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Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics
and two-dimensional turbulence

Pierre-Henri Chavanis*
Laboratoire de Physique The´orique, Universite´ Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France

~Received 12 November 2002; published 12 September 2003!

We introduce a class of generalized Fokker-Planck equations that conserve energy and mass and increase a
generalized entropy functional until a maximum entropy state is reached. Nonlinear Fokker-Planck equations
associated with Tsallis entropies are a special case of these equations. Applications of these results to stellar
dynamics and vortex dynamics are proposed. Our prime result is a relaxation equation that should offer an
easily implementable parametrization of two-dimensional turbulence. Usual parametrizations~including a
single turbulent viscosity! correspond to the infinite temperature limit of our model. They forget a fundamental
systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations can
have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea
of a classification of generalized entropies in ‘‘classes of equivalence’’ and provide an aesthetic connection
between topics~vortices, stars, bacteria, . . . ) which were previously disconnected.
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I. INTRODUCTION

The statistical mechanics of systems with long-range
teractions is currently a topic of active research@1#. Systems
with long-range interactions are numerous in nature: s
gravitating systems, two-dimensional~2D! vortices, non-
neutral plasmas, metallic clusters, dipoles, fracture,
These systems exhibit similar features such as negative
cific heats, inequivalence of statistical ensembles, phase
sitions, and self-organization. Since they are nonexten
and nonadditive, the construction of an appropriate therm
dynamics is a challenging problem. Among all the previo
examples, self-gravitating systems and 2D vortices pla
special role because they both interact via an unshie
Newtonian potential~in dimensionsD53 or D52) and pos-
sess a rather similar mathematical structure@2#.

It has been recently argued that the classical Boltzm
entropy may not be correct for systems with long-range
teractions and that Tsallis entropies@3#, also calledq entro-
pies, should be used instead. In the context of 2D turbule
Boghosian@4# has interpreted a result of plasma physics@5#
in terms of Tsallis generalized thermodynamics. In the as
physical context, Plastino and Plastino@6# have noted that
the maximization of Tsallis entropies leads to stellar po
tropes, thereby avoiding the infinite mass problem associ
with isothermal systems obtained by maximizing the Bol
mann entropy. However, the arguments advocated to jus
Tsallis entropies in the context of 2D turbulence and ste
dynamics are usually unclear and misleading and were c
cized in our previous papers@7–9#. We have argued tha
Tsallis entropies are particularH functions ~not true entro-
pies! @10# whose maximization at fixed mass and energy
termines ~nonlinearly! dynamically stable stationary solu
tions of the 2D Euler or Vlasov-Poisson systems@11,12#. The
H functions can be useful to describe the metaequilibri
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states resulting from violent relaxation@13#. In this context,
the aforementioned maximization problem is a condition
dynamical stability, not a condition of thermodynamical s
bility. Therefore, Tsallis entropies have not a fundamen
justification for stellar systems and 2D turbulence. Th
form just a one-parameter family ofH functions that leads to
simple models~stellar polytropes and polytropic vortices!.
Tsallis distributions can sometimes provide a convenienfit
of the metaequilibrium state in case of incomplete relaxati
In that context, the parameterq, which can vary in space
measures the importance of mixing@9#.

On the other hand, it has been shown that Tsallis gene
ized thermodynamics could be useful to interpret anomal
diffusion in complex systems and that theq entropies are
connected to nonlinear Fokker-Planck equations@14#. In fact,
Tsallis entropies are just a particular class of a much lar
class of functionals that we shall callgeneralized entropies.
These functionals are defined asS52*C( f )d3rd3v where
C( f ) is a convex function of the distribution function. Man
important properties obtained with Tsallisq entropies~non-
linear Fokker-Planck equations, generalizedH theorem, Leg-
endre transforms, . . . ) remain valid for these more gener
functionals. Tsallis entropies give a special importance
power laws. Power laws are indeed important in physics~in
relation, among other, with multifractality@3#! but they are
not the most general distributions. Generalized entrop
arise naturally when the diffusion coefficient is an arbitra
function D( f ) of the distribution function. When the diffu
sion is counterbalanced by a friction or a drift, they play t
role of Lyapunov functionals and satisfy aH theorem Ṡ
>0. In this context, Tsallis entropies correspond to a pow
law dependance of the diffusion coefficientD( f ); f q21 and
the q parameter in Tsallis formalism is related to the exp
nent of anomalous diffusion.

In the first part of the paper, we develop a generaliz
thermodynamical formalism for a large class of entro
functionals encompassing Boltzmann, Fermi, and Tsallis
tropies. This formalism can have applications in differe
©2003 The American Physical Society08-1
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domains of physics~or biology, economy, mathematics, . . . )
with different interpretations. Therefore, it is relevant to r
main as general as possible. In Sec. II A, we introduce g
eralized entropies that extend those introduced by Tsallis
co-workers. In Sec. II B, we establish the conditions of ge
eralized thermodynamical stability in microcanonical and
nonical ensembles and discuss the possible inequivalenc
statistical ensembles when the caloric curve presents tur
points or bifurcations. In Secs. II C and II D, we introdu
generalized kinetic equations~Fokker-Planck and Landau!
that conserve mass and energy and increase a genera
entropy functional instead of the Boltzmann entropy. In S
III, we study the generalized Smoluchowski-Poisson sys
and mention possible applications to bacterial populati
~chemotaxis!.

In the second part of the paper~Sec. IV!, we discuss the
statistical mechanics of Hamiltonian systems with lon
range interactions focusing on stellar systems and 2D p
vortices~or inviscid continuous vorticity fields!. We consider
the collisionless regime when theN→1` limit is taken be-
fore the t→1` limit ~Vlasov limit!. Due to mean-field ef-
fects and long-range interactions, the system undergo
violent relaxation~Sec. IV A!. The resulting metaequilibrium
state is a stationary solution of the Vlasov~or Euler! equation
on the coarse-grained scale. Its nonlinear dynamical stab
can be settled via athermodynamical analogy~Sec. IV B!.
Generalized entropies~also calledH functions! arise due to
the existence of fine-grained constraints~Casimir invariants!,
nonergodicity, and nonideal effects~forcing, dissipation,
. . . ). Wepropose a relaxation equation~Sec. IV C! that can
serve either as a small-scale parametrization of 2D tur
lence ~Sec. IV E! or as a powerful numerical algorithm t
compute arbitrary nonlinearly dynamically stable station
solutions of the 2D Euler-Poisson system~Sec. IV D!. We
also propose the idea of a classification of generalized en
pies in ‘‘classes of equivalence’’ with the heuristic argume
that entropies of the same class should lead to similar res
~Sec. IV F!.

II. GENERALIZED THERMODYNAMICS
AND FOKKER-PLANCK EQUATIONS

A. Generalized entropies

Let us consider a system ofN particles in interaction and
denote byf (r ,v,t) their distribution function defined suc
that f d3rd3v gives the total mass of particles with positionr
and velocityv at time t. Let F(r ,t)52“F be the force~by
unit of mass! experienced by a particle. We assume that
potentialF(r ,t) is related to the densityr(r ,t)5* f d3v by a
relation of the formF(r )5*r(r 8)u(r2r 8)d3r 8 whereu(r
2r 8) is an arbitrary binary potential. For example, ifu(r
2r 8)52G/ur2r 8u, F is the solution of the Poisson equ
tion

DF54pGr. ~1!

We assume that the system is isolated so that it conse
mass
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M5E r d3r ~2!

and energy

E5E 1

2
f v2d3rd3v1

1

2E rF d3r5K1W, ~3!

whereK is the kinetic energy andW the potential energy. The
conservation of angular momentumL5* f (r3v)d3rd3v and
linear impulseP5* f vd3rd3v can be easily incorporated i
the formalism. The following results remain valid ifF
5Fext(r ) is a fixed external potential, in which caseW
5*rFextd

3r .
We introduce a generalized entropy of the form

S52E C~ f !d3rd3v, ~4!

where C( f ) is a convex function, i.e.,C9( f ).0. We are
interested by the distribution functionf which maximizes the
generalized entropy~4! at fixed mass and energy. Introducin
appropriate Lagrange multipliers and writing the variation
principle in the form

dS2bdE2adM50, ~5!

we find that the critical points of entropy at fixed mass a
energy are given by

C8~ f !52be2a, ~6!

where e5v2/21F is the energy of a particle by unit o
mass. The Lagrange multipliersb anda are the generalized
inverse temperature and the generalized chemical poten
Equation~6! can be written equivalently as

f 5F~be1a!, ~7!

whereF(x)5(C8)21(2x). From the identity

f 8~e!52b/C9~ f !, ~8!

resulting from Eq.~6!, f (e) is a monotonically decreasin
function of energy ifb.0. The conservation of angular mo
mentum can be easily included in the variational princip
~5! by introducing an appropriate Lagrange multiplierV.
Equation~6! remains valid provided thate is replaced by the
Jacobi energy eJ5e2V•(r3v)5 1

2 (v2V3r )21Fe f f
where Fe f f5F2 1

2 (V3r )2 is the effective potential ac-
counting for inertial forces.

Among all functionals of form~4!, some have been dis
cussed in detail in the literature. The most famous functio
is the Boltzmann entropy

SB@ f #52E f ln f d3rd3v. ~9!

It leads to the isothermal~or Boltzmann! distribution

f 5Ae2be. ~10!
8-2
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Closely related to the Boltzmann entropy is the Fermi-Di
entropy

SFD@ f #52E H f

h0
ln

f

h0
1S 12

f

h0
D lnS 12

f

h0
D J d3rd3v,

~11!

which leads to the Fermi-Dirac distribution function

f 5
h0

11lebh0e
. ~12!

The Fermi-Dirac distribution function~12! satisfies the con-
straint f <h0 which is related to Pauli’s exclusion principl
in quantum mechanics. The isothermal distribution funct
~10! is recovered in the nondegenerate limitf !h0. We can
also consider the case of bosons with the sign ‘‘1 ’’ in Eq.
~11!. Recently, there was a considerable interest in functi
als of the form

Sq@ f #52
1

q21E ~ f q2 f !d3rd3v, ~13!

where q is a real number. Such functionals introduced
Tsallis @3# are calledq entropies. They lead to ‘‘polytropic’
distributions of the form

f 5A~l2e!n23/2, ~14!

with A5@(q21)b/q#1/(q21) and l5@12(q21)a#/(q
21)b. The indexn of the polytrope is related to the param
eterq by the relationn53/211/(q21). Isothermal distribu-
tion functions are recovered in the limitq→1 ~i.e., n→
1`).

In any system withf 5 f (e), one may define a local en
ergy dependant excitation temperature by the relation

1

T~e!
52

d lnf

de
. ~15!

For the isothermal distribution~10!, T(e) coincides with the
thermodynamic temperatureT51/b. For the polytropic dis-
tribution ~14!, T(e)5(q21)(l2e). This excitation tem-
perature has a constant gradientdT/de512q related to
Tsallis q parameter~or equivalently to the indexn of the
polytrope!. The other parameterl is related to the value o
energy where the temperature reaches zero.

B. Generalized thermodynamical stability

In the preceding section, we have just determined crit
points of the generalized entropy~4! by cancelling its first
order variations with appropriate constraints. We now turn
the thermodynamical stability of the solutions~in the gener-
alized sense!. We must selectmaximaof S@ f # at fixed mass
and energy. The condition thatf is a maximum ofS at fixed
mass and energy is equivalent to the condition thatd2J
[d2S2bd2E is negative for all perturbations that conser
mass and energy to first order. This condition can be writ
03610
c

n

-

l

o

n

d2J52E C9~ f !
~d f !2

2
d3rd3v2

1

2
bE drdFd3r<0,

; d f udE5dM50. ~16!

So far, we have implicitly worked in themicrocanonical
ensemblein which the energy is fixed. However, it may be
interest to study in parallel thecanonical ensemblein which
the temperatureT51/b is fixed instead of the energy. In tha
case, the appropriate thermodynamical potential is the
energyF5E2TS that we write for convenience in the form
of Massieu function

J5S2bE. ~17!

According to Eq.~5!, we have

dJ52Edb1adM . ~18!

Therefore, the equilibrium state in the canonical ensembl
a maximum ofJ at fixed mass and temperature. If we ju
cancel the first order variations ofJ, this again yields relation
~6!. The condition of thermodynamical stability in the c
nonical ensemble requires thatf is a maximumof J at fixed
mass and temperature. This is equivalent to the condition
d2J is negative for all perturbations that conserve mass. T
can be written

d2J52E C9~ f !
~d f !2

2
d3rd3v2

1

2
bE drdFd3r<0,

; d f udM50. ~19!

We note that canonical stability implies microcanonical s
bility but the converse is wrong in general. Indeed, if i
equality ~19! is satisfied for all perturbations that conser
mass, it isa fortiori satisfied for perturbations that conser
massand energy. Since the converse is wrong, this impl
that we can ‘‘miss’’ some relevant~stable! solutions by work-
ing in the canonical ensemble instead of the microcanon
one.

For self-gravitating systems described by the Boltzma
entropy~9!, it is well known that the statistical ensembles a
non equivalent@15,2,9#. Indeed, an isothermal distributio
~10! can be stable in the microcanonical ensemble~maxi-
mum of SB at fixedM andE) but unstable in the canonica
ensemble~minimum or saddle point ofJB at fixedM andT).
In fact, the inequivalence of statistical ensembles for syste
with long-range interactions is not limited to self-gravitatin
systems nor to the Boltzmann entropy~9!. It occurs for many
other physical systems and for various functionals of fo
~4!. There will be inequivalence of statistical ensemb
when the caloric curveb(E) presents turning points leadin
to regions ofnegative specific heats, or said differently, when
the entropyS(E) has aconvex dip@16,17#. The stability of
the solutions can be decided by using the turning point
terion of Katz@18# which extends the theory of Poincare´ on
linear series of equilibria. It is found that a change of stab
ity in the series of equilibria occurs in the microcanonic
ensemble when the energy is extremum and in the canon
8-3
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ensemble when the temperature is extremum. Stability is
or gained depending on whether the series of equilibria tu
clockwise or anticlockwise at that critical point. A change
stability along a series of equilibria can also occur a
branching point@18,19#, where the solutions bifurcate. A
general classification of phase transitions for systems w
long-range interactions has been proposed recently
Bouchet and Barre´ @20#.

C. Generalized Kramers equation

We shall now introduce a generalized Fokker-Plan
equation, consistent with the thermodynamical framew
developed previously, by using a maximum entropy prod
tion principle~MEPP! @21#. To apply the MEPP, we first write
the relaxation equation for the distribution function in t
form

] f

]t
1U6•“6f 52

]Jf

]v
, ~20!

whereU65(v,F) is a generalized velocity field in the six
dimensional phase space$r ,v%, “65(]/]r ,]/]v) is a gener-
alized gradient, andJf is the diffusion current to be deter
mined. The form of Eq.~20! ensures the conservation o
mass provided thatJf decreases sufficiently rapidly for larg
uvu. From Eqs.~3!, ~4!, and ~20!, it is easy to put the time
variations of energy and entropy in the form

Ė5E Jf•vd3rd3v, ~21!

Ṡ52E C9~ f !Jf•
] f

]v
d3rd3v, ~22!

where we have used straightforward integrations by pa
Following the MEPP, we shall now determine the optim
currentJf which maximizes the rate of entropy productio
~22! while satisfying the conservation of energyĖ50. For
this problem to have a solution, we shall also impose a li
tation on the currentuJf u, characterized by a boundC(r ,v,t)
which exists but is not known, so that

Jf
2

2 f
<C~r ,v,t !. ~23!

It can be shown by a convexity argument that reaching
bound~23! is always favorable for increasingṠ, so that this
constraint can be replaced by an equality. The variatio
problem can then be solved by introducing at each timt
Lagrange multipliersb and 1/D for the two constraints. The
condition

dṠ2b~ t !dĖ2E 1

D
dS Jf

2

2 f Dd3rd3v50, ~24!

yields an optimal current of the form
03610
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Jf52DF f C9~ f !
] f

]v
1b~ t ! f vG . ~25!

The time evolution of the Lagrange multiplierb(t) is deter-
mined by the conservation of energyĖ50, introducing Eq.
~25! in the constraint~21!. This yields

b~ t !52

E D f C9~ f !
] f

]v
•vd3rd3v

E D f v2d3rd3v
. ~26!

Note that the optimal current~25! can be written Jf
5D f ]a/]v, where

a~r ,v,t ![2C8~ f !2be, ~27!

is a generalized potential which is uniform at equilibriu
according to Eq.~6!. Therefore, the MEPP is just a varia
tional formulation of the linear thermodynamics of Onsag

Introducing the optimal current~25! in Eq. ~20!, we ob-
tain the generalized Fokker-Planck equation

] f

]t
1U6•“6f 5

]

]v H DF f C9~ f !
] f

]v
1b~ t ! f vG J . ~28!

Morphologically, Eq.~28! extends the usual Kramers equ
tion introduced in the context of colloidal suspensions@22#
and collisional stellar dynamics@23#. The first term is a gen-
eralized diffusion~depending on the distribution function!
and the second term is a friction. The functionb(t) can be
considered as a time dependant inverse temperature evo
with time so as to conserve energy~microcanonical formu-
lation!. The friction coefficientj5Db satisfies a generalize
Einstein relation. Note thatD is not determined by the MEPP
since it is related to the unknown boundC(r ,v,t) in Eq. ~23!.
We can use this indetermination to write Eq.~28! in the
alternative form

] f

]t
1U6•¹6f 5

]

]v H D8F ] f

]v
1

b~ t !

C9~ f !
vG J , ~29!

which will have the same general properties as Eq.~28!. This
equation involves an ordinary diffusion and a nonlinear fr
tion. Equation~29! can be deduced from Eq.~28! by the
substitutionD85D f C9( f ). One of these two forms will be
preferred depending on the situation contemplated. Note
D or D8 can depend onr ,v,t without altering the genera
properties of the equations.

It is straightforward to check that Eq.~28! with constraint
~26! satisfies aH theorem for the generalized entropy~4!.
From Eqs.~22! and ~25!, we can write

Ṡ52E Jf

f
•F f C9~ f !

] f

]v
1b~ t ! f vGd3rd3v

1b~ t !E Jf•vd3rd3v. ~30!
8-4
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The last quantity vanishes due to the conservation of ene
~21!. Therefore,

Ṡ5E Jf
2

D f
d3rd3v, ~31!

which is positive provided thatD.0. Now, at equilibrium
Ṡ50, henceJf50, so that according to Eq.~25!,

]C8~ f !

]v
1bv50. ~32!

Integrating with respect tov, we get

C8~ f !52b
v2

2
1A~r !. ~33!

The cancellation of the advective termU6•“6 in Eq. ~28!
combined with Eq.~33! implies that f 5 f (e) and “A5
2b“F. Therefore,A(r )52bF(r )2a and we recover Eq
~6! with b5 lim

t→1`
b(t). Therefore, a stationary solutio

of Eq. ~28! extremizes the entropy at fixed energy and ma
In addition, onlymaximaof S at fixedM andE are linearly
stable with respect to the generalized Fokker-Planck eq
tion ~28!. Indeed, considering the linear stability of a statio
ary solution of Eqs.~28! and~26!, we can derive the genera
relation ~see Appendix A!

2ld2J5d2Ṡ>0, ~34!

connecting the growth ratel of the perturbationd f ;elt to
the second order variations of the free energyJ5S2bE and
the second order variations of the rate of entropy produc
d2Ṡ>0. Since the productld2J is positive, we conclude
that a stationary solution of the generalized Fokker-Pla
equation~28! is linearly stable (l,0) if and only if it is an
entropymaximumat fixed mass and energy~see Sec. II B!.
This aesthetic formula shows the equivalence between
namical and thermodynamical stability for our generaliz
Fokker-Planck equations. Therefore, they only selectmaxima
of S, not minima or saddle points.

A relaxation equation appropriate to the canonical sit
tion can be obtained by maximizingJ̇5Ṡ2bĖ with con-
straint ~23!. The variational principle

d J̇2E 1

D
dS Jf

2

2 f Dd3rd3v50, ~35!

again yields an optimal current of form~25! but with con-
stantb. Since

J̇52E Jf•FC9~ f !
] f

]v
1bvGd3rd3v5E Jf

2

D f
d3rd3v>0,

~36!

according to Eqs.~21!, ~22!, and ~25!, we find that the free
energyJ increases monotonically until an equilibrium sta
of form ~6! is reached. In the canonical ensemble, we c
show that 2ld2J5d2J̇>0 and conclude that a stationa
03610
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solution of the generalized Fokker-Planck equation~28! with
constantb is linearly stable if and only if it is amaximumof
free energy at fixed mass and temperature~see Sec. II B!.

We can also use the MEPP to construct a more gen
relaxation equation. Assuming that the diffusion current
Eq. ~20! depends onv andr and repeating the same steps
before, we get

] f

]t
1U6•“6f 5“6$D@ f C9~ f !“6f 1b~ t ! f U6'#% ~37!

with

b~ t !52

E D f C9~ f !“6f U6'd3rd3v

E D f ~U6'!2d3rd3v
, ~38!

whereU6'5(2F,v). The generalized velocityU6 in phase
space is very similar to the velocity field of a two
dimensional incompressible fluid~see Sec. IV A!. We note in
particular thatU6'5“6e, wheree5v2/21F plays the role
of a generalized stream function.

To conclude this section, it can be of interest to discu
some special cases explicitly. For the Boltzmann entropy~9!,
C9( f )51/f and Eq.~28! has the form of an ordinary Kram
ers equation

] f

]t
1U6•“6f 5

]

]v FDS ] f

]v
1b f vD G . ~39!

For the Fermi-Dirac entropy~11!, C9( f )51/f (h02 f ). In or-
der to avoid the divergence of the termf C9( f ) as f→h0, it
is appropriate to consider the alternative form~29! of the
generalized Kramers equation. This yields

] f

]t
1U6•“6f 5

]

]v H D8F ] f

]v
1b f ~h02 f !vG J , ~40!

which has been initially proposed in Ref.@21#. Finally, for
the Tsallis entropy~13!, C9( f )5q fq22 and Eq.~28! has the
form of a nonlinear Fokker-Planck equation

] f

]t
1U6•“6f 5

]

]v FDS ] f q

]v
1b f vD G . ~41!

This equation has been studied in detail recently in relat
with Tsallis entropy and anomalous diffusion@14#. The un-
derlying mechanism giving rise to anomalous diffusion m
differ depending on the physical system: Le´vy walkers, po-
rous media, vortex dipoles in 2D turbulence, etc. In su
systems, the diffusion coefficient; f q21 is a power law of
the distribution function and the phase space has a fracta
multifractal structure~the exponentq is related to the fracta
dimension!. In fact, the nice properties of Eq.~41!, in par-
ticular theH theorem, go beyond the form of entropy co
sidered by Tsallis and remain valid for all convex functio
C( f ) even if the results are not always explicit. In the co
8-5
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text of anomalous diffusion, Eq.~28! can be obtained from a
Langevin equation of the form

dv

dt
5F2jv1A2D f FC~ f !

f G8R~ t !, ~42!

whereR(t) is a white noise. Since the function in front o
R(t) depends on (r ,v), the last term in Eq.~42! is a multi-
plicative noise. WhenC( f ) is a power law, Eq.~42! reduces
to the stochastic equations studied by Borland@24#.

D. Generalized Landau equation

We shall now introduce another relaxation equation te
ing to a state of maximum generalized entropy at fixed m
and energy. This is the generalized Landau equation

] f

]t
1U6•“6f 5

]

]vmE d3v8Kmn f f 8FC9~ f !
] f

]vn

2C9~ f 8!
] f 8

]v8nG , ~43!

Kmn5
A

u S dmn2
umun

u2 D , ~44!

wheref 5 f (r ,v,t), f 85 f (r ,v8,t), u5v82v, A is a constant,
andC( f ) is any convex function. We shall also consider t
alternative form

] f

]t
1U6•“6f 5

]

]vmE d3v8KmnF 1

C9~ f 8!

] f

]vn
2

1

C9~ f !

] f 8

]v8nG .

~45!

Morphologically, these equations extend the usual Lan
equation introduced in plasma physics and collisional ste
dynamics@25,26#. The generalized Landau equation satisfi
the conservation of mass, energy, angular momentum,
linear impulse and increases a generalized entropy (H theo-
rem!. In addition, formula~34! remains valid so that a sta
tionary solution of the generalized Landau equation is
early stable if and only if it is a maximum of the generaliz
entropy~4!.

Let us consider special cases explicitly. For the Bol
mann entropy, Eq.~43! reduces to the usual Landau equati

] f

]t
1U6•“6f 5

]

]vmE d3v8KmnS f 8
] f

]vn
2 f

] f 8

]v8nD .

~46!

For the Fermi-Dirac entropy, Eq.~45! takes the form

] f

]t
1U6•“6f 5

]

]vmE d3v8KmnF f 8~h02 f 8!
] f

]vn

2 f ~h02 f !
] f 8

]v8nG . ~47!
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Finally, for the Tsallis entropy, we get

] f

]t
1U6•“6f 5

]

]vmE d3v8KmnS f 8
] f q

]vn
2 f

] f 8q

]v8n
D .

~48!

This could be called theq-Landau equation. Contrary to th
nonlinear Kramers equation~41!, it seems that Eq.~48! has
never been introduced previously. We shall study its prop
ties more specifically in a future work@27#. A connection
between the~generalized! Landau equation and the~general-
ized! Kramers equation can be found in athermal bath ap-
proximation. In this context,f 5 f (v,t) describes a test par
ticle and f 85 f (v8,t) describes the field particles. If w
replacef 8 in Eq. ~43! by its equilibrium value~6!, then Eq.
~43! becomes equivalent to the generalized Kramers equa
~28! and the diffusion coefficient can be calculated@27#.

III. THE GENERALIZED SMOLUCHOWSKI-POISSON
SYSTEM

A. The high-friction limit

The Kramers-Poisson system~39!, ~1! is relatively com-
plicated because it has to be solved in a six-dimensio
phase space. However, it is well known in Brownian theo
@22# that, in the high-friction limitj→1` ~or equivalently
for large timest@j21), the velocity distribution function
becomes close to the Maxwellian distribution and the evo
tion of the spatial densityr(r ,t) is governed by the Smolu
chowski equation

]r

]t
5“F1

j
~T“r1r“F!G . ~49!

The Smoluchowski-Poisson system has been studied in R
@28,29#. It models the dynamics of self-gravitating Brownia
particles and the chemotactic aggregation of bacterial po
lations.

We now proceed in deriving a generalized Smoluchow
equation by taking the high-friction limit of the generalize
Kramers equation. We shall assume thatb is constant~ca-
nonical situation!. Integrating Eq.~28! over velocity, we get
the continuity equation

]r

]t
1“•~ru!50, ~50!

whereu5(1/r)* f vd3v is the local velocity. Multiplying Eq.
~28! by v and integrating over velocity, we get the mome
tum equation
8-6
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]

]t
~rui !1

]

]xj
~ruiuj !1

]

]xj
Pi j 1r

]F

]xi

52E DF f C9~ f !
] f

]v i
1b f v i Gd3v, ~51!

wherePi j 5* f wiwjd
3v is the stress tensor andw5v2u the

relative velocity. Introducing the notation f( f )
5* fxC9(x)dx, the first term in the collision term can b
rewritten]f( f )/]v and, since it is a gradient of a function,
vanishes by integration. We are left therefore with

]

]t
~rui !1

]

]xj
~ruiuj !1

]

]xj
Pi j 1r

]F

]xi
52Dbrui .

~52!

We shall close this hierarchy of equations with the local th
modynamical equilibrium condition

C8~ f !52bFw2

2
1l~r ,t !G , ~53!

wherel(r ,t) depends only on position and time. This dist
bution function maximizes the local density of free energy
fixed densityr and velocityu. The Lagrange multiplierl is
related to the spatial densityr(r ,t) through the relation

r5E f d3v. ~54!

Furthermore, since the velocity distributionf (w) in Eq. ~53!
is isotropic, we havePi j 5pd i j where p(r ,t) is the local
pressure

p5
1

3E f w2d3v, ~55!

determined by Eq.~53!. From these two relations, we fin
that the fluid is barotropic in the sense thatp(r ,t)
5p@r(r ,t)# where the functionp@ # is completely specified
by C( f ). We have thus obtained what might be called t
damped Euler-Jeans equations

]r

]t
1“•~ru!50, ~56!

r
du

dt
52“p2r“F2jru, ~57!

where d/dt5]/]t1u•“ is the material derivative. Thes
equations were first proposed in Ref.@21#. In the high-
friction limit, these equations can be simplified further sin
to first order inj21, we have

ru52
1

j
~“p1r“F!, ~58!

which is obtained from Eq.~57! by neglecting the advective
term. Note that the high-friction limit is consistent with th
local thermodynamical equilibrium~53!. Indeed, in the high-
03610
r-

t

e

,

friction limit j5Db→1`, the term in bracket in Eq.~28!
must vanish so that the distribution function satisfies Eq.~53!
in good approximation withu5O(j21). Inserting relation
~58! in the continuity equation~56!, we get a generalized
form of the Smoluchowski equation

]r

]t
5“F1

j
~“p1r“F!G , ~59!

initially proposed in Ref.@21#. The aesthetic form of this
equation, in which the pressurep replaces naturally the usua
termrT in the familiar Smoluchowski equation, suggests
itself the consistency of the generalized thermodynam
formalism. The condition of stationarity in Eq.~59! corre-
sponds to an equilibrium between the pressure force2“p
and the mean-field force2r“F. This is equivalent to Eq.
~6!. Indeed, using Eqs.~54!, ~55!, and~6!, one has

r5
1

3E f
]v

]v
d3v52

1

3E ] f

]v
•vd3v5

1

3
bE v2

C9~ f !
d3v,

~60!

“p5
1

3E ] f

]r
v2d3v52

1

3
b¹F•E v2

C9~ f !
d3v, ~61!

so that we obtain the condition of hydrostatic equilibrium

¹p52r¹F. ~62!

Finally, we can show that the generalized Smoluchows
Poisson system~59! satisfies a form of Virial theorem

1

2
j

dI

dt
52K1W23pbV, ~63!

whereI 5*rr 2d3r is the moment of inertia andpb the pres-
sure on the box~assumed uniform!. The proof is the same a
that given in Appendix D of Ref.@29#.

To conclude this section, we can consider particular for
of the generalized Smoluchowski equation. For the Bo
mann entropy~9!, Eqs.~53!, ~54!, and ~55! lead to the iso-
thermal equation of statep5rT and to the usual form~49!
of the Smoluchowski equation. The case of the Fermi-Di
entropy ~11! has been treated in Ref.@21#. For the Tsallis
entropy~13!, Eqs.~53!, ~54!, and~55! lead to the polytropic
equation of statep5Krg with g5111/n and Eq.~59! be-
comes the nonlinear Smoluchowski equation

]r

]t
5“F1

j
~K“rg1r“F!G . ~64!

The nonlinear Smoluchowski-Poisson system has been s
ied in detail in Ref.@30#. It describes self-gravitating Lange
vin particles experiencing anomalous diffusion. It is like
that anomalous diffusion occurs in biological systems so t
nonlinear Smoluchowski equations can also find applicati
in the context of chemotaxis.
8-7
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B. The Lyapunov functional

In Sec. II C, it was indicated that the Lyapunov function
associated with the generalized Kramers equation~28! with a
fixed inverse temperatureb is the free energyJ5S2bE
with the generalized entropy~4!. Therefore, the Lyapunov
functional associated with the generalized Smoluchow
equation~59! will coincide with the simplified form ofJ
obtained by using Eq.~53! with u50 to expressJ@ f # as a
functional ofr. Using Eq.~55!, energy~3! can be written

E5
3

2E pd3r1
1

2E rFd3r . ~65!

On the other hand, it is shown in Ref.@9# that whenf is given
by Eq. ~53!, entropy~4! can be rewritten as

S5
5

2
bE pd3r1bE lrd3r . ~66!

Therefore, the free energy reads

J5bE pd3r1bE lrd3r2
1

2
bE rFd3r . ~67!

It is shown, furthermore, in Ref.@9# that Eq.~67! can be put
in the equivalent form

J52bE rE
0

r p~r8!

r82
dr8d3r2

1

2
bE rFd3r1C,

~68!

whereC is a constant. This is the Lyapunov functional of t
generalized Smoluchowski-Poisson system. Indeed,
straightforward calculation yields

J̇5bE 1

jr
~“p1r“F!2d3r>0. ~69!

Let us consider particular cases. For the Boltzmann
tropy ~9!, p5rT, and

J52E r ln rd3r2
1

2
bE rFd3r . ~70!

Strictly speaking,*0
rp(r8)/r82dr8 diverges logarithmically

asr8→0. This means that the general formula~68! is only
marginally correct for an isothermal equation of state. Ho
ever, assuming a Boltzmann distribution~10! since the be-
ginning ~see Ref.@9#!, we can check that Eq.~70! is indeed
the right formula. On the other hand, for the Tsallis entro
~13!, p5Krg with g5111/n, so that

J52bnE pd3r2
1

2
bE rFd3r1Cn , ~71!

where the constant can depend onn. Assuming a Tsallis dis-
tribution ~14! since the beginning~see Ref.@9#!, we find that
the free energy reads
03610
l

ki
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J52
1

g21E ~bKrg2r!d3r2
1

2
bE rFd3r . ~72!

This expression is consistent with Eq.~71! and it reduces to
Eq. ~70! in the limit n→1`. However, it is more conve-
nient to write the free energy in the form

J52
bK

g21E ~rg2r!d3r2
1

2
bE rFd3r , ~73!

which is also consistent with Eqs.~71! and ~70!. Under this
form, we can say that in the high-friction limit aq-Tsallis
free energy in phase space yields ag-Tsallis free energy in
configuration space withg5(5q23)/(3q21). We note
also that2J/b can be written ‘‘E-KS’’ which is similar to a
free energy withK playing the role of a ‘‘polytropic tempera
ture’’ ~see Ref.@8#!. It is not clear whether this formal resu
bears more physical content than is apparent at first sigh

The generalized Smoluchowski equation~59! can also be
written in the form

]r

]t
5“F1

j
@p8~r!“r1r“F#G . ~74!

If we introduce a convex functionC(r) through the relation

rC9~r!5bp8~r!, ~75!

we have equivalently

]r

]t
5“$D@rC9~r!“r1br“F#%, ~76!

where we have definedD51/bj. Noting that Eq.~75! is
equivalent to

C~r!5brE
0

r p~r8!

r82
dr81C1r1C2 , ~77!

the Lyapunov functional~68! can be rewritten

J52E C~r!d3r2
1

2
bE rFd3r , ~78!

where the term proportional to the mass has been drop
The first term in Eq.~78! is a generalized entropy in configu
ration space. The stationary solution of the generaliz
Smoluchowski equation~76! is given by

C8~r!52bF2a. ~79!

It can be obtained by maximizing the free energy~78! at
fixed mass and temperature. Similarly, the generali
Smoluchowski equation~76! can be obtained by maximizing
the rate of free energy productionJ̇ ~see Sec. IV C!.

The case of Boltzmann and Tsallis entropies in config
ration space has been discussed previously. The Fermi-D
entropy in configuration spaceS@r#52*$r lnr1(r0
2r)ln(r02r)%d3r leads to an equation of statep(r)5
2T ln(12r/r0). For T→1`, p5rT and for T→0, r is a
8-8
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step function withr;r0 in the core andr50 outside. The
corresponding generalized Smoluchowski equation can
written

]r

]t
5“$D8@“r1br~r02r!“F#%. ~80!

Coming back to the general case and expliciting the re
tion betweenF andr, we can rewrite Eq.~76! in the form

]r

]t
5“FDH rC9~r!“r1brE r~r 8,t !

]u

]r
~r2r 8!d3r 8J G .

~81!

The stationary solution of this equation is determined by
integro-differential equation

C8~r!52bE r~r 8!u~r2r 8!d3r 82a. ~82!

Equation ~81! is one of the most important results of th
paper. The general study of this equation appears to b
considerable interest in view of its different potential app
cations. This project has been initiated by Refs.@28–30# in
particular cases.

C. Generalized stability analysis

The equivalence between dynamical and thermodyna
cal stability for the generalized Smoluchowski equation~59!
is proved in Appendix B. In fact, we can go further an
reduce the stability problem to an eigenvalue equation as
done in the special case of isothermal and polytropic dis
butions@28,30#. Let r andF refer to a stationary solution o
Eq. ~59! and consider a small perturbationdr that conserves
mass. We restrict ourselves to spherically symmetric per
bations~nonspherically symmetric perturbations do not
duce instability for nonrotating bodies!. Writing dr;elt and
expanding Eq.~59! to first order, we find that

ldr5
1

r 2

d

dr F r 2

j S ddp

dr
1dr

dF

dr
1r

ddF

dr D G . ~83!

It is convenient to introduce the notation

dr5
1

4pr 2

dq

dr
. ~84!

Physically, q represents the mass perturbationq(r )
[dM (r )5*0

r 4pr 82dr(r 8)dr8 within the sphere of radiusr.
It satisfies therefore the boundary conditionsq(0)5q(R)
50. Substituting Eq.~84! in Eq. ~83! and integrating, we
obtain

lj

r 2
q5

d

dr S p8~r!

r 2

dq

dr D 1
1

r 2

dq

dr

dF

dr
14pr

ddF

dr
, ~85!

where we have usedq(0)50 to eliminate the constant o
integration. Using the condition of hydrostatic equilibriu
03610
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Tdr/dr1rdF/dr50 and the Gauss theorem in perturb
form ddF/dr5Gq/r 2, we can rewrite Eq.~85! as

lj

4prr 2
q5

1

4pr

d

dr S p8~r!

r 2

dq

dr D 2
1

4pr2

1

r 2

dq

dr

dp

dr
1

Gq

r 2
,

~86!

or, alternatively,

d

dr S p8~r!

4prr 2

dq

dr D 1
Gq

r 2
5

lj

4prr 2
q, ~87!

with q(0)5q(R)50.
Let us now determine the second order variations of

generalized free energyJ. From Eq.~68!, we find that

d2J52bE p8~r!

2r
~dr!2d3r2

1

2
bE drdFd3r , ~88!

which must be negative~with respect to mass preservin
perturbations! for generalized thermodynamical stability i
the canonical ensemble. Adapting a procedure similar to
followed in Refs.@31,29,9#, we rewrite Eq.~88! in the form

d2J52bE
0

R p8~r!

8prr 2 S dq

dr D
2

dr2
1

2
bE

0

Rdq

dr
dFdr.

~89!

Integrating by parts and using the boundary conditions onq,
we get

d2J5bE
0

R

q
d

drS p8~r!

8prr 2

dq

dr D dr1
1

2
bE

0

R

q
ddF

dr
dr.

~90!

Using the Gauss theorem, we find

d2J5bE
0

R

q
d

drS p8~r!

8prr 2

dq

dr D dr1
1

2
bE

0

R Gq2

r 2
dr,

~91!

or, equivalently,

d2J5
1

2
bE

0

R

drqF G

r 2
1

d

drS p8~r!

4prr 2

d

dr D Gq. ~92!

The second order variations of free energy will be posit
~implying instability! if the differential operator which oc-
curs in the integral has positive eigenvalues. We need th
fore to consider the eigenvalue problem

F d

dr S p8~r!

4prr 2

d

dr D 1
G

r 2Gql~r !5lql~r ! ~93!

with ql(0)5ql(R)50. If all the eigenvaluesl are negative,
then the critical point is a maximum of free energy. If at lea
one eigenvalue is positive, the critical point is an unsta
saddle point. The point of marginal stability in the series
8-9
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equilibria is determined by the condition that the largest
genvalue is equal to zero (l50). We thus have to solve th
differential equation

d

dr S p8~r!

4prr 2

dF

dr D 1
GF~r !

r 2
50 ~94!

with F(0)5F(R)50.
We note that the eigenvalue problems~87! and ~93! are

similar and that they coincide for marginal stability in con
nuity with our previous studies@28–30#. We have also found
a similar eigenvalue equation by analyzing the stability
barotropic stars with respect to the Euler-Jeans equat
@31,8,9#. These eigenvalue equations have been solved
lytically ~or by using simple graphical constructions! for an
isothermal and a polytropic equation of state in Re
@8,9,29–31#. It is found that the case of marginal stabili
(l50) coincides with the point of minimum generalize
temperature 1/b as predicted by classical turning point arg
ments in the canonical ensemble@18#. The structure of the
perturbation profile that triggers the instability~in particular,
the number of nodes! has also been determined in our pre
ous papers. The present analysis shows that the structu
the mathematical problem remains the same for a gen
equation of statep5p(r) even if the solutions cannot b
obtained explicitly.

IV. APPLICATION TO STELLAR DYNAMICS
AND 2D TURBULENCE

A. Violent relaxation and metaequilibrium states

We consider a two-dimensional incompressible and inv
cid flow evolving in a plane perpendicular to the directionz.
Let u52z3“c denote the velocity field satisfying the in
compressibility condition“•u50. The stream functionc is
related to the vorticityvz5“3u by the Poisson equatio
Dc52v. More generally, we can consider a relation of t
form c(r )5*g(r2r 8)q(r 8)d2r 8 ~where q is the potential
vorticity! like, e.g., in the quasigeostrophic model@32#. We
assume that the dynamics is governed by the 2D Euler e
tion

]v

]t
1u•“v50. ~95!

This equation describes the inviscid evolution of a contin
ous vorticity flow. It also describes the mean-field evoluti
of N@1 point vortices before discrete correlations have
veloped~Vlasov limit! @2,33#. The 2D Euler equation con
serves the circulation

G5E vd2r , ~96!

the energy

E5
1

2E vcd2r , ~97!
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and the vorticity moments~equivalent to the Casimir invari
ants! Gn5*vnd2r . It also conserves the angular momentu
L5*vr 2d2r in a circular domain and the impulseP
5*vyd2r in a channel~or in an infinite domain!.

When coupled to the Poisson equation, the 2D Eu
equation develops very complex filaments as a result o
mixing process. In this sense, the fine-grained vortic
v(r ,t) never converges towards a stationary solution. Ho
ever, if we introduce a coarse-graining procedure, the coa
grained vorticityv̄(r ,t) rapidly relaxes towards ametaequi-
librium state. This is called violent relaxation, chaot
mixing, or inviscid relaxation. This ‘‘collisionless relax
ation’’ is common to all Hamiltonian systems with long
range interactions described by Vlasov-type equations~stel-
lar systems, point vortices, non-neutral plasmas, HM
model, . . . ). It physically differs from the ‘‘collisional relax-
ation’’ ~or viscous decay! which takes place for much longe
times ~often physically irrelevant!. This implies that the or-
der of the limitst→1` and N→1` ~or n→0) is not in-
terchangeable@2#.

There have been some attempts to describe the meta
librium state in terms of statistical mechanics@13,34–37#. In
the context of 2D hydrodynamics, the statistical metaequi
rium state maximizes the mixing entropy

S@r#52E r lnr d2rds, ~98!

while conserving circulation, energy, and all the Casimir
variants. The mixing entropy is the Boltzmann entropy f
r(r ,s), the density probability of finding the valuev5s in
r . The most probable distribution is the Gibbs state

r~r ,s!5
1

Z~r !
x~s!e2(bc1a)s, ~99!

wherex(s)[exp(2(n.1ans
n) accounts for the conservatio

of the fragile momentsGn.15*rsndsd2r anda,b are the
usual Lagrange multipliers forG andE ~robust integrals! @9#.
The ‘‘partition function’’ Z5*x(s)e2(bc1a)sds is deter-
mined by the local normalization condition*rds51. The
equilibrium coarse-grained vorticityv̄[*rsds can be ex-
pressed as

v̄52
1

b

] lnZ

]c
5F~bc1a!5 f ~c!. ~100!

Since“v̄5 f 8(c)“c andu52z3“c, this is a stationary
solution of the 2D Euler equation. Taking the derivative
Eq. ~100!, it is easy to show@37# that

v̄8~c!52bv2 , v2[E r~s2v̄ !2ds.0, ~101!

wherev2 is the centered local enstrophy. We note that
relation v̄5 f (c) is always monotonic, increasing at neg
tive temperatures and decreasing at positive temperatu
Therefore, the coarse-grained vorticityv̄ extremizes aH
function
8-10



e
in

b

-

In

-

l

is
ot

de-
as

-

e

ical

c-
-

ui-
ble

be

in
D

n-

on
-

r-

-
in-

ility

-

GENERALIZED THERMODYNAMICS AND FOKKER- . . . PHYSICAL REVIEW E 68, 036108 ~2003!
S52E C~v!d2r , ~102!

at fixed circulation and energy, whereC(v) is a convex
function, i.e., C9(v).0. Indeed, introducing appropriat
Lagrange multipliers and writing the variational principle
the form

dS2bdE2adG50, ~103!

we find that the critical points of aH function at fixed circu-
lation and energy are given by

C8~v!52bc2a. ~104!

The conservation of angular momentum and impulse can
easily included in the variational principle~103! by introduc-
ing appropriate Lagrange multipliersV and U. Equation
~104! remains valid provided thatc is replaced by the rela
tive stream functionc85c1(V/2)r 22Uy. Equation~104!
can be written equivalently as

v5F~bc1a!, ~105!

whereF(x)5(C8)21(2x). From the identity

v8~c!52b/C9~v!, ~106!

resulting from Eq.~104!, v(c) is monotonically decreasing
if b.0 and monotonically increasing ifb,0. Therefore, for
any Gibbs state of form~99!, there exists aH function of
form ~102! that the coarse-grained vorticityv̄ extremizes~at
fixed G, E). It can be shown furthermore thatv̄ maximizes
this functional. We note thatC(v) is anonuniversalfunction
which depends on the initial conditions. In general,S@v̄# is
not the ordinary Boltzmann entropySB@v̄#52*v̄ lnv̄d2r
due to fine-grained constraints~Casimir invariants! that
modify the form of entropy that we would naively expect.
the two-levels approximation$s0,0% of the statistical theory,
S@v̄# is the Fermi-Dirac entropy

SFD@v̄#52E H v̄

s0
ln

v̄

s0
1S 12

v̄

s0
D lnS 12

v̄

s0
D J d2r ,

~107!

leading to the Fermi-like distribution

v̄5
s0

11lebs0c
. ~108!

In the dilute limit v̄!s0, one recovers the Boltzmann en
tropy

SB@v̄#52E v̄ ln v̄d2r , ~109!

and the isothermal vortex

v̄5Ae2bc. ~110!
03610
e

Other forms ofH functions compatible with the statistica
prediction~99! are presented in Sec. IV F~from now on, we
drop the bar onv except in case of ambiguity!.

B. Dynamical stability and thermodynamical analogy

Unfortunately, the statistical theory of violent relaxation
not very predictive because the initial conditions are n
known in practice and the Casimir invariants cannot be
termined from the coarse-grained field once the vorticity h

mixed ~since v n̄Þv̄n) @38#. On the other hand, the high
order moments ofv are altered by nonideal effects~viscos-
ity, forcing, . . . ) sothat their strict conservation is abusiv
@12,39#. Finally, the relaxation is, in general,incompleteso
that the ergodic hypothesis which sustains the statist
theory is not fulfilled everywhere@7,40#. One aspect of in-
complete violent relaxation is that the metaequilibrium stru
tures ~vortices, galaxies, . . . ) aremore confined than pre
dicted by statistical mechanics.

The only thing that we know for sure is that the metaeq
librium state reached by the system is a dynamically sta
stationary solution of the 2D Euler-Poisson systems~on a
coarse-grained scale!. Ellis and collaborators@12# have
shown that a strong~nonlinear! condition of dynamical sta-
bility is that v maximizes aH-function at fixed circulation
and energy. This condition of dynamical stability can
written

d2J52E C9~v!
~dv!2

2
d2r2

1

2
bE dvdcd2r<0,

; dvudE5dG50. ~111!

This is similar to a condition of microcanonical stability in
thermodynamics. It is therefore relevant to develop ather-
modynamical analogyand use the same vocabulary as
thermodynamics to analyze the dynamical stability of 2
flows. In this analogy,S@v# can be called a generalized e
tropy, b a generalized inverse temperature, . . . . In addition,
we can introduce a Legendre transformJ5S2bE which is
similar to a free energy in thermodynamics. The conditi
that v is a maximum ofJ at fixed temperature and circula
tion can be written

d2J52E C9~v!
~dv!2

2
d2r2

1

2
bE dvdcd2r<0,

; dvudG50. ~112!

This is similar to a condition of canonical stability in the
modynamics. The criteria~111! and~112! are not equivalent
if the ‘‘caloric curve’’ b(E) presents turning points or bifur
cations. This corresponds to a situation of ensemble
equivalence in thermodynamics. Since canonical stab
implies microcanonical stability~but not the converse!, the
stability criterion~111! is stronger than~112!. This has im-
portant implications in geophysical and jovian fluid dynam
ics @12,41#.
8-11
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The H function S@v# maximized by the system at me
taequilibrium isnonuniversal. It depends on the initial con
ditions and on the strength of mixing. The Tsallis entropy

Sq@v#52
1

q21E ~vq2v!d2r , ~113!

is a particularH function thatsometimesoccurs in 2D hy-
drodynamics@4#. However, this is essentially fortuitous, a
discussed in Ref.@7#. In addition, in this context, Tsallis
functional is not a true entropy. Its maximization at fixe
circulation and energy is a condition of~nonlinear! dynami-
cal stability, not a condition of thermodynamical stability.
leads to aparticular class of stable stationary solutions of th
2D Euler equation characterized by

v5A~l2c!n, ~114!

with A5@(q21)b/q#1/(q21) and l5@12(q21)a#/(q
21)b. We shall call this class of vorticespolytropic vortices
by analogy with stellar polytropes@26#. The indexn of the
polytrope is related to the parameterq by the relationn
51/(q21). Isothermal vortices are recovered in the lim
q→1 ~i.e., n→1`). For q52, i.e.,n51, the relationship
betweenv and c is linear and Tsallis functional coincide
with minus the enstrophy@4#.

To conclude this section, we note that dynamical stabi
results similar to Eq.~111! and~112! have been obtained fo
the Vlasov-Poisson system@11,9#. Therefore, the generalize
thermodynamical formalism developed in Sec. II can be u
to study the~nonlinear! dynamical stability of collisionless
stellar systems in astrophysics and other systems with lo
range interactions described by the Vlasov equation.

C. Relaxation equations for 2D flows

According to the previous discussion, an important pro
lem in 2D hydrodynamics is to construct particular station
solutions of the 2D Euler equation with strong stability pro
erties. We shall consider solutions that maximize aH func-
tion S@v# at fixed circulationG and energyE @12#. The
explicit construction of such solutions is nontrivial. Explo
ing the thermodynamical analogy discussed previously
using the MEPP, we can obtain relaxation equations~similar
to Fokker-Planck equations! that can be used as numeric
algorithms to construct arbitrary stable stationary solutio
of the 2D Euler equation. To apply the MEPP, we write t
relaxation equation in the form

]v

]t
1u•“v52“•Jv , ~115!

where the diffusion currentJv has to be determined. Th
form of Eq. ~115! ensures the conservation of circulatio
provided thatJv•n50 on the domain boundary~with normal
vectorn). From Eqs.~97!, ~102!, and~115!, it is easy to put
the time variations of energy and entropy in the form

Ė5E Jv•¹cd2r , ~116!
03610
y

d

g-

-
y
-

d

s

Ṡ52E C9~v!Jv•“vd2r , ~117!

where we have used straightforward integrations by pa
Following the MEPP, we now determine the optimal curre
Jv which maximizes the rate of entropy production~117!
while satisfying the conservation of energyĖ50 and the
constraint

Jv
2 <C~r ,t !. ~118!

This maximization problem leads to the optimal current

Jv52D@vC9~v!“v1b~ t !v“c#. ~119!

The time evolution of the Lagrange multiplierb(t) is deter-
mined by introducing Eq.~119! in the energy constrain
~116!, usingĖ50. This yields

b~ t !52

E DvC9~v!“v•“cd2r

E Dv~“c!2d2r
. ~120!

Introducing the optimal current~119! in Eq. ~115!, we obtain
a relaxation equation of the form

]v

]t
1u•“v5“$D@vC9~v!“v1b~ t !v“c#%.

~121!

The first term is a generalized diffusion and the second te
is a drift. The functionb(t) can be considered as a tim
dependant inverse temperature~possibly negative!. It evolves
with time so as to conserve the total energyE ~microcanoni-
cal description!. The drift coefficientj5Db is a generalized
Einstein relation. We shall use Eq.~121! whenv>0. When
v can be positive and negative, we shall prefer the alter
tive form

]v

]t
1u•“v5“H D8F“v1

b~ t !

C9~v!
“cG J , ~122!

which is obtained from Eq. ~121! by setting D8
5DvC9(v). It is straightforward to check that Eq.~121!
with constraint~120! satisfies aH theorem for the general
ized entropy~102!. Indeed, Eq.~117!, ~116!, and~119! lead
to

Ṡ5E Jv
2

Dv
d2r , ~123!

where we have usedĖ50. If v>0, then Eq.~123! is posi-
tive provided thatD>0. If we use the alternative equatio
~122!, we haveDv5D8/C9(v) so that Eq.~123! is positive
whatever the sign ofv provided thatD8>0. At equilibrium
Ṡ50, henceJv50, which is equivalent to

“C8~v!1b“c50. ~124!
8-12
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Integrating, we get

C8~v!52bc2a, ~125!

which returns Eq.~104! with b5 lim
t→1`

b(t). Therefore, as

expected, a stationary solution of Eq.~121! extremizes the
generalized entropy~102! at fixed energy and circulation. In
addition, it is shown in Appendix B that relation~34! remains
valid so that onlymaximaof S at fixedE andG are selected
by the relaxation equation. The relaxation equation appro
ate to the canonical situation is obtained by maximizingJ̇

5Ṡ2bĖ with constraint~118!. This again yields an optima
current of form~119! but with constantb. In addition, Eqs.
~123! and~34! remain valid withJ in place ofS. Hence, the
free energyJ increases monotonically until a state of max
mum free energy is reached.

To conclude this section, we shall discuss particular ca
For the Boltzmann entropy,C9(v)51/v and Eq.~121! re-
duces to

]v

]t
1u•“v5“@D~“v1bv“c!#. ~126!

For the Fermi-Dirac entropy,C9(v)51/v(s02v) and Eq.
~122! yields

]v

]t
1u•“v5“$D8@“v1bv~s02v!“c#%. ~127!

For the Tsallis entropy,C9(v)5qvq22 and Eq.~121! be-
comes

]v

]t
1u•“v5“$D@“vq1bv“c#%. ~128!

D. A physical numerical algorithm

Due to the thermodynamical analogy, the relaxation eq
tion proposed in Sec. IV C can provide a powerful numeri
algorithm to compute arbitrary dynamically stable station
solutions of the 2D Euler equation. Since we are only int
ested by the stationary solution, we can forget the advec
term in Eq.~122! and fixD to an arbitrary positive constan
We propose therefore the physical numerical algorithm

]v

]t
5“H DF“v1

b~ t !

C9~v!
“cG J , ~129!

b~ t !52

E “v“cd2r

E ~“c!2

C9~v!
d2r

. ~130!

These equations satisfy the conservation of circulation
energy ~robust integrals! and increase the generalized e
tropy ~102! until the system has reached amaximumof S at
fixed G and E. We have seen indeed that a minimum or
saddle point ofS@v# are linearly unstable via Eqs.~129!–
03610
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~130!. Note that specifyingC(v) does not directly determine
the equilibrium state because many bifurcations can occu
parameter space (G,E). There can also existlocal entropy
maxima ~similar to metastable states in thermodynami!
leading to a complicated notion ofbasin of attraction~see
Ref. @28# in a related context!. These equations could be use
to study dynamical stability problems on a new angle@12#.
Indeed, if a stationary solution of Eq.~129! is stable at fixed
inverse temperatureb or at fixed energyE, then it is dynami-
cally stable with respect to the 2D Euler equation. On
other hand, if a stationary solution of Eq.~129! is stable at
fixed energyE @variableb(t)] but not at fixed inverse tem
peratureb, then it violates Arnold’s sufficient conditions o
stability ~see Appendix C! but is, however, dynamically
stable with respect to the 2D Euler equation. The relaxat
equations proposed in Sec. II could be used similarly as
merical algorithms to construct nonlinearly dynamica
stable stationary solutions of the Vlasov equation.

E. A simplified parametrization of 2D turbulence

The generalized Fokker-Planck equations derived in S
IV C can also provide a simplified parametrization of 2
turbulence. The thermodynamical parametrization propo
by Robert and Sommeria@42# can be written

]r

]t
1u•“r5“$D@“r1b~ t !r~s2r!“c#%, ~131!

wherer(r ,s,t) denotes the density probability of finding th
vorticity level s in r at timet. Equation~131! incorporates a
turbulent viscosityD and an additional term interpreted as
systematic drift@43#. The drift is due to the inhomogeneity o
the medium and is supported by arguments of kinetic the
in simplified models~point vortices, quasilinear approxima
tion! @43,33,44,2#. Usual parametrizations including a sing
turbulent viscosity correspond to the infinite temperatu
limit ( b50) of the thermodynamical parametrization. Equ
tion ~131! increases the mixing entropyS@r# while conserv-
ing the energy and all the Casimir invariants. Fort→1`,
the solution converges to the Gibbs state~99!.

The equations of Robert and Sommeria@42# are compli-
cated because they take into account the conservation oall
the Casimir invariants. This clearly leads to practical dif
culties. This also leads to physical difficulties because
strict conservation of all the Casimir invariants is abusive
discussed in Sec. IV C. We could try to simplify the proble
by writing a hierarchy of equations for the moments ofr.
The first equation of this hierarchy is

]v̄

]t
1u•“v̄5“$D@“v̄1b~ t !v2“c#%, ~132!

where v2 is the local centered enstrophy defined in E
~101!. However, we are now led to a difficult closure pro
lem. Kazantsevet al. @45# have proposed to close the hiera
chy of equations by a Gaussian approximation. This lead
an equilibrium state corresponding to a minimum enstrop
8-13
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state. Although this state may be relevant in some partic
oceanic problems~Fofonoff flows!, this is not expected to be
general.

In this paper, we propose to close the hierarchy of m
ment equations by a relation of the form

v25
1

C9~v!
, ~133!

which can be deduced from Eqs.~101! and~106!. This rela-
tion is valid at statistical equilibrium but we shall use it o
of equilibrium as a convenient approximation. In a sen
this supposes that the Lagrange multipliersan associated
with the fragile constraintsGn.1 in the Gibbs state~99! can
be treated canonically@12#. Substituting Eq.~133! in Eq.
~132!, we obtain the simplified parametrization

]v

]t
1u•“v5“H DF“v1

b~ t !

C9~v!
“cG J , ~134!

b~ t !52

E D“v“cd2r

E D
~“c!2

C9~v!
d2r

, ~135!

which coincides with Eqs.~122! and ~120!. The function
C(v) is a nonuniversal function which encapsulates th
complexity of the fine-grained dynamics and which depe
on the situation contemplated~ocean dynamics, jovian atmo
sphere, decaying 2D turbulence, . . . ). For agiven physical
situation, we propose to select a form ofC(v) a priori and
compute the corresponding equilibrium state. Then, we
checka posterioriwhether it was a good choice by compa
ing the result with the information that we have on the s
tem. This is similar to the notion ofprior vorticity distribu-
tion proposed in Ref.@12#. Of course, this approach i
essentially phenomenological and explanatory but it allo
to deal with complex situations which were previously ina
cessible.

To obtain an operational subgrid scale parametrization
2D turbulence, it remains for one to specify the value of
diffusion coefficient. Heuristic arguments@46,21# or more

formal kinetic theory@44# suggest thatD5Ke2v2
1/2 whereK

is a constant of order unity ande is the scale of unresolve
fluctuations. This formula is a relatively direct consequen
of the general Taylor expression of the turbulent viscos
@47# and it proved to be relevant in oceanic modeling@45#.
Furthermore, it has been shown in previous works@46,21#
that the spatial dependance of the diffusion coefficient is
portant to take into account the problem ofincomplete relax-
ation and the formation of self-confined vortices@48#. With
the closure relation~133!, the diffusion coefficient can be
expressed in terms ofv as

D5
Ke2

AC9~v!
. ~136!
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The same simplifications could be introduced in the para
etrization of the gravitational Vlasov-Poisson system p
posed in Ref.@21#.

F. Classification of generalized entropies

Our parametrization involves a free functionC(v). This
indetermination is intrinsic to the problem of 2D turbulen
and not really a flaw of our approach: there isno universal
entropyS@v# in 2D turbulence. In order to reduce this ind
termination, we shall argue that generalized entropies ca
regrouped in ‘‘classes of equivalence’’ with the underlyin
idea that functionals of the same class will produce sim
results. Then, for a given physical situation, it will be po
sible to pick a form ofC(v) in the corresponding class o
equivalence and use it in the parametrization~134!–~136!.

We shall now present typical forms of ‘‘generalized entr
pies’’ S@v# that appeared in the literature. Specifically, w
shall prescribe analytical forms of the vorticity distributio
x(s) in the Gibbs state~99! and compute the correspondin
C(v). These analytical expressions can be considered
prototypical examples of more realistic distributions. Co
sider first the case where the fine-grained vorticity takes o
two values s0 and s1.s0 so that x(s)5x0d(s2s0)
1x1d(s2s1). In that case,v(c) is the distribution

v5s01
s12s0

11e(s12s0)(bc1a)
, ~137!

which can also be written as a tanh,

v5
s01s1

2
2

s12s0

2
tanhFs12s0

2
~bc1a!G . ~138!

For this distribution,v→s1 ,s0 when 2bc→1`,2`.
Using Eq.~104!, we get

C~v!5p lnp1~12p!ln~12p!, v5ps11~12p!s0 .

~139!

This implies

C8~v!5
1

s12s0
lnS v2s0

s12v D ,

C9~v!5
1

~v2s0!~s12v!
. ~140!

Substituting Eq.~140! in the general parametrization~134!,
we obtain

]v

]t
1u•“v5“$D@“v1b~ t !~v2s0!~s12v!“c#%,

~141!

with a diffusion coefficient

D5Ke2A~v2s0!~s12v!. ~142!

These equations coincide with the two-levels approximat
of the thermodynamical parametrization~131!. This two-
8-14
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levels approximation has been used in relation with sh
layer instability@40#, vortex merging@42#, and in a model of
Jupiter’s great red spot@49#.

Turkington @38# has considered the distributionx(s)5x
for s0<s<s1 and x(s)50 otherwise. The choicean50
for n.1 in Eq.~99! amounts to maximizing the entropy~98!
at fixed energy and circulation, neglecting the higher-or
vorticity moments. If we assume for simplicity thats05
2l ands151l, thenv(c) is the Langevin function

v5lL@2l~bc1a!#, L~x!5coth~x!2
1

x
. ~143!

It does not seem possible to write down the functionC(v)
explicitly. However, relationship~143! is qualitatively simi-
lar to Eq. ~138! so we argue that the Langevin-type mod
falls in the same ‘‘class of equivalence’’ as the Fermi-Dira
type model~i.e., they will produce the same type of equilib
rium states and bifurcations!.

Consider now a situation in which the fine-grained vort
ity can take three valuess1 , s2, and 0 so thatx(s)
5d(s)1x1d(s2s1)1x2d(s2s2). Consider furthermore
the dilute limit of the statistical theory in whichZ.1. In that
case, the probability of the nonzero levels is given bypi
5Aiexp@2(bc1a)si# and v5p1s11p2s2. This dilute
limit corresponds to the point vortex model@50#. If we as-
sume furthermore, for simplicity, thats052l and s15
1l we get the sinh-Poisson relation

v522Alsinh@l~bc1a!#. ~144!

For this distribution,v→6` as 2bc→6`. The sinh
relationship is observed in the late stages of 2D turbule
when the initial condition is a random vorticity field@51#.
This is because the vortices that form at intermediate tim
are very intense and isolated as in a point vortex gas. N
that the statistical approach based on the conservation o
the Casimir invariants does not work in that case becaus
viscous effects@39#. Using Eq.~104!, we find that

C8~v!5
1

l
sinh21S v

2Al D . ~145!

Then,

C~v!5
v

l
sinh21S v

2Al D2
1

l
A4A2l21v2 ~146!

and

C9~v!5
1

l

1

A4A2l21v2
. ~147!

Therefore, in the case of 2D decaying turbulence with r
dom initial conditions, parametrization~134! that we propose
is

]v

]t
1u•“v5“$D@“v1b~ t !lA4A2l21v2

“c#%

~148!
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with a diffusion coefficient

D5Ke2Al~4A2l21v2!1/4. ~149!

If we assumes a Poissonian weight factorx(s)5exp(2usu/
q) in Eq. ~99!, we get

v52
2q2~bc1a!

12q2~bc1a!2
. ~150!

Pasmanter@52# has noted that this relationship yields resu
similar to those obtained with the sinh relationship, so th
fall in the same ‘‘class of equivalence.’’

If we now assume that the local distribution of vorticity
Gaussian so thatx(s)5e2a2s2

in Eq. ~99!, then thev2c
relationship is linear@35# and can be written

v52V2~bc1a!, ~151!

whereV25v2 is a constant equal to the centered variance
the vorticity distribution. Such a linear relationship som
times occurs in geophysics@53#. The choicean50 for n
.2 is equivalent to maximizing the entropy~98! at fixed
energy, circulation, and enstrophy~neglecting the higher-
order moments!. The functionC(v) is

C~v!5
1

2V2
v2, ~152!

so that the generalized entropyS@v# is proportional to minus
the ~coarse-grained! enstrophyG25*v̄2d2r . Therefore, Eq.
~151! can also be obtained by minimizing the enstrophy
fixed energy and circulation@54#. A linear v2c relationship
is also obtained in thestrong mixing limitof the statistical
theory providing an inviscid justification of the minimum
enstrophy principle@55#.

Another choice of probability distribution has been pr
posed by Elliset al. @12# in a model of jovian atmospher
where the skewness is expected to play a crucial role. T
relate x(s) in the general formula~99! to the g density
za21e2z (z<0) and find that

v5
2V2~bc1a!

11lV2~bc1a!
, ~153!

whereV2 is equal to the variance ofx(s) and 2lV2
1/2 is

equal to the skewness ofx(s). For this relationship,v→
2` as 2(bc1a)→1/lV2 and v→21/l as 2bc→
1`. Therefore, theg model~153! is somewhat intermediate
between the tanh model~138! and the sinh model~144!.
Using Eq.~104!, we find that the corresponding generaliz
entropy is

C~v!5
1

lV2
Fv2

1

l
ln~11lv!G . ~154!

This yields
8-15
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C8~v!5
v

V2~11lv!
, C9~v!5

1

V2~11lv!2
.

~155!

For l→0, we recover the Gaussian model~151! as a special
case of theg model. Parametrization~134! that we propose
for this model is

]v

]t
1u•“v5“$D@“v1b~ t !V2~11lv!2

“c#%,

~156!

with a diffusion coefficient

D5Ke2V2
1/2~11lv!. ~157!

For l→0 ~Gaussian approximation!, we recover the first
moment equation of the parametrization used by Kazan
et al. @45# in a barotropic ocean model.

V. CONCLUSION

In this paper, we have introduced a class of relaxat
equations associated with a generalized thermodynam
framework. The Fokker-Planck and nonlinear Fokker-Plan
equations corresponding to Boltzmann and Tsallis entro
are recovered as a special case. The potential applicatio
this class of relaxation equations is considerable and c
cerns various domains of physics such as stellar dynam
2D turbulence, plasma physics, chemotaxis, porous me
etc. For example, these equations can serve as nume
algorithms to compute arbitrary nonlinearly dynamica
stable stationary solutions of Vlasov-Poisson or 2D Eu
Poisson systems. Physical applications of these equa
and numerical simulations will be presented in future wor

We have also clarified the concept of generalized therm
dynamics introduced by Tsallis@3# and applied to self-
gravitating systems and two-dimensional vortices by Plas
and Plastino@6# and Boghosian@4#. If we consider a collec-
tion of stars or point vortices and take the long time lim
(t→1` at fixedN@1), the statistical equilibrium state re
sulting from a ‘‘collisional’’ evolution is correctly describe
by the ordinary Boltzmann entropySB@ f #52* f lnfd3rd3v
or SB@v#52*v lnvd2r , but the thermodynamic limit is un
usual ~and doesnot correspond toN,V→1` with N/V
fixed! @2#. In the case of stellar systems, there is no t
equilibrium state but this corresponds to important phys
processes~evaporation, gravothermal catastrophe! not to a
breakup of thermodynamics@9#. The kinetic theory of stars
and point vortices is extremely complicated due to the lo
range nature of the interactions. Kinetic equations can
derived rigorously by using projection operator technique
they are non-Markovian and integro-differential@56,33#. The
H theorem for the Boltzmann entropy cannot be proved w
out further approximations. In addition, the diffusion coef
cient depends on position, velocity, and time and this
lead to a confinement of the structure in physical or ph
space. These complicated effects~space and time delocaliza
tions! can induce, for intermediate collisional times, a dev
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tion with respect to an ideal statistical evolution. Howev
the infinite time limit should be described by the Boltzma
distribution.

On the other hand, for timest!t relax and N→1`, a
collection of stars or point vortices~or continuous vorticity
flows! is described by the Vlasov or 2D Euler equation.
can achieve a metaequilibrium state as a result of a ‘‘co
sionless’’ ~or inviscid! violent relaxation. Note that the do
main of validity of the collisionless regime is huge for su
systems since the collisional relaxation timet relax

;(N/ ln N)tD is much larger than the dynamical timetD @2#.
The correct entropy is the Boltzmann entropyS@r#5
2*r lnrdhd3rd3v or S@r#52*r lnrdsd2r for r, the local
distribution of phase levels or vorticity levels. The statistic
metaequilibrium state is obtained by maximizing the Bol
mann entropyS@r# while conserving energy, circulation, an
an infinite class of invariants called the Casimir invarian
The coarse-grained distribution function or coarse-grain
vorticity also happens to maximize aH function S@ f̄ #5

2*C( f̄ )d3rd3v or S@v̄#52*C(v̄)d2r , whereC is a con-
vex function, while conserving only mass~circulation! and
energy~robust constraints!. Note thatS@ f̄ # increases during
violent relaxation contrary toS@ f # which is a Casimir invari-
ant @10#. The functional maximized at equilibrium depend
on the initial conditions and is therefore non-universal.
this context, ‘‘generalized entropies’’ arise due to the pr
ence of fine-grained constraints~Casimir invariants! that
modify the macroscopic form of entropy that we would n
ively expect. This makes the metaequilibrium state diffic
~if not impossible! to predict. A classification of generalize
entropies inclasses of equivalencecan, however, be at
tempted.

Furthermore, it can happen that the mixing process dur
the collisionless relaxation is not sufficient to justify the e
godic hypothesis which sustains the statistical theory. In t
case, the metaequilibrium state results from anincomplete
violent relaxation. One possibility to take into account i
complete mixing and nonergodicity is to introduce addition
kinetic constraints in the statistical approach. This can
done by using relaxation equations with a variable diffusiv
related to the local fluctuations of the vorticity or distributio
function @46,21#. Accordingly, the physical picture tha
emerges is the following: during violent relaxation, the sy
tem has thetendencyto reach the most mixed state describ
by the Gibbs distribution. However, as it approaches equi
rium, the mixing becomes less and less efficient and the
tem settles on a stationary state which is not the most mi
state. Then, the evolution is stopped until other effects~col-
lisions, viscosity, . . .! come into play. The state resultin
from an incomplete violent relaxation is a~nonlinearly! dy-
namically stable stationary solution of the Vlasov or 2D E
ler equation on the coarse-grained scale. A strong condi
of stability is that it maximizes aH function at fixed mass
~circulation! and energy@11,12#. Since this condition of non-
linear dynamical stability issimilar to a condition of thermo-
dynamical stability, we can use a thermodynamical analo
to study the dynamical stability of stellar systems and
vortices. In this analogy, theH function can be regarded as
8-16
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‘‘generalized entropy.’’ TheH function maximized by the
system at metaequilibrium depends on the initial conditio
on the efficiency of mixing, and on nonideal effects. Tsa
entropy is just a particularH function leading to polytropic
distributions. It can sometimes provide a good fit of the m
taequilibrium state in case of incomplete relaxation@4# but
this is not general@7#. Most galaxies and 2D vortices are n
described by Tsallis polytropic distribution. A better model
a composite model with an isothermal core where mixing
efficient (q51) and a polytropic halo (qÞ1) where relax-
ation is incomplete@9#.

In conclusion, ‘‘generalized entropies’’ arise whenhidden
constraintsare in action: Casimir invariants, kinetic con
straints preventing mixing, forcing and dissipation, geome
cal structure of phase space~fractality!, etc. We can either
work with the Boltzmann entropy and try to take into a
count these additional constraints or keep only the usual c
straints~mass and energy! and change the form of entropy
The second possibility, while leading to some indetermi
tions, is often more convenient.
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APPENDIX A: LINEAR STABILITY ANALYSIS
OF THE GENERALIZED KRAMERS EQUATION

Let f be a stationary solution of Eq.~28! andd f a small
perturbation around this solution. Let us now linearize E
~28! around equilibrium and write the time dependance
the perturbation in the formd f ;elt. Noting that“6•U6
50, we get

ld f 1“6~d f U6!1“6~ f dU6!52
]dJf

]v
, ~A1!

whereJf is given by Eq.~25!. Multiplying both sides of Eq.
~A1! by C9( f )d f and integrating over phase space, we o
tain

lE C9~ f !~d f !2d3rd3v1E C9~ f !d f ¹6~d f U6!d3rd3v

1E C9~ f !d f“6~ f dU6!d3rd3v

52E C9~ f !d f
]dJf

]v
d3rd3v. ~A2!

The second term can be rewritten

I 25
1

2E C9~ f !“6@~d f !2U6#d3rd3v

52
1

2E C-~ f !~d f !2
“6f •U6d3rd3v, ~A3!
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where we have used an integration by parts. From rela
~6!, we find

C9~ f !“6f 52bU6' . ~A4!

Hence, I 250. Using dU65(0,2“dF) and Eq.~A4!, the
third term in Eq.~A2! can be rewritten

I 352bE d f U6'•dU6d3rd3v5bE d f v•“dFd3rd3v.

~A5!

After an integration by parts, the fourth term in Eq.~A2! can
be written

I 45E dJf•
]

]v
@C9~ f !d f #d3rd3v, ~A6!

or, using Eq.~A4!,

I 45E dJf•FC9~ f !
]d f

]v
2b

C-~ f !

C9~ f !
d f vGd3rd3v. ~A7!

Taking the variation of Eq.~25! and using Eq.~A4!, one
finds that

dJf52D f FC9~ f !
]d f

]v
2b

C-~ f !

C9~ f !
d f v1dbvG . ~A8!

Hence,

I 452E dJf•S dJf

D f
1dbvDd3rd3v52E ~dJf !

2

D f
d3rd3v,

~A9!

where the last equality follows from the conservation of e
ergy ~21!. Inserting the foregoing relations in Eq.~A2!, we
obtain

lE C9~ f !~d f !2d3rd3v1bE d f v•“dFd3rd3v

52E ~dJf !
2

D f
d3rd3v. ~A10!

We now multiply both sides of Eq.~A1! by dF and integrate
over phase space. After straightforward integrations by pa
we get

lE d f dFd3rd3v2E d f v•“dFd3rd3v50. ~A11!

Combining this relation with Eq.~A10!, we find

lE C9~ f !~d f !2d3rd3v1lbE d f dFd3rd3v

52E ~dJf !
2

D f
d3rd3v. ~A12!
8-17
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Now, the left-hand side is just proportional to the seco
order variations of the free energyd2J, see Eq.~16!. On the
other hand, recalling thatJf50 at equilibrium, the second
variations of the rate of entropy production~31! are given by

d2Ṡ5E ~dJf !
2

D f
d3rd3v, ~A13!

and they are clearly positive. Therefore, Eq.~A12! can be
rewritten in the simple form~34!.

APPENDIX B: LINEAR STABILITY ANALYSIS
OF THE GENERALIZED SMOLUCHOWSKI EQUATION

Let v be a stationary solution of Eq.~121! anddv a small
perturbation around this solution. Let us now linearize E
~121! around equilibrium and write the time dependance
the perturbation in the formdv;elt. We get

ldv1“~dvu!1“~vdu!52“dJv , ~B1!

whereJv is given by Eq.~119!. Multiplying both sides of Eq.
~B1! by C9(v)dv and integrating over the whole domai
we obtain

lE C9~v!~dv!2d2r1E C9~v!dv“~dvu!d2r

1E C9~v!dv“~vdu!d2r52E C9~v!dv“Jvd2r .

~B2!

The second term in Eq.~B2! can be rewritten

I 25
1

2E C9~v!“@~dv!2u#d2r

52
1

2E C-~v!~dv!2
“v•ud2r , ~B3!

where we have used an integration by parts. From the
tionary condition~125!, we obtain

C9~v!“v52b“c. ~B4!

Sinceu•“c50 we conclude thatI 250. Using Eq.~B4!, the
third term in Eq.~B2! can be rewritten

I 352bE dvdu“cd2r5bE dvu“dcd2r . ~B5!

After an integration by parts, the fourth term can be writt

I 45E dJv•“@C9~v!dv#d2r , ~B6!

or, using Eq.~B4!,

I 45E dJv•FC9~v!“dv2b
C-~v!

C9~v!
dv“cGd2r .

~B7!
03610
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Taking the variation of Eq.~119! and using Eq.~B4!, we find
that

dJv52DvFC9~v!“dv2b
C-~v!

C9~v!
dv“c1db“c

1b“dcG . ~B8!

Hence,

I 452E dJv•S dJv

Dv
1b“dc1db“c Dd2r

52E S dJv
2

Dv
1dJvb“dc Dd2r , ~B9!

where we have used the conservation of energy~116! to get
the last equality. Inserting these results in Eq.~B2!, we ob-
tain

lE C9~v!~dv!2d2r1bE dvu“dcd2r

52E S dJv
2

Dv
1dJvb“dc Dd2r . ~B10!

We now multiply both sides of Eq.~B1! by dc and integrate
over the domain. After straightforward integrations by par
and usingdu•“dc50, we find

lE dvdcd2r2E dvu•“dcd2r5E dJv•“dcd2r .

~B11!

Combining with Eq.~B10!, we get

lE C9~v!~dv!2d2r1lbE dvdcd2r52E ~dJv!2

Dv
d2r .

~B12!

Now, the left-hand side is just proportional to the seco
order variations of the free energyd2J, see Eq.~111!. On the
other hand, recalling thatJv50 at equilibrium, the second
order variations of the rate of entropy production~123! are
given by

d2Ṡ5E ~dJv!2

Dv
d2r , ~B13!

and they are clearly positive@see the discussion after Eq
~123!#. Therefore, Eq.~B12! can be rewritten in the simple
form ~34!.
8-18



A
ve

n-

d

e

e
a-
n-
ap-
ics

GENERALIZED THERMODYNAMICS AND FOKKER- . . . PHYSICAL REVIEW E 68, 036108 ~2003!
APPENDIX C: SUFFICIENT CONDITIONS OF STABILITY
AND ARNOLD THEOREMS

According to Eqs.~106! and ~111!, d2J can be rewritten

d2J52
b

2 H E ~dv!2

2v8~c!
d2r1E dvdcd2r J . ~C1!

The term is brackets is called Arnold pseudoenergy or
nold invariant. Using an integration by parts, we ha
equivalently

d2J52
b

2 H E ~dv!2

2v8~c!
d2r1E ~“dc!2d2r J . ~C2!

First assume thatb.0. By Eq. ~106!, we see thatv8(c)
,0. Therefore,d2J,0 and the system is stable. Ifb,0,
thenv8(c).0 and we cannot conclude directly. Let us i
troduce a set of normalized eigenfunctionsf i(r ) such that
2Df i5l if i with f i50 on the boundary of the domain an
*f if jd

2r5d i j . Noting that2*f iDf id
2r5l i and integrat-

ing by parts, we find thatl i5*(¹f i)
2d2r.0. Then, we

decomposedv and df on these eigenfunctions. Using th
Poisson equationv52Dc, we have dv5( idv if i and
dc5( i(dv i /l i)f i . Therefore,
e
d

m
,
cs

er

.

03610
r-

E dvdcd2r5(
i

~dv i !
2

l i
. ~C3!

We now label the eigenvalues such that 0,l1,l2,•••.
Thenl i>l1 and we get

E dvdcd2r<
1

l1
(

i
~dv i !

25
1

l1
E ~dv!2d2r . ~C4!

Therefore,

d2J<2
b

2E F 1

l1
2

1

v8~c!
G ~dv!2d2r . ~C5!

As a result, if 0<v8(c),l1, thend2J<0 and the system is
stable. Using Eq.~106!, this condition can be rewrittenb.
2l1minC9(v). These sufficient conditions of stability ar
called Arnold theorems. They imply canonical and microc
nonical stability in the thermodynamical analogy. Our ge
eral formalism shows that the Arnold theorems can have
plications in many other situations than just fluid dynam
~see, e.g., Ref.@9#!.
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