now linearize Eq. Dw
(121) around equilibrium and write the time dependance of 2

the perturbation in the forndw~eM. We get = —f (iJr 83,8V 5¢)d2r, (B9)

Dw
Now+V(Swu)+V(wdu)=-V48J,, (B1)

where we have used the conservation of enéidy) to get

wherel, is given by Eq(119). Multiplying both sides of Eg. the last equality. Inserting these results in E82), we ob-

(B1) by C"(w)dw and integrating over the whole domain,

we obtain tain
M oo | crwrsovsondn M| crtorsordin g swuv sy
” 2y " 2 5\]2
+ | C"(w)d0V(wou)d2r=— | C"(w)swVJ,d2r. :_J No 53,8V 60| dr (B10)
Dw @ '
(B2)
The second term in EqB2) can be rewritten We now multip_ly both sides: of EqB1) by o anq integrate
over the domain. After straightforward integrations by parts,
1 and usingéu- V é¢=0, we find
|2:§f C"(w)V[(Sw)?uld?r
1 )\J Swd d2r—J5wu-V5 d2r=f53w.va dr.
=— —f C"(w)(6w)?V w-ud?r, (B3) s v v
2 (B11)

where we have used an integration by parts. From the sta- - _

tionary condition(125), we obtain aComblnlng with Eq.(B10), we get
C"(w)Vo=—BV. (B4) (83,)°

)\J C”(w)(éw)2d2r+)\,{3J 5w5¢d2r=—fD—d2r.

Sinceu- V=0 we conclude that,=0. Using Eq.(B4), the @ (B12)

third term in Eq.(B2) can be rewritten

B o 2 Now, the left-hand side is just proportional to the second
la= _'BJ dwduV yd r—,Bf SouVoydr.  (BS)  orger variations of the free energfd, see Eq(111). On the
other hand, recalling that,=0 at equilibrium, the second
After an integration by parts, the fourth term can be writtenorder variations of the rate of entropy productid®23 are

given by
|4=f 8J,-V[C"(w)bw]d?r, (B6)
5%S= f Md2r (B13)
or, using Eq.(B4), ] Do ’
|4:f 5J . C”(w)V&u—ﬂCW(w) SV | d2r. and they are clearly positivesee the discussion after Eqg.
¢ C'"(w) (123)]. Therefore, Eq(B12) can be rewritten in the simple

(B7) form (34).
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2
Swdyd?r="Y, %_ (C3

i A

APPENDIX C: SUFFICIENT CONDITIONS OF STABILITY
AND ARNOLD THEOREMS f

According to Eqs(106) and(111), §°J can be rewritten
We now label the eigenvalues such that;<\,<---.

52‘]:_6[f ﬂd2r+f5w5¢d2r]. (C1) Then\;j=X\, and we get
2[J —o'(p

1 1
The term is brackets is called Arnold pseudoenergy or Ar- f Sw Syd’r< — 2 (5wi)2=_f (Sw)?d?r. (C4)
nold invariant. Using an integration by parts, we have S A

equivalently
) Therefore,
5ZJ=—E“ ﬂdzwf (V&p)zdzr]. (C2
21) o'y Brl1 1
52J$——f ——— (Sw)?d?r. (C5)
First assume thaB>0. By Eq. (106), we see thatw’' () 2) M o' (p)

<0. Therefore,52J<0 and the system is stable. #<0,

thenw’(4)>0 and we cannot conclude directly. Let us in- As a result, if <’ () <\, then52J<0 and the system is
troduce a set of normalized eigenfunctiofigr) such that  stable. Using Eq(106), this condition can be rewritte>
—A¢i=\;¢; with ¢;=0 on the boundary of the domain and —\;minC"(w). These sufficient conditions of stability are
quiqudzr: dij . Noting that— [ ;A ¢,d’r=\; and integrat-  called Arnold theorems. They imply canonical and microca-
ing by parts, we find thah;=[(V ¢;)?d’r>0. Then, we nonical stability in the thermodynamical analogy. Our gen-
decomposeSw and §¢ on these eigenfunctions. Using the eral formalism shows that the Arnold theorems can have ap-
Poisson equatiorw=—Ay, we have Sw=2%;0w;¢; and plications in many other situations than just fluid dynamics
Si=3,;(Sw;I\;) ¢; . Therefore, (see, e.g., Ref9]).
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