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Thermodynamic relations in a driven lattice gas: Numerical experiments

Kumiko Hayashi* and Shin-ichi Sasa†
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~Received 16 July 2003; published 22 September 2003!

We explore thermodynamic relations in nonequilibrium steady states with numerical experiments on a driven
lattice gas. After operationally defining the pressure and chemical potential in the driven lattice gas, we confirm
numerically the validity of the integrability condition~the Maxwell relation! for the two quantities whose
values differ from those for an equilibrium system. This implies that a free-energy function can be constructed
for the nonequilibrium steady state that we consider. We also investigate a fluctuation relation associated with
this free-energy function. Our result suggests that the compressibility can be expressed in terms of density
fluctuations even in nonequilibrium steady states.
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A rich variety of nonequilibrium phenomena have be
successfully described by phenomenological evolution eq
tions. However, the microscopic foundation of such eq
tions has not yet been established, except for systems
equilibrium. Even for nonequilibrium steady states~NESS!
realized in simple systems, such as those involving only h
conduction and shear flow, appropriate statistical measure
microscopic configurations are not known. Recalling th
equilibrium statistical mechanics was constructed with
aid of thermodynamics, we expect that checking the valid
of thermodynamic relations in NESS is an important step
constructing a theory of nonequilibrium statistical mecha
ics.

Nonequilibrium lattice gases are simple mathemati
models which have been useful in the elucidation of univ
sal properties of NESS@1#. Topics studied with such model
include nonequilibrium phase transitions@2#, long-range spa-
tial correlations@3#, fluctuation theorems@4#, nonlocal large
deviation functionals@5#, as well as mathematical founda
tions of nonequilibrium statistical mechanics@6#. It is thus
expected that the nonequilibrium lattice gases provide g
models for the exploration of thermodynamic relations.

There have been some proposals of an extended the
dynamic framework applicable to NESS@7,8#. In one such
study, Sasa and Tasaki start from operational definitions
the pressurep and chemical potentialm, and they derive
from these a quantitative relation which can be tested exp
mentally@8#. Because the Maxwell relation forp andm plays
an essential role in the derivation of this relation, we are
to study the same Maxwell relation in the case of a driv
lattice gas.

In this paper, we present numerical results that confi
the validity of the Maxwell relation forp andm, which we
define operationally for the system we study. As we expl
below, the Maxwell relation provides an integrability cond
tion for p andm, and this yields a free-energy function e
tended to the NESS that we consider. The existence of
free-energy function leads us to believe that there is an a
ciated fluctuation relation. Indeed, our numerical expe
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ments suggest that the compressibility can be expresse
terms of density fluctuations even in certain nonequilibriu
systems.

MODEL

Let s i be an occupation variable defined on each siti
5( i x ,i y) in a two-dimensional square lattice$( i x ,i y)u0< i x
<L11,0< i y<M11%. The variables i is 1 when thei th site
is occupied and is 0 if it is empty. We assume period
boundary conditions in thex direction @i.e., s i5s j when
when i 5 j 1(L,0)] and no-flux boundary conditions in they
direction ~i.e., s i50 when i y50, M11). The array of all
occupation variables$s i% is denoted ass and called the
‘‘configuration.’’

We study a driven lattice gas with the Hamiltonian

H~s!52(
^ i , j &

s is j2E(
i

i xs i , ~1!

where ^ i , j & represents a nearest neighbor pair andE is an
external force@2#. The time evolution ofs is described by
the following rule: At each time step, we choose randoml
nearest neighbor pair̂i , j &, and exchange the values ofs i
ands j with the probabilityc( i , j ;s) given by

c~ i , j ;s!5
1

11exp$b@H~s i j !2H~s!#%
, ~2!

wheres i j is the configuration obtained froms through this
exchange andb is the inverse temperature@9#. This ex-
change probability is called the heat bath method and is
of the most standard update rules satisfying the local deta
balance condition, the condition which is regarded to
natural in physical systems. The particle numberN5( is i is
conserved throughout the time evolution. In this study, we
b50.5, in which case the system is far from critical in th
high temperature region.

PRESSURE

In the equilibrium case (E50), the pressure is calculate
by using equilibrium statistical mechanics. However, b
©2003 The American Physical Society04-1
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cause we do not know the proper statistical measure
NESS, in this case we should define the pressure in an
erational manner. Although the pressure is usually define
the normal force exerted on a unit area of a surface, the
no quantity corresponding to the force in a lattice gas.
thus define the pressure in terms of the quasistatic work
quired to change the system size. In order to allow for
calculation of this quantity in our lattice gas@10#, we add a
wall potential to the HamiltonianH(s) in the form

Hw~s!5H~s!1 (
i : i y5M

s iw. ~3!

Because of the boundary conditions we impose, no part
can exist at sites withi y5M11, and therefore the system
size in they direction isM. Now, according to Eq.~3!, asw
is increased, it becomes increasingly unlikely for particles
exist at sites withi y5M . When w becomes sufficiently
large, the average occupation number for sites withi y5M
can be considered zero. We denote the value ofw beyond
which this is the case aswm . Hence, in the process thatw
changes from 0 towm , the effective system size in they
direction changes fromM to M21. The quasistatic work
performed to the system through this process is interprete
the pressure multiplied byL. That is, the pressurep is written
as

p5 lim
wm→`

1

LE0

wm
dw(

s
PN,M

w ~s!
]Hw~s!

]w
, ~4!

wherePN,M
w is the steady state distribution for a given val

of w. It is easily proved that this definition of the pressure
equivalent to statistical mechanical formula in equilibrium

In the numerical experiments, values ofp are obtained in
the following way. Starting from random initial condition
we carry out the time evolution withw50 for a sufficiently
long time, sayt0. In this way, we obtain a steady state wi
w50. Next, we increase the value ofw by a quantityDw per
Monte Carlo step per site~mcs! until w reacheswm . Then,
noting that]Hw(s)/]w5( i : i y5Ms i , we measure the valu

of ( i : i y5Ms i as n(t) at time t, where zero of the time is
defined as the point at whichw starts to increase. In on
process fromw50 to w5wm , we calculate

p5
Dw

L (
t51

tm

n~ t !, ~5!

where tm is the time at whichw5wm . Then, determining
carefully how the statistical distribution ofp depends onwm
and Dw, we estimate the value ofp in the limit wm→`,
Dw→0 @11#.

In Fig. 1 , wedisplay an example of measured values
the pressure for densities in systems withE50 andE510.
It is important to note that our analysis is not restricted
systems near equilibrium. Indeed, the system withE510 is
close to the strong field limit, in which the particle current
saturated to a constant value, and the equation of state
E510 clearly deviates from the equilibrium one. This diffe
03510
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ence shows that the statistical distribution in they direction
differs from the equilibrium one. Also, the pressure becom
an intensive variable in the thermodynamic limit, as seen
the inset of Fig. 1.

CHEMICAL POTENTIAL

The chemical potential is measured by placing a part
reservoir in contact with the system in the direction transv
sal to the driving field. We first assume that the chemi
potential of the reservoir,mR(T,rR), is known. We also as-
sume that there exists a chemical potentialm in this NESS
that is a function ofT, r, andE. From the definition of the
chemical potential, we should havem(T,r,E)5mR(T,rR).
Then, usingm(T,12r,E)5mR(T,12rR), which holds due
to the particle-hole symmetry, the equalitym(T,r51/2,E)
5mR(T,rR51/2) is derived. Thus, by measurin
]m(T,r,E)/]r for all values ofr without contacting a par-
ticle reservoir, we can determine the form of the functi
m(T,r,E).

In order to measure]m(T,r,E)/]r numerically, we add
the one-body potential term( is if i to the Hamiltonian
H(s), where f i5Df for i y>M /211 and f i50 for i y
<M /2. We then measure the density profile along they di-
rection, in which there are two flat regions, 1! i y!M /2 and
M /211! i y!M . We denote the density in the region
! i y!M /2 asr1 and the density in the regionM /211! i y
!M as r2. When Df is sufficiently small, the chemica
potentials of the two regions are equal by the definition
the chemical potential. By taking into account the shift in t
potential energy, this condition can be written as

m~T,r1 ,E!5m~T,r2 ,E!1Df. ~6!

We thus obtain

FIG. 1. Pressure as a function of the density average at
center of the system. The circular and triangular symbols co
spond to the casesE50 and E510, respectively. Here,M5L
532, Dw50.431025, wm530, andt0516 000 ~mcs!. The aver-
aged values for 100 samples are plotted. The statistical error
are smaller than the symbols. The inset displays theL dependence
of the pressure withN/L250.5 andL/M51. The pressure seems t
converge to a definite value in the thermodynamic limit.
4-2
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]m~T,r,E!

]r U
r5 r̄

5 lim
Df→0

Df

Dr
, ~7!

whereDr5r12r2 and r̄5(r11r2)/2. MeasuringDr and
r̄ for several values ofDf, we can evaluate the right-han
side of Eq.~7! @11#.

FREE ENERGY

We begin by conjecturing that the relation

]p~T,r,E!

]r
5r

]m~T,r,E!

]r
, ~8!

which holds in equilibrium, holds also in our NESS. This
equivalent to the Maxwell relation becausep andm are nu-
merically confirmed to be intensive. Here, we estimate
value of]p/]r ~at r50.5, for example! by calculating val-
ues ofp for several values ofr in a small interval around
r50.5 @11#. The results summarized in Fig. 2 suggest
validity of equality ~8!. If indeed this relation does hold, it
implication is significant, because when we define the qu
tity F(T,M ,N,E) as

F~T,M ,N,E!5NmS T,
N

ML
,ED2MLpS T,

N

ML
,ED ,

~9!

p andm become

p52
1

L

]F~T,M ,N,E!

]M
, ~10!

m5
]F~T,M ,N,E!

]N
. ~11!

That is, F(T,M ,N,E) can be regarded as the free ener
extended to the present NESS. Using the single func
F(T,M ,N,E), we can derive various thermodynamic rel
tions, including the Clapeyron law, under nonequilibriu
conditions.

FIG. 2. ]p(T,r,E)/]r vs r]m(T,r,E)/]r for several values of
r and E. The triangle, square, star, plus, and circle correspond
(r,E)5(0.5,10), (0.4,10), (0.3,10), (0.5,3.0), and (0.5,0.0),
spectively. Here,L532, and M532 for ]p(T,r,E)/]r and M
564 for r]m(T,r,E)/]r. The statistical error bars are smaller th
the symbols. The dotted line corresponds to the Maxwell relatio
03510
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FLUCTUATION RELATION

Consider the stripV l5$( i x ,i y)u1< i x<L,M /22,/221
< i y<M /21,/2% and define the density variabler,

5( i PV l
s i /uV l u, which is coarse grained over the stripV l .

Let j be the correlation length of density fluctuations in they
direction. We define the free-energy densityf (r) for fixed
(T,E) by F(T,M ,N,E)5M f (N/M ) in the thermodynamic
limit. It is then conjectured that the probability distributio
of the densityr, with j!,!M ~which is averaged over the
x direction! can be written as

P~r,5r!.exp$2b,@ f ~r!2 f ~ r̄ !#%, ~12!

where r̄ is the thermodynamic density. In the equilibriu
case, such a form can be derived from a fundamental p
ciple of statistical mechanics. Although there is no gene
proof of this form in the case of NESS, Eq.~12! seems plau-
sible in the present case, because we have been able to d
a free energy@13#.

Recently, for some nonequilibrium lattice gases, the la
deviation functionals of density fluctuations have been rig
ously derived in nonlocal forms@5#. These nonlocal forms
are related to long-range correlations that exist genericall
NESS @12#. Here we shall not discuss this important iss
further, and simply state our numerical finding that the sc
ing form ~12! has been clearly observed, provided that o
examines the density fluctuation in the stripV, ~note that the
long-range density correlations transversal to the field do
seem to be observed@14#!.

If Eq. ~12! is valid ~at least locally in they direction!, the
fluctuation relation

b
]m

]r
5

1

L,^~r2 r̄ !2&
~13!

can be derived. This relation is known to be valid for d
scribing fluctuations about equilibrium states, but it is n

FIG. 3. d,L, as a function of,/M . Here, L5M532. The
statistical error bars are smaller than the symbols. The dotted lin
obtained as the best fit line of the forma,/M1b in the region
,/MP@0.4,0.8# and d* is evaluated as the value ofb. The inset
displays theL dependence ofd* with the valuesN/L250.5 and
L/M51 fixed. d* seems to converge to a definite value in t
thermodynamic limit.
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known whether it is valid in NESS. To study this point, w
investigate Eq.~13! numerically.

We first note the asymptotic form

d,[^r l
2&2^r l&

2.d*
1

L,

M2,

M
~14!

for j!,!M ~see Fig. 3!, whered* is defined. According to
this, L,^(r2 r̄)2& in Eq. ~13! should correspond tod* . The
values ofd* andb21]r/]m are plotted in Fig . 4. This resul
suggests the validity of Eq.~13!. In addition, combining Eq.

FIG. 4. d* vs b21]r/]m for several values of (r,E). The tri-
angle, square, star, plus, and circle correspond to (r,E)
5(0.5,10), (0.4,10), (0.3,10), (0.5,3.0), and (0.5,0.0), resp
tively. Here,L532, andM532 for d* andM564 for b21]r/]m.
The statistical error bars are smaller than the symbols. The do
line corresponds to the fluctuation relation.
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03510
~13! with Eq. ~8!, the relation we obtain between the com
pressibility and density fluctuations is the same as that ex
ing in equilibrium.

We remark here that the asymptotic form~14! can be
understood by considering the following simple situatio
Considern random variablesxi (1< i<n), with the conser-
vation constraint( i 51

n xi50. The statistical properties ofxi

are given byE(xi)50 andE(xixj )5d i j , whereE(x) repre-
sents the expected value of the random variablex. Let Xk be
the partial sum ofk elements randomly chosen from the s
$xi%. Then, the probability ofXk with large k and largen
2k is given by the Gaussian distribution withE(Xk)50 and
E(Xk

2)5k(n2k)/n @15#. This supports the form of Eq.~14!.

DISCUSSION

We have presented relations obtained using numerical
periments on a driven lattice gas. We hope that the pre
study can be extended to a wider variety of systems. A
finding a connection between the entropy, which is defined
2(]F/]T)M ,N,E in our formulation, and the Shannon en
tropy would be important in future construction of a statis
cal mechanical theory of NESS@16#.

The authors thank H. Tasaki for stimulating discussio
on steady state thermodynamics and driven lattice ga
They also thank Y. Oono and A. Shimizu for fruitful discu
sions on NESS. This work was supported by grants from
Ministry of Education, Science, Sports and Culture of Jap
Grant No. 14654064.
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