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We explore thermodynamic relations in nonequilibrium steady states with numerical experiments on a driven
lattice gas. After operationally defining the pressure and chemical potential in the driven lattice gas, we confirm
numerically the validity of the integrability conditiotthe Maxwell relation for the two quantities whose
values differ from those for an equilibrium system. This implies that a free-energy function can be constructed
for the nonequilibrium steady state that we consider. We also investigate a fluctuation relation associated with
this free-energy function. Our result suggests that the compressibility can be expressed in terms of density
fluctuations even in nonequilibrium steady states.
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A rich variety of nonequilibrium phenomena have beenments suggest that the compressibility can be expressed in
successfully described by phenomenological evolution equaerms of density fluctuations even in certain nonequilibrium
tions. However, the microscopic foundation of such equasystems.
tions has not yet been established, except for systems near
equilibrium. Even for nonequilibrium steady stat@®$ESS MODEL
realized in simple systems, such as those involving only heat ) ) ) o
conduction and shear flow, appropriate statistical measures of L€t i be an occupation variable defined on each site
microscopic configurations are not known. Recalling that=(ix:iy) in a two-dimensional square latti¢¢i,,iy)|0=i,
equilibrium statistical mechanics was constructed with the=L+1,0<i,<M+1}. The variabler; is 1 when theth site
aid of thermodynamics, we expect that checking the validityS occupied and is 0 if it is empty. We assume periodic
of thermodynamic relations in NESS is an important step ifPoundary conditions in the direction [i.e., o;=0; when
constructing a theory of nonequilibrium statistical mechan-Wheni=j+(L,0)] and no-flux boundary conditions in tlye
ics. direction (i.e., 0;=0 wheni,=0, M+1). The array of all

Nonequilibrium lattice gases are simple mathematicaPccupation variablegoi} is denoted asr and called the
models which have been useful in the elucidation of univer-configuration.”
sal properties of NESHL]. Topics studied with such models ~ We study a driven lattice gas with the Hamiltonian
include nonequilibrium phase transitiof#, long-range spa-
tial correlationg3], fluctuation theoremp4], nonlocal large H(o)=—, (TiCTj—EE, o, (1)
deviation functionald5], as well as mathematical founda- i i
tions of nonequilibrium statistical mechanif8]. It is thus
expected that the nonequilibrium lattice gases provide goodhere(i,j) represents a nearest neighbor pair & an
models for the exploration of thermodynamic relations. ~ €xternal force[2]. The time evolution ofo is described by

There have been some proposals of an extended therm#ie following rule: At each time step, we choose randomly a
dynamic framework applicable to NESZ,8]. In one such nearest neighbor pafi,j), and exchange the values of
study, Sasa and Tasaki start from operational definitions ofndo; with the probabilityc(i,j; o) given by
the pressurg and chemical potentiale, and they derive
from these a quantitative relation which can be tested experi- C 1
mentally[s_]. Because the I\/I_axvyell relat!on fpra_md,u plays c(i.j;o)= 1+exp BH(eH)—H ()]} @
an essential role in the derivation of this relation, we are led
to study the same Maxwell relation in the case of a drivenyhereq'l is the configuration obtained from through this
lattice gas. exchange angs is the inverse temperatuf®]. This ex-

In this paper, we present numerical results that confirmshange probaibility is called the heat bath method and is one
the validity of the Maxwell relation fop and ., which we  of the most standard update rules satisfying the local detailed
define operationally for the system we study. As we explairpalance condition, the condition which is regarded to be
below, the Maxwell relation prOVideS an Integrablllty condi- natural in physica| Systems_ The partic]e numN@FEio-i is
tion for p and ., and this yields a free-energy function ex- conserved throughout the time evolution. In this study, we fix
tended to the NESS that we consider. The existence of thlg: 0.5, in which case the system is far from critical in the
free-energy function leads us to believe that there is an ass@igh temperature region.
ciated fluctuation relation. Indeed, our numerical experi-

PRESSURE
*Electronic address: hayashi@jiro.c.u-tokyo.ac.jp In the equilibrium caseE=0), the pressure is calculated
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cause we do not know the proper statistical measure in I 5
NESS, in this case we should define the pressure in an op- i A
erational manner. Although the pressure is usually defined as 0.8 .
the normal force exerted on a unit area of a surface, there is - 2
no quantity corresponding to the force in a lattice gas. We 0.6 .
thus define the pressure in terms of the quasistatic work re- Qo 2 0 200 @
quired to change the system size. In order to allow for the 0.4} a e I =
calculation of this quantity in our lattice g@%0], we add a ] J° ]
wall potential to the Hamiltoniai (o) in the form 0.2 Py a {a % e o ol
0.9: ., . .
0O ) 1 L 1 L | ) 1 ) 1
Hy(o)= H(0)+i_iEM oiW. ) 0 or o2 05 04 05
vy

Because of the boundary conditions we impose, no particle FiG. 1. Pressure as a function of the density average at the
can exist at sites withy=M+1, and therefore the system center of the system. The circular and triangular symbols corre-
size in they direction isM. Now, according to Eq(3), asw  spond to the caseE=0 and E=10, respectively. HereM =L

is increased, it becomes increasingly unlikely for particles to=32, Aw=0.4x10"5, w,,=30, andt,=16 000(mcs. The aver-
exist at sites withi,=M. When w becomes sufficiently aged values for 100 samples are plotted. The statistical error bars
large, the average occupation number for sites wjtaM are smaller than the symbols. The inset displaysLtiiependence
can be considered zero. We denote the valuevdfeyond of the pressure witlN/L?=0.5 andL/M = 1. The pressure seems to
which this is the case as,,. Hence, in the process that  converge to a definite value in the thermodynamic limit.

changes from 0 tav,,, the effective system size in the

direction changes fronM to M—1. The quasistatic work ence shows that the statistical distribution in theirection
performed to the system through this process is interpreted afiffers from the equilibrium one. Also, the pressure becomes
the pressure multiplied bly. That is, the pressuneis written  an intensive variable in the thermodynamic limit, as seen in
as the inset of Fig. 1.

1 [wy IHy (o)
— | _ W
p=lim Lf dw Py (o) ow (4) CHEMICAL POTENTIAL
Wy 0 o
w o , The chemical potential is measured by placing a particle
wherePy \ is the steady state distribution for a given value eseryoir in contact with the system in the direction transver-
of w. It is easily proved that this definition of the pressure issa| to the driving field. We first assume that the chemical
equivalent to statistical mechanical formula in equilibrium. potential of the reservoip(T,pr), is known. We also as-

In the numerical experiments, valuespére obtained in  gyme that there exists a chemical poteniain this NESS
the following way. Starting from random initial conditions, ihat is a function ofT p, andE. From the definition of the
we carry out the time evolution wittv=0 for a sufficiently  hemical potential, we should haye(T,p,E) = ur(T,pr)-
long time, sayt,. In this way, we obtain a steady state with thep usingu(T,1— p,E) = ur(T,1— pr), Which holds due
w=0. Next, we increase the valuewfoy a quantityAw per (4 the particle-hole symmetry, the equali(T,p=1/2E)
Monte Carlo step per sitemcs until w reachesw,,. Then, = ur(T,pr=1/2) is derived. Thus, by measuring
noting thatdH(o)/dw=Zi; —moi, we measure the value ;, (T ; E)/gp for all values ofp without contacting a par-
of Zisi,=m0i as n(t) at timet, where zero of the time is ticle reservoir, we can determine the form of the function

defined as the point at whictv starts to increase. In one w(T,p,E).
process fromw=0 to w=w,,, we calculate In order to measurédu(T,p,E)/dp numerically, we add
the one-body potential ternt;o;¢; to the Hamiltonian
Aw M H(o), where ¢;=A¢ for i,=M/2+1 and ¢;=0 for i,
P=1" tZl n(t), (5)  <M/2. We then measure the density profile along y-
rection, in which there are two flat regions<1,<M/2 and

wheret,, is the time at whichw=w,,. Then, determining M/2+1<iy<M. We denote the density in the region 1

carefully how the statistical distribution @fdepends omv,, ~ <ly<M/2 asp; and the density in the regioM/2+1<i,
and Aw, we estimate the value g in the limit w,,—, <M as p,. When A¢ is sufficiently small, the chemical
Aw—0 [11]. potentials of the two regions are equal by the definition of

the chemical potential. By taking into account the shift in the

In Fig. 1 , wedisplay an example of measured values of _ ) < g
potential energy, this condition can be written as

the pressure for densities in systems witk 0 andE=10.

It is important to note that our analysis is not restricted to
systems near equilibrium. Indeed, the system \&th10 is w(T,p1,E)=u(T,p2,E)+Ag. (6)
close to the strong field limit, in which the particle current is

saturated to a constant value, and the equation of state for

E=10 clearly deviates from the equilibrium one. This differ- We thus obtain
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FIG. 2. 9p(T,p,E)/dp vs pdu(T,p,E)/dp for several values of IIM

p and E. The triangle, square, star, plus, and circle correspond to )

(p,E)=(0.5,10), (0.4,10), (0.3,10), (0.5,3.0), and (0.5,0.0), re- FIG 3. d,L¢ as a function of¢/M. Here,L=M=232. The. .
spectively. HereL =32, andM =32 for ap(T,p,E)/dp and M statistical error bars are smaller than the symbols. The dotted line is
=64 for pau(T,p,E)/dp. The statistical error bars are smaller than OPtained as the best fit line of the foraf/M+b in the region

the symbols. The dotted line corresponds to the Maxwell relation.¢/M €[0.4,0.8 andd, is evaluated as the value of The inset
displays theL dependence ofl, with the valuesN/L?=0.5 and

L/M=1 fixed. d, seems to converge to a definite value in the
M = lim A_¢ 7) thermodynamic limit.
ap N AquoAP
o FLUCTUATION RELATION

whereAp=py=pz andp=(p1+p;)/2. Measuringhp and o giger the stripd, ={(iy.i,)| =i <L, M/2— £/2— 1

P for several values ol ¢», we can evaluate the right-hand <i,<M/2+¢/2} and define the density variablg,
side of Eq.(7) [11] =%i.0,0i/|Q|, which is coarse grained over the stfly.
Let £ be the correlation length of density fluctuations in yhe

FREE ENERGY direction. We define the free-energy density) for fixed

We begin by conjecturing that the relation (T,E) by F(T,M,N,E)=Mf(N/M) in the thermodynamic
limit. It is then conjectured that the probability distribution
p(T,p,E)  du(T,p,E) of the densityp, with é<¢<M (which is averaged over the
ap =P ap ' (®) x direction can be written as
which holds in equilibrium, holds also in our NESS. This is P(pe=p)=exp{—BL[f(p)—f(p)1}, (12

equivalent to the Maxwell relation becausand . are nu-

merically confirmed to be intensive. Here, we e§timate thQNhere;is the thermodynamic density. In the equilibrium
value ofdp/dp (at p=0.5, for exampleby calculating val- ¢35 “such a form can be derived from a fundamental prin-
ues ofp for several values op in a small interval around  ¢inje of statistical mechanics. Although there is no general
p=0.5[11]. The results summarized in Fig. 2 suggest theproof of this form in the case of NESS, E@.2) seems plau-

validity of equality (8). If indeed this relation does hold, its gjhe in the present case, because we have been able to define
implication is significant, because when we define the quans fee energy13].

tity F(T,M,N,E) as Recently, for some nonequilibrium lattice gases, the large
deviation functionals of density fluctuations have been rigor-
N N \ .
F(T,M,N,E)=Nu| T,——,E|-MLp| T,——,E]|, ously derived in nonlocal formES_]. These nonlocal forms
ML ML are related to long-range correlations that exist generically in

©) NESS[12]. Here we shall not discuss this important issue
further, and simply state our numerical finding that the scal-
ing form (12) has been clearly observed, provided that one
1 9F(T,M,N,E) examines the density fluctuation in the stflp (note that the
p=— TR TV (10 long-range density correlations transversal to the field do not
seem to be observdd4]).
If Eq. (12) is valid (at least locally in they direction, the

p and u become

JF(T,M,N,E) : }
= T fluctuation relation
M N . (11
That is, F(T,M,N,E) can be regarded as the free energy a_'u“: 1 _ (13
extended to the present NESS. Using the single function ap Le{(p—p)?)

F(T,M,N,E), we can derive various thermodynamic rela-
tions, including the Clapeyron law, under nonequilibriumcan be derived. This relation is known to be valid for de-
conditions. scribing fluctuations about equilibrium states, but it is not
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(13) with Eq. (8), the relation we obtain between the com-
pressibility and density fluctuations is the same as that exist-
ing in equilibrium.

We remark here that the asymptotic forfh4) can be
understood by considering the following simple situation.
Considem random variablex; (1<i<n), with the conser-

n

vation constrain®;_,x;=0. The statistical properties of
are given byE(x;) =0 andE(x;X;) = d;; , whereE(x) repre-

i

sents the expected value of the random variableet X, be
the partial sum ok elements randomly chosen from the set
{x;}. Then, the probability ofX, with large k and largen

=(0.5,10), (0.4,10), (0.3,10), (0.5,3.0), and (0.5,0.0), respec-
tively. Here,L =32, andM =32 ford, andM =64 for 8~ Ydp/du.

The statistical error bars are smaller than the symbols. The dotted We have presented relations obtained using numerical ex-

line corresponds to the fluctuation relation.

known whether it is valid in NESS. To study this point, we

investigate Eq(13) numerically.
We first note the asymptotic form

o, 1M
de=(p;)—(p))"=d, AR

—k is given by the Gaussian distribution wilt{X,) =0 and
E(X2)=k(n—k)/n [15]. This supports the form of Eq14).

DISCUSSION

periments on a driven lattice gas. We hope that the present
study can be extended to a wider variety of systems. Also,

finding a connection between the entropy, which is defined as

—(dF1dT)y ne in our formulation, and the Shannon en-

tro

py would be important in future construction of a statisti-

cal mechanical theory of NES36].

(14

on

for é&<€<M (see Fig. 3, whered, is defined. Accordingto Th

this, L€((p—;)2) in Eq. (13) should correspond td, . The
values ofd, andpB~ 'dp/du are plotted in Fig . 4. This result
suggests the validity of Eq13). In addition, combining Eq.
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