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Bottle-brush polymers as an intermediate between star and cylindrical polymers
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We present a theoretical study of a single bottle-brush molecule, which consists of multiarmed polymer stars
grafted densely onto a stiff backbone. Mean-field approximation and a variational approach are used to calcu-
late the dominant trajectories of the grafted chains, the shape of the molecule, and the segment density
distribution around the backbone. All these properties are calculated for an arbitrary relationship between the
size of the backbone and that of a grafted star. Hence cylindrical comb copolymer brushes and spherically
symmetric polymer stars are considered as the limiting cases of the present problem.
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I. INTRODUCTION eled as dinfinitely thin) stiff rod. On the other hand, we do
not make any assumptions regarding the relationship be-
In this paper, we carry out a theoretical investigation oftweenL and the linear sizd, of a grafted chain. In fact,
cylindrical comb copolymer brushes or bottle-brush mol-L.~Ry, and it is the ratid /Ry which governs the crossover
ecules[1-9]. We assume that such molecules are composetletween the sphericalL(Ry<1) and cylindrical [/Ry
of multi-armed polymer stars, grafted densely onto a rigid or=>1) conformations of a bottle-brush molecule. The polymer
flexible backbone. In our previous wofR], we considered brushes of different symmetries are clearly described by dif-
the particular case of a flexible backbone and side chains dérent scaling laws, and it is interesting to study how these
the same chemical composition. We showed that, in the presaws transform into each other as the paramdi¢R,
ence of excluded volume interactions, a bottle-brush molehanges. Herein, in order to study the transformation of the
ecule can be found in one of the three conformational statescaling laws, we consider a single bottle-brush molecule with
depending on the backbone’s molecular weight. Here wehe ratioL/R,<1. If we probe such a molecule very near its
briefly summarize the results obtained in RéX]. backbone, the influence of the backbone ends can be ne-
First, let us consider a backbone of very low molecularglected and the molecule appears to be infinitely long. This
weight, so that its length is much shorter than the size of a implies that, in the close vicinity of the backbone, a bottle-
grafted star. In this case, all the side chains in a bottle-brusbrush molecule is described by the scaling relationships
molecule are virtually grafted onto the same point, and thavhich are characteristic of cylindrical symmetry. However,
molecule appears to be a single polymer star. The number @it large distances from the backbone, the backbone’s linear
arms in such a star is given by the total number of the graftedize L appears to be negligibly small and we should find the
chains, and these arms are swollen uniformly in all direcscaling relationships of a spherically symmetric polymer star.
tions. Thus, folL—0 the bottle-brush molecule is foundina  Our analysis is largely based on using the variational ap-
spherically symmetric conformation. As the backbone lengtlproach, which was suggested in Rg#] to calculate the
L grows but remains smaller than a certain crossover valuproperties of the planar, spherical, and infinitely long cylin-
L., the swelling of the side chains increases and eventuallgrical brushes. We generalize this approach to the case when
reaches a plateau bt-L .. At the same time, in the presence the backbone sizk is taken to be arbitrary. In the following
of excluded volume interactions, the grafted chains try tosections, we give a detailed description of the examined
avoid strong overlapping. This leads to a large increase in thbottle-brush molecule and calculate its properties such as the
stiffness of the backbone, so that its linear slzggrows  segment density distribution around the backbone, the domi-
proportionally to the molecular weight. Consequently, for nant trajectories of the grafted chains, and the molecule’s
>L . the bottle-brush molecule acquires the shape of a longhape.
stiff cylinder, whose diameter is roughly given by the maxi-
mum size of the grafted chains. The critical backbone kjze
marks a crossover between spherical and cylindrical symme-
tries of a bottle-brush molecule. When the size of the back-
bone is very large, i.el.>L., the grafted chains can no In this work we consider a bottle-brush molecule which
longer restrict the backbone’s folding and it adopts a spherieonsists of M stars, each containinfj flexible chains of
cally symmetric coil-like conformation. lengthN, grafted regularly onto a stiff backbone of lendth
In this paper, we present a quantitative study of the con{see Fig. 1 in Ref[9]). We assume that the stars are grafted
formational crossover which occurs at the backbone sizegery densely, so that the interstar spacthgL/(M —1) is
L~L.. We assume that the backbone’s molecular weight isnuch smaller than the size of the backban&he condition
not particularly high, and so the backbone itself can be mode <L implies high segment densities inside a polymer brush,
which allows us to treat the problem within a mean-field
approximation.
*Electronic address: nad28@cam.ac.uk It is convenient to introduce the cylindrical coordinate

Il. DESCRIPTION OF THE MODEL AND THE FREE
ENERGY FUNCTIONAL
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wherea denotes the segment size. Side <1, in Eq.(1)

we substituted the summation over all side chains by the
integral overz,. Within a mean-field approximation, the in-
teraction part of the free energy reads

Ft=22 [ 4z | dpn(p,2)2 2
P 2 P P*Z) mp, ( )

e where v, is the excluded volume parameter andp,z)

. stands for the segment density distribution around the back-

a7 bone. We can calculate this distribution by choosing an el-

L2F ementary volume inside the polymer brush and counting the
number of segments inside it. For simplicity, we assume that

@ all the free ends are excluded from the brush’s interior, which

represents a natural extension of the Alexander—de Gennes
approximatior 10] used for a planar geometry. The resulting
expression fon(p,z) is found to be proportional to the Jaco-

@, bian

D(p,z2)=————— , 3

namely,

4

Equation(4) can also be expressed in terms of the variables
Zo andt,

a f 1

, —
. I n(Zo,t) d ZWfl(ZOat)D*l(Zo’t),

0 ™ (b)

®)

FIG. 1. lllustration of the cylindrica{p,z} and angle{a,,a,} where

coordinate systems, introduced in this paper. Note that the infinite of. of of . of
half plane{p>0,z} is transformed into the finite triangle;+ «; D ,(zo,t)= 172 7172 (6)
<7, shown in(b). The sidea,=0 (a;=0) of this triangle repre- gt dzyg dzy ot
sents the immediate vicinity of the upp@ower) end of the back- ) ) ) )
bone, while the diagonat, + a,= 7 corresponds to infinity in the ~Clearly, the JacobiaD _;(zo,t) is reciprocal tdD(p,2), i.e.,
half plane{p>0,z}.

DD_,=1. (7)
system{p,z, ¢}, where axis is directed along the backbone o _ _ _
[see Fig. 1a)]. Due to symmetry, we do not need to consider ©0mPining Eqs(1)—(6) provides us with an expression for
the angle coordinaté and the problem becomes two dimen- the total free energy as a functional of and f,
sional. In this context, the variational approach amounts to
writing down the molecule’s free energy as a functional of _[Le N LB f[[af\2 [af,)?
two independent functions of two variables and minimizing Flf1.f2]= ﬁmdzofo dt 2g2d|| at + ot
2

it with respect to these functions. A possible choice for the

independent functions is the dominant trajectories of grafted vl f 1

chains{p=f,(zg,t),z=f»(2o,t)}, wherez, andt stand, re- + —e(—) —} (8

spectively, for the grafting point and the segment number of 2\d] 2mf,D_,y

a given chaifFig. 1(a)]. Alternatively, we can work with the

space fieldzy=1f3(p,z) andt="14(p,2), which are defined | THE EULER-LAGRANGE EQUATIONS FOR THE

as the fUI’lCth!’lS Invers_e h(zo,t) andfz(zo,t)_. In the fol- TRAJECTORIES OF POLYMER CHAINS

lowing analysis, we will require all four functions.

The molecule’s elastic free energy is expressed straight- A. Derivation of the Euler-Lagrange equations
forwardly in terms of the chains’ dominant trajectories, Minimizing the free energy functional of E¢8) with re-
3 f (L2 N G2 [ gf\2 spec;t to. functic_)nsfl am_j fo, we obtain a .system of t\_/vo
pel— > _ dzof dt (_1) +(_2 ' partial differential equations which determine the dominant

2a2dJ)-1p 0 at at trajectories of grafted chains,
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7t 1 1 [oD_;af, oD_, of, d afy 9 afy 9

+ + —— —| = —N(Zp,t)=——n(p,2)+ ——=n(p,z). (16
M2 D_,f2 D§1f1< w oz oz M) e e T etz

) We obtain

9°f5 1 (&D_lafl oD _, 9f4 0 ©

- ————|=0. 2 2
a2 D3\ Ot dzg dzg ot d11(dfy +}@ B _
at| 2\ at 2\ at n(zo,)| =0, (7

When deriving these equations, we have made the following
changes of variables: so that the combination in square brackets remains constant
along the chain trajectory. Note that, within the particle for-
fi—fil, f,—f,l, p—pl, z—zl, n—>nl"% (100  mulation of the problem, Eq17) corresponds to the energy
conservation law. We assume that the stretching of chains is

where the length scaleis given by zero when the segment densitywanishes, which yields

1 f 1/4 5 5
1= goveety o ()2, 1ot
6w d "2l T2l (18
Substituting Eq(10) into Egs.(3)—(6) yields the following Equations(15) and (18), the boundary conditions
expressions for the dimensionless density of polymer seg- '
ments: f1(20,00=0, 5(20,0)=2, (19
n= E: 1 (12) as well as some symmetry restrictions determine uniquely

the dominant trajectories of the grafted chains.

The physical meaning of Eq9) becomes transparent if we g Example: Solution of the Euler-

h . . . - Lagrange equations in the
rewrite these equations using the relationships

case of infinitely long cylindrical brush

of, ofs  ofy ofy For an infinitely long cylindrical brush, the problem be-
ot D—lE! 9zo _D—lzv comes one dimensional and we can write

ﬁfZ_ afs afz_ af4 (13) fl(ZOlt):fl(t)r fZ(ZO!t):ZO' (20)

at topt gz T tap’ Combining Eqs(12), (18), and(20) results in the nonlinear

. . ) differential equation for the functiofy(t),
and the general rules of partial differentiation. We find

, dfy| "t 1/df;|? 21
AL ):0, vat) “2lat) @)
o2 dp\fiD_y
whose solution is uniquely defined and reads
#f, o 1 o 4 )
o2 9z\f,D_4) (14 fa(t)= 52343444 (22
or, in view of Eq.(12), Furthermore, we find for the segment density distribution,
(72f1 Jd df -1 \/g 1
———n(p,2)=0, g 1) NP 12 T5213 —2i3
2 op (p,2) n=|f, dt) it 52%% %, (23
Pf, 9 This simple example shows that, within the present ap-
PO 5”(;0,2):0- (15  proach, the trajectories of all grafted chains, as well as the

segment density distribution, are independent of the chain

. : _lengthN. However, we need to know in order to specify
Thus, Egs.(9) are equivalent to the Euler-Lagrange equa the widthp* of a polymer brush and the total segment den-

tions describing the motion of a classical particle in the ex-_. :
ternal field qﬁe“g(]p,z)z—n(p,z). However, Fi)n the polymer sity n* at its surface. From Eq$22) and(23), we get
case,n(p,z) corresponds to the self-consisteiand not to 2
the externalfield, i.e., the field which is itself determined by p* =§23/431’4N3’4, (24)
the trajectories of the grafted chains.

A simple and useful relationship for the segment density
distributionn(p,z) can be obtained by substituting Eq4$5) n* :\/_ngl/z (25)
into the following very general law of partial differentiation: 4 '
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We stress that the Alexander—de Gennes approximatioaddition, we note that, as already shown for the case of an
yields the nonzero valua* of the segment density at the inifinitely long cylindrical brush, the segment density distri-
surface of a polymer brush. Moreover, according to @§), bution n is found to be independent &f, i.e., of the chain

the same holds for the stretching of chains at their free end$ength N. (The discussion of this matter is presented in
This is, clearly, an artifact of the present approach. We beSec. IlIB)

lieve, however, that if the degree of polymerizatidrof the

grafted chains is high, there is an extensive region in the B. Angle coordinatesa; and a,

brush’s interior where Eqg24) and (25) are valid. In other
words, we assume that the analytical prefactors that mig
appear in the above equations in order to satisfy the cond
tion of continuously vanishing segment density will remain
localized at the surface. The great advantage of such an a
proach is that it allows us to describe the polymer brushes

Equationg26) represent a system of nontrivial partial dif-
ferential equations which can be solved only numerically. In
order to simplify the numerical calculations, we introduce
H1e angle coordinates; and o, [see Fig. 1a)],

of all sizes with only one set of equations and boundary tanaF#, tana, L/2p+ , (30
conditions. z z
so that we can perform all integrations within the finite tri-
IV. OTHER REPRESENTATIONS OF THE EULER- anglea; + a,=< 7 [Fig. 1(b)]. Furthermore, defining the new
LAGRANGE EQUATIONS functions® (aq,a,), R(a;,a,) andg(aq,a,), such that
A. Cylindrical coordinates p and z P
3 3 .
For the purpose of solving the equations of motion, de- E:RCOS(I" %ZRSWD,
rived in the preceding section, it seems more convenient to
work with the functionsfs(p,z) and f,(p,z). In this case, 1
we have in place of Eqg15) and(18) fa(p,2)= 2T/3p4/39(a1'“2)’ (32)
d (x| 9 [%
22 + % n =0, enables us to derive the universal Euler-Lagrange equations

which are independent of any length scales. Substituting Eqgs.
(30) and(31) into Egs.(26), we find

_____:O'
dz  dp p . JdInR . dInR
Sina, sin(® + a,)+sina;, Sin(® — ay)
5'0[1 &az
s L o o
n =§(xl+x2), (26)

0P 9P
+3 sina; ——cog P + @) + 3 sina,—Ccog P — ay)
0”(11 (90[2
where new functionx,(p,z) andx,(p,z) have been intro-

duced, —Sin(I)ZO,
1 of 1 0f, ) JdInR ) dInR
X1(p,2)= ;E’ Xo(p,2) = ;%' (27) Sina Jas cog D + aq)+Sina, Ja, cog D — ay)

The first and the third of Eqg26) are derived in Appendix
A, whereas the second equation points to the fact that func-
tions x; and x, are not independenitcf. Eq. (27)]. The

) b . LN
—sin alﬂsm((DﬂL aq) —smazﬁsm(cp —ay)=0,
1 2

boundary condition to Eq926) follows straightforwardly S
from the definition off 5 [recall f5(p,z)=2z,] and reads n :z—sz : (32)

O(L/2-2)) (29) Equations (32) include two partial differential equations

(PDES that must be solved simultaneously to yieldand
R=InR. Note that both PDEs are linear with respectRo
Owhich significantly simplifies their solution. Besides, we ob-
tain from Eq.(29),

Xl(p—>O,Z) =

where® () is the Heaviside step function, defined as zer
for £<0, 1 for >0, and not defined at=0. Once EQs.
(26) have been solved anfi; is known, f, is found as a

solution to the linear partial differential equatigsee Eq. 4 dg dg
(12)], §g cos@+sina1£cos{<b+a1)+sina2ﬁ7cosi<b—az)
1 2

D(p,z)=pn(p,2), (29 —R ¥3=0. (33

whereD(p,z) is given by Eq(3). Togetherf; andf, deter-  The corresponding boundary conditions to E§&) and(33)
mine implicitly the dominant trajectories of side chains. Inread

031803-4



BOTTLE-BRUSH POLYMERS AS AN INTERMEDIAE . . . PHYSICAL REVIEW E 68, 031803 (2003
— 3
®(0,0=0, R(0,0=0, g(O,O)=Z. (34

V. LINEARIZED EQUATIONS: SOLUTION AND
DISCUSSION OF THE RESULTS

Equationg26) can be noticeably simplified if we suppose
that the dominant trajectories of chains are everywhere per-
pendicular to a surface of constant density,z) =ny. Ana-
lytically, this condition can be expressed in the form

an dfz  dn of3

30 3p Tz 20 (35)

Substituting Eq.(35) into the first of Eqs.(26), as well as
taking up the second of these equations, we arrive at the
system of two linear partial differential equations with re-
spect to functionx,(p,z) andx,(p,2),

ox X
_l + _2 = 0,

Jdz  dp
X, IX1 X

E_%_p' (36)

The solution to Eqs(36) under the boundary condition of
Eq. (28) reads

1 271 177
X2 | @ 1 VoY)

- N @
Xa(p2)=5 VpP+(z+1)? p?+(1-2)°)

and

1
fa(p,2)= 5[\/pz+(2+ 1)’=\p?+(1-2)%]. (39

Note that in the above equations, and everywhere in the fur- FIG. 2. The dominant traje_ctories of chains with grafting points
ther analysis, we set the half-length of the backbone equal tgp=0-3. 0.6, and 0.9dashed liness and surfaces of constant den-
one, i.e.L/2=1. Equation(38) determines the dominant tra- sity (solid lineg, as obtained from the linearized Euler-Lagrange
jectories of grafted chains via the relationsliygp,z) = z,,

and we have the following maximum values of coordinate (a) pmax=0.2 and

1, () pmax=1 and 5.

p?

> (39 Along the line of a central chain, that is the lize=0, the

Z(p,zg)=2zp\/ 1+
1-75 segment density distributiom(p,z) has the form

As shown in Fig. 2, the trajectories of all but the central

chains(i.e., grafted at,=0) are curved outwards from the 1

center of the molecule, this curvature being stronger for n(p):m-
those chains that are grafted closer to the ends of the back- [2p7(1+p%)]
bone. Due to the bending of chains, the segment density
inside a polymer brush is lowered, so is the interaction parEquation(40) reveals the following power law asymptotics:
of the free energy. Figure 3 shows the three-dimensional

(40)

graph of the segment density distributior{p,z) as it is _o3 <1
given by the last of Eqs(26). We note that the segment n(p)~ PP (41)
density diverges in the immediate vicinity of the backbone. p 4B p>1,

031803-5
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6qIn(R,) .

In(N)

-8 -6 -4 -2 0 2 4 6 8

&

FIG. 4. Double logarithmic plot of the end-to-end distafgeof
a central chain as a function of the degree of polymerizabion
(solid ling). The dashed ling=0.75¢+0.39 and the dotted ling

=0.6x+0.45 correspond, respectively, to the scaling limits of cy-
FIG. 3. The segment density distributioiip,z) obtained from  |indrical and spherical polymer brushes.

the linearized Euler-Lagrange equations; note tt(at z) diverges

whenp—0 andz*L/2<0. These scaling relationships are identical to those that have
. o ] o been obtained individually for cylindricatf. Eq. (22)] and
which are characteristic, respectively, of cylindri¢el. Eq.  spherical polymer brushds]. Recall that the half length of
(23)] and spherical polymer brushgs|. _ the backbone is set everywhere to 1, so, in flcsubstitutes
The field f4(p,2) is most easily calculated with the help for the combination of quantitieN(L/2)~*3. Hence, in the
of functions®(ay,a;), R(ay,az), andg(ay,a;), defined  present notation, the values Nfmay be both small and large
in Eq. (31). Rewriting Eqs(37) in the angle coordinates;  (see also discussion belpw
and a,, we find Here we do not present the complete results of the nu-
merical solution forg(aq,a5) and f,(p,z). According to
these results, the shape of a bottle-brush molecule changes
from a prolonged cylinder wheiN<1 to almost a sphere
(42 whenN>1. A similar change of shape is observed for a

Note that, within the approximations made, the functionsSurface of constant density(p,z) =no, when the value of

®(ay,a,) andR(a;,a,) are analytic everywhere in the tri- parame.temp is decreased. .Examples of such surfaces are
anglé’a12+ iy l'llhé function g(a, ;) is found as a shown in Fig. 2 for three different values of that corre-

unique(numerical solution to Eqs(33), (34) and (42). If N spond toR;=0.2, 1, and 5. Let us stress again that, if the

is the degree of polymerization of side chains in a bottle-hahc length of the backbone does not equal 1, we must re-

; T —4/3

brush molecule, the resulting field,(p,z) determines pI;ceN wnEthe coml:ilndat_lor:hof ?aramﬁtte}n]\le(ui)d -H‘f
the shape of the molecule’s surface via the relationshiﬂa er can es/fresene in the form of the ratidl(c) ™
f,(p.2)=N. In the special case of;=a,, the function wherelL .~N=". As we already know, the transverse si¢

: ; ; of a cylindrical polymer brush obeys the same scaling as the
h I o )
9(ay,a7) admits the analytic representation, parameterL., namely, R,~N¥% Hence, this is the ratio

ar—ag art+ag
D(ay,a)= > ,R(al,a2)=co{ >

ap L/R, which governs the crossover between the cylindrical
9(a1)20014/3a1f0 sin'3x cos &3« dx. (43)  and the spherical conformations of a bottle-brush molecule.
Solving the equation VI. SOME COMMENTS ON THE NONLINEAR
EQUATIONS
iR‘g"g’g(arctanj Ry)=N, (44) In the preceding section, we succeeded in finding an ap-
213 proximate solution to the Euler-Lagrange equations which

o ) ) i gave a satisfactory description of the examined crossover. To
whereg is given by Eq(43), we obtain the linear sizR; of  find this approximate solution, we made an assumption that
a central chain as a function 8f The resulting dependence the dominant trajectories of chains are everywhere perpen-
Ry(N) reveals two different scaling regimes that are clearlygicular to a surface of constant density. Such an assumption
shown in Fig. 4, is, obviously, valid for infinitely long cylindrical brushes, as
N N<l well as for spherically symmetric polymer stars. In the case
R ~ ' (45) of a bottle-brush molecule, we expect the an@léetween
9 IN®® N>1. the trajectories of grafted chains and any surface of constant
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0.4c0s(0) dInR ® oD
=t + _
0.3 day an al)o”al '
0.2- 4 N ~13
=gcos®+sina;——codP+a;)—R °=0. (47
0.1 3 day
0.0 In order to satisfy Eq947) and the boundary conditions of
Eq. (34), functions ®(a4,0), R(@1,0), andg(a4,0) must
017 have the following series expansions:
-0.2 4
®=Cai*+0(a’?),
-0.3
. z _ 1 2 213 413
0.4 d T T T T T T 1 R=1+=C aq +O(C¥l y
-4 2 0 2 4 2
FIG. 5. Angle © between the dominant trajectories of chains 3 1
and a surface of constant density, as a functiom, @nd for three g=—+ =C2a2®+ 0(af?). (48
different values ofp: p=0.01(solid line), 0.1 (dashed ling and 1 4 6
(dotted ling.

In these expansions, the value of constait namely
C=-2"12 is found from the condition that numerical inte-

density to be approximately 9@1) in the immediate vicinity gration of the first of Eqs(47) yields [cf. Eq. (42)]

of the backbonebut not very close to its ends, where the

molecule’s structure is similar to that of an infinitely long D(a;—m)=— /2. (49)

cylindrical brush and2) anywhere far from the backbone,

where the molecule’s structure becomes spherically symmethe functions® («4,0), R(«4,0), andg(«;,0), obtained by

ric. To substantiate this quantitatively, we calculated@ps numerical integration of Eqg47) under the boundary con-
ditions of Eqs.(48), are plotted in Fig. 6, where they are also

on df3  an of; compared to the approximate results of the preceding section
9 YR [11]. We see a significant quantitative discrepancy between
p dp 0z Iz Lo o
cosO = , the two sets of curvesvhich is not as striking for the curves
an\2 [on\2 af3\ 2 [ of3)? g(a4,0), compared in Fig. @), since they both were ob-
% + 9z % + e tained by solving the same E(R3)]. Apart from the quanti-

tative differences, the exact soluti®t{«4,0) shows a quali-
tatively new feature, namely, its maximum is positioned at
a17# 0 [see Fig. €)]. Such a positioning of the maximum is
responsible for the appearance of the “ears” around the ends
of the backbone in the segment density distributigp,z).

This is illustrated in Fig. 7 which presents a sketch of the
three-dimensional surfaag p,z) (cf. Fig. 3. Below, we ex-
plain how this surface was obtained.

(46)

using Egs.(37) and the last of Eqs(26). The results are
presented in Fig. 5 for three different valuesmf namely,
p=0.01, 0.1, and 1. We see that, when-0, the value of
cosO deviates from zero only in the immediate vicinity of
the backbone end¢Note that the maximum value of cés

's 0.316 which yields the minimum value 6f of approxi- Equationg48) can be generalized to the case of two vari-

mately 72°) When p is increased, the maximum value of . ) i
cosO decreases, as the shape of a bottle-brush molecule bgples S0 as to satisfy Eq$2) and (33). We f|nd the follow

) Ihg expansions foP (a;,a,) andR(aq,as):
comes more spherical.

Thus, the linearized Euler-Lagrange equations need to be 22/3

ar—
corrected only near the backbone, i.e., wieal. As shown o= 7a$/3f % +0(add),
in Fig. 1, the angle coordinates, and a, become infinitely 1T @2
small if p—0 and|z=L/2|#0. When bothp and|z—L/2| 2113 ot
tend to zero, the_ value offxl r.emgins finite, whereas R=1+ TangZ % +O(a§/3), (50)
a,=0, and determines the direction in which the upper end a1t &)

of the backbone is approached; [ 0,7]. Similarly, for the
lower end of the backbone we hawg=0 anda,e[0,7].
We see that, for each point in the vicinity of the backbone
eitheray or a, is very small. Equation&32) and(33) can be
significantly simplified if we put one of the angle coordinates
to zero. For instance, fax,=0 we have

whereay= a1+ a,, andf(x) is some odd function of such
that f(1)=1. The specific form of functiof should be de-
termined by the condition that numerical solution of Egs.
(32), under the boundary conditions of E¢S0), agrees with

the results of Eq(42) whenay— 7 anday ,#0. However,

for technical reasons, we were not able to find such a solu-
b sind cod® + ay) tion f_:md, hence, to d_etermirf_eOur algorith_m for the se_lf-
i 1 consistent numerical integration of Eq82) is described in
daj  sina; [2+cos2AP+ay)]’ Appendix B. It seems to be very sensitive to the boundary
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0014
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FIG. 7. The segment density distributiafp,z) found from the
nonlinear Euler-Lagrange equations. Note the new effect of “ears”
around the ends of the backbone, which is missing in Fig. 3. It
appears due to the maximum in the exact depend&ieg,0),
shown in Fig. 6b).

In order to obtain a qualitatively valid solution to Egs.
(32), we may use the following approximate form &f.

ary—a;
(I)app(al,az):mq)(ao,()), (51)

and simply calculat&R®PP(a;,a5,) from the second of Egs.
(32. It is straightforward to see thdi?PP satisifes the first of
Egs. (500 with f(x)=x, as well as provides the correct
asymptotic behavior wheay,— 7 [cf. Eq.(42)]. Besides, for
all those oy — for which we were able to build a self-
consistent solution to Eq€32), under the condition that
f(x)=x — the functions® and R, resulting from such a
solution, were qualitatively very similar t@2PP and R?PP,
Thus, the segment density distributiofp,z) shown in Fig.

7 has been obtained froRf*PP and the third of Eqs32). Let
us stress that the effect of “ears” is independent of any spe-
cific form of f or ®2PP, and is solely due to the maximum in

24
0 T T T T T ™ 1 the exact dependend¥ «4,0) [see Fig. €)]. However, the

1

0.0 0.5 1.0 15 2.0 25 3.0 3.5 . . . .
™ correct specific form of is necessary to fulfill the condition

FIG. 6. Functions(@ ®(«;,0), (b) R(«;,0), and(c) g(a;,0) of spherical symmetry foR(«;,a,) when ag— 7 and
found as a solution to the exact Euler-Lagrange equatisabd @ »#0, which is not satisfied bjR?PP.
lines). The dashed lines stand for the approximate results given by Let us now comment on the following peculiarities of the
Egs.(33) and (42). cylindrical polymer brushes of finite length. We know that, in

a polymer brush with.— o, the trajectories of all chains are

conditions and, since we do not kndwa priori, it inevitably ~ perpendicular to the line of the backbone. WHeis finite,
breaks down at some poiligenerally, ateg=2.1-2.5), as the angle between the trajectory of a given chain and the axis
we move away from & ay<1 to larger values ofyy. We  zmay change depending on the chain’s grafting point. Thus,
note that we used the same algorithm in order to findn the central part of a polymer brush, the chains remain
d(aq,a5) in the preceding section, and we did not encounteiperpendicular to the axis(a;=0), while the chains grafted
any problems in building the full numerical solution to Eq. near the backbone ends are almost parallel tajtf 7). We
(33), whered andR were given by Eq(42). can study the properties of the mentioned chains by taking
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the relevant limits in the functionR(«;,0) andg(«,,0). In  trajectories. Such dominant trajectories are found as a solu-

the limit «;—0, we haveR(«;,0)0=1 and g(«4,0)=3/4 tion to the nonlinear Euler-Lagrange equations, resulting

which result in from minimization of the free energy functional. If we as-
sume that the trajectories of chains are everywhere perpen-
dicular to a surface of constagegmentdensity, the Euler-

. falp2)=74 2Tl3p4/3' (52 Lagrange equations can be linearized and solved analytically.
This assumption is valid everywhere except for the immedi-

ate vicinity of the backbone, where we have found a numeri-

cal solution to the full nonlinear equations.

We have shown that the dominant trajectories of chains
are curved towards the ends of the backbone. Due to the
bending of chains, the segment density in the center of a
polymer brush is only 5.5% lower than that calculated near

1
n(p2)= 0 >

Note that the exponents in Eq$§2) correspond to the cylin-
drical symmetry, which is rather obvious since E@s/) are
only valid near the backbone. In the opposite limit— 7,
the numerical integration yieldR(«;,0)=C(7—«a4) and
9(@1,0)=3/4C" Y3(7r—a;) ¥, where C=1.086. This

leads to the backbone endsf. the first of Eqs(52) and (53)]. Also,
23 313 the stretching of the side chains was shown to be indepen-
N(p,z)=——=(z—1)"2R f,p,2)=~ (z—1)*3 dent of where exactly these chains are grafted. We believe,
2113 4 218 therefore, that all local properties of bottle-brush polymers

(53 are fairly homogeneous. As a result of this homogeneity, any

. . surface created by all segments with humber also a sur-
In the limits consideredy andz—1 stand for the same quan- t5.a of constant density. Apparently, i is the degree of

tity, namely the distance to the backbanecalculated along 4y merization of side chains arte-N, the surface of con-
the chain. Therefore, both E¢$2) and(53) can be rewritten  giant gensity is identical to the external surface of a polymer

in the form brush. The latter is found to have the shape of a prolate
1 31 ellipsoid, which seems to be in agreement with experimental

n(rt):_rt—2/3’ f4(rt):__r§1/3. (54) data[13—15 . .
213 4 913 Furthermore, we have discovered the elements of two dif-

ferent symmetries in the structure of a single bottle-brush
The above scaling relationships have been obtained for theolecule. We have shown that the trajectories of all chains
chains grafted either in the center of a polymer brush or neastart perpendicular to the line of the backbone, which is dis-
the ends of its backbone. We assume, however, that(Bdjs. tinctive of infinitely longcylindrical brushes. As the distance
are also valid for all grafted chains. Then any surfaceto the backbone increases, the chains begin to deviate from
f4(r;)=t which consists of all segmentscan also be con- their initial direction and the cylindrical structure is de-
sidered as a surface of constant densit;) =n,. Clearly, if  stroyed. If the distance to the backbone is very large, the
r. is such that=N, the surface of constant density is iden- trajectory of each chain represents a straight line whose slope
tical to the external surface of a polymer brush. According tas dependent on where the given chain is joined to the back-
Eqgs.(54), as well as computer simulatiops2], the polymer bone. There is an equal number of straight lines heading in
chains in a bottle-brush molecule are all equally extendedeach direction, which corresponds to tegherically sym-
This allows us to model the molecule’s surface as a prolatenetric structure of a polymer star. We have determined the

ellipsoid of the form cylindrical and spherical limits for all local characteristics of
bottle-brush molecules. The crossover between these limits
p? via occurs at the distances to the backbone comparable with its

(59 sizeL, or for the segment numbets-L*3 We note that the
resulting crossover regions are rather broad and, therefore,
some knowledge of the full crossover functions is required.

—_t —=1
2 2 !
RS (1+Ry)

where Ry denotes the linear size of a central chaiacall
L/2=1). Let us recall that Eq954) were obtained in the
immediate vicinity of the backbone. However, the conclu- ACKNOWLEDGMENTS

sions drawn from them are automatically valid at large dis- ) )
tances from the backbone, where a bottle-brush molecule | @m grateful to Professor Jean-Pierre Hansen for his
becomes spherically symmetric. This leads us to believe thal€!P in preparation of this manuscript. | also acknowledge
the results of the preceding paragraph, including &), fmancu_:ll support from St. John's College, University of
apply to any length scales inside a bottle-brush molecule. Cambridge.

VIl. CONCLUSION APPENDIX A: REPRESENTING THE EULER-LAGRANGE

o . EQUATIONS IN CYLINDRICAL COORDINATES
We have presented a quantitative study of a single bottle- Q

brush molecule, which consists of a stiff backbone of length In this appendix, we present the derivation of E@®) of

L grafted densely with flexible polymer chains. Since thethe main text. We start with the expression for the total seg-
grafted chains are strongly streched in the presence of exnent densityn, given by Eq.(18), and rewrite it using Egs.
cluded volume interactions, we consider only their dominan{13). We find
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1/ of\2 [0f,\%] 1 fa\2 [ of4)?
n=— _1 + _2 :_D%l _3 + _3

2|\ gt at 2 Jz ap

1 1/0f,\%2 1 /[afa\2% 1
_T¢2ny2 | | 708 S T (w22

2f1D*l pz((;z) +p2 (?p) 2n2(X1+X2)1

(A1)

and thus we have obtained the third of E(6). Let us now
derive the first of these equations. Differentiating Etg)
with respect taz, yields

af, 9*f,

af, 9%,
ot atazy’

at dtazg

_n(ZO!t):

o (A2)

and, independently from EgA2), we find using the rules of
partial differentiation and Eq415),

g0 L 0
—N(Z =— N z — —N z
ﬂZO ( 0 ) (920 ap (P; ) &ZO 9z (pv )

of, 9%f,  of, 9%f
_ 71971, 97279 72

9z g2 (A3)

9zy gt2

Subtracting Eq(A2) from Eg. (A3) and replacing the first-
order derivatives as prescribed by E¢E3), we get

azflaf4+ 9%f, of, . *f, of, 9%, ofy
ot2 9z dtdzy dz Jt2 dp  dtdzg dp

(A4)
which, in turn, folds to give a fairly simple relationship,
a [ of a [ of
_ _(_1> i _2)
az\ at ] ap)\ at
Finally, combining Egs(A5) and(13) yields
d afs\ 9 dfs
KA P PR P

~LYaz) " ap
It is straightforward to see that EA6) is equivalent to the
first of Egs.(26). As to the second of Eq$26), its origin is
explained in the main text.

—0. (A5)

(AB)

APPENDIX B: NUMERICAL SOLUTION OF THE
NONLINEAR EQUATIONS

In this appendix, we present an algorithm to solve a first-

order partial differential equation depending en and «,,

PHYSICAL REVIEW E68, 031803 (2003

16

FIG. 8. Two-dimensional grid used for the numerical integration
of the nonlinear Euler-Lagrange equations.

Egs.(32). We can rewrite these equations in terms of finite
differences, which involves three grid points, as shown in
Fig. 8. We have

Ks[R(i,n)—R(i—1n—1)]+K,[R(i,n)—R(i,n—1)]
+3K,[® (i,n)—D (i—1n—1)]
+3K,[@ (i,n) =D (i,n—1)]—5siN® (i,n)]=0,
Ki[R(i,n)—R(i—1n—1)]+K,[R(i,n)—R(i,n—1)]
—Ka[®@ (i,n)—® (i—-1n—1)]

—K,[® (i,n)—® (i,n—1)]=0, (B1)
where
Ky=siMaq (i,n)]cog P (i,n)+ a4 (i,n)],
Ka=sin a, (i,n)]cog ® (i,n)—a, (i,n)],
Kz=sin a4 (i,n)]sin® (i,n)+ a4 (i,n)],
Ka=sin a, (i,n)]siN® (i,n)—a, (i,n)]. (B2)

or a system of such equations. For the purpose of numeric&qf’ations(Bl) can be solved with respect @ (i,n) gnd
integration, we employ the two-dimensional grid shown inR(i,n). Thus, if the values of® andR are known on diag-

Fig. 8. The number of grid pointdl is the same both fos,
anda,, and the increment= 77/(M —1). Each point on the
grid is defined by two indices and n, wherei counts the
lines of constant,: a4 (i,n)=4(i—1) ¥V n, andn counts
the lines of constanig= a1+ a5 aq(i,n)=46(n—1) Vi.

onal n—1, they can also be determined at each point on
diagonaln. As initial conditions, we need to know the corre-
sponding values at=n,,.

Unfortunately, we were not able to build a complete so-
lution to Egs.(32), using the algorithm described above. We

In order to build a complete numerical solution, we movetend to think that this algorithm is very sensitive to the initial

step by step, from diagonal- 1 to diagonah, starting from

values of® andﬁwhich, in our case, we do not know

somen=ng. As an example, let us consider the first two of priori. Instead, we try to guess these initial values so as to
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retrieve spherical symmetry whery— 7 anda; ,#0. Our  algorithm in order to find a solution to E¢33), whered and
guesses are, obviously, not close enough to the true answék, were given by EQq.(42). In this case, we started with
and this gives rise to growing fluctuations at someM. no=1 andg (1,1)=3/4, and did not encounter any problems
However, we were able to successfully implement thisin moving all the way up ta=M.
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