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Epidemic processes with immunization
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We study a model of directed percolatid@P) with immunization, i.e., with different probabilities for the
first infection and subsequent infections. The immunization effect leads to an additional non-Markovian term
in the corresponding field theoretical action. We consider immunization as a small perturbation around the DP
fixed point ind<<6, where the non-Markovian term is relevant. The immunization causes the system to be
driven away from the neighborhood of the DP critical point. In order to investigate the dynamical critical
behavior of the model, we consider the limits of low and high first-infection rate, while the second-infection
rate remains constant at the DP critical value. Scaling arguments are applied to obtain an expression for the
survival probability in both limits. The corresponding exponents are written in terms of the critical exponents
for ordinary DP and DP with a wall. We find that the survival probability does not obey a power-law behavior,
decaying instead as a stretched exponential in the low first-infection probability limit and to a constant in the
high first-infection probability limit. The theoretical predictions are confirmed by optimized numerical simu-
lations in 1+1 dimensions.
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[. INTRODUCTION ability for all subsequent reinfections. The fact that the local
susceptibility depends on whether a site has been infected in
Epidemic processes can be described as the spread aift¢ past or not leads to rron-Markovianepidemic process,
decay of a nonconserved agent, an example of which is ait which the time evolution depends on the entire history.
infectious diseasél]_ The agent is not allowed to appear This non-Markovian feature Changes the universality class of
sponstaneously but it can multiply itself by infecting neigh- the epidemic spreading.
boring individuals, or decay at a constant rate. Depending on The phase diagram of an epidemic process with immuni-
the balance between these two processes, the infection magtion(Fig. 1) was studied in Refd18,19. If the probabili-
either die out or spread over the entire population. The twdies for first infections and reinfections are equal, the model
regimes of survival and extinction of the epidemic are typi-corresponds to ordinary directed percolation. However if the
cally separated by a continuous nonequilibrium phase transpusceptibility changes to zero after the first infection, there is
tion. When the decay process dominates, the epidemic di@;arfectimmunization and the model reduces to the general
out at large times and the system gets trapped intmorb- ~ epidemic proces$GEP) [1]. The GEP belongs to the ordi-
ing statefrom which it cannot escape. nary percolation universality cla§20]. The critical points of
Continuous phase transitions into absorbing states are as-

sociated with certain universality clas4@s3]. For epidemic 1 ' T ' T ' T ' T
processes, a well studied case is the universality class o
directed percolation(DP). It is believed that two-state 08l i
spreading processes with short-range interactions genericall &
belong to the DP class, provided that quenched randomnesZ I compact growth (supercritical DP)
unconventional symmetries and large scales due to memorg 0.6 -
effects are absef#,5]. Examples of physical systems whose =
critical behavior is described by DP include heterogeneouss

o o e .
catalysis[6], chemical reaction$7,8], interface depinning :8 a4 _A l_ MileAHEal polrt B_
[9,10], the onset of spatiotemporal chgdd], flowing sand 5 ©-
[12], and self-organized criticality13]. T 02k -
The epidemic process in which the susceptibility to infec- | no growth annular growth
tion is independent of previous infections is described by DP. . . . . GEPI . . .
However, for a more realistic description, we should con- 0 0.2 04 =~ 06 0.8 1

sider animmunization effect [14]. Immunization can be
added to the DP model by changing the susceptibility after

the first infection[15-17. A minimalistic model that cap- FIG. 1. Phase diagram of directed bond percolation with immu-
tures this feature is one that is controlled by two independenfization in 2+1 dimensions. Along the curve phase transition line,
parameters: a probability of first infection and another prob+he universality class corresponds to the GEP. The horizontal line
separates the no growth—annular growth region from the compact
growth behavior. The point where both phase transition lines meet
*Electronic address: jimenez@thphys.ox.ac.uk corresponds to the universality class of DP.

first infection probability p,,
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the GEP and DP are connected by a curved phase transitigposed in Refs[15—17. The microscopic rules for DP in
line separating a phase in which the spreading process ad-+ 1 dimensions are rather simple. An infected site at time
ways dies out, from another phase of annular growth, wherean infect its nearest neighbors at titne1 with a probabil-

an active front may propagate into regions of nonimmunety p,. There is a critical thresholg, such that forpy<p,
sites, leaving a bulk of immune sites behind. As shown inthe epidemic process always dies out, that is, it reaches the
Ref.[18] the critical behavior along this lingexcept for the  gpgorhing state. FQ,>p., there is a finite probability that
upper terminal pointbelongs to the same universality class {4 epidemic survives. At the critical poipy=p., the sys-

as the GEP. Using field theoretic renormalization group techfem scales anisotropically in time and space. The upper criti-

niques, the critical exponents were calculated along this ”n%al dimension isl.=4  below which the fluctuation effects
c— ]

[16,17]. The main result in Ref[18] is that the compact . . . :
growth/no growth phase transition line is at the critical value:)ee:gsmaes';gﬁgxi_nt' The field theoretic action of [¥9,30

of the reinfection rate and independent of the first-infection
rate. Above this horizontal transition line in Fig. 1, the model _ _ _
exhibits compact growth and approaches the stationary state SDp:j dtddx[¢>(<9t— DV2+r)¢+Uu dpdp®>— U2 ).

of supercritical DP. This is because, in the active phase of an (1)
epidemic process with immunization, each site will be vis-

ited at least once after a sufficiently long time so that the

dynamics in the stationary active state involves only reinfecHere, ¢ is the local activity,?is is the response field, amd
tions. On the horizontal phase transition line itself all rein-:xpc_ po is the mass parameter which measures the distance
fection processes are critical DP while the probability of firstfrom criticality. This action can also be written as a
infections may be subcritical or supercritical. By varying the Langevin-type equation for the local activity,

first-infection rate, we can impede or facilitate the spreading

into nonimmune regions. In Refl8], a numerical analysis

of the scaling behavior along this horizontal line gives no (,—DV?+r)dp+zud”+ &(x,t)=0, (2

hint of power-law behavior, and it is also suggested that this

result could be applied to models with multiple absorbing
stateqg19,21-28.

The aim of the present work is to investigate in further
detail the dynamical critical behavior along the horizontal
phase transition line and in the vicinity of the DP critical
point, and to give a theoretical explanation of the absence
power-law scaling along this line.

In order to describe the effect of immunization in an epi'ter'ln'];:c:dtri]rigitﬁ;étion to the model, the susceptibility after
demic process, in Sec. Il we study a field theoretic formula-, ' P y

tion of directed percolation with immunization and we showthe first infection is decreased by an amoNBtO. The prob-

that the non-Markovian term which contains the immuniza—ability of infection_, P depe_nds locally on p_o_sition and time,
tion effects is relevant under renormalization group analysispz p(x,t)_. The microscopic rules are ”?Od'f'?d as f°”°W_Sf a
As a consequence of this result, we argue that the asymptotp:ealthys'te can .f|r.st he mfectgd W'.th |nfect|0n_ probability
spreading properties along the horizontal transition line:® A S'te_Wh'Ch Is infected at tlméWlll b_ecome immune at
should be determined by the limits of very low and very highthfa next time step+1. 'V'e?”Wh'.'e' any immune site can be
first-infection probability. Therefore, in Sec. Il we present aremfected at the lower re-mfepﬂon pI’ObabI||D15—')\. Thus,
study of the very small infection probability limit and we the §tate .Of the. system ".ﬂ tmteqlepends not just on _the
develop a quasistatic approximation to obtain the scaling be(;onf[guratpn of infected sites at tinte-1, but on the entire
havior of the survival probability of the epidemic. It turns out previous history. . . L
that this does not follow a power law, but instead decays In _order tp take into ac_count the effects_ of |mm_un|zat|on,
asymptotically as a stretched exponential. This theoretical’® Will modify the DP action. Let us consider a discrete (
prediction is confirmed by optimized numerical simulations +1)-dimensional lattice and assume that figi(k,t) is al-

in 1+1 dimensions. The high first-infection probability limit MOSt constant between timésand t+At, whereAt=1 is

is studied in Sec. IV giving similar results. We complete theth€ time step unit on the lattice. We then subdivide it ito
section with a theoretical approximation for the spreadingnt€rvals,At/N. First of all, we want to find an expression
behavior, and with numerical calculations to corroborate thd®" the probability that there is an active site in the temporal
theoretical claims. Finally, a discussion of these results, toSUPintervalAt/N. To do so in terms of field(x,t), we nszed
gether with a possible connection with multiple absorbingt© t@ke into account the fact thet has units of (length)™.

state models, is the subject of the conclusions in Sec. V. Then this probability can be written asp(x,t) At/N, where
we introduce a parameter to ensure that this expression is

Il. FIELD THEORETICAL ANALYSIS dimensionless.
In this way, 1-w¢(x,t) (At/N) is the probability that the
A. The model site is not active in the intervalt/N. The probability of not
In this section, we develop an alternative derivation of thefinding activity between times andt+ At can then be ex-
action for the DP model with immunization that was pro- pressed as

whereu is the symmetrized coupling constant after rescaling
the fields according to the DP time reversal symmetry. The
noise £(x,t) is Gaussian, and satisfig&(x,t))=0 and
(E(X, 1) E(X',t"))y=udsd(x—x")8(t—t'). For a systematic
qnalysis of the immunization around the DP fixed point, it is
0 X S
often more convenient to make use of the description in
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B. Renormalization group analysis

N
At N
i=HO 1-wolxt+ '/N)W) ”( 1_W¢(X’t)ﬁ) Expanding in Eq(7) the exponential function as a power
series, the action reads
N—oo

— e MDA 3 S=Sppt J dtd™XP(x,t) d(x,1)

However, between timgs=0 andt>1, we can no longer
assume that fiel@ is constant. Therefore, the probability of

o t n
a sitex having never been infected by timeéurns out to be x _z‘l W( B fodt POxt )> } ©)
! —we(xt')At ‘ , where we abbreviatd =\w". Let us now study the sta-
H e T =ex _Wtzo d(X,t)At|. (4 pjlity of the DP fixed point with respect to a small perturba-
' <t =

tion in A(™ by dimensional analysis. Introducing a length

When the continuous limit is taken on the discrete Iattice,Scalek , the mean-field fixed point of DP is characterized

the probability of having been infected at least once in thebY dimensions[?iw]fk“, [D]=wk™? and[u/D]=k*"%?
pastbecomes *exp(—w/ie(x,t')dt’). This expression is SO th'at the upper critical dimension qt§=4. When immu-
the probability for a site to be immune at tireSince\ is nization is considered as a perturbation, the effective expan-

the parameter related to the immunization in the system, w&ion paramﬁter in the expression of the two-point vertex

ug)\(n)
DSFH'].

P(X,t)=po—\ =K2n-d), (10)

r—r+N\

X

can use the above result to write an expressiopfact), function isus\ (™. Thus, by dimensional analysis we find
t
1—exp(—wf d)(x,t’)dt’) . (5)
0
We assume that the mass paramet@an be written as Consequently, the upper critical dimension for each coupling
xp.—p(x,t). Thus, using Eq. 5, the addition of immuniza- constant("V isd.=2/n+4, wheren=1, ... %. This means
tion can be reflected in the action as a modification in thethat for dimensionsl>6, A" is irrelevant for alln. Param-
original DP mass parameter by the following substitution: eteru, will also be irrelevant, and only the mass parameter
renormalizes.
t ) Consider now the renormalization grodRG) parameter
1—exp{ —waqS(x,t dt ) ' 6) space spanned by u,, and\ (. The DP fixed point occurs
at a point on thau, axis, and the GEP fixed point is some-
Finally, the action for DP with immunization can be writ- Where in the hyper-dimensional space. Since all the coupling
ten as a modification of the directed percolation action agonstants are irrelevant in the cate 6, the RG flows bring
follows: the system from the neighborhood of the DP fixed point to-
wards the Gaussian DP fixed point, which corresponds to the
g~ DP free-field theory. Therefore, if close to the DP fixed point
S= SDPH\f dtdxé(x,t) d(x,t) we turn on a small perturbation of immunization in a system,
the qualitative nature of the system will not change, and the
v, , epidemic process is expected to spread according to a mean-
1—exp< _Wfodt px.t )> ' @) field DP process controlled by the probability of first infec-
tions.
According to the field theoryw is a finite coupling con- For 4<d<8, the coupling constant*) is the most rel-
stant. Then in the numerical calculations on a discrete ( €vant. Consequently, the higher order terms in the expansion
+1)-dimensional latticew can be considered as a parameterof the exponential in Eq(9) can be neglected. In this case

such that the subsequent infection rate is the RG flows bring the system away from the neighborhood
of the DP fixed point to the GEP fixed point which is stable.

Po+ (P—Po)[ 1—exp{—wn(x,t)}]. (8) Thus, we expect the system to undergo an ordinary crossover
from DP to the dynamic percolation universality class at a

Here, functionn counts all the past activity at a siteuntil certain typical time scale. However, recently it has been sug-

timet. Since the exponential function vanishes at sufficientlygested that dangerous irrelevant operators may possibly lead
large times, theffectivesubsequent infection rate is equal to to a nontrivial critical behavior different from dynamical per-
p. colation[28].

In the numerical calculations carried out in the present To take the fluctuation effects into account, we define the
work, we assume that the susceptibility for spreading onlyenormalizech (%) asAY) and apply standard methods of the
changes at the first-infection process and remains constaperturbative renormalization grouB81]. In particular we
thereafter. This assumption is equivalent to taking an infinitanake use of are=4—d expansion around the DP critical
value ofw, but does not make any relevant change in thepoint. The non-Markovian modification in the DP action can
final results of the theory as is argued in Réf8]. be written then as an additional term of the form

036103-3



A. JIMENEZ-DALMARONI AND H. HINRICHSEN PHYSICAL REVIEW E 68, 036103 (2003

I
000

FIG. 2. One-loop diagrams for the three-point vertex funcﬂéb%. The dashed lines in the external dashed-continous leg represent the
shift in time indicated by th&® (t—t’) function in the action after the expansion of the exponential. The “external legs” are cut off, and this
fact is indicated with the two parallel lines.

—\NMry,=T (14)

MUJ dtdix@(t—t") p(x,t) p(x,t) d(x,t').  (11) b
Consequently, from Eq$12)—(14), it can be proved that

The nonlocality in time, expressed by tRefunction in Eq.

(12), is represented by a dashed line propagator in the Feyn- AND=AMZFz;5,. (15

man diagrams. The renormalized coupling considft can

be determined in terms of the vertex functiﬁ@w (see Fig.

2), evaluated at some specified normalization pa\R) set-

ting a momentum scalg. The ’ in the vertex function’s

notation in Eq. 11 is used to indicate that this function is

To describe how & flows under renormalization, it is nec-
essary to define a Callan-Symangkfunction. The dimen-
sionless coupling constant corresponding\ﬁb) is

. € e R NS S
calculated in the DP with immunization theory and is differ-  g/.= iz —2-el2_ )\_2 p2 7Yz 752,
ent from the one calculated in the ordinary DP. Near the Dg Dg
upper critical dimension, the ultraviolet divergences are ab- (16)
sorbed in the renormalization constadt,, where . . P
Ez—l/zd) andz.=7~" b Pr wheree=4—d andDg=DyZ is the renormalized diffusion

¢ Al coefficient. Then thes function, which gives the differential
1) / o3 renormalization group flow equation gk, is
)\f?)__FR})qMJNP__ZQS F:f,,/,¢|NP- (12 9 P q ng
_ , , WGr e 1

The structure of the corrections to the vertex functigp, , B(gr) Rl =OR —2= 5 5 YsT Vi 270,
suggests a correspondence with the RG theory of DP away (17)

from the critical point, where the renormalization of a non-
zero mass term is considered which couples with the com- wherey,, v3,, andyp are defined as

posite operatorh(x,t) ¢(x,t). One-loop corrections to the

corresponding two-point bare vertex functidiy, in this 'y¢=,u&|n Z¢, (18)
theory are depicted in Fig. 3. The normalization condition Ip
implies that the renormalized two point vertex functiogy,, ~
evaluated at the NP is equal to 1: __ dInzg,

YooT R T (19

-1
I'raglne=Z5,Z41 Galnp=1. (13
_ dInZp

Comparing these corrections with those appearing in the ex- YT M o (20

pression toFqub, it is possible to see that the insertion of
the composite operatap¢ is equivalent to the “insertion”
of the dashed-continuous-line leg in Fig. 2. By inspection o
all possible Feynman diagrams, we conclude that this is vali@o =22, and thus

to all orders in perturbation theory. Therefore, the Feynman

integrals involved in bott\) and r renormalizations are B(gL) = i(lg_,, —1)gL+0(gld). (21)
identical, and we can write R, | R R

At the DP fixed point thesey functions are related to the
ritical exponents byy%=28/v, —d, y =z—1/v, , and
f© s b
*

1
1“64) - N XN .

FIG. 3. One-loop diagrams for the two-point vertex functiop, . The external legs are cut off, and this fact is indicated with the two
parallel lines. The cross indicates the insertion of the composite opebator
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Then, as we are approaching the infrared linkit{0), g 8

increases, being relevant to all orders in perturbation theoryz
The renormalization group eigenvalyg), correspond-

ing to A, is equal to

FIG. 4. Spreading in the limit of a very small first-infection
probability py. The figure shows a surviving cluster in{1) di-
mensions. In this case, the domain of infected/immune is holeless
and grows very slowly with time. Its boundaries can be considered
Since this expression is always positive, the first term of theas stationary absorbing walls.
expansion in Eq(9) is relevant to all orders of perturbation
theory aroundd=d.=4. the probability of first infections is either very low or very

However, ford<d.=4 the coupling constants are in- high. In order to understand the dynamic behavior in these
creasingly relevant in expansiof®), and it is no longer limits, we study the asymptotic spreading properties keeping
meaningful to expand the exponential function. The systemhe second-infection probabilities at the critical value of DP.
is driven away from the vicinity of the DP fixed point to- We consider an initial state with a single infected site at the
wards a nontrivial fixed point of the order of-4d. To study  origin in a noninfected environment. For simplicity, we will
this case, we apply a scaling analysis. Assume that positiofocus on the (# 1)-dimensional lattice. In this case, there
and time scale agx]=k ! and[t]=k 2 In the DP theory are no empty sites inside the epidemic clusters, which are
away from criticality, the nonzero mass term scaleg§rds composed of infected and immune sites only.

=k:. It couples to the operatape, which has a scaling
dimensionx,,, such that ¢ ¢] = K*é. Using the fact that A. Quasistatic approximation

the action has to be dimensionless, we find tgj=d+z Let us consider the limit of a very small first-infection

— 1/, . Let us focus now on the scaling analysis of the, qpapility, In this regime, although first infections hardly
non-Markovian term added to the DP action. First WEe COMN%ever happen, there still exists a surviving critical epidemic
sider the term corresponding to=1. A\(}) scales agA(})]

© process as is shown in Fig. 4. The active domain is com-
=k"\™. Notice that operatorg(x,t) ¢(x,t) and¢(x,t') are  posed of reinfected sites among immune ones, and can be
evaluated at different space-time points, and consequentiyonsidered as bounded by almost rigid “walls” of empty
they are not correlated. So, each of them scales with its owsijtes. Let us defin&(t) to be the distance at tintebetween
scaling dimension, x3, and Xx,=pB/v,, such that these two walls, such that there is at least one site active. If
[H(x,1) p(x,t)]=k%e, [H(x,t')]=k*s. From the dimen- we keep the second-infection rate critical, the dynamic epi-
sionless nature of the action, we thus obtgjr=—(1/v,)  demic process can be thought of as an effective critical DP
X(B—wv—1). Generalizing this for higher-order terms in process evolving in a finite system of siz¢t).

the exponential expansion, we find that the scaling exponents A quasistatic approximation is based on the assumption
for eacha(™ are that the time scale on whidh(t) grows is much larger than
the correlation time of the DP process. Therefdrét) can

be assumed constant. It is known that in a finite-size system
with a constant width_, the survival probability of a DP
process decays exponentially Bét) ~exp(—t/L?), wherez
Since »|—f is always positive ind<4 dimensions, the =y /y, . Then, in a quasistatic finite system the survival

1
Ya ()= V—(l-l— v—B). (22
il

1
Y>\(n)=y—[1+ n(v—pB)1. (23
1

terms of the expansiof®) are still increasingly relevant. probability can be approximated &(t) ~exp(—t/§), i.e.,
Furthermore, the scaling invariance of the non-Markovian

term can only be established if the exponential function and dPg(t) 1 ,

its arguments are dimensionless. Therefore, the two cou- dt :—g”PS(t):—aPS(t)L(t) ' (25)

plingsw and\ scale separately with different scaling expo-

nents, i.e.[A]=k" and[w]=k"w. From Eq.(23), we obtain  \herea is a nonuniversal amplitude factor. We need now to
1 V- B know howL (t) grows. Since the two boundaries are absorb-

Yy=—, yW:H__ (24)  ing, we can apply the theory of DP with absorbing walls

gt vy [32]. According to these results, the density of active sites

Consequently, the coupling constanis also relevant under next to the walls generated by the surviving clusters scales as

renormalization. () =bL() B/ (26)
IIl. LOW FIRST INFECTION PROBABILITY LIMIT . . . .
whereb is a nonuniversal amplitude factor which depends on
In the preceding section using scaling arguments, wehe value ofpy. B,=0.73371(2) is thesurface critical ex-
showed that the non-Markovian term is relevant €d6xd.  ponentof DP in 1+1 dimensions. ClearlylL/dt is propor-
=4. We can now argue that a critical spreading process otional to the frequency by which the system attempts to in-
the horizontal line in Fig. 1 is, therefore, driven away from fect sites at the boundary and thus also to the density of
the vicinities of the DP critical points to poidt or B, where  active sites next to the boundary:
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dL(t) iy 10°
“gi ~ Pops(t)=pobL(t) s 27
—— p0=0.01
— — p0=0.05 3
Therefore, the size of the domain grows as 10° | —-—p0=01 o e
— (uasi—static approximation ¥ #° //
L(t)=[Pob(1+ Bs/v, )]V H* s, (28) el
Inserting this result into Eq25) and solving the differential %102 r //;/// ]
equation, we obtain e
t i ,/‘////
In Ps(t)'\'—f L(Z)_Zdt"‘—paatl_a, (29) 100 ’/,//// o
0 /7////
wherea=v|/(v, + B5)=0.947 167. Hence, the survival de- o 7 ‘ .
cays asymptotically as a stretched exponential of the form 10° 10° 10 10°
t
Py(t)=Pg(0)exp(—Ap, “t'™%). (30)

FIG. 5. The logarithm of the domain siz€t) in the problem of
directed percolation with immunization for small valuesmf as
function of timet. The numerical results are compared with the
quasistatic approximation predictions.

with A=[a/(1-«a)](a/b2)“. The above result implies that
the average survival time is finite and scales as

T~pg/i-a), 31
Po S To determine the survival probabilify¢(t), we apply an-

It is interesting to compare these results with recent ﬁndinggther enrlchmenr: me_thq(IfBS_], which Ieac_ii toa conbslldtfarable
for random walkers between movable reflectors, where thdProvement. The simulation startﬁ wit an;em of N .
survival probability was shown to decay as a power law with— 6 936 independent systems. Whenever the number of ac-

continuously varying exponenf83]. We note that this result V€ runs becomes smaller thail2, the ensemble is dupli-
is not in contradiction with the present work, since it would Cat€d by creating identical copies of all the remaining active
correspond to the limite— 1. states. The new systems are labeled according to their ances-

tors. The survival probability?; then is reduced by a factor

of n{/n;, wheren; is the number of initial active systems

andn; is the number of remaining active systems before the
The lattice model considered is a<{1)-dimensional tri- duplication. This process may be repeated as long as the

angular lattice. We simulate a directed bond percolation proensemble has a sufficiently large numiperf independent

cess with a first-infection ratp, different from a rate for ancestors at=0. Using this method, we were able to extend

subsequent infections or second-infection rate the temporal range of the simulation by four orders of mag-
Let us first consider the limit of a very small first- nitude up tot=10°. Our results are shown in Fig. 7 for

infection probability, where it is difficult for the process to

infect sites at the boundary that have never been infectec y

before(see Fig. 4. Bonds inside the infected region are open

with the critical probability p=p.=0.64470QL(1) [34], O

while bonds leading to healthy sites at the boundary are opel

with a different probability of first infectiop,. However, as

Po is very small, conventional seed simulations are not suit- 10" | ]

able since most of the runs terminate after a very short time

For example, forp=0.1 most of the runs survive for less <

than 100 time steps. Consequently, we apply enrichmen &

methods in order to circumvent this limitation. First of all, >

we apply a very simple enrichment method, in which we e — p0=0.01

consider a one-lattice system. We keep the activity artificially .y

alive at any timet. This is achieved by ignoring the updates quasi—static approximation

which lead to the inactive state. Averaging over many real-

izations we measured the domain slzg) and the surface 107

density of active sites. We find that the exponents predictec 10 10 10

by the quasi-static approximation are in good agreement with ¢

the values obtained with the numerical simulations as shown F|G. 6. The logarithm of the surface density of active sites of

in Figs. 5 and 6. The nonuniversal factoin Eq. (28) de-  directed percolation with immunization for small values mf as

pends on the value gf,. For pp=0.01, it takes the value function of timet. The numerical results are compared with the

b=1.65. guasistatic approximation predictions.

B. Numerical simulations

L L
2 4 6

10
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FIG. 7. The logarithm of the survival probability(t) of di-
rected percolation with immunization for small valuespf The
inset shows the corresponding number of independent ancestors
a function of time(see text For py=0.01, the duplication method
reaches its limit, since only 11 independent ancestors are left.

FIG. 8. ProbabilityG(L,t) = fP(L,t)dL computed by numeri-
cal integration of the master equation, E§2). The plots corre-
§§ond toa=0.01 andp,=0.01. The inset shows the scaling plot
whenG(L,t) scales according to E¢35).

] _ - Consider Eq(32) with py, a, andb fixed at certain val-
various values op,. As can be seen, the survival probability yes. Then the differential equation which corresponds to the

plotted in a double-logarithmic representation is not amaster equation, E432), can be written as
straight line, proving that it doasot follow a power law. For

the casepy=0.01, parametea in Eq. (25) takes the value
a=1.0012). aP(L’t)=—iP(L t) bi[L-ﬂs’nP(L )], L>1
ot Lz P ) '
C. Lattice effects (33

The scaling arguments in Sec. lll A are developed assumypq solution for Eq(33) is
ing the existence of a well defined mean value for the do-
main sizel (t). To justify this assumption, we defiri&(L,t)

o - - . . _ a—lalpgh(1—z+Bg/v LY 2T Bs /v oty
to be the probability of having a domain of sikeat timet. P(L,t)y=e %P0 s LPs L4

Then the survival probability i®(t)=JP(L,t)dL. In this X[LAs/" 41— pob( Bl v, + 1)t], (34)
section, we show thdt(t) is peaked around the mean value
L(t).

whereL>1. Consider the integrated distribution probability

We begin by writing down a heuristic discrete maSterG(L,t):f‘fP(L,t)dL. ThenG(L.t) has the functional form

equation for the temporal evolution &f(L,t):

P(L,t+1)=e 2" "P(L,t) +bpy(L—1) A/ P(L-11) G(L,t):eC[pob(Bs/Vﬁl)t]“(ﬁ[Lﬁs/,,ﬁl—pob Ps 1)t
—bpoL ~Fs"P(L, ). (32) v
1
. ) ) . X|1+0| 7 ) , (35
The first term on the right-hand side of E§2) describes the t

change inP(L,t) due to terminating runs according to Eq.

(25 integrated over the time intervat,t+1]. The second with c=a/[pyb(1—z+ Bs/v,)] andk=(1—z+ Bs/v,)/(1

term corresponds to the probability of creating a domain of+ g_/v ).

sizeL from a domain of lengthl{—1). The third term de- To observe the qualitative behavior d?(L,t) and

scribes a loss term correspondinglte-L +1. We neglect G(L,t), we carry out numerical integrations of E®2). As

the second-order contributions-b?p3(L—1)"2As/"P(L initial conditions we choose the state in which there is only

—21) and —b2p3(L—1)"2As/"1, which only affect the be- one site infected at time=0. In Fig. 8,G(L,t) is shown for

havior at small time and small regime. several values of time It behaves like a propagating front
It is straightforward to show that this master equation iswith an overall exponential factor of time The fact that all

consistent with Eq(25), by summing over alL and replac- the G(L,t) curves intersect at the same poiste inset in

ing L by its average valué(t). On doing this, we obtain Fig. 8) implies that there is a well defined peak and a mean

dPg(t)/dt=—aL(t) ?P4(t), which is the same equation as valueL(t) for P(L,t). The qualitative behavior d&(L,t) is

Eq. (25). independent of the particular values afand p,. Conse-

036103-7



A. JIMENEZ-DALMARONI AND H. HINRICHSEN PHYSICAL REVIEW E 68, 036103 (2003

0 T T A. Independent avalanche approximation

In (1+1)-dimensional directed bond percolation with

N =p. andppy—1, an avalanche is caused by a sequence of
open bonds at the boundary. Therefore, the avalanchesize
is distributed exponentially as

-50

simulations

-100

sl P(&)=(1-po)ps~e¥<. (36)

In Py(¢)

The quantity
-200 —
— 1 1

= ~ Po—1 (37)

250 “Inpy 1—po’

| : is the average distance by which the avalanche advances the
'30%00 102 1o 1o boundary in space. After each, avalanche the process contin-
¢ ues to evolve as an ordinary critical DP process inside the
immune domain until it terminates or returns to the boundary
~ FIG. 9. Survival probability calculated using the master equahere it releases a new avalanche. Thus the spreading be-
tion, Eq.(32). We setpo=0.01,a=1, ando=1.65. The resultisin  hayior is mainly determined by the distribution of waiting
good agreement with the Monte Carlo simulations figr=0.01. times 7 between the avalanches. We argue that the distribu-
tion of waiting times between avalanches is related to the
quently, to perform these calculations, we use the values of problem oflocal persistencén DP [36,37] (for a recent re-
and p, such that the effect of the exponential decay in Eq.View on persistence, see, e.g., R&8]). The local persis-
(35) is not so pronounced. tence probabilityR(t) is defined as the probability that a
We now compare the predictions of the master equatioh@ndomly selected site in an ordinary critical DP process
proposed in this section with the results obtained from &Starting from a homogeneous initial state ma been reac-
simulation of the model. In Eq32), we fixed the value of tivated _untll timet. It ij\g shown that this quantlty decays
Po=0.01 and variech. The survival probability calculated &l9ebraically asR(t)~t", where ©=1.50(1) is the so-

from direct numerical integration of E¢32) describes well called IOC‘.”II p§r5|s.ten.ce. e>fpone{f36]. In the present prob-
the corresponding simulation result fpr=0.01, in the case lem, the situation is similar: Each avalanche creates locally a
a=1 (see Fig. 9 o guasihomogeneous state. The process then evolves as an or-
9.3 dinary critical DP process inside the infected/immune region
until the boundary is revisited for the first time in order to
release a new avalanche. However, unlike persistence studies
IV. HIGH FIRST-INFECTION PROBABILITY LIMIT in 1+1 dimensions, where a persistent site can be activated
Let us finally consider the limit of a very high first- mdep_endently from the left and from t_he right, the boundary
infection probabilityp,— 1. Again we restrict ourselves to sites in the present propl_em can be infected only from one
the (1+1)-dimensional case, where the region of immuneS|de. Hence, the probability that the next avalanche has not
' 9 et been released decays as”’?. Thus we conjecture that

sites does not contain healthy sites inside. Because of t e waiting times between avalanches are distributed alge-
enhanced spreading probability at the boundaries, the dcb'raically as

main grows rapidly by suddesvalanchef successive first
infections(see Fig. 10 Since the avalanches at the left and P(r)~7 17972 (39)

the right boundary are expected to be uncorrelated, it suffices

to study the propagation of one of the boundaries. As in théNext, we argue that these waiting times may be interpreted
preceding section, we propose simple scaling arguments ias directed Ley flights in time[39]. After each flight, the
order to describe the growth of the infected/immune domairflomain sizel (t) grows, on average, by the mean avalanche

and the survival probability. size&. This type of growth may be described by the equation
space DYPL(1)~ ¢, (39
whereD?"? is a fractional derivative defined through its ac-

tion in the Fourier spac®?e'“'= (iw)®"%'!. Simple di-
mensional analysis leads to the result

time

L(t)~ &9 (40)

In order to compute the survival probability, we note that
FIG. 10. Spreading in the limit of a very high first-infection rate. during the waiting time the outermost active site departs
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FIG. 11. Avalanche approximation in comparison with numerical res@jsNumerically determined survival probability fgp,
=0.85, 0.9, 0.95, and 0.98 from bottom to tdp) Numerically determined domain sizg(t) for p,=0.9 (solid line) compared to the
theoretical predictiori40) (dotted ling. (c) Logarithmic derivative of the survival probability fgr,=0.9.

from the boundary with an average distarfde)~ 7. Ob-  constantP4()>0, meaning that a finite fraction of runs
viously, the process can only terminate if this distance is okurvives for infinitely long time. For very large,, this con-
the same order as the size of the infected/immune domaistant is expected to scale as

L(t). Therefore, we expect the distribution of waiting times

between avalanches to be cut off by a maximal waiting time 1—Pg()oxc(1—pg)?9”2. (46)
Tmax~ L7(t) ~ €792, (41) B. Numerical results
Consequently, the probability that the process terminates be- In order to verify these results numerically, we developed
tween two avalanches is given by an especially optimized Monte Carlo algorithm for large val-
ues ofpg. In order to compute the survival time for a run and
o to see how the boundaries advance for a given realization of
f d7P(7) open and closed bonds, it is in most cases not necessary to
posza"—N o2, (42)  construct the entire cluster. Rather it suffices to construct its
” branches next to the boundaries. For example, in Fig. 10
d7P(7) .
1 large parts of the cluster are irrelevant for the advancement

of the boundaries and the survival time. For this reason, our
On the other hand, the cutoff due to terminating runs implieglgorithm first constructs the branches of the cluster next to
that the average waiting time is finite and scales as the boundaries. If these branches terminate before the simu-

lation time is reached, we recursively construct the omitted

max branches in the interior of the clusters. If, however, they do
- Jl dr7P(7) not terminate, then the recursive construction is not per-
= —:Trlngf)/? (43  formed. Using this technique, we could extend the simula-
fr’"a"dTP(T) tion time by two decades to 1@ime steps, two decades less
1 than in the previous case of lopg.

Our numerical results are shown in Fig. 11. The left panel
Therefore, the average loss of the survival probability pesshows the survival probability as a function of time in a
unit time is given byPo/ 7~ 1/7 4, i.€., directed bond percolation process witg=0.85,0.90,0.95,
and 0.98. The positive curvature of the lines indicates that
dPg(t) — e there is no power-law scaling. Although the upward curva-
qi " Ps(0/ Tma~ — P& . (44  ture is in agreement with the expected regdf), the simu-

. . . . . lation time is not large enough to confirm the behavior of Eq.
Solving this equation, the asymptotic behavior of the sur- g g a

vival probability is not a stretched exponential and is given(45) quantitatively, ”_‘ai”'y because cpnstwnts not known.
by a In order to substantiate the assumptions made in the preced-

ing subsection, we first measured the growing domain size
1 L(t). As shown in Fig. 11b, the measured slope seems to
Py(t)= = exp(+ A& Z1-2072), (45  tend to the predicted slop@/2=0.751). Moreover, we es-
timated the logarithmic derivative of the survival probability,
5 5 in which the unknown prefactoA drops out(see the right
whereN and A are unknown constants. In contrast to thepanel of Fig. 11 Although this dataset is quite noisy, we
previous case in Eq30), the exponent £+ z0/2=—-0.185is observe a rather clean power law. The estimated slope
negative. Consequently, the survival probability tends to a.12(10) is consistent with the theoretical predicttorf®’?

036103-9



A. JIMENEZ-DALMARONI AND H. HINRICHSEN PHYSICAL REVIEW E 68, 036103 (2003

=t~ 118 supporting the assumptions which led to resultstant in the high first-infection probability limit, taking the
(45). form

V. CONCLUSIONS exp(—at™ %0528 for py—0
. o Py(t)e -0.18

We analyzed the effects of immunization as a small per- exp(+bt™ %1% for py—1.
turbation on the DP model and studied in detail the scaling
behavior of the theory around the DP critical point. We de-The numerical simulations in#1 dimensions support these
rived by an alternative method the field theoretic action fortheoretical predictions, ruling out the possibility of
the model. A non-Markovian term is added to the DP actionasymptotic power-law scaling in both limits. The question as
because of the presence of immunization. In the field theoryto whether the stretched exponential decay of the survival
the probability for subsequent infections, which is differentprobability persists in higher dimensions is still open.
from the first-infection probability, is a function of position  Finally, we comment on a possible connection of these
and time. Nevertheless, we assumed in the lattice model thagsults with the problem of infinitely many absorbing states.
the susceptibility for spreading changes only after the firstA typical example of such systems is the pair contact process
infection, remaining constant thereafter. This assumptior2A—3A, 2A—(J, in which solitary particles are not al-
does not change the final results. lowed to diffuse[40]. In Refs.[24-26,19, this model was

The phase diagrartef. Fig. 1) comprises two phase tran- studied with an effective Langevin equation and it was in-
sition lines, namely, a horizontal line, where the process irferred that the survival probability decays as a power law at
reinfected regions shows the critical behavior of DP, éind the transition point, with continuously varying exponents.
more than one spatial dimensjoa curved transition line, However, the field theoretical action studied in Refs.
where the critical behavior corresponds to the general epi-24,26,19 is identical to the one studied in this paper. Hence,
demic process studied in R¢1.8]. Both lines meet at the DP we conclude that, according to the analysis presented in this
critical pointp=py=p.. paper, seed simulations of the pair contact process, at least in

The non-Markovian term turns out to be relevant for1+1 dimensions, should show a stretched exponential be-
d<6. We considered the RG flows and argued that any poinavior and not a power low decay at the transition point.
in the neighborhood of the DP critical point will be driven
away from it. In particular, we focused our study on the
horizontal phase transition line with a critical reinfection
probabilityp=p.. The system along this line is driven away = We want to thank Peter Grassberger for communication of
from the DP critical point as soon as the immunization ef-unpublished numerical calculations. A.J.-D. is greatly in-
fects are turned on as a small perturbation. The asymptotidebted to John Cardy for enlightening discussions and sug-
behavior is determined by the limits of very low and high gestions, and for his most careful reading of the manuscript.
first-infection probability(close to pointsA andB in Fig. 1).  A.J.-D. would also like to thank R. Rajesh for useful com-

We proposed simple scaling arguments for the behavior oments. Part of the present computations have been carried
the survival probability in both limits. We related the corre- out on the 128-node Alpha Linux Cluster Engif#_iCE) at
sponding exponents with those exponents of the critical orthe Wuppertal University. We thank N. Eicker, Th. Lippert,
dinary DP theory and DP near a wall. The survival probabil-and B. Orth for their assistance. A.J.-D. was supported by
ity is found to obey a stretched exponential behavior in theCONICET (Argenting, the British Council-Fundacio An-
low first-infection probability limit, and it decays to a con- torchas(Argenting, and the ORS Award Schent&gK).

(47)
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