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Epidemic processes with immunization
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We study a model of directed percolation~DP! with immunization, i.e., with different probabilities for the
first infection and subsequent infections. The immunization effect leads to an additional non-Markovian term
in the corresponding field theoretical action. We consider immunization as a small perturbation around the DP
fixed point in d,6, where the non-Markovian term is relevant. The immunization causes the system to be
driven away from the neighborhood of the DP critical point. In order to investigate the dynamical critical
behavior of the model, we consider the limits of low and high first-infection rate, while the second-infection
rate remains constant at the DP critical value. Scaling arguments are applied to obtain an expression for the
survival probability in both limits. The corresponding exponents are written in terms of the critical exponents
for ordinary DP and DP with a wall. We find that the survival probability does not obey a power-law behavior,
decaying instead as a stretched exponential in the low first-infection probability limit and to a constant in the
high first-infection probability limit. The theoretical predictions are confirmed by optimized numerical simu-
lations in 111 dimensions.
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I. INTRODUCTION

Epidemic processes can be described as the spread
decay of a nonconserved agent, an example of which is
infectious disease@1#. The agent is not allowed to appe
sponstaneously but it can multiply itself by infecting neig
boring individuals, or decay at a constant rate. Depending
the balance between these two processes, the infection
either die out or spread over the entire population. The
regimes of survival and extinction of the epidemic are ty
cally separated by a continuous nonequilibrium phase tra
tion. When the decay process dominates, the epidemic
out at large times and the system gets trapped in anabsorb-
ing statefrom which it cannot escape.

Continuous phase transitions into absorbing states are
sociated with certain universality classes@2,3#. For epidemic
processes, a well studied case is the universality clas
directed percolation~DP!. It is believed that two-state
spreading processes with short-range interactions generi
belong to the DP class, provided that quenched randomn
unconventional symmetries and large scales due to mem
effects are absent@4,5#. Examples of physical systems who
critical behavior is described by DP include heterogene
catalysis@6#, chemical reactions@7,8#, interface depinning
@9,10#, the onset of spatiotemporal chaos@11#, flowing sand
@12#, and self-organized criticality@13#.

The epidemic process in which the susceptibility to infe
tion is independent of previous infections is described by
However, for a more realistic description, we should co
sider an immunization effect @14#. Immunization can be
added to the DP model by changing the susceptibility a
the first infection@15–17#. A minimalistic model that cap-
tures this feature is one that is controlled by two independ
parameters: a probability of first infection and another pr
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ability for all subsequent reinfections. The fact that the lo
susceptibility depends on whether a site has been infecte
the past or not leads to anon-Markovianepidemic process
in which the time evolution depends on the entire histo
This non-Markovian feature changes the universality clas
the epidemic spreading.

The phase diagram of an epidemic process with immu
zation~Fig. 1! was studied in Refs.@18,19#. If the probabili-
ties for first infections and reinfections are equal, the mo
corresponds to ordinary directed percolation. However if
susceptibility changes to zero after the first infection, there
perfect immunization and the model reduces to the gene
epidemic process~GEP! @1#. The GEP belongs to the ordi
nary percolation universality class@20#. The critical points of

FIG. 1. Phase diagram of directed bond percolation with imm
nization in 211 dimensions. Along the curve phase transition lin
the universality class corresponds to the GEP. The horizontal
separates the no growth–annular growth region from the com
growth behavior. The point where both phase transition lines m
corresponds to the universality class of DP.
©2003 The American Physical Society03-1
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the GEP and DP are connected by a curved phase trans
line separating a phase in which the spreading process
ways dies out, from another phase of annular growth, wh
an active front may propagate into regions of nonimmu
sites, leaving a bulk of immune sites behind. As shown
Ref. @18# the critical behavior along this line~except for the
upper terminal point! belongs to the same universality cla
as the GEP. Using field theoretic renormalization group te
niques, the critical exponents were calculated along this
@16,17#. The main result in Ref.@18# is that the compac
growth/no growth phase transition line is at the critical va
of the reinfection rate and independent of the first-infect
rate. Above this horizontal transition line in Fig. 1, the mod
exhibits compact growth and approaches the stationary s
of supercritical DP. This is because, in the active phase o
epidemic process with immunization, each site will be v
ited at least once after a sufficiently long time so that
dynamics in the stationary active state involves only reinf
tions. On the horizontal phase transition line itself all re
fection processes are critical DP while the probability of fi
infections may be subcritical or supercritical. By varying t
first-infection rate, we can impede or facilitate the spread
into nonimmune regions. In Ref.@18#, a numerical analysis
of the scaling behavior along this horizontal line gives
hint of power-law behavior, and it is also suggested that
result could be applied to models with multiple absorbi
states@19,21–28#.

The aim of the present work is to investigate in furth
detail the dynamical critical behavior along the horizon
phase transition line and in the vicinity of the DP critic
point, and to give a theoretical explanation of the absenc
power-law scaling along this line.

In order to describe the effect of immunization in an e
demic process, in Sec. II we study a field theoretic formu
tion of directed percolation with immunization and we sho
that the non-Markovian term which contains the immuniz
tion effects is relevant under renormalization group analy
As a consequence of this result, we argue that the asymp
spreading properties along the horizontal transition l
should be determined by the limits of very low and very hi
first-infection probability. Therefore, in Sec. III we presen
study of the very small infection probability limit and w
develop a quasistatic approximation to obtain the scaling
havior of the survival probability of the epidemic. It turns o
that this does not follow a power law, but instead deca
asymptotically as a stretched exponential. This theoret
prediction is confirmed by optimized numerical simulatio
in 111 dimensions. The high first-infection probability lim
is studied in Sec. IV giving similar results. We complete t
section with a theoretical approximation for the spread
behavior, and with numerical calculations to corroborate
theoretical claims. Finally, a discussion of these results,
gether with a possible connection with multiple absorb
state models, is the subject of the conclusions in Sec. V.

II. FIELD THEORETICAL ANALYSIS

A. The model

In this section, we develop an alternative derivation of
action for the DP model with immunization that was pr
03610
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posed in Refs.@15–17#. The microscopic rules for DP in
d11 dimensions are rather simple. An infected site at timt
can infect its nearest neighbors at timet11 with a probabil-
ity p0. There is a critical thresholdpc such that forp0,pc
the epidemic process always dies out, that is, it reaches
absorbing state. Forp0.pc , there is a finite probability tha
the epidemic survives. At the critical pointp05pc , the sys-
tem scales anisotropically in time and space. The upper c
cal dimension isdc54, below which the fluctuation effect
become important. The field theoretic action of DP@29,30#
reads as follows:

SDP5E dtddx@f̃~] t2D¹21r !f1u1f̃f22u2f̃2f#.

~1!

Here,f is the local activity,f̃ is the response field, andr
}pc2p0 is the mass parameter which measures the dista
from criticality. This action can also be written as
Langevin-type equation for the local activity,

~] t2D¹21r !f1 1
2 uf21j~x,t !50, ~2!

whereu is the symmetrized coupling constant after rescal
the fields according to the DP time reversal symmetry. T
noise j(x,t) is Gaussian, and satisfieŝj(x,t)&50 and
^j(x,t)j(x8,t8)&5udd(x2x8)d(t2t8). For a systematic
analysis of the immunization around the DP fixed point, it
often more convenient to make use of the description
terms of the action.

To add immunization to the model, the susceptibility af
the first infection is decreased by an amountl.0. The prob-
ability of infection,p, depends locally on position and time
p5p(x,t). The microscopic rules are modified as follows:
healthy site can first be infected with infection probabilit
p0. A site which is infected at timet will become immune at
the next time stept11. Meanwhile, any immune site can b
reinfected at the lower re-infection probabilityp02l. Thus,
the state of the system at timet depends not just on the
configuration of infected sites at timet21, but on the entire
previous history.

In order to take into account the effects of immunizatio
we will modify the DP action. Let us consider a discreted
11)-dimensional lattice and assume that fieldf(x,t) is al-
most constant between timest and t1Dt, whereDt51 is
the time step unit on the lattice. We then subdivide it intoN
intervals,Dt/N. First of all, we want to find an expressio
for the probability that there is an active site in the tempo
subintervalDt/N. To do so in terms of fieldf(x,t), we need
to take into account the fact thatf has units of (length)2d/2.
Then this probability can be written aswf(x,t)Dt/N, where
we introduce a parameterw to ensure that this expression
dimensionless.

In this way, 12wf(x,t)(Dt/N) is the probability that the
site is not active in the intervalDt/N. The probability of not
finding activity between timest and t1Dt can then be ex-
pressed as
3-2
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EPIDEMIC PROCESSES WITH IMMUNIZATION PHYSICAL REVIEW E68, 036103 ~2003!
)
i 50

N S 12wf~x,t1 i /N!
Dt

N D;S 12wf~x,t !
Dt

N D N

→
N→`

e2wf(x,t)Dt. ~3!

However, between timest50 andt.1, we can no longer
assume that fieldf is constant. Therefore, the probability o
a sitex having never been infected by timet turns out to be

)
t8,t

t

e2wf(x,t8)Dt5expS 2w (
t850

t

f~x,t8!Dt D . ~4!

When the continuous limit is taken on the discrete latti
the probability of having been infected at least once in t
past becomes 12exp(2w*0

t f(x,t8)dt8). This expression is
the probability for a site to be immune at timet. Sincel is
the parameter related to the immunization in the system,
can use the above result to write an expression forp(x,t),

p~x,t !5p02lF12expS 2wE
0

t

f~x,t8!dt8D G . ~5!

We assume that the mass parameterr can be written asr
}pc2p(x,t). Thus, using Eq. 5, the addition of immuniz
tion can be reflected in the action as a modification in
original DP mass parameter by the following substitution

r→r 1lF12expS 2wE
0

t

f~x,t8!dt8D G . ~6!

Finally, the action for DP with immunization can be wri
ten as a modification of the directed percolation action
follows:

S5SDP1lE dtddxf̃~x,t !f~x,t !

3F12expS 2wE
0

t

dt8f~x,t8! D G . ~7!

According to the field theory,w is a finite coupling con-
stant. Then in the numerical calculations on a discreted
11)-dimensional lattice,w can be considered as a parame
such that the subsequent infection rate is

p01~p2p0!@12exp$2wn~x,t !%#. ~8!

Here, functionn counts all the past activity at a sitex until
time t. Since the exponential function vanishes at sufficien
large times, theeffectivesubsequent infection rate is equal
p.

In the numerical calculations carried out in the pres
work, we assume that the susceptibility for spreading o
changes at the first-infection process and remains cons
thereafter. This assumption is equivalent to taking an infin
value of w, but does not make any relevant change in
final results of the theory as is argued in Ref.@18#.
03610
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B. Renormalization group analysis

Expanding in Eq.~7! the exponential function as a powe
series, the action reads

S5SDP1E dtddxf̃~x,t !f~x,t !

3F2 (
n51

`
l (n)

n! S 2E
0

t

dt8f~x,t8! D nG , ~9!

where we abbreviatel (n)5lwn. Let us now study the sta
bility of the DP fixed point with respect to a small perturb
tion in l (n) by dimensional analysis. Introducing a leng
scalek21, the mean-field fixed point of DP is characterize
by dimensions@f̃f#5kd, @D#5vk22, and @u/D#5k42d/2

so that the upper critical dimension isdc54. When immu-
nization is considered as a perturbation, the effective exp
sion parameter in the expression of the two-point ver
function isu2

nl (n). Thus, by dimensional analysis we find

F u2
nl (n)

D0
2n11G5k21n(42d). ~10!

Consequently, the upper critical dimension for each coupl
constantl (n) is dc52/n14, wheren51, . . . ,̀ . This means
that for dimensionsd.6, l (n) is irrelevant for alln. Param-
eteru2 will also be irrelevant, and only the mass parameter
renormalizes.

Consider now the renormalization group~RG! parameter
space spanned byr, u2, andl (n). The DP fixed point occurs
at a point on theu2 axis, and the GEP fixed point is some
where in the hyper-dimensional space. Since all the coup
constants are irrelevant in the cased.6, the RG flows bring
the system from the neighborhood of the DP fixed point
wards the Gaussian DP fixed point, which corresponds to
DP free-field theory. Therefore, if close to the DP fixed po
we turn on a small perturbation of immunization in a syste
the qualitative nature of the system will not change, and
epidemic process is expected to spread according to a m
field DP process controlled by the probability of first infe
tions.

For 4,d<6, the coupling constantl (1) is the most rel-
evant. Consequently, the higher order terms in the expan
of the exponential in Eq.~9! can be neglected. In this cas
the RG flows bring the system away from the neighborho
of the DP fixed point to the GEP fixed point which is stab
Thus, we expect the system to undergo an ordinary cross
from DP to the dynamic percolation universality class a
certain typical time scale. However, recently it has been s
gested that dangerous irrelevant operators may possibly
to a nontrivial critical behavior different from dynamical pe
colation @28#.

To take the fluctuation effects into account, we define
renormalizedl (1) aslR

(1) and apply standard methods of th
perturbative renormalization group@31#. In particular we
make use of ane542d expansion around the DP critica
point. The non-Markovian modification in the DP action c
be written then as an additional term of the form
3-3
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A. JIMÉNEZ-DALMARONI AND H. HINRICHSEN PHYSICAL REVIEW E68, 036103 ~2003!
FIG. 2. One-loop diagrams for the three-point vertex functionGf̃ff
8 . The dashed lines in the external dashed-continous leg represen

shift in time indicated by theQ(t2t8) function in the action after the expansion of the exponential. The ‘‘external legs’’ are cut off, and
fact is indicated with the two parallel lines.
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l (1)E dtddxQ~ t2t8!f̃~x,t !f~x,t !f~x,t8!. ~11!

The nonlocality in time, expressed by theQ function in Eq.
~11!, is represented by a dashed line propagator in the Fe
man diagrams. The renormalized coupling constantlR

(1) can
be determined in terms of the vertex functionGf̃ff

8 ~see Fig.
2!, evaluated at some specified normalization point~NP! set-
ting a momentum scalem. The 8 in the vertex function’s
notation in Eq. 11 is used to indicate that this function
calculated in the DP with immunization theory and is diffe
ent from the one calculated in the ordinary DP. Near
upper critical dimension, the ultraviolet divergences are
sorbed in the renormalization constantZf , where fR

[Zf
21/2f andZf5Zf̃ :

lR
(1)52GRf̃ff

8 uNP52Zf
3/2Gf̃ff

8 uNP . ~12!

The structure of the corrections to the vertex functionGf̃ff
8

suggests a correspondence with the RG theory of DP a
from the critical point, where the renormalization of a no
zero mass termr is considered which couples with the com
posite operatorf̃(x,t)f(x,t). One-loop corrections to the
corresponding two-point bare vertex functionGf̃f in this
theory are depicted in Fig. 3. The normalization conditi
implies that the renormalized two point vertex functionGRf̃f
evaluated at the NP is equal to 1:

GRf̃fuNP5Zf̃f
21

ZfGf̃fuNP51. ~13!

Comparing these corrections with those appearing in the
pression toGf̃ff

8 , it is possible to see that the insertion

the composite operatorf̃f is equivalent to the ‘‘insertion’’
of the dashed-continuous-line leg in Fig. 2. By inspection
all possible Feynman diagrams, we conclude that this is v
to all orders in perturbation theory. Therefore, the Feynm
integrals involved in bothl (1) and r renormalizations are
identical, and we can write
03610
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2l (1)Gf̃f5Gf̃ff
8 . ~14!

Consequently, from Eqs.~12!–~14!, it can be proved that

lR
(1)5l (1)Zf

1/2Zf̃f . ~15!

To describe howlR
(1) flows under renormalization, it is nec

essary to define a Callan-Symanzikb function. The dimen-
sionless coupling constant corresponding tolR

(1) is

gR85S lR
(1)

DR
2 D m222e/25S l (1)

D0
2 D m222e/2Zf

1/2Zf̃fZD
22 ,

~16!

wheree542d andDR5D0ZD is the renormalized diffusion
coefficient. Then theb function, which gives the differentia
renormalization group flow equation ofgR , is

b~gR8 !5m
]gR8

]m
5gR8 F222

e

2
1

1

2
gf1gf̃f22gDG ,

~17!

wheregf , gf̃f , andgD are defined as

gf5m
] ln Zf

]m
, ~18!

gf̃f5m
] ln Zf̃f

]m
, ~19!

gD5m
] ln ZD

]m
. ~20!

At the DP fixed point theseg functions are related to the
critical exponents bygf* 52b/n'2d, gf̃f

* 5z21/n' , and
gD* 5z22, and thus

b~gR8 !5
1

n'

~b2n i21!gR81O~gR8
2!. ~21!
wo
FIG. 3. One-loop diagrams for the two-point vertex functionGf̃f . The external legs are cut off, and this fact is indicated with the t

parallel lines. The cross indicates the insertion of the composite operatorf̃f.
3-4
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Then, as we are approaching the infrared limit (k→0), gR8
increases, being relevant to all orders in perturbation the

The renormalization group eigenvalueyl(1), correspond-
ing to l (1), is equal to

yl(1)5
1

n'

~11n i2b!. ~22!

Since this expression is always positive, the first term of
expansion in Eq.~9! is relevant to all orders of perturbatio
theory aroundd5dc54.

However, for d,dc54 the coupling constants are in
creasingly relevant in expansion~9!, and it is no longer
meaningful to expand the exponential function. The syst
is driven away from the vicinity of the DP fixed point to
wards a nontrivial fixed point of the order of 42d. To study
this case, we apply a scaling analysis. Assume that pos
and time scale as@x#5k21 and @ t#5k2z. In the DP theory
away from criticality, the nonzero mass term scales as@r #

5k1/n'. It couples to the operatorf̃f, which has a scaling
dimensionxf̃f , such that@f̃f#5kxf̃f. Using the fact that
the action has to be dimensionless, we find thatxf̃f5d1z
21/n' . Let us focus now on the scaling analysis of t
non-Markovian term added to the DP action. First we co
sider the term corresponding ton51. l (1) scales as@l (1)#

5kyl(1). Notice that operatorsf̃(x,t)f(x,t) andf(x,t8) are
evaluated at different space-time points, and conseque
they are not correlated. So, each of them scales with its
scaling dimension, xf̃f and xf5b/n' , such that

@f̃(x,t)f(x,t)#5kxf̃f, @f(x,t8)#5kxf. From the dimen-
sionless nature of the action, we thus obtainyl52(1/n')
3(b2n i21). Generalizing this for higher-order terms
the exponential expansion, we find that the scaling expon
for eachl (n) are

yl(n)5
1

n'

@11n~n i2b!#. ~23!

Since n i2b is always positive ind,4 dimensions, the
terms of the expansion~9! are still increasingly relevant.

Furthermore, the scaling invariance of the non-Markov
term can only be established if the exponential function a
its arguments are dimensionless. Therefore, the two c
plings w andl scale separately with different scaling exp
nents, i.e.,@l#5kyl and@w#5kyw. From Eq.~23!, we obtain

yl5
1

n'

, yw5
n i2b

n'

. ~24!

Consequently, the coupling constantw is also relevant unde
renormalization.

III. LOW FIRST INFECTION PROBABILITY LIMIT

In the preceding section using scaling arguments,
showed that the non-Markovian term is relevant ford,dc
54. We can now argue that a critical spreading process
the horizontal line in Fig. 1 is, therefore, driven away fro
the vicinities of the DP critical points to pointA or B, where
03610
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the probability of first infections is either very low or ver
high. In order to understand the dynamic behavior in th
limits, we study the asymptotic spreading properties keep
the second-infection probabilities at the critical value of D
We consider an initial state with a single infected site at
origin in a noninfected environment. For simplicity, we w
focus on the (111)-dimensional lattice. In this case, the
are no empty sites inside the epidemic clusters, which
composed of infected and immune sites only.

A. Quasistatic approximation

Let us consider the limit of a very small first-infectio
probability. In this regime, although first infections hard
ever happen, there still exists a surviving critical epidem
process as is shown in Fig. 4. The active domain is co
posed of reinfected sites among immune ones, and ca
considered as bounded by almost rigid ‘‘walls’’ of emp
sites. Let us defineL(t) to be the distance at timet between
these two walls, such that there is at least one site activ
we keep the second-infection rate critical, the dynamic e
demic process can be thought of as an effective critical
process evolving in a finite system of sizeL(t).

A quasistatic approximation is based on the assump
that the time scale on whichL(t) grows is much larger than
the correlation time of the DP process. Therefore,L(t) can
be assumed constant. It is known that in a finite-size sys
with a constant widthL, the survival probability of a DP
process decays exponentially asP(t);exp(2t/Lz), wherez
5n i /n' . Then, in a quasistatic finite system the surviv
probability can be approximated asPs(t);exp(2t/ji), i.e.,

dPs~ t !

dt
.2

1

j i
Ps~ t !.2aPs~ t !L~ t !2z, ~25!

wherea is a nonuniversal amplitude factor. We need now
know howL(t) grows. Since the two boundaries are abso
ing, we can apply the theory of DP with absorbing wa
@32#. According to these results, the density of active si
next to the walls generated by the surviving clusters scale

rs~ t !5bL~ t !2bs /n', ~26!

whereb is a nonuniversal amplitude factor which depends
the value ofp0 . bs.0.733 71(2) is thesurface critical ex-
ponentof DP in 111 dimensions. Clearly,dL/dt is propor-
tional to the frequency by which the system attempts to
fect sites at the boundary and thus also to the density
active sites next to the boundary:

FIG. 4. Spreading in the limit of a very small first-infectio
probability p0. The figure shows a surviving cluster in (111) di-
mensions. In this case, the domain of infected/immune is hole
and grows very slowly with time. Its boundaries can be conside
as stationary absorbing walls.
3-5
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dL~ t !

dt
5p0rs~ t !5p0bL~ t !2bs /n'. ~27!

Therefore, the size of the domain grows as

L~ t !5@p0b~11bs /n'!t#1/(11bs /n'). ~28!

Inserting this result into Eq.~25! and solving the differentia
equation, we obtain

ln Ps~ t !;2E
0

t

L~z!2zdt;2p0
2at12a, ~29!

wherea5n i /(n'1bs).0.947 167. Hence, the survival de
cays asymptotically as a stretched exponential of the for

Ps~ t !5Ps~0!exp~2Ap0
2at12a!. ~30!

with A5@a/(12a)#(a/bz)a. The above result implies tha
the average survival timeT is finite and scales as

T;p0
a/(12a) . ~31!

It is interesting to compare these results with recent findi
for random walkers between movable reflectors, where
survival probability was shown to decay as a power law w
continuously varying exponents@33#. We note that this resul
is not in contradiction with the present work, since it wou
correspond to the limita→1.

B. Numerical simulations

The lattice model considered is a (111)-dimensional tri-
angular lattice. We simulate a directed bond percolation p
cess with a first-infection ratep0 different from a rate for
subsequent infections or second-infection ratep.

Let us first consider the limit of a very small firs
infection probability, where it is difficult for the process t
infect sites at the boundary that have never been infe
before~see Fig. 4!. Bonds inside the infected region are op
with the critical probability p5pc50.644 7001(1) @34#,
while bonds leading to healthy sites at the boundary are o
with a different probability of first infectionp0. However, as
p0 is very small, conventional seed simulations are not s
able since most of the runs terminate after a very short ti
For example, forp50.1 most of the runs survive for les
than 100 time steps. Consequently, we apply enrichm
methods in order to circumvent this limitation. First of a
we apply a very simple enrichment method, in which w
consider a one-lattice system. We keep the activity artificia
alive at any timet. This is achieved by ignoring the update
which lead to the inactive state. Averaging over many re
izations we measured the domain sizeL(t) and the surface
density of active sites. We find that the exponents predic
by the quasi-static approximation are in good agreement w
the values obtained with the numerical simulations as sho
in Figs. 5 and 6. The nonuniversal factorb in Eq. ~28! de-
pends on the value ofp0. For p050.01, it takes the value
b51.65.
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To determine the survival probabilityPs(t), we apply an-
other enrichment method@35#, which leads to a considerabl
improvement. The simulation starts with anensembleof N
565 536 independent systems. Whenever the number of
tive runs becomes smaller thanN/2, the ensemble is dupli
cated by creating identical copies of all the remaining act
states. The new systems are labeled according to their an
tors. The survival probabilityPs then is reduced by a facto
of nf /ni , whereni is the number of initial active system
andnf is the number of remaining active systems before
duplication. This process may be repeated as long as
ensemble has a sufficiently large numberm of independent
ancestors att50. Using this method, we were able to exte
the temporal range of the simulation by four orders of ma
nitude up to t5106. Our results are shown in Fig. 7 fo

FIG. 5. The logarithm of the domain sizeL(t) in the problem of
directed percolation with immunization for small values ofp0 as
function of time t. The numerical results are compared with t
quasistatic approximation predictions.

FIG. 6. The logarithm of the surface density of active sites
directed percolation with immunization for small values ofp0 as
function of time t. The numerical results are compared with t
quasistatic approximation predictions.
3-6
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EPIDEMIC PROCESSES WITH IMMUNIZATION PHYSICAL REVIEW E68, 036103 ~2003!
various values ofp0. As can be seen, the survival probabili
plotted in a double-logarithmic representation is not
straight line, proving that it doesnot follow a power law. For
the casep050.01, parametera in Eq. ~25! takes the value
a51.00(2).

C. Lattice effects

The scaling arguments in Sec. III A are developed ass
ing the existence of a well defined mean value for the
main sizeL(t). To justify this assumption, we defineP(L,t)
to be the probability of having a domain of sizeL at time t.
Then the survival probability isPs(t)5*P(L,t)dL. In this
section, we show thatL(t) is peaked around the mean valu
L(t).

We begin by writing down a heuristic discrete mas
equation for the temporal evolution ofP(L,t):

P~L,t11!5e2aL2z
P~L,t !1bp0~L21!2bs /n'P~L21,t !

2bp0L2bs /n'P~L,t !. ~32!

The first term on the right-hand side of Eq.~32! describes the
change inP(L,t) due to terminating runs according to E
~25! integrated over the time interval@ t,t11#. The second
term corresponds to the probability of creating a domain
sizeL from a domain of length (L21). The third term de-
scribes a loss term corresponding toL→L11. We neglect
the second-order contributions1b2p0

2(L21)22bs /n'P(L
22,t) and2b2p0

2(L21)22bs /n', which only affect the be-
havior at small time and smallL regime.

It is straightforward to show that this master equation
consistent with Eq.~25!, by summing over allL and replac-
ing L by its average valueL(t). On doing this, we obtain
dPs(t)/dt52aL(t)2zPs(t), which is the same equation a
Eq. ~25!.

FIG. 7. The logarithm of the survival probabilityPs(t) of di-
rected percolation with immunization for small values ofp0. The
inset shows the corresponding number of independent ancesto
a function of time~see text!. For p050.01, the duplication method
reaches its limit, since only 11 independent ancestors are left.
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Consider Eq.~32! with p0 , a, andb fixed at certain val-
ues. Then the differential equation which corresponds to
master equation, Eq.~32!, can be written as

]P~L,t !

]t
52

a

Lz
P~L,t !p0b

]

]L
@L2bs /n'P~L,t !#, L@1.

~33!

The solution for Eq.~33! is

P~L,t !5e2[a/p0b(12z1bs /n')]L12z1bs /n'Lbs /n'c

3@Lbs /n'112p0b~bs /n'11!t#, ~34!

whereL@1. Consider the integrated distribution probabili
G(L,t)5*L

`P(L,t)dL. ThenG(L,t) has the functional form

G~L,t !5e2c[ p0b(bs /n'11)t] k
fFLbs /n'112p0bS bs

n'

11D t G
3F11OS 1

t12kD G , ~35!

with c5a/@p0b(12z1bs /n')# andk5(12z1bs /n')/(1
1bs /n').

To observe the qualitative behavior ofP(L,t) and
G(L,t), we carry out numerical integrations of Eq.~32!. As
initial conditions we choose the state in which there is o
one site infected at timet50. In Fig. 8,G(L,t) is shown for
several values of timet. It behaves like a propagating fron
with an overall exponential factor of timet. The fact that all
the G(L,t) curves intersect at the same point~see inset in
Fig. 8! implies that there is a well defined peak and a me
valueL(t) for P(L,t). The qualitative behavior ofG(L,t) is
independent of the particular values ofa and p0. Conse-

as

FIG. 8. ProbabilityG(L,t)5*L
`P(L,t)dL computed by numeri-

cal integration of the master equation, Eq.~32!. The plots corre-
spond toa50.01 andp050.01. The inset shows the scaling pl
whenG(L,t) scales according to Eq.~35!.
3-7
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A. JIMÉNEZ-DALMARONI AND H. HINRICHSEN PHYSICAL REVIEW E68, 036103 ~2003!
quently, to perform these calculations, we use the valuesa
and p0 such that the effect of the exponential decay in E
~35! is not so pronounced.

We now compare the predictions of the master equa
proposed in this section with the results obtained from
simulation of the model. In Eq.~32!, we fixed the value of
p050.01 and varieda. The survival probability calculated
from direct numerical integration of Eq.~32! describes well
the corresponding simulation result forp50.01, in the case
a51 ~see Fig. 9!.

IV. HIGH FIRST-INFECTION PROBABILITY LIMIT

Let us finally consider the limit of a very high first
infection probabilityp0→1. Again we restrict ourselves t
the (111)-dimensional case, where the region of immu
sites does not contain healthy sites inside. Because of
enhanced spreading probability at the boundaries, the
main grows rapidly by suddenavalanchesof successive first
infections~see Fig. 10!. Since the avalanches at the left a
the right boundary are expected to be uncorrelated, it suffi
to study the propagation of one of the boundaries. As in
preceding section, we propose simple scaling argument
order to describe the growth of the infected/immune dom
and the survival probability.

FIG. 9. Survival probability calculated using the master eq
tion, Eq.~32!. We setp050.01,a51, andb51.65. The result is in
good agreement with the Monte Carlo simulations forp050.01.

FIG. 10. Spreading in the limit of a very high first-infection rat
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A. Independent avalanche approximation

In (111)-dimensional directed bond percolation withp
5pc and p0→1, an avalanche is caused by a sequence
open bonds at the boundary. Therefore, the avalanche sj
is distributed exponentially as

P~j!5~12p0!p0
j;e2j/ j̄. ~36!

The quantity

j̄52
1

ln p0
'

1

12p0
, p0→1 ~37!

is the average distance by which the avalanche advance
boundary in space. After each, avalanche the process co
ues to evolve as an ordinary critical DP process inside
immune domain until it terminates or returns to the bound
where it releases a new avalanche. Thus the spreading
havior is mainly determined by the distribution of waitin
timest between the avalanches. We argue that the distr
tion of waiting times between avalanches is related to
problem of local persistencein DP @36,37# ~for a recent re-
view on persistence, see, e.g., Ref.@38#!. The local persis-
tence probabilityR(t) is defined as the probability that
randomly selected site in an ordinary critical DP proce
starting from a homogeneous initial state hasnot been reac-
tivated until timet. It was shown that this quantity decay
algebraically asR(t);t2Q, where Q51.50(1) is the so-
called local persistence exponent@36#. In the present prob-
lem, the situation is similar: Each avalanche creates local
quasihomogeneous state. The process then evolves as a
dinary critical DP process inside the infected/immune reg
until the boundary is revisited for the first time in order
release a new avalanche. However, unlike persistence stu
in 111 dimensions, where a persistent site can be activa
independently from the left and from the right, the bounda
sites in the present problem can be infected only from o
side. Hence, the probability that the next avalanche has
yet been released decays ast2Q/2. Thus we conjecture tha
the waiting times between avalanches are distributed a
braically as

P~t!;t212Q/2. ~38!

Next, we argue that these waiting times may be interpre
as directed Le´vy flights in time @39#. After each flight, the
domain sizeL(t) grows, on average, by the mean avalanc
sizej̄. This type of growth may be described by the equat

Dt
Q/2L~ t !;j̄, ~39!

whereDt
Q/2 is a fractional derivative defined through its a

tion in the Fourier spaceDt
Q/2eivt5( iv)Q/2eivt. Simple di-

mensional analysis leads to the result

L~ t !;j̄tQ/2. ~40!

In order to compute the survival probability, we note th
during the waiting time the outermost active site depa

-

3-8
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FIG. 11. Avalanche approximation in comparison with numerical results.~a! Numerically determined survival probability forp0

50.85, 0.9, 0.95, and 0.98 from bottom to top.~b! Numerically determined domain sizeL(t) for p050.9 ~solid line! compared to the
theoretical prediction~40! ~dotted line!. ~c! Logarithmic derivative of the survival probability forp050.9.
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from the boundary with an average distance,(t);t1/z. Ob-
viously, the process can only terminate if this distance is
the same order as the size of the infected/immune dom
L(t). Therefore, we expect the distribution of waiting tim
between avalanches to be cut off by a maximal waiting ti

tmax;Lz~ t !;j̄ztzQ/2. ~41!

Consequently, the probability that the process terminates
tween two avalanches is given by

P05

E
tmax

`

dtP~t!

E
1

`

dtP~t!

;tmax
2Q/2 . ~42!

On the other hand, the cutoff due to terminating runs imp
that the average waiting time is finite and scales as

t̄5

E
1

tmax
dttP~t!

E
1

tmax
dtP~t!

5tmax
12Q/2 . ~43!

Therefore, the average loss of the survival probability
unit time is given byP0 / t̄;1/tmax, i.e.,

dPs~ t !

dt
;2Ps~ t !/tmax;2Ps~ t !j̄2zt2zQ/2. ~44!

Solving this equation, the asymptotic behavior of the s
vival probability is not a stretched exponential and is giv
by a

Ps~ t !5
1

Ñ
exp~1Ãj̄2zt12zQ/2!, ~45!

where Ñ and Ã are unknown constants. In contrast to t
previous case in Eq.~30!, the exponent 12zQ/2.20.185 is
negative. Consequently, the survival probability tends t
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constantPs(`).0, meaning that a finite fraction of run
survives for infinitely long time. For very largep0, this con-
stant is expected to scale as

12Ps~`!}~12p0!zQ/2. ~46!

B. Numerical results

In order to verify these results numerically, we develop
an especially optimized Monte Carlo algorithm for large v
ues ofp0. In order to compute the survival time for a run an
to see how the boundaries advance for a given realizatio
open and closed bonds, it is in most cases not necessa
construct the entire cluster. Rather it suffices to construc
branches next to the boundaries. For example, in Fig.
large parts of the cluster are irrelevant for the advancem
of the boundaries and the survival time. For this reason,
algorithm first constructs the branches of the cluster nex
the boundaries. If these branches terminate before the s
lation time is reached, we recursively construct the omit
branches in the interior of the clusters. If, however, they
not terminate, then the recursive construction is not p
formed. Using this technique, we could extend the simu
tion time by two decades to 104 time steps, two decades les
than in the previous case of lowp0.

Our numerical results are shown in Fig. 11. The left pa
shows the survival probability as a function of time in
directed bond percolation process withp050.85,0.90,0.95,
and 0.98. The positive curvature of the lines indicates t
there is no power-law scaling. Although the upward curv
ture is in agreement with the expected result~45!, the simu-
lation time is not large enough to confirm the behavior of E
~45! quantitatively, mainly because constantÃ is not known.
In order to substantiate the assumptions made in the pre
ing subsection, we first measured the growing domain s
L(t). As shown in Fig. 11b, the measured slope seems
tend to the predicted slopeQ/250.75(1). Moreover, we es-
timated the logarithmic derivative of the survival probabilit
in which the unknown prefactorÃ drops out~see the right
panel of Fig. 11!. Although this dataset is quite noisy, w
observe a rather clean power law. The estimated sl
1.12(10) is consistent with the theoretical predictiont2zQ/2
3-9
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A. JIMÉNEZ-DALMARONI AND H. HINRICHSEN PHYSICAL REVIEW E68, 036103 ~2003!
5t21.185, supporting the assumptions which led to res
~45!.

V. CONCLUSIONS

We analyzed the effects of immunization as a small p
turbation on the DP model and studied in detail the sca
behavior of the theory around the DP critical point. We d
rived by an alternative method the field theoretic action
the model. A non-Markovian term is added to the DP act
because of the presence of immunization. In the field the
the probability for subsequent infections, which is differe
from the first-infection probability, is a function of positio
and time. Nevertheless, we assumed in the lattice model
the susceptibility for spreading changes only after the fi
infection, remaining constant thereafter. This assump
does not change the final results.

The phase diagram~cf. Fig. 1! comprises two phase tran
sition lines, namely, a horizontal line, where the process
reinfected regions shows the critical behavior of DP, and~in
more than one spatial dimension! a curved transition line,
where the critical behavior corresponds to the general
demic process studied in Ref.@18#. Both lines meet at the DP
critical point p5p05pc .

The non-Markovian term turns out to be relevant f
d,6. We considered the RG flows and argued that any p
in the neighborhood of the DP critical point will be drive
away from it. In particular, we focused our study on t
horizontal phase transition line with a critical reinfectio
probabilityp5pc . The system along this line is driven awa
from the DP critical point as soon as the immunization
fects are turned on as a small perturbation. The asymp
behavior is determined by the limits of very low and hig
first-infection probability~close to pointsA andB in Fig. 1!.

We proposed simple scaling arguments for the behavio
the survival probability in both limits. We related the corr
sponding exponents with those exponents of the critical
dinary DP theory and DP near a wall. The survival probab
ity is found to obey a stretched exponential behavior in
low first-infection probability limit, and it decays to a con
s
e,

.
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stant in the high first-infection probability limit, taking th
form

Ps~ t !}H exp~2at10.0528! for p0→0

exp~1bt20.185! for p0→1.
~47!

The numerical simulations in 111 dimensions support thes
theoretical predictions, ruling out the possibility o
asymptotic power-law scaling in both limits. The question
to whether the stretched exponential decay of the surv
probability persists in higher dimensions is still open.

Finally, we comment on a possible connection of the
results with the problem of infinitely many absorbing stat
A typical example of such systems is the pair contact proc
2A→3A, 2A→B, in which solitary particles are not al
lowed to diffuse@40#. In Refs. @24–26,19#, this model was
studied with an effective Langevin equation and it was
ferred that the survival probability decays as a power law
the transition point, with continuously varying exponen
However, the field theoretical action studied in Re
@24,26,19# is identical to the one studied in this paper. Hen
we conclude that, according to the analysis presented in
paper, seed simulations of the pair contact process, at lea
111 dimensions, should show a stretched exponential
havior and not a power low decay at the transition point.
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