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Local distributions and rate fluctuations in a unified scaling law for earthquakes
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A recently proposed unified scaling law for interoccurrence times of earthquakes is analyzed, both theoreti-
cally and with data from Southern California. We decompose the corresponding probability density into
local-instantaneous distributions, which scale with the rate of earthquake occurrence. The fluctuations of the
rate, characterizing the nonstationarity of the process, show a double power-law distribution and are funda-
mental to determine the overall behavior, described by a double power law as well.
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Earthquakes constitute an extremely complex phenombehavior for large earthquakes to totally random occurrence.
enon in nature, with the deformation and sudden rupture oThe most extended view is to consider the existence of two
some parts of the Earth’s crust driven by convective motiorseparated processes, one for the main shocks, which should
in the mantle, and the radiation of energy in the form ofoccur randomly following a Poisson distribution, and another
seismic waves. Only a part of this complexity is collected byProcess for the aftershocks; but this should not hold for large
earthquake catalogs, where magnitude, epicenter spatial cévents, for which clustering has been repofédin general,
ordinates, and starting time of events, among other measuréie usual studies proceed by fixing a limited area of obser-
ments, are recorded. This information, which converts thé/ation where aftershocks are skillfully identified and re-
phenomenon in a spatiotemporal point process marked bjpoved from data. On the opposite side, other works concen-
the magnitude, nevertheless reveals some important scaltate only on series of aftershocks.
invariant properties. Bak et al. [8] have followed an alternative approach,

First, the Gutenberg-Richter law states that the number ofvhich is to consider the problem in its complete spatiotem-
earthquakes in some region with magnitude larger than somieoral complexity. They divide the area of South California
threshold value decreases exponentially with the thresholdnto regions of size degrees in the north-soutmeridiar
Taking into account thafto a first approximationthe re-  direction andL degrees as well in the east-wegaralle)
leased energy increases exponentially with the magnitudélirection[9,10]. Only earthquakes with magnitudke larger
the probability distribution of the released energy turns out t¢han a threshold valuen. are taken into accounfbut no
be a power law, precisely the hallmark of scale-free behaviopther events are eliminated, all shocks are equally trg¢ated
[1-3]. Second, the introduction of fractal geometry soon ledFor eachL XL region the time intervat between consecu-
to the recognition that the spatial distribution of epicenterdive earthquakes is obtained for the period from 1984 to 2000
(or hypocentersdraws a fractal object over the Earth’s sur- as 7,=t;—t;_;, wheret; is the time coordinate of théth
face[2,3]. And third, the Omori law, proposed more than 100 earthquake within the region witm>m.. The probability
years ago, accounts for the number of eveptlled after- density for this interoccurrence tim&(7,m.,L), is com-
shocks that follow a large shock after some time. This num-puted and the results givé(7,m.,L)>«1/7 for short times
ber is another power law, with exponent close to minus oné@nd a faster decay for long times, with a dependence also on
[4]. L andm,.

This lack of characteristic scales suggests that the crust is Remarkably, when a scaling analysis is performed, all the
in a critical state, like the well-known critical points studied distribution functions corresponding to different values_of
in equilibrium systems, but without external adjustments ofand m. collapse into a single curve if the axes are rescaled
control parameters. Therefore, one may talk about a selfby SP/LY%, with d;=1.2, b=1, andS=10" (related to the
organized critical(SOQ state for the seismic systefs].  energy roughly aS=E?3). In mathematical words,

This concept has important implications for the issue of
earthquake prediction; indeed, a critical crust implies that a

fracture process may or may not develop to provoke a large L9 ( LY 1

earthquake depending on minor microscopic details that are D(7,me,L)= EF 7T 7C
intrinsically out of control[6].
An important quantity characterizing earthquake occur-

rence is the time interval between successive earthquakethis scaling law constitutes the Bak-Christensen-Danon-

This time (that can be referred to as interoccurrence timeScanlon(BCDS) proposal[8]. For short times, the function

recurrence time, or waiting timealthough related to the G shows a slow variation not affecting the power-law{)1/

Omori law, has a distribution that is not clearly known. In behavior; for long times a fast decay is obtained, which

fact, all the possibilities have been proposed, from periodicould be consistent with an exponential distribution and
therefore with a Poisson process, according to Ref.
[From now on, to simplify the notation, we will omit the

*Email address: Alvaro.Corral@uab.es dependence dd on L andm, and just writeD(7).]
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This result is relevant for several reasons, among them: il . . : : " . r i
shows scaling in the spatiotemporal occurrence of earth- 1  ESiR sk Al hmete
guakes, a key element to consider earthquakes as a critici 199 :
phenomenon. Second, it is the first law that relates interoc-
currence times, the Gutenberg-Richter Idactor 15°), and
the fractal dimension of the spatial distribution of events
(df), allowing a unified description. Third, the law is valid 'g
for all earthquakes, no matter their size or location, and noS
matter also if they are considered as aftershocks, foreshock: =
or main shocks. Fourth, the power law tells us that immedi- R ] ‘ L A
ately after any earthquake there is a high probability of re- cHiL R : I e
turn, and this probability decreases in time with no charac- 1 B & s
teristic scale up t&°/L%: that is, there is a correlation time
that depends on the region size and magnitude under consic
eration, and therefore for any event one may find clusters of
aftershocks in all time scales up to an appropriate length
scaleL.

The importance of this law deserves further study. HerE

i i i i i
1984 1986 1988 1990 1992 1994 1996 1998 2000 2002
t (years A.D.)

FIG. 1. Rate of earthquake occurrence as a function of time in
e L=10° region of South California, fom.=2 with At=2
onths and fom;=3 with At=4 months. The vertical log scale
hould not make one under-rate the large variations Mote, for
example, the almost constant rate in 1991 in contrast to 1992.

we are interested in a general understanding of the BCD
law and its origins. We will analyze the same catalogs as Ba
et al.[11] and will show that the fast decay for long times is
not exponential, but another power ladf 7) is related to its

local and |n§taqt components gnd to the rate of earthqual&tleme in the region X,y) at timet. (All functions here depend
occurrencer; this quantity, which counts the number of

events per unit time in a given region, displays large fluctua@S Well onL andm, though the dependence is not explicitly
ritten) The rater in the integral acts as a weight factor, due

tions across several orders of magnitude, doubly power-la\)O’ , , : ) .
distributed. This is in contrast to simple SOC models. to the fact that the higher the rate in a given region and time,

Let us pay more attention to the obtaining of the distribu-the larger the number of earthquakes that are produced and

tion D(7) by Bak et al. As we have mentioned, this distri- contribute to th(la(dis:]ribl;]tion.h is that the d d
bution accounts for the time difference between successive V€ now make the hypothesis that the dependence on
earthquakes with magnitude larger tham in every Lx L space and time enters into the distributdp,; only through

region. Times from different regions are counted together iﬁhe rater(?(,y,t). Tha_t is, we assume that different regi_ons at
D(7). But the total number of earthquakes differs from re. different times but with the same rate of occurrence will have

gion to region(as it is well known, due to the fractal spatial the same distribution of interoccurrence timéshe rate is

distribution), with a high variability{ 12]. Therefore, the local stationary, i.e.,
distributionsD,,(7) accounting for the time difference in a B
given L X L region (of spatial coordinates,y) are clearly Dy m) =D (rlr (x,y,1)), &)
different. This means thdd () is a mixed distribution con-
structed from all the differenD, (7).
But further, looking into a singlé X L region one can see
a high variability in the rate along timg 12] (see Fig. 1 In D(7)= ij(ﬂr) rp(r) dr, (4)
fact, the rate typically exhibits a quite stable behavior for 0 2
some periods of time, with small fluctuations, but for other
periods develops sudden burst of activity where its valuewith p(r) being the probability density of the rate apd
increases sharply and then decreases to become stationa#yr) just a normalization factor.
again, or not. This intermittency, of course related to the SinceD,y(7) is an instantaneous quantiignd we have a
occurrence of larger earthquakes in the region, recalls thsingle realization of the processt would be impossible to
punctuated-equilibrium behavior of SOC systeid 3], but  measure if we did not have the periods of stationarity.in
note however that the variable that displays punctuated equiFigure 2 shows these distributions for several periods of sta-
librium is not only the signai(t), but also the rate. tionarity and several regions of differebtand spatial coor-
Again, the local distributioD,(7) is obtained as a mix- dinates. Indeed, the distributioris,,; do not only depend
ture of distributions, the densities of interoccurrence times irexclusively onr, but they scale with it, i.e.,
a given region at a certain timeD,y(7). From this we can

which is a conditional density. Therefore,

write D(7|r)=rf(rr) (5)
D D 2 (a behavior that coulq have b_een d_erived by dimensional
(T)Oc\;x,"y f wd DIF Oy, Dty @ analysig, with the scaling functiorf being a power law for

short times and presenting a fast decay for large ones. In fact,
where the rate(x,y,t) is the number of earthquakes per unit the distributions can be fit by a function of the type
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FIG. 2. Local distributions of interoccurrence times for several
stationary periods and different regions, after scaling by the rate
The regions are labeled froryy=0 to 10°L —1 from west to east
(x) and from south to northy(). The fit is explained in the text;
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FIG. 3. Scaled distributions of rates, for seveka| L, andm,,
usingd¢=1.6 andb=0.95. Two power laws with exponents 1 and

deviations at small times are due to short-scale disturbances of ti¢€ale invariance. This could be understood as criticality, not
stationarity. As in Balet al’s paper, times smaller than 38 s are not Only in the time domain as we knew, but also in the rate
considered. domain.
Additionally, it is easy to obtain the form of the scaling

factor 1. The mean ratg.=(r) is given by the total num-
f(u):CLe—(u/uo)‘?’ (6) ber of events divided by the total time and by the number of
ul-v regions with activity; the former, because of the Gutenberg-

Richter law, scales as 37 and the latter as ILff, which

With y=0.63+0.05, 5—0.92+0.05, Uy—1.50+0.15, and gives(r)=L%/SP. Since the distribution turns out to scale in
=0. .09, o=0. U9, Up=1.0UTU.19,

C=0.5+0.1. We could approximate the®(7|r) to a
gamma distribution §=1), which ensures that the large-
scale cutoff is close to exponentidl4].

Next step is to look at the distribution of rate&). To be
precisefr(x,y,t) is defined by counting the number of events
above the thresholdh, into the L XL region of coordinates
X,y during a time interval {jt+ At) and dividing the result
by the duration of the interval\t. The corresponding prob-
ability density, which is calculated from 1984 to 2001 only
for the regions in which there is earthquake activity, depends
on L andAt (as well as orm;) and is shown in Fig. 3. In
fact, the value ofAt should be small enough to ensure
constant(but large enough for statistical significancéut
there is no characteristic scale for constaand therefore no
typical value forAt. Also, the two-power-law behavior is :v:
noteworthy in the figure, one power law for low rates and ~

another one for high rates, which can be modeled as ©
Q
=
(=crg— " @
r)= ’
p [1+(6r)c:|(a+ﬁ)/c

which gives px1/frt~@ for r<6 ! and px1ir*# for r
>¢~1. We obtain exponents far about 1.0:0.1 and 2.2
+0.1, soa=0 and B=1.2. Parametec just controls the
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the same wayy ™~ 1ocL%/S°. For the scaling plot in Fig. 3 we
have usedb=0.95[8] and d;=1.6, which was obtained
from a box-counting method for spatial distributions of epi-
centers withm=2.

Now that we know the form of the functiori3(7|r) and
p(r) we can answer the question about how the large varia-
tions of the rate influence the distributid@( 7), just by in-
tegrating Eq.(4) with the use of Eqs(5)—(7). The limit 7
— oo s obtained directly with the use of Laplace’s method to
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sharpness of the transition from one regime to the other and F|G. 4. Scaled distributions of interoccurrence tim@$z), for

o~ tis a Spaling paramet'er: The double power law impliesgifferent L and m, with d;=1.6 andb=0.95; =38 s again. The
that there is no characteristic occurrence rate up to the valugraight lines illustrate the double power-law behavior, with expo-

6~1, but for values in the tail of the distribution there is also nents 0.9 and 2.2.
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evaluate asymptotic integral5]. We get and they are displayed in Fig. 4, where the two exponents for
7 turn out to be 0.80.1 and 2.2-0.1, yieldingB=1.1 and
a=0.2 in good agreement with our calculations. Both results
for D(7) do not depend on the form given by E() for
p(r) as long as it exhibits the two-power-law behavior. In
this is in fact independent of the tail ¢f(r), it does not addition, the exponeny of D(7|r) does not affect the value
matter if it is a power law or not. But there is another limit to of the two exponents db (7). Notice that the scaling factor
be studied. Indeed, the behavior of the integral depends ofor 7 in D(7) is 6, that is, the inverse of the scaling factor
the relation betweem and 6. We have just calculated what for r, so §oc SP/LYr.

happens forr> ¢; the opposite caser<6, can be obtained Finally, we would like to point out thaD (7) is described
for long times if we first perform the limi— and then by the same functiofiincluding the same values of the ex-
apply Laplace’s method for. So,p(r)~C’6 #/r'*# and  ponent$ than the one that characterizes the trapping time

D(7)x ir”ljwr“*ye*(”’uo)édrm

o 0 5M72+a’

the integral gives distribution in a rice-pile model(see Fig. 1 of Ref[16)).
. L Also the coincidence between our Fig. 3 and Fig. 3 in Ref.
s riun? [17] is notable, although no probability density is measured
D(7)= T Jo r7Pem (Mo dre St B’ ©  there. Accordingly, the exponents about 0.9 and 2.2 should
be quite universal.
Since u is proportional tof~* the last results can be  In conclusion, we have performed a “microscopic” analy-
summarized as follows: sis of the BCDS law for earthquakes, which provides a way
to deal with the heterogeneity and nonstationarity of seismic
o=k occurrence.
D(7)o > for 7<0
T The author is profoundly indebted to Per Bak, who

opened so many paths in science, not only for his scientific

and guide, but for many other things. Regarding this paper, he
1+ also thanks M. Bogim K. Christensen, and Ramag/ Cajal
D(7) for >0, (10) program. A fruitful part of this_\ work was accomplished at
ot I’Abadia de Burch(Pallars SobiraLleida).
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