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In this paper, a discrete velocity model and a lattice Boltzmann model are proposed for binary mixtures of
nonideal fluids based on the Enskog theory. The velocity space of the Enskog equation for each component is
first discretized by applying a Gaussian quadrature, resulting in a discrete velocity model that can be solved by
suitable numerical schemes. A lattice Boltzmann model is then derived from the discrete velocity model with
a slightly modified equilibrium. The hydrodynamics of each model are also derived through the Chapmann-
Enskog procedure.
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Modeling complex systems at microscopic and mesostheory, now usually referred to as standard Enskog theory
copic levels is becoming a promising and viable approach ifSET), was incompatible with the linear irreversible thermo-
related areas. The lattice Boltzmann metha@M) [1] is  dynamics(LIT) for mixtures[13], and a revised version of
just such a method for fluid systems. A distinctive feature ofSET, the so-called revised Enskog theory, was proposed to
LBM is that interparticle interactions can be easily incorpo-fix this problem[14]. However, very recently it was shown
rated into the method, so that some complex fluid behaviorghat the SET is actually compatible with L[L5]. Therefore,
which may be rather difficult, if not impossible, to be simu- the SET can serve as a basis for developing discrete kinetic
lated by conventional numerical methods, can be simulatef10dels for nonideal mixtures. _ _ _
efficiently by LBM. For example, in systems involving inter- _ Ve start from the Enskog equations for a binary mixture
faces and phase change, the interfaces between differe?lft components 0 and [15]:
components/phases are very difficult to track by conven-
tional techniques due to the complex geometry and possible (Datdar Vva)fa(x,va,t)zz Jap, a=01, (1)
phase change. On the other hand, it is well understood that b
macroscopic interfaces and phase changes are thermody; _ . . . .
namic results of microscopic interactions between molecule \)f.rll)erth?— attJ.r va];V, Fa(x,va tn)zt 1S ttr?e sr:ngle-partmle dis-
therefore, once the microscopic interactions are modeled a ribution function for componerd in the phase spacaa),
propriately at the microscopic or mesoscopic level, the hy-Val is the particle velocity of sphere with diametero, and

drodynamic behaviors of the system will appear naturally.mat‘.ssma' tga IS t?el aCTCﬁ'efaﬂF’r_‘ due to tan egxtternal f:)rce
This is in fact what LBM and some other discrete kinetic 2¢!'N9 0N the particia. ihe cofision operators between two

models have done in modeling such systdis particles of the same or different species are given by

Several lattice Boltzmann models and kinetic models
have been proposed for multicomponent and multiphase sys- Jab:f d o] Xan(X+ YapK) fo(X+ o apk, Vp) fs(X,V5)
tems[2-10. These models are built on different physical
pictures and each takes a different appearance. However, — Xab(X— Yapk) Fo(X— 0 apk,Vp) Fs(X,Va) 1, 2)
they can all be viewed as special discretizations of certain
kinetic equations with certain approximatidizs-5], and itis ~ where xa,= xapn(Na,np) is the radial distribution function
helpful to understand the advantages and disadvantages @®DF) of two hard spheregone of component and the
the models from the kinetic theory point of view. Further- other of componenb) at contact, which is evaluated at a
more, some studig®-5| indicate that physically consistent point located between the centers of the colliding particles,
models can be directly derived from certain kinetic equations.e., y,,= 04,/2 With o4,= (0,+ 0,)/2. In EqQ.(2), k is the
using some standard discretization procedures. unit vector directed from particleé to particlea along the

In this paper, we aim to develop a discrete kinetic modeline of centers of the two colliding particles.andv’ are the
and a lattice Boltzmann model for binary mixtures of non-molecular velocities before and after the collision, respec-
ideal fluids. Unlike other previously proposed heuristic mod-tively.
els for such systemfs,7], which were based on fictitious The number density of each component and the velocity
“intermolecular interactions” oad hoc*“free energies,” the  of the mixture are defined by the moments of the distribution
present models are based on a kinetic theory for dense miXunctions:
tures. It is noted that a lattice Boltzmann model for mixtures
of ideal fluids has recently been proposed based on the Bolt- na=J fadvy, pu=2 m, | Vofadv,, ©)
zmann equation for ideal mixturéd]. a

The kinetic theory for single-component nonideal fluidswherep=2X,myn, is the density of the mixture.
was first proposed by Enskddl], and was later generalized If we expandf , andy,, in a Taylor series up to first order
for binary mixtures of hard spheres by Thoriid] and fur-  in gradients about, use the Bhatnager-Grass-Kro@GK)
ther extended to multicomponent mixtures by Tham andapproximatiorf16], and assume the mixture to be isothermal
Gubbins[12]. Formerly, it was believed that the Enskog and incompressible, we hay&7]
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Dafa(X,Vy,t)= —Agl[fa—fge@]—{-\]é{— G,, (4) Once the discrete velocities,; and the weightV,; are
determined, we arrive at our first point of this paper: a dis-
where crete velocity model for binary nonideal mixtures can be
defined from Eq(4),
=fEdy ).
Ga=la (Va1 Gl b, © Daifai(x)= =N 1[fy— 169+, 4Gy, (10
=1V v—u)- Ky, (6)  whereDy=d,+ey-V, fa(x,t)=W,;fa(x,e;,1), and

2

with K,=SpbapppxanV IN(ppxan), and bap="Vay/my is the &i-u  (&i-u)? U

(ed— -
virial coefficient with Vab=27-ro§b/3 in three dimensions fai” =wing 1+ 6, + 292 26, 1D
(3D) or wa2,/4 in 2D. £ is the Maxwellian local equilib- ?
rium distribution function and is given by5] =1V —u) Ky, (12)
— D/
FE0=ny(2m0,) " OPexit — (va—ufD)?26,], (1) G = 169 ey~ 1) - G/ 0. 13

with D being the dimension of the, moment spacef, = The number density of each component and the velocity of
=kgT/m, is the normalized temperature, akglis the Bolt-  the mixture are consequently defined as
zmann constant. In what follows we assume that the two

components are in local equilibrium, implying that the local na=2> fai, pu=> m>, efq. (14)
equilibrium velocities of both components are equal to the ! a :
local barycentric velocity of the mixture, i.eug—‘@:ugeq) From the above definitions, it is easy to calculate the fol-
=u. lowing moments:

Some remarks should be made on the relaxation kge
As in the BGK models for ideal fluidgL0], the local mo- 2 f80=n., 2 eifg?=nau, (153

mentum conservation in the ideal fluid limit requirag
=N;=A\. It is noted that heren is not a constant, but a

. . .. fleq_
variable that may depend on the number density of each Z CaiaCaipfar = BaNaduptNallaUp, (150
componen{10].

A discrete velocity model can be derived from Ed) by Z, ‘JE,“:Z GL=0, (150

projecting the velocity space onto a finite set of discrete ve-

locities. Here we follow the procedure proposed by He and

Luo [18]. First, we construct an equilibrium distribution by 3= —n.0.K Ga.=n,g.. (150

truncating the Taylor series cfﬁfq) given by Eq.(7) up to EI Carval aree Z Gaiai™ Nala

second order imu: . .
Through the Chapman-Enskog procedure and with the aid

V2 2 2 of Eq. (15), we can derive the mass conservation equation of
f(eq):Lexr{ - _a) 142l (Va-W)?  u” ~ componeng and the hydrodynamic equations of the mixture
 (2m6,)P” 20, ta 202 206, from the discrete velocity modgl0):
8 _
dpat V-(pau)=—V-j,, (16)

We then project the velocity space onto a finite set of discrete
velocitiese,; such that the numerical quadrature dp+V-(pu)=0, 17

A(pu)+V-(puu)=—Vp+V-[pr(Vu+(Vu)"]
f Va0 Ve, Ddva= 2 Wad fE0(x.ea,0) (9 t

+ ; Pa%a, (19

holds exactly for 8&k=<3. A natural choice for the evalua-
tion of the integral is the Gaussian quadrature with weigh
function exp6v§/203). In what follows, we shall restrict
ourselves to a two-dimensional nine-velocity mofEd] for
the sake of simplicity without losing generality. In this case,
the Gaussian quadrature yields the following discrete veloci-

ties: €,0=0, €;=V30a{cod(i—1)m/2],sir{(i—1)w/2]} for i  wherea=1—a. Obviously, the pressure of the mixture sat-
=1-4, ande,j= \66,{cod(i—5)m/2],siN(i—5)w/2]} for i  isfies a nonideal fluid equation of state. Therefore, phase

Iwherejaz m,Z;(e,;—u)f,; is the mass flux of componeat
v is the shear viscosity given by=n\kgT/p; n=ng+n, is
the total number densityg= py+ p; is the total pressure, and

Pa= 0apa(l+Dbaapaxaat Daaraxaa), a=0,1, (19

=5-8; the  weights are given by W,; transition of the mixture can be simulated using the present
=270,exgel/(20,)o; with ©y=4/9, w;=1/9 for i model by adjustindo,, and x,,. In the single-component
=1-4, andw;=1/36 fori=5-8. region,p reduces to the previous result for nonideal fluids. It
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is also noted that the viscosities of both components can takdistribution function of each component such that the con-

different values, althoughy=A;=A\. straints given by Eq(15) still hold. One such choice is to
We now discuss the diffusion in the mixture. Equationtake

(16) can be rewritten as

g-u (g-uw? U
0 * 262 26

p(dXy+u-VX)==V-j,, (20 win,
-

Sat , 1#0,

where X,=p,/p is the mass fraction of componeat The 1-s, u2
mass fluxj, can be evaluated by means of the Chapman- wona(—+sa— ﬁ) i=0,
Enskog technique at the second orfiEt]. After some alge- “o

bra, we obtain that wheres,=6,/6, and @ is a reference normalized tempera-

ja=—AnkgTd (21) ture of the mixture; & is redefined by e=0, g
: SR = \36{cog(i—1)m/2],sir(i—1)m/2]} for i=1—4, and e
whered, is the diffusion force defined bj17] = \/66{cog(i—5)m/2],sif (5—1)m/2]} for i=5-8.

Note thatd ande become identical for each component
now, therefore the configurational spaces for both compo-
nents can be discretized on a uniform lattice, which gives
that 9= c?/3 with c=6,/6,, whereé, is the lattice spacing
whereAg,=0;—Ja, 14 IS the chemical potential of species and ¢, is the time increment. Now, we arrive at the second
a and satisfie®u,/dn,=(kgT/n,)E,p, With point of this paper: a lattice Boltzmann equati@BE) can

be obtained by integrating the discrete velocity equatidn

d i - :
a);]ac. 23) using the trapezoidal rule:
b

_ Pa A p It
da—w paAga Vp+ m, % &nanb , (22)

Eab= Sabt 2bappaxapt nag Dacoc
hai(X+ €8¢, t+ 8) —hai(X, 1) = Qg+ Fyi, (27)
The diffusion forced, given by Eq.(22) is consistent with (e ,
the phenomenological one as suggested in R&l. Further-  Where  hgi=fqi+ (4= f57) /(27— 1) = (Jai + Gai) 6/2,
more, under the condition of no external forces and uniformai=— (Nai—f$?)/7,  7=\/5+05, and Fy=5(1
pressure ¢,=g,=Vp=0), the diffusion force reduces to —0.5/7)(J;+G4). The number density of each component

[17] is defined byn,==;h,;, and the velocity of the mixture is
defined by
2 LzEaa—L.Eaz
d,= P . aFaa™ La aaVXa, (24) 5,
Maman®  LaXat LaXa pu=2 Mo ehait 5 X palGa=0aKa). (29

where L,=Eg+ E,, and x,=n,/n. Therefore, under this

condition, Eq.(20) reduces to Again, through the Chapman-Enskog procedure we can

derive the conservation equations for each component and

p( X+ U-VX,) =V (pDVX,), (25  the mixture from the present LBR7) [17]. These equations
are the same as those derived from the above discrete veloc-
where the mutual diffusivityD, is given by ity model, except thai is replaced by {—0.5)é; in the
expressions of andD, due to discrete effect. Therefore, as
NpkeT LzEaa—LaEaz the discrete velocity model, the present LBE can also be used

(26) {0 simulate both miscible and immiscible binary mixtures.
In practical applications, the RDBg,, must be specified

Note thatD, can be either positive or negative, depending onin advance. There are seve_ral different methods to determine
the number density, the diameter ratio, and concentrations ¢hese RDFs. For instance, in the van den Waals(ed/-1)
the components of the mixture. Therefore, the proposed didluid approximation[20], the mixture is treated as an effec-
crete velocity model can be used to simulate both miscibldive single-component fluid, and all the RDFs share the same
and immiscible binary mixtures. expression as that of the effective fluid, i.€.,=09(0%),

To solve the discrete velocity equatiéh0) numerically, ~Whereg is the RDF of the effective fluid, andy is the
the space and time should be discretized using appropriagffective diameter defined byo?=x30(+2XoX1L o100
numerical schemes. However, one cannot expect to construgtxios , with Lo, being a free interaction parameter. There-
a lattice Boltzmann model directly from the discrete velocityfore, once the RDF of the single fluid is specified, the RDFs
model on a uniform lattice as usually done for single-for the mixture are fully determined.
component fluid, except for the case wh=m;. This is Using the vdW-1 approximation and the Carnahan-
because am,# m;, we haveey, # e;; for i #0, which indi-  Starling RDF[21], g=(1— 7/2)/(1— )3, wherep=nVy is
cates that the configure spaces for the two components cathe packing factor, we applied the present LBE to a binary
not be discretized on a single uniform lattice. mixture consisting of a component withy=2.0 and another

An alternative way to derive a lattice Boltzmann modelwith m;=1.0 on a two-dimensional 128128 lattice with
from the discrete velocity model is to modify the equilibrium periodic boundaries. The system was initialized (@)

=
MaMpN L axg+ L X,
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circular shape formed and the pressure difference and the
radius of the bubble were measured. The measurements are
plotted in Fig. 2. It is seen that the Laplace law is approxi-
mately satisfied.

=0.3 and(n;)=0.7 with a small random perturbation, and  In summary, starting from the SET, we have constructed a
we setV;=0.025,V,/V,=0.5. AsL, is large enough, the discrete velocity model and a lattice Boltzmann model for
mixture will separate into two immiscible fluids. For ex- mixtures of nonideal fluids. The hydrodynamic equations for
ample, ad 5;=6.0, small droplets of component O appearedthe mixture and the diffusion equation are derived from both
in the random mixture and mETQEd into Iarger ones as tim%ode|s through the Chapman_Enskog procedure. Both mod-
evolved. At a later stage, component 0 is seen t(_) havg COMss can be used to simulate phase change or mixing/
pletely separated from component 1 and formed into circulageparating behavior of nonideal fluids. They are directly de-

drops. Figure 1 shows the density distribution of the mixture,y a4 from the kinetic theory, and therefore have a sound
att=10000. The Laplace laiP=o/R, whereAP is the physics.

pressure difference between the inside and the out side a

circular bubble of radiuRR, was also verified. Initially, a Z.G. sincerely thanks Dr. LS. Luo for his great help and
circular bubble of component 0 witmy=1.0 andny=1.1  sharing Ref[4] before its publication. He also thanks Dr.
was set at the center of the lattice, and the domain outside théH. Qian for his encouragements. This work was supported
bubble was filled with component 1 witin;=1.0 andng by a RGC grant of Hong KongGrant No. HKUST6193/
=1.0. As the system reached its equilibrium, a bubble in01E).

FIG. 1. Density distribution of the binary mixture &t 10 000
(minimum in white and maximum in blagk
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