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Discrete velocity and lattice Boltzmann models for binary mixtures of nonideal fluids
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In this paper, a discrete velocity model and a lattice Boltzmann model are proposed for binary mixtures of
nonideal fluids based on the Enskog theory. The velocity space of the Enskog equation for each component is
first discretized by applying a Gaussian quadrature, resulting in a discrete velocity model that can be solved by
suitable numerical schemes. A lattice Boltzmann model is then derived from the discrete velocity model with
a slightly modified equilibrium. The hydrodynamics of each model are also derived through the Chapmann-
Enskog procedure.
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Modeling complex systems at microscopic and mes
copic levels is becoming a promising and viable approac
related areas. The lattice Boltzmann method~LBM ! @1# is
just such a method for fluid systems. A distinctive feature
LBM is that interparticle interactions can be easily incorp
rated into the method, so that some complex fluid behavi
which may be rather difficult, if not impossible, to be sim
lated by conventional numerical methods, can be simula
efficiently by LBM. For example, in systems involving inte
faces and phase change, the interfaces between diffe
components/phases are very difficult to track by conv
tional techniques due to the complex geometry and poss
phase change. On the other hand, it is well understood
macroscopic interfaces and phase changes are therm
namic results of microscopic interactions between molecu
therefore, once the microscopic interactions are modeled
propriately at the microscopic or mesoscopic level, the
drodynamic behaviors of the system will appear natura
This is in fact what LBM and some other discrete kine
models have done in modeling such systems@1#.

Several lattice Boltzmann models and kinetic mod
have been proposed for multicomponent and multiphase
tems @2–10#. These models are built on different physic
pictures and each takes a different appearance. Howe
they can all be viewed as special discretizations of cer
kinetic equations with certain approximations@2–5#, and it is
helpful to understand the advantages and disadvantage
the models from the kinetic theory point of view. Furthe
more, some studies@2–5# indicate that physically consisten
models can be directly derived from certain kinetic equatio
using some standard discretization procedures.

In this paper, we aim to develop a discrete kinetic mo
and a lattice Boltzmann model for binary mixtures of no
ideal fluids. Unlike other previously proposed heuristic mo
els for such systems@6,7#, which were based on fictitiou
‘‘intermolecular interactions’’ orad hoc‘‘free energies,’’ the
present models are based on a kinetic theory for dense
tures. It is noted that a lattice Boltzmann model for mixtur
of ideal fluids has recently been proposed based on the B
zmann equation for ideal mixtures@4#.

The kinetic theory for single-component nonideal flui
was first proposed by Enskog@11#, and was later generalize
for binary mixtures of hard spheres by Thorne@11# and fur-
ther extended to multicomponent mixtures by Tham a
Gubbins @12#. Formerly, it was believed that the Ensko
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theory, now usually referred to as standard Enskog the
~SET!, was incompatible with the linear irreversible therm
dynamics~LIT ! for mixtures@13#, and a revised version o
SET, the so-called revised Enskog theory, was propose
fix this problem@14#. However, very recently it was show
that the SET is actually compatible with LIT@15#. Therefore,
the SET can serve as a basis for developing discrete kin
models for nonideal mixtures.

We start from the Enskog equations for a binary mixtu
of components 0 and 1@15#:

~Da1ga•“va
! f a~x,va ,t !5(

b
Jab , a50,1, ~1!

whereDa5] t1va•“, f a(x,va ,t) is the single-particle dis-
tribution function for componenta in the phase space (x,va),
va is the particle velocity of spherea with diametersa and
massma . ga is the acceleration due to an external for
acting on the particlea. The collision operators between tw
particles of the same or different species are given by

Jab5E dmb@xab~x1yabk! f b~x1sabk,vb8! f s~x,va8!

2xab~x2yabk! f b~x2sabk,vb! f s~x,va!#, ~2!

where xab5xab(na ,nb) is the radial distribution function
~RDF! of two hard spheres~one of componenta and the
other of componentb) at contact, which is evaluated at
point located between the centers of the colliding particl
i.e., yab5sab/2 with sab5(sa1sb)/2. In Eq. ~2!, k is the
unit vector directed from particleb to particlea along the
line of centers of the two colliding particles.v andv8 are the
molecular velocities before and after the collision, resp
tively.

The number density of each component and the velo
of the mixture are defined by the moments of the distribut
functions:

na5E f adva , ru5(
a

maE vaf adva , ~3!

wherer5(amana is the density of the mixture.
If we expandf a andxab in a Taylor series up to first orde

in gradients aboutx, use the Bhatnager-Grass-Krook~BGK!
approximation@16#, and assume the mixture to be isotherm
and incompressible, we have@17#
©2003 The American Physical Society02-1



tw
a

th

ac

ve
n
y

re

-
gh
t

e
oc

is-
be

of

ol-

aid
of

re

d

t-
ase
ent
t
. It

RAPID COMMUNICATIONS

Z. GUO AND T. S. ZHAO PHYSICAL REVIEW E68, 035302~R! ~2003!
Daf a~x,va ,t !52la
21@ f a2 f a

(eq)#1Ja81Ga , ~4!

where

Ga5 f a
(eq)~va2u!•ga /ua , ~5!

Ja852 f a
(eq)~va2u!•Ka , ~6!

with Ka5(bbabrbxab“ ln(rb
2xab), and bab5Vab /mb is the

virial coefficient with Vab52psab
3 /3 in three dimensions

~3D! or psab
2 /4 in 2D. f a

(eq) is the Maxwellian local equilib-
rium distribution function and is given by@15#

f a
(eq)5na~2pua!2D/2exp@2~va2ua

(eq)!2/2ua#, ~7!

with D being the dimension of theva moment space,ua
5kBT/ma is the normalized temperature, andkB is the Bolt-
zmann constant. In what follows we assume that the
components are in local equilibrium, implying that the loc
equilibrium velocities of both components are equal to
local barycentric velocity of the mixture, i.e.,u0

(eq)5u1
(eq)

5u.
Some remarks should be made on the relaxation timela .

As in the BGK models for ideal fluids@10#, the local mo-
mentum conservation in the ideal fluid limit requiresl0
5l1[l. It is noted that herel is not a constant, but a
variable that may depend on the number density of e
component@10#.

A discrete velocity model can be derived from Eq.~4! by
projecting the velocity space onto a finite set of discrete
locities. Here we follow the procedure proposed by He a
Luo @18#. First, we construct an equilibrium distribution b
truncating the Taylor series off a

(eq) given by Eq.~7! up to
second order inu:

f a
(eq)5

na

~2pua!D/2
expS 2

va
2

2ua
D F11

va•u

ua
1

~va•u!2

2ua
2

2
u2

2ua
G .

~8!

We then project the velocity space onto a finite set of disc
velocitieseai such that the numerical quadrature

E va
k f a

(eq)~x,va ,t !dva5(
i

Waieai
k f a

(eq)~x,eai ,t ! ~9!

holds exactly for 0<k<3. A natural choice for the evalua
tion of the integral is the Gaussian quadrature with wei
function exp(2va

2/2ua). In what follows, we shall restric
ourselves to a two-dimensional nine-velocity model@19# for
the sake of simplicity without losing generality. In this cas
the Gaussian quadrature yields the following discrete vel
ties: ea050, eai5A3ua$cos@(i21)p/2#,sin@(i21)p/2#% for i
51 –4, andeai5A6ua$cos@(i25)p/2#,sin@(i25)p/2#% for i
55 –8; the weights are given by Wai

52puaexp@eai
2 /(2ua)#v i with v054/9, v i51/9 for i

51 –4, andv i51/36 for i 55 –8.
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Once the discrete velocitieseai and the weightsWai are
determined, we arrive at our first point of this paper: a d
crete velocity model for binary nonideal mixtures can
defined from Eq.~4!,

Dai f ai~x,t !52l21@ f ai2 f ai
(eq)#1Jai8 1Gai , ~10!

whereDai5] t1eai•“, f ai(x,t)5Wai f a(x,eai ,t), and

f ai
(eq)5v inaF11

eai•u

ua
1

~eai•u!2

2ua
2

2
u2

2ua
G , ~11!

Jai8 52 f ai
(eq)~eai2u!•Ka , ~12!

Gai5 f ai
(eq)~eai2u!•ga /ua . ~13!

The number density of each component and the velocity
the mixture are consequently defined as

na5(
i

f ai , ru5(
a

ma(
i

eai f ai . ~14!

From the above definitions, it is easy to calculate the f
lowing moments:

(
i

f ai
(eq)5na , (

i
eai f ai

(eq)5nau, ~15a!

(
i

eaiaeaib f ai
(eq)5uanadab1nauaub , ~15b!

(
i

Jai8 5(
i

Gai50, ~15c!

(
i

eaiJai8 52nauaKa , (
i

eaiGai5naga . ~15d!

Through the Chapman-Enskog procedure and with the
of Eq. ~15!, we can derive the mass conservation equation
componenta and the hydrodynamic equations of the mixtu
from the discrete velocity model~10!:

] tra1“•~rau!52“• ja , ~16!

] tr1“•~ru!50, ~17!

] t~ru!1“•~ruu!52“p1“•@rn„“u1~“u!T
…#

1(
a

raga , ~18!

whereja5ma( i(eai2u) f ai is the mass flux of componenta,
n is the shear viscosity given byn5nlkBT/r; n5n01n1 is
the total number density;p5p01p1 is the total pressure, an

pa5uara~11baaraxaa1baār ā xaā!, a50,1, ~19!

whereā512a. Obviously, the pressure of the mixture sa
isfies a nonideal fluid equation of state. Therefore, ph
transition of the mixture can be simulated using the pres
model by adjustingbab and xab . In the single-componen
region,p reduces to the previous result for nonideal fluids
2-2
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is also noted that the viscosities of both components can
different values, althoughl05l15l.

We now discuss the diffusion in the mixture. Equati
~16! can be rewritten as

r~] tXa1u•“Xa!52“• ja , ~20!

whereXa5ra /r is the mass fraction of componenta. The
mass fluxja can be evaluated by means of the Chapm
Enskog technique at the second order@11#. After some alge-
bra, we obtain that

ja52lnkBTda , ~21!

whereda is the diffusion force defined by@17#

da5
ra

nrkBT Fr āDga2“p1
r

ma
(

b

]ma

]nb
“nbG , ~22!

whereDga5gā2ga , ma is the chemical potential of specie
a and satisfies]ma /]nb5(kBT/na)Eab , with

Eab5dab12babraxab1na(
c

bacrc

]xac

]nb
. ~23!

The diffusion forceda given by Eq.~22! is consistent with
the phenomenological one as suggested in Ref.@15#. Further-
more, under the condition of no external forces and unifo
pressure (ga5gb5“p50), the diffusion force reduces t
@17#

da5
r2

mamān2

LāEaa2LaEaā

Lāxā1Laxa

“Xa , ~24!

where La5Eāa1Eaa and xa5na /n. Therefore, under this
condition, Eq.~20! reduces to

r~] tXa1u•“Xa!5“•~rDa“Xa!, ~25!

where the mutual diffusivityDa is given by

Da5
lrkBT

mambn

LāEaa2LaEaā

Lāxā1Laxa

. ~26!

Note thatDa can be either positive or negative, depending
the number density, the diameter ratio, and concentration
the components of the mixture. Therefore, the proposed
crete velocity model can be used to simulate both misc
and immiscible binary mixtures.

To solve the discrete velocity equation~10! numerically,
the space and time should be discretized using approp
numerical schemes. However, one cannot expect to cons
a lattice Boltzmann model directly from the discrete veloc
model on a uniform lattice as usually done for sing
component fluid, except for the case ofm05m1. This is
because asm0Þm1, we havee0iÞe1i for iÞ0, which indi-
cates that the configure spaces for the two components
not be discretized on a single uniform lattice.

An alternative way to derive a lattice Boltzmann mod
from the discrete velocity model is to modify the equilibriu
03530
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distribution function of each component such that the c
straints given by Eq.~15! still hold. One such choice is to
take

f ai
(eq)55 v inaFsa1

ei•u

u
1

~ei•u!2

2u2
2

u2

2uG , iÞ0,

v0naS 12sa

v0
1sa2

u2

2u D , i 50,

wheresa5ua /u, andu is a reference normalized temper
ture of the mixture; ei is redefined by e050, ei

5A3u$cos@(i21)p/2#,sin@(i21)p/2#% for i 5124, and ei

5A6u$cos@(i25)p/2#,sin@(521)p/2#% for i 55 –8.
Note thatu andei become identical for each compone

now, therefore the configurational spaces for both com
nents can be discretized on a uniform lattice, which giv
that u5c2/3 with c5dx /d t , wheredx is the lattice spacing
and d t is the time increment. Now, we arrive at the seco
point of this paper: a lattice Boltzmann equation~LBE! can
be obtained by integrating the discrete velocity equation~10!
using the trapezoidal rule:

hai~x1eid t ,t1d t!2hai~x,t !5Vai1Fai , ~27!

where hai5 f ai1( f ai2 f ai
(eq))/(2t21)2(Jai8 1Gai)d t/2,

Vai52(hai2 f ai
(eq))/t, t5l/d t10.5, and Fai5d t(1

20.5/t)(Jai8 1Gai). The number density of each compone
is defined byna5( ihai , and the velocity of the mixture is
defined by

ru5(
a

ma(
i

eihai1
d t

2 (
a

ra~ga2uaKa!. ~28!

Again, through the Chapman-Enskog procedure we
derive the conservation equations for each component
the mixture from the present LBE~27! @17#. These equations
are the same as those derived from the above discrete v
ity model, except thatl is replaced by (t20.5)d t in the
expressions ofn andDa due to discrete effect. Therefore, a
the discrete velocity model, the present LBE can also be u
to simulate both miscible and immiscible binary mixtures

In practical applications, the RDFsxab must be specified
in advance. There are several different methods to determ
these RDFs. For instance, in the van den Waals one~vdW-1!
fluid approximation@20#, the mixture is treated as an effec
tive single-component fluid, and all the RDFs share the sa
expression as that of the effective fluid, i.e.,xab5g(sX),
where g is the RDF of the effective fluid, andsX is the
effective diameter defined bysX

D5x0
2s0

D12x0x1L01s01
D

1x1
2s1

D , with L01 being a free interaction parameter. Ther
fore, once the RDF of the single fluid is specified, the RD
for the mixture are fully determined.

Using the vdW-1 approximation and the Carnaha
Starling RDF@21#, g5(12h/2)/(12h)3, whereh5nVX is
the packing factor, we applied the present LBE to a bin
mixture consisting of a component withm052.0 and another
with m151.0 on a two-dimensional 1283128 lattice with
periodic boundaries. The system was initialized as^n0&
2-3



d

-
ed
im
om
la
r

e

t

i

the
s are
xi-

d a
for
for
oth
od-

ing/
de-
nd

nd
r.
ted

v.
f
,

RAPID COMMUNICATIONS

Z. GUO AND T. S. ZHAO PHYSICAL REVIEW E68, 035302~R! ~2003!
50.3 and^n1&50.7 with a small random perturbation, an
we setV050.025, V1 /V050.5. AsL01 is large enough, the
mixture will separate into two immiscible fluids. For ex
ample, asL0156.0, small droplets of component 0 appear
in the random mixture and merged into larger ones as t
evolved. At a later stage, component 0 is seen to have c
pletely separated from component 1 and formed into circu
drops. Figure 1 shows the density distribution of the mixtu
at t510 000. The Laplace lawDP5s/R, whereDP is the
pressure difference between the inside and the out sid
circular bubble of radiusR, was also verified. Initially, a
circular bubble of component 0 withm051.0 andn051.1
was set at the center of the lattice, and the domain outside
bubble was filled with component 1 withm151.0 andn0
51.0. As the system reached its equilibrium, a bubble
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