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Direct observation of the effective bending moduli of a fluid membrane:
Free-energy cost due to the reference-plane deformations
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Effective bending moduli of a fluid membrane are investigated by means of the transfer-matrix method
developed in our preceding paper. This method allows us to survey various statistical measures for the partition
sum. The role of the statistical measures is arousing much attention, since Pinnow and Helfrich claimed that
under a suitable statistical measure, that is, the local mean curvature, the fluid membranes are stiffened, rather
than softened, by thermal undulations. In this paper, we propose an efficient method to observe the effective
bending moduli directly: We subjected a fluid membrane to a curved reference plane, and from the free-energy
cost due to the reference-plane deformations, we read off the effective bending moduli. Accepting the mean-
curvature measure, we found that the effective bending rigidity gains even in the case of very flexible mem-
brane(small bare rigidity; it has been rather controversial that for such a nonperturbative regime, the analyti-
cal prediction does apply. We also incorporate the Gaussian-curvature modulus and calculated its effective
rigidity. Thereby, we found that the effective Gaussian-curvature modulus stays almost scale invariant. All
these features are contrasted with the results under the normal-displacement measure.
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[. INTRODUCTION with renormalized bending rigiditx’, temperaturel, and
Amphiphilic molecules in water segregate spontaneouslyhe numerical prefactor in the above equatiorwis 3. (A
into flexible extended surfaces called flighid) membranes more detailed account of the historical overview would be
sion and shear modulus, and the elasticity is governed onlkigidity is reduced by thermally activated undulations. This
by bending rigidity[3,4]. The Hamiltonian is given by the conclusion might be convincing because the membrane
As a matter of fact, it has been known that the orientational
H f dA correlation is lost for long distancé$0]. It is quite natural to
exceeding this correlation length.
The mean curvaturd is given by the summation of two Recently, however, Pinnow and Helfri¢8,11] obtained a
tureK is given by their produdk = c,c,. The corresponding their new argument is th_a_lt they consider.ed.the role of mea-
. — . C sure factors for the partition sum. They insist that the local
two moduli k and « are called bending rigidity and
Pather than other measures such as the normal displacément
JdA extends over the whole membrane surface. The b
membranes, because the tefthAK measures a topological Been used as a standard measure. We will explaih-tressed
) > : . polog parametrization afterwardsAfter an elaborated calculation
index; for instance, for a vesicle with,, handles, such an
In spite of its seemingly simple expression, it is very hardrenormalization-group analysis, the authors reach the conclu-
to treat Hamiltonian(1) by analytical methods. As a matter sion of a=—1. Moreover, as for the Gaussian-curvature
the Hamiltonian becomes ugly; see E¢®—(6) mentioned ~"€Main scale invariant;
afterwards. Hence, owing to the thermal undulations and the
moduli are modified effectively for macroscopic length
scales. In order to clarify this issue, numerousthis conclusion again contradicts the common belief tat
[5-8. For the bending rigidity, the following ,/_, (5K T/67)InM [7,8]. This enhancement signals the
renormalization-group equation has been obtained: topological instabilities.
K’=K—akB—TIn M 2 proximation that the membrane is almost flat and the ther-
' mally excited undulations are extremely small. In our pre-

the number of decimated moleculleks Literature agrees that
[1,2]. The fluid membranes are free from both surface tenfound in Ref.[9].) Because ofa>0, the effective bending
following form: shape itself should be disturbed by the thermal undulations.
. @ anticipate that membranes become flexible for length scales
principal curvatured=c, + c,, whereas the Gaussian curva- "émarkable conclusion=—1(<0). The key ingredient of
Gaussian-curvature modulus, respectively. The integratiomean curvature) should be the right statistical measure
Gaussian-curvature term governs the global structure of thand the local tilt angley. (The normal displacemerit has
identity [dAK=4m(1—n,) holds (Gauss-Bonnet theorém of the variable replacementh—J and succeeding
of fact, when written in terms of an explicit parametrization, Modulus, they insist that the effective moduls$ should
mutual interactions, it is expected that the effective bending k' =K. 3
renormalization-group analyses have been reported so fafqyid be enhanced for macroscopic length scales; namely,
The developments mentioned above all stem from the ap-
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ceding papef{12], we developed arab initio simulation outlines of the numerical method which was reported previ-
scheme in order to study the thermodynamics of a fluidously[12]. In Sec. Ill, we present the numerical results. We
membrane beyond such a perturbative level. As a demonstrare mainly concerned in the case of the mean-curvature mea-
tion, we calculated the transformation coefficieht’/dx, sure. For a comparison, we will also present the data calcu-
which yields the direction of the renormalization-group flow lated under the normal-displacement measure. With the first-
through coarse graining. We found that the renormalizationprinciples simulation method, we will show that the scenario
group flow is influenced significantly by the choice of the advocated by Pinnow and Helfrich holds true even for the
statistical measures. In fact, under the mean-curvature meaonperturbative regime. In the last section, we give summary
sure, we observed an indication that the effective bendingnd discussions.

rigidity flows toward the large¢ direction. We did not in-

clude thex term in the preceding work.

In this paper, extending the preliminary analysis, we pro-
pose an efficient method to observe the effective bending
moduli directly: We subject a fluid membrane to a curved In this section, we explain the idea for calculating the
reference plane. From the free-energy cost due to theffective bending moduli. Mathematical formulas necessary
reference-plane deformations, we read off the effective bendn the succeeding numerical simulations are derived. We start
ing moduli. Our data indicate definitely that under the meanwith recalling the outlines of the transfer-matrix method pro-
curvature measure, the membrane stiffening occurs even fgosed previously12]. It is important to recognize the out-
the case of very flexible membrane<1. This result sup- lines of the transfer-matrix construction because it elucidates
ports the picture that the stiffening, contrary to our naivethe underlying physical idea of our effective-bending-moduli
expectation, is driven by the thermal fluctuations. We alsacalculation. In short, it has to be recognized that our mem-
calculate the effective Gaussian-curvature modulus, antrane should be classified into the “open framed membrane”
show that it remains almost scale invariant. Again, the resulin the category of Ref.2].
is in good agreement with the Pinnow-Helfrich claim.

It has to be mentioned that the Monte Carlo method has . : . .
been utilized successfully in the studies of membranes and’™ Transfer-matrix formalism: A brief reminder of Ref. [12]
vesicles[2], For the Monte Carlo method, however, a teth- As mentioned in Introduction, the fluid membranes are
ered(polymerized membrand13] rather than a fluid mem- free from shear modulus. This fact tells that the fluid mem-
brane is more suited, because a membrane is implementedlimanes should have no internal structure. Hence, it is by no
a computer as an assembly of molecules and junctions beameans fruitful to think of the microscopic constituents real-
ing close resemblance to a tethered membr#éNete that izing Hamiltonian(1). Hence, we proposed in Rédfl2], an
because of the absence of shear modulus, fluid membranekernative, in a sense, rather simple minded, approach to the
should have no internal structurédowever, Gompper and fluid membrane: We constructed the transfer matrix directly
Kroll succeeded in simulating fluid membranes by the Montefrom Hamiltonian(1). In the construction, we managed sev-
Carlo method, allowing reconstructions of junctions duringeral discretizations which we explain below.
the simulation14]. They observed the topological instabili-  As noted in Introduction, the membrane shape is param-
ties with respect to the variation of temperature and memetrized by the normaltransversgdisplacemenh(x,y) from
brane concentration. In fairness, it has to be mentioned tha base(referencg plane. The variableg andy denote the
their Monte Carlo data indicate softening for lipid vesicles. Cartesian coordinates on the reference plane. In term of this

The rest of this paper is organized as follows. In the fol-displacement fieldh(x,y), the mean curvature and the
lowing section, we describe our approach to the direct obseiGaussian curvature are parametrized explicitly as follows
vation of the effective bending moduli. We also explicate the[15]:

Il. LEGENDRE TRANSFORMATION AND THE
EFFECTIVE BENDING MODULI

(9Zh+ a5 [ 1+ (ach)2+ (ayh)?] = 2d5hayhagdyh— dZh(d4h)2 = doh(dyh)?

J(x,y)= 4
oy [1+ (307 + ()22
|
and Putting them together into Hamiltonida), we arrive at the

explicit representation in terms of the displacement field
Kixy) FZhaoh—(dxdyh)? & h(x,y). Now, we are led to a two-dimensional scalar-field
X,y)= , ) . ) . : . i
y [1+(axh)2+(0yh)2]2 theory with considerably complicated interactions. It is no

table that the theory has even no obvious perturbation param-

respectively. Similarly, the infinitesimal arei is given by  eter. This fact motivated us to develop a first-principles simu-
lation technique.

dA=[1+(d,h)?+ (dyh)?]¥2dxdy. (6) We put the theory on a square lattice with lattice constant
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S, S, difference versions of the differential forn)—(6). See Fig.
Si+1/2,j=hi+1,j 'hij 1(b) for the definitions ofs,}. We have sekgT=1 because
this factor can be absorbed into the bending modwdind «.
. Yr Moreover, we should introduce yet another “statistical
Al Ss S, weight” for each open plaquette so as to impose the con-
81205 -hijg =P(S,,5,,53:54) itgzltnitsof rots=0; the gradient field should be rotationless.
S1 SZ
A(Sl 1S2,S3 -54) = 5sl+szfs3fs4,0- 9
[—— Yl
To summarize, we are led to the dual lattice moded]
a S3 S4

=A(s, ’32,33,34) With the step variables. There are two types of statistical
(a) (b) weights p(s;,S,,S3,84) (7) and A(s;,S,,S3,S4) (9), which

are arranged in the checkerboard pattern. Likewise the trans-
fer matrix is constructed as a strip like segment shown in
Fig. 1(c). It is a good position to mention a number of re-
marks. First, the above theory takes the displacement vari-
ableh;; as the statistical measure. As noted in Introduction,
the mean-curvature statistical measure is considered to be
physically sensible. The conversion of the statistical measure
is achieved by the redefinition of the statistical weight;
(C) namely,

FIG. 1. (@ On the square lattice, we consider scalar fiejd

denoting normal displacement of a memlzrami with respect to a 4 33(S1,57,53,54)
reference plane. Step variatigradient field s=ash is defined at ~ P(S1,52,53,54) — p(S1,S2,53,54) H e
each link.(b) The local statistical weightp [Eq. (7)] and A [Eq. a=1
(9)] are represented by shaded and open squares, respectively. The
statistical weightp has a variant so as to take account of other
integration measure such as the local mean curvalide(c) From  The square root is intended to take the geometrical mean
these local statistical weights, we construct a strip whose row-tobecause each step variabdg is sheared by an adjacent
row statistical weight yields the transfer-matrix element. This transplaquette as well. Second, the step variable is discretized as
fer matrix is diagonalizefi12] with the density-matrix renormaliza- s;=04(i—Ng2—0.5) withi=1, ... Ng. The unit of stepS,
tion group(DMRG) method[17-19. is determined self-consistently during the simulation &y

_ _ _ _ =R(s?). This step-variable discretization is an influential
a, see Fig. 1a). Accordingly, the field variables are now acior concerning the reliability of the present simulation,
indexed by integer indices; nametyx,y)—h;; . Hereafter, 5 its performance was checked previoydlg]. Third, in
we set the lattice constant as the unit of length; namly, 4er 1o diagonalize the transfer matrix, we utilized the the
=1. Our theory has the translational invariancemth  gensity-matrix renormalization grodd7—20. The method
+4h, and thus, the absolute value bfis meaningless. a5 invented, originally, so as to investigate the highly cor-
Therefore, it is sensible to use the link varialde=adh  related systems such as the Hubbard models and the spin
rather tharh: note thats denotes the step associated at eactehains. Later on, it was extended to the field of soft materials
link; see Fig. 1. We are led to the dual lattice model. Therebysuch as the lattice vibratio®1-23, the quantum string
for each shaded plaquette of this dual latticeiginally a  [24,25, and the bosonic syster{i26,27. We repeat density-
vertex spanned by four adjacent linkshe following local matrix renormalization one after another so as to reach suf-

as,
(10

statistical weight is associated: ficiently long transfer-matrix strip lengthl2]. The number
B iy 7 of states retained for a renormalized block is an important
P(S1,52,53,84) = eXp( —H), ) technical parameter which is denoted oy

One may wonder that the strong deformations increase the
area of the piece of membrane considered to such an extent
that the emerging additional degrees of freedom for addi-
tional molecules cannot be ignored. According to the idea of
Helfrich, however, the correct statistical measure is the local
mean curvature that has nothing to do with the “molecules.”
Therefore, our treatment is justified even for such strong de-
formations as long as we accept his idea. Strictly speaking,
where J(S1,S2,53,S4), K(s1,5,,53,54), and  we are not dealing with such molecules at all; rather, we had
dA(s;,S,,S3,S,) are to be replaced12] with the finite-  just discretized the real space so as to form a square network,

with

K
H:dA(311321531S4)(EJ(31=52153154)2

+?K(sl,sz,s3,s4)>, (8)
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and the vertices are not to be regarded as molecules. In fac
the fluid membrane should have neither internal structure noi
fixed connectivity, and it is not fruitful to think of micro-
scopic constituents and regard them as the degrees of free
dom. t o
Finally, in the above, we have postulated the presence of d
reference plane from which all undulations are created, anc
we imposed no restriction to the total area of the membrane
Hence, in terms of the category of RE2], the membrane is
to be classified into open framed membrane; see [R&f.as
well. The free energy per unit area of the reference plane is FIG. 2. Real-space decimation procedure. From the decimation,
the naturally observable quantity. This leads to the idea thatoarse-grained curvaturdsandK are constructeftl2]. J andK are
the effective bending moduli would be measured from theused so as to obtain the corresponding effective-bending moduli;
increase of the stress energy due to the reference-plane deamely,«} (15) and <} (19).
formations. We will pursue this idea in the following section.

With use of the well-known identity 2G/3j?)(5°F/C?)

B. Legendre transformation and the effective bending moduli =—1, we obtain the expression for the effective-bending
xSY and kS rigidity
In this section, we explain our approach to the effective-
bending moduli. There are two types of bending moduli such 9 — 1/(92_F (14
ask andk; see Eq.(1). First, we explain the way to calcu- eff 9c2’

late the effective bending rigidity. We introduce the follow-

ing Hamiltonian with an additional term: _
Let us address a number of remarks. First, the free erfergy

KJiZ _ is readily accessible by the transfer-matrix calculation.

He=H-2 CJ=2 TdAi+KKidAi_CJi : Hence, the above formula is suited to our computer simula-

' ' (11) tion. The remaining task is the numerical differentiation. We

had adopted “Richardson’s deferred approach to the limit”

) . i algorithm explicated in Refl29]. Second, we started from

The indexi runs over the shaded plaquettes of Fig. 1, Theyamiltonian (11), which is defined on the reference plane
quantities];, K;, anddA; are the same as those in H8),  ather than the original fluctuating membrane surface. There-
but possessing the plaguette indenow. Note that the addi- fqre, the effective bending rigidity corresponds to the elastic

tional term is not lumped together with the facA; be-  modulus with respect to the reference-plane deformation.
cause our aim is to calculate the stress energy with respect #hat is precisely what we sought.

the refer.e.nce plane rather than the membrane surface itself. e expression of Eq14) may seem to be exceedingly

The additional term breaks the symmetry of the mean curvagormal. In fact, it may be unclear how the interaction of the
ture J— —J linearly. In other words, the membrane is forced cyrvature with the undulations is taken into account. It is
to bend so as to possess a nonvanishing spontaneous Mg@teworthy that the Hamiltonian contains the symmetry
curvature. Hence, with respect to the stress energy due to tfﬂﬁeaking ternCJ; and we have to evaluate the free energy in
reference-plane deformation, we are able to observe the efne presence of it. Just like the two-dimensional Ising model
fective bending rigidity. That is the basic idea of our ap-ith the external field that has not yet been solved exactly,
proach. Such an idea was featured in an analytical treatmeg{,ch a problem with the symmetry breaking term is far from
as well[9]. By the way, our aim is to put forward this idea to peing trivial in itself, and generally, it contains valuable in-

an actual computer simulation. formation such as the interaction between the background
As is well known, the above idea is best formulated by thegyryature and the thermal undulations. In fact, @) states
Legendre transformation that the second derivative with respectQuyields the effec-
tive rigidity. That is the underlying idea behind the formal
G(j)=F(C)+Cj, (12)  expression of Eq.14). We stress that such an additional term

is readily tractable by our simulation method, and owing to
this advantage, we are able to access the effective rigidity in
a quite straightforward manner.

We will introduce another effective bending rigidity:
rough the coarse-graining depicted in Fig. 2, we obtain a
coarse-grained lattice and the corresponding smeared curva-
ture J [12] after rescaling the unit of length2a—a and

26 reexpressing the formulas in terms of the rescésedearedl

"= (13)  quantities(we put  for them), we obtain the effective rigid-

K = .
eff 9j? ity for the coarse-grained membrane,

with 9F/9C=—j. Here, F(C) denotes the free energy of
Hamiltonian(11) per unit cell(one shaded plaquejteG(j)

is the desired Legendre-transformed free energy, which is ?h
function of the spontaneous mean curvagui@ur concern is
to obtain the effective bending rigidity
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°F(C) 3 T T T | T
Kif=—1 / =5 (15
aC 25 | *) In2 /8n .

Note that two unit cells are renormalized into one coarse- esff") o L
grained unit cell. In other words, two molecules are renor- K(e"f%
malized into one decimated molecule, and hence, the param 15 L
eterM in Eq. (2) should beM =2.

Let us turn to the Gaussian-curvature modulus. In this 1k
case, we incorporate the following additional term coupling K(sfz
to the Gaussian curvature linearly: 05 e

KJiz _ 0 ] ] ] ] ] ] ] ]
HDZH—Z DKFZ — dA+ kKidA—DK; . 0 01 02 03 04 05 06 07 08 09
(16) K
Similar to the above, this leads to the following Legendre FIG. 3. Effective-bending rigidity« is plotted for various
transformation: bare bending rigidityx and the fixed Gaussian-curvature rigidity
«=0. We have accepted the local curvature as for the statistical
G(k)=F(D)+Dk, a7 measure. The simulation parameters for each symbol #fert

=15, N;=8, andR=0.9; (X) m=15, Ng=8, andR=0.8; and
with 9F/dD=—k. Our concern is to obtain the effective (*) m=15N;=9, andR=0.7. Because ot>«(J;, we see that
Gaussian-curvature modulus, which, in other worlds, the efthe membrane is stiffened effectively for macroscopic length scales.
fective symmetry breaking term with respect to Wdield.  The stiffening in the largee side,x>0.4, may be the artifact of the
Postulating that the effective free enei@yk) is a quadratic numerical simulation due to the pinning potential of discretized step

polynomial in terms ofk, we obtain the following expres- variables; there emerges the smooth phase just like the solid-on-
sion: solid model with large surface tension.

FOE i ‘92_F (18) 40 renormalizations for obtaining each plot; namely, the strip
eff dD JD?2’ length of the transfer matrix extendslte= 80. The technical
parametersn, Ng, andR are indicated in each figure caption;
Again, the similar idea applies to the coarse-grained latticesee Sec. Il for the meaning of these technical parameters.
Hence, we obtain These parameter values are equivalent or even improved to
those used previouslyl2]. Therefore, the reliability of the

9/ PF : S L
K(eLf)f: T - (19 simulation is maintained.
oD/ gD?

(S,L)

We complete preparing the mathematical formulas for the A. Effective-bending rigidity e

effective bending moduli. We apply these formulas to the _ ) ) )
computer simulation in the following section. In this section, we focus our attention on the effective

bending rigidity. For that purpose, for the time being, we
IIl. NUMERICAL CALCULATION OF THE EFEECTIVE drop the Gaussian-curvature term, which is considered in the

BENDING MODULI: ROLE OF THE STATISTICAL following section; namely, we set=0. In Fig. 3, we plotted
MEASURES the effective bending rigidity'${ for various bare rigidity
i (S (L) i ;

In this section, we explore the effective bending moduli”" _The modulief; and ey denote the effective bending _
sL) —sL) q ¢ rigidities for smaller and longer length scales, respectively;
[xetr”, Eqs.(14) and(15) and«ey” , Egs.(18) and(19]of g0 Egs(14) and (15). Here, we have accepted the local
a ﬂllj'(.j née_mt)sranellb¥hmians fOf thettr ansi;a_r—matnl).( g‘ethoqnean curvaturel as for the statistical measure; recent dis-
explained in Sec. II. The transfer matrix is diagonalizéd] cussion[9,11]] insists that this statistical measure should be

by means of the density-matrix renormalization gr¢ajg— ) ()
19]. Making a comparison between the results under théhe right one. From the plot, we see that the r|g|dmée§f

. (L) i -
mean-curvature and the normal-displacement measures, @80 xefr deviate from each other as for small In the small
will elucidate the role of statistical measures. As mentioned< '€gime, the membrane becomes very flexible, and so the
in the above section, we have fixed the temperatigr ( thermal fluctuations should be enhanced significantly. Hence,
=1) because this factor can be absorbed into the redefinitioye see that the correction to the effective rigidity is actually
of the bending moduli. induced by the thermal fluctuations. Moreover, we notice
Here, we shall outline some technical points that are rel«%}>«(3;. Hence, the membrane acquires stiffness for
evant to the simulation precisioiDetailed account of the longer length scales; namely, the membrane stiffening sets
simulation algorithm is presented in R¢12].) We repeated in. Such a membrane stiffening was first predicted by the
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analytical argument$9,11]. However, for the smalk re- s.L) v
gime, the analytical arguments are not fully justified, because Keit
the arguments stem from the “nearly flat approximation.”
On the other hand, our first-principles simulation does not
rely on any perturbative treatment. In that sense, our data
demonstrate very definitely that the membrane stiffening oc-
curs withstanding the thermal disturbances. 1+
Note that the effective rigidityc(3; is by no means iden-
tical to the “bare” coupling constank. The former is the
bending elasticity with respect to the reference-plane defor-
mations, whereas the latter is the elastic constant of the |
membrane surface itself. Therefore, they need not coincide. 1
However, for sufficiently large, as is seen from Fig. 3, the
curve tends to be parallel to the slope of the litl,= «, (a)
indicating that they coincide asymptotically for large A
We shall argue the relationship between the above resuItK‘(a%L) v
and our previous repoftl2]. The regimex<0.4, where we
found a notable deviation ot{$; and «{%} in Fig. 3, coin- x®
cides with the area of the prominedik’/dx enhancement
reported in Fig. 7 of Ref[12]. (Although d«'/d«x does not 1
yield direct assessment of the effective rigidity, we con- 1
cluded that the/x'/ 9« enhancement should reflect the mem-
brane stiffening. Hence, in retrospect, our preceding analy-
sis appears to capture the precursor of the membrane
stiffening fairly correctly.
In Fig. 3, at k~0.4, there appears a singularity: The
moduli «(3; and «{7; approach to each other and far 1 x
>0.4, they split off again. This singularity may indicate an (b)
onset of a phase transition. Far>0.4, because ok{}}
> k'3, a membrane stiffening should occur. As a matter of ~ FIG. 4. Schematic drawings @i anticipated from our first-
fact, because of the discretization of the step variafdes principles datgFigs. 3 and band the analytical result justified for
Sec. II], it is likely that the membrane is trapped by the mostsufficiently largex [Eq. (2)]. (&) The mean curvature is accepted as
stable configuratiofflat surface for large «. (It is expected ~ for the statistical measuréb) The normal displacement is accepted
that the membrane becomes flat just like the smooth phase far the statistical measure.
the solid-on-solid model with large surface tensjddore-
over, it is well known that the correlation length divergesamount of effective stiffness, and it would look almost flat
exponentially for largec [10]. Such a long correlation length irrespective of the thermal disturbances.
would exceed the capability of the numerical simulation. The ~Let us turn to the normal-displacement statistical measure.
large« behavior appearing i>0.4 is thus an artifact of In Fig. 5, we plotted the effective bending rigidit 3~
the numerical simulation. The membrane stiffening for largeunder this statistical measure. Notably enough, the behavior
k is not intrinsic and is rather driven by the mechanismis quite contrastive with that of the local-curvature measure
different from that of the smalk side. mentioned above: The larger-scale effective rigidify} is
In Fig. 4a), keeping such a drawback in mind, we have suppressed by the thermal undulations. Hence, it is shown
drawn an anticipated behavior of the effective-bending rigidthat the membrane is softened effectively for macroscopic
ity for a wide range ofc. As mentioned above, the analytical length scales. This result may meet our intuition and has
treatment is justified for largec. On the other hand, our been predicted by numerous analytical arguments based on
first-principles simulation works efficiently in the other side the normal-displacement measyfe-8|. We stress that our
(nonperturbative regime For sufficiently largex, the ana- first-principles simulation covers various statistical measures
lytical argument predicts the correction to the effective in a unified way. Our simulation clarifies fairly definitely that
such asx’—«k=InM/87=0.027 .... The correction ap- the choice of measure factors is vital for the thermodynamics
pears to be exceedingly small to be resolved by the numerief the fluid membrane. Again, for large~0.8, a signature
cal simulation; see Fig. 3 as well. On the other hand, for theof the membrane stiffening{?;>«(3; comes up, and the
small-« regime, our simulation data indicate that the correc-membrane should undergo the flat phase. This behavior is a
tion to the effectivex increases very significantly. The drawback of our simulation as mentioned above. Keeping
amount of correction is comparable to the thermal-this in mind, we have drawn a schematic behavior of the
fluctuation energy; note that we have cho&gi as the unit  effective bending rigidity in Fig. é). For largex, the ana-
of energy kgT=1). Hence, it is suggested that for macro- lytical argument predicts the renormalization correctien
scopic length scales, the membrane acquires a considerabtex=—3 InM/87=—0.0& . . ., which is beyond the reso-

A\ 4

31In2 /8n

Y
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FIG. 5. Effective-bending rigidity«(SP is plotted for various

bare bending rigidityx and the fixed Gaussian-curvature rigidity ~ FIG. 6. Effective Gaussian-curvature modukd§” [Egs.(18)
«k=0. We have accepted the normal displacement as for the stati§"d(19)] is plotted for various bare modulusand the fixed bend-
tical measure. The simulation parameters for each symbol arid rigidity x=2/\2(=0.35...). Wehave accepted the local cur-
(+) m=13, N;=9, andR=0.55; (x) m=10, Ng=11, andR vature as for the statistical measure. The simulation parameters for
=0.45; and (*) m=11, N;=10, andR=0.5. Because ok,  €ach symbol are€) m=15, N;=7, andR=1; and (x) m=15,
<K(esf)fv we see that the membrane is softened effectively for macNs=8, andR=0.9. We see that the effective modulus stays almost
roscopic length scales. The stiffening in the largside, x>0.8,  scale invariant arouna{3~0 through coarse graining, confirm-
may be the artifact of the numerical simulation due to the pinninging the validity of the analytical predictidEg. (3)]. Moreover, we
potential of discretized step variables; there emerges the smootfotice that?(e?f“ exhibits a large negative residual value even for

phase just like the solid-on-solid model with large surface tensionzero barex=0. This fact reflects that the membrane undulations
are dominated by the formation of “hat excitation].

lution of the present numerical simulation. As for the small-

x regime, the correction is enhanced. However, the enhance-
ment is not so prominent as in the case of the mean-curvature
measure. It is almost comparable to the analytical prediction;

see Fig. 5 as well. Hence, our first-principles simulation in- 0.2 : : : : :
dicates that the analytical formu(@) is more or less appli-
cable even for the case of the nonperturbative regime unde! 0.1 | .
the normal-displacement measure. —(sL)
Keif © O F = i
Ket
B 0.1 -
B. Effective Gaussian-curvature modulusk'$;-
. . 0.2 _
In the above, we have studied the thermal-fluctuation-
induced corrections to the bending rigidity In this section, 03 - .
we incorporate the Gaussian-curvature modulusind look 0.4 - —(S) 1
into its effective strength>"). As noted in Introduction, ' Keft
the Gaussian-curvature-modulus term is related to the topo- -0.5 L ' : L L
logical index, and hence, it governs the global structure of -8 06 -04 -02 0 02 04
the membranes. Roughly speaking, or 0, the plumber’s- K

nightmare phaséamellar with tunnel-like defecjss stabi- ) _ L

) — . _ FIG. 7. Effective Gaussian-curvature modukf§;- [Egs.(18)
lized, whereas fok<<0, the formation of vesicle&roplets . . — .

) 1S 1) and(19)] is plotted for various bare modulusand the fixed bend-

is favored. In that sense, the quantitfy reflects the ten- ing rigidity x=0.4. We have accepted the normal displacement as

dencies toward the topological instabilities. for the statistical measure. The simulation parameters for each sym-
In Figs. 6 and 7, we presented the effective Gaussianpol are (+) m=14, N=8, andR=0.6; and (x) m=9, Ny=11,

curvature modulus for various bare under the statistical andR=0.45. We see thdi})| is suppressed around~0. This
measures of the mean curvature and the normal displacéact tells that for macroscopic length scalegcause of the restric-
ment, respectively. Herex is fixed to be K:2/\/§ tion of the reference planghe planar-type morphology is favored;
(=0.35...) and 0.4 forespective figures. First, let us argue namely,« is irrelevant in the infrared limit. Fox<—0.6, in turn,

the latter. (Because this case provides a prototypical ex{«{;| is enhanced eventually, suggesting that the membrane tends
ample, we will argue it prior to the mean-curvature case.to dissolve into the solver{roplet phase
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The latter case has been studied extensively so far with ana- IV. SUMMARY AND DISCUSSIONS
lytical approachef?,8]. However, because we are supposing . . . . )
that the membrane is framed by the reference plane, there We have mveshgated_(tgLe) effective bending moq"@f

emerge some characteristic features. ko0, we see that a [Egs.(14) and(15)] and 7 [Egs.(18) and(19)], with an

I t of effectivie® Thi It indicat emphasis on the role of the statistical measures for the par-
arge amount of effectivpee7i| appears. This result indicates tition sum. We employed the transfer-matrix method devel-

that the membrane undulations are dominated by the dimplq)—ped in our preceding papgt2], where we had reported a
like deformations, and possibly, the membrane tends to fo_m&reliminary analysis on the effective bending rigidity via the

dégpire]ts’t' fTh's fealllture |st;n accordant \;‘”t? thetﬁrev'Ousbda'm[ransformation coefficiendx'/dk. In the present paper, we
[30] that for small membrane concentration, the membrane roposed the scheme to determine the effective bending

arT thermodynam;}calIyounitable to the hdlssf(f)lutl_on 'nt% th oduli directly: We calculated the free-energy cost due to
solvents(sponge phaseOn the contrary, (tL)ee ective modu- e reference-plane deformations, from which we read off
lus for the longer length scale, namely.y|, exhibits con- o effective bending moduli. This idea is formulated in

siderable suppression. Notably enough, it becomes eveims of the Legendre transformation, and the mathematical
positive for k>0.1: For macroscopic length scales, theformalism is developed in Sec. Il A. Based on the formulas,
membrane recovers its stability aroure-0, although mi-  we carried out extensive computer simulations in Sec. Ill. As
croscopic undulations are in favor of droplets. Such a crossa result, we found a clear evidence of the membrane stiffen-
over behavior is convincing because the membrane is framedg in the case of the mean-curvature measure; see Figs. 3
by the reference plane, and macroscopically, lamellar-typ@nd 4a). The membrane stiffening was first predicted by the
structure should be retained. analytical approachel®,11], which are validated for suffi-

As the bare modulus decreases, the effective moduli of ciently Ia.rge;f. Our first-principles data show that the mem-
different length scales coincide at-—0.6. For the region brane _st|ffen|_ng occurs even for the npnperturbaﬁsrmall .

. : L — ) —0) . 9 k) regime withstanding the thermal disturbances. Surpris-
exceeding this p0|ntf< _,0'6' in tun, Kefy dom|nates;<e.ff . ingly enough, the enhancement of the effective bending ri-
eventually. Hence, in t.hIS region, the droplet formatlon ',Sgidity copes with the thermal-fluctuation energyksT, sug-
favored for macroscopic length scales. The location of th'%esting that the membrane would stay almost flat for
transition point is reminiscent of that advocated by the aNamacroscopic length scales.

Iytical argumentg31,32, which predicts the transition point 5, the contrary, under the normal-displacement statistical

ke~—10k/9=—0.44 ... . In ousimulation, the planar-type measure, we found a clear indication of the membrane soft-
morphology is assumel priori. Therefore, in such a regime ening; see Figs.(®) and 5. This fact indicates that the choice

?<?C, our numerical simulation does not cover such aof measure factors is indeed significant. The correction to the
sponge phase. In fact, it suffers from pathologies such as theffective bending rigidity appears to be moderate compared
diverging mean deviation of the step variables. In the sam#ith that of the mean-curvature measure. In fact, it is almost
way, for exceedingly Iarge_c>0.1, the membrane becomes comparable to the prediction by the analytical treatment of

unstable owing to the topological instability toward the Eq. (2) even fqr small. N .
L . . i For exceedingly large rigidity, the membrane fluctuations
plumber’s-nightmare phase. In the regions depicted in Figs. ?re

d7 the pl i hol s retained. and th eze because of the exponentially diverging correlation
and 7, the planar-typeé morphology 1S retained, and thus OUIrezngth[lo] and the pinning potential due to the step-variable
simulations are reliable.

S d. let us turn 1o th fth " discretization; the membrane undergoes the flat phase even-
econ N etusturnto _(escl:_?se 0 .e mean-curva urg Me&jally just like the solid-on-solid model with large surface

sure: In Fig. 6, we plotted ¢y~ for various bare Gaussian- tensjon. The appearance of such a phase is a drawback of the
curvature modulus. There appear some behaviors charac-numerical simulation, and in this respect, the simulation and
teristic of the mean-curvature measure: We notice #ig  the analytical treatment are both complementary.
and;gLf)f almost overlap each other aroure-0. That is, the Furthermore, we m_corporate_zd the Gaussmn-cgrvature

' . ._modulus, and studied its effective strength. Accepting the
Gaussian-curvature modulus stays almost scale invariar)

- ) ean-curvature measure, we found that the effective
through coarse graining. This result supports the aforemerbaussian-curvature moduli for different length scales overla
tioned analytical predictiof9,11] of Eq. (3). In addition to 9 P

L s.L) o . each other arounck~0: see Fig. 6. In other words, the
this, it is to be Sngted thaker;” exhibits a large negative Gaussian-curvature modulus stays almost scale invariant

residual valuex$})~— 1.4 aroundx~0. That is, although through coarse graining. This fact is in good agreement with

the bare couplinge is turned off, the membrane undulations the analytical prediction of Eq3). In addition to this, the

are dominated by the dimplelike deformations. This resulteffective Gaussian-curvature modulus exhibits a large nega-
validates the postulation by Helfric®] insisting that the tive residual value even for zero bare modulus. This fact

elementary excitations of the thermal undulations should béndicates that the membrane fluctuations are governed by the
the “hat excitations” rather than the ordinary sinusoidal dimplelike deformations that should be scale-free. This ob-

ones. Because the hat-excitation picture is the starting poirgervation again supports the scenario of R#i. insisting

of his arguments. the whole theoretical structure appears tthat the thermal undulations should be decomposed into the
be self-consistent from our first-principles data. hat excitations.

031901-8



DIRECT OBSERVATION OF THE EFFECTIVE BENDING . .. PHYSICAL REVIEW £8, 031901 (2003

To conclude, by means of the first-principles simulationwhole. Hence, it is very likely that the mean curvature is
technique, we have investigated the series of analytical preandeed a physically, sensible statistical measure for the par-
dictions advocated by Pinnow and Helfrig®,11]. Thereby, tition sum.
we found that these predictions hold true even for the non-
perturbative regime. In particular, the hat-excitation picture,
which is the very starting point of their argument, is vali-

dated by oum_ﬁfff'f” data. Therefore, the postulation and its  This work was supported by Grant-in-Aid for Young Sci-
deductive hypotheses turn out to be fairly consistent as entists(Grant No. 13740240from Monbusho, Japan.
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