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Growing surfaces with anomalous diffusion: Results for the fractal Kardar-Parisi-Zhang equation
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In this paper | study a model for a growing surface in the presence of anomalous diffusion, also known as
the fractal Kardar-Parisi-Zhang equatitfFlKP2). This equation includes a fractional Laplacian that accounts
for the possibility that surface transport is caused by a hopping mechanism of a Levy flight. It is shown that for
a specific choice of parameters of the FKPZ equation, the equation can be solved exactly in one dimension, so
that all the critical exponents, which describe the surface that grows under FKPZ, can be derived for that case.
Afterwards, the self-consistent expansi@CB is used to predict the critical exponents for the FKPZ model
for any choice of the parameters and any spatial dimension. It is then verified that the results obtained using
SCE recover the exact result in one dimension. At the end a simple picture for the behavior of the fractal KPZ
equation is suggested and the upper critical dimension of this model is discussed.
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The Kardar-Parisi-Zhan@KPZ) equation[1] for surface of the celebrated fractional Fokker-Planck equatiBRPB
growth under ballistic deposition was introduced as an ex{3]. This equation includes a fractiondRiemann-Liouville
tension of the Edwards-Wilkinson theofg]. The interest in  operator instead of the standard derivative of the Fokker-
the KPZ equation exceeds far beyond the interest in evolvinglanck equation. Recently, Mann and Woyczyr{dKi] have
surfaces because of the following reasons. suggested that in order to account for experimental data,

(a) The KPZ system is known to be equivalent to a num-namely, experiments in which impurities were present on the
ber of very different physical systems. Examples are the digrowing surface[12], a modification of the KPZ equation
rected polymer in a random medium, Sofirger equation has to be considered. They used the observation that the
(in imaginary time for a particle in the presence of a poten- presence of an impurity can act as a strong trap for an ada-
tial that is random in space and time, and the important Burtom migrating at room temperature to conjecture that this
gers equation from hydrodynamig2]. process corresponds to Levy flights between trap sites. This

(b) The second reason, that is more important, to myconjecture then served as a justification for the introduction
mind, is that it serves as a relatively simple prototype ofof a fractional Laplacian into the continuum equation of the
nonlinear stochastic field equations that are so common igrowing surface as another relaxation mechanism. Actually,
condensed matter physics. the fractional Laplacian dominates the standard Laplacian in

The equation for the height of the surface at the point the KPZ equation in the scaling reginiee., in the large
and timet, h(F,t), is given by scale limib, so that the standarq Lap_lauan can be ignored

from the beginning. To summarize this exposition and to be
oh - R more specific, the equation they eventually suggest to de-
—=vV2?h+=(Vh)?+ 5(r 1), (1)  scribe the growing surface in the presence of self-similar
g 2 hopping surface diffusion is the FKPZ equation given by

where automatically the constant deposition rate is removed oh

- N oo -
and #(r,t) is a noise term such that e v(A h)+ E(Vh)2+ 7(r,t), 3)
r,t))=0, . .
{n(r,0) where A,=—(—A)¥? [or in Fourier space X,F)(q)=
. N ) —(la|®)*?#(q)] is the fractional Laplacian, and in our con-
(n(r,)n(r',1))=2Dod(r —r")(t—t’). (2 text it is more convenient to choose=2—p with 0<p
<2 (where the special cage=0 corresponds to the standard

As can be seen in Eql) the basic relaxation mechanism . . - . .
in Eq1) : xal ! KPZ equation. In addition, (r,t) is a noise characterized

in the KPZ equation is a Laplacian term that results from

nearest neighbor hopping in the growing surface. During th(?y

past years, there has been a growing interest in other relax- . . .

ational mechanism§3—6], namely, subdiffusive diffusion, (n(r,)n(r',t))=2Dg|r —r'[27~d5(t—t"). (4)

that seems to appear in the context of charge transport in

amorphous semiconductofd,8], nuclear magnetic reso- Actually, Mann and WoyczynsKill] discussed the specific

nance diffusometry in disordered materig®d, and the dy- case of white noise that correspondsrte 0 in the last equa-

namics of a bead in polymer networks0]. The theoretical tion, but since the more general case does not require special

effort to account for such phenomena led to the formulatiorefforts we discuss the FKPZ problem with spatially corre-
lated noise. Furthermore, an exact solution is possible only
for a special case with correlated noise, so that the more

*Electronic address: eytak@post.tau.ac.il general discussion is also interesting on that basis.
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The proposed FKPZ equation generalizes the FFPE equaroup (DRG) approach this can be explained by saying that
tion mentioned above, in that it is a field equation rather thartertain terms in the dynamic action do not renormalize and
an equation for a single degree of freedom. Therefore, it iso an extra scaling relation arisege Ref[17]). These kinds
understood that such a generalization is essential in order wf solutions are naturally available also in the present prob-
account for the dynamics of a whole medium experiencindem. Whenever the exponents are obtained due to such an
anomalous diffusion, and not just an artificial problem. Ob-extra condition it will be specifically pointed out.
viously, the technical mathematical difficulties to be over- In this paper | show that for a specific choice of param-
come in this nonlinear case are formidable in comparison teters of the FKPZ equatiothamely,p=20c), the equation
those for the linear fractal kinetic equations. can be solved exactly in one dimension, so that all the criti-

However, in their paper Mann and Woyczyn§kl| were  cal exponents can be derived easily for that case. Afterwards,
not able to predict the critical exponents that describe thén order to give a more complete pictuiies., for any dimen-
surface that grows under FKPZ. But before | make any nevsiond and any spatial correlation inde®) | apply a method
statements about this model let me summarize the variouseveloped by Schwartz and Edwards8—20 [also known
guantities of interest. as the self-consistent-expansioiSCE approach This

A very important quantity of interest is the roughness ex-method has been previously applied successfully to the KPZ
ponenta that characterizes the surface in steady state. Thequation. The method gained much credit by being able to
roughness exponent is usually defined usimjL,t) the give a sensible prediction for the KPZ critical exponents in
roughness of the surfad¢hat is defined as the rms of the the strong-coupling phase, where many renormalization-

height functionh(r,t) in a system of linear size]. Then, in  group approaches failed, as well as DRIG14] (actually, it

terms ofW(L,t), « is given by can be shown that the strong-coupling regime is inaccessible
by DRG even when it is used to all ordggl,27). It is then
W(L,t)ocL. (5)  verified that the results obtained using SCE recover the exact

result in one dimension.

Another important quantity of interest is the growth expo-  As mentioned above, for the specific case 20 in one
nent B that describes the short time behavior of the roughgimension an exact solution can be found for the FKPZ
nessW(L,t) (with flat initial conditiong problem using the Fokker-Planck equation associated with

P its Langevin form[i.e., Eq. (3)]. This particular choice of
WL t)oct?. 6) parameters corresponds to a situation where the fractional

Finally, | introduce the dynamic exponenthat describes €XPONnentp equals the exponento2that describes the decay
’ of spatial correlations in the noise. Since this kind of exact

the typical relaxation time scale of the systéne., the de- A o . L
yp ysté solution is familiar in the KPZ community | will simply state

d f th ilibration ti the si f th t . . .
pendence of the equilibration time on the size of the sys emthe final results given byw=1/2 andz=3/2 [using the scal-

t,ocL? (7) ing relation(9)]. Note that these critical exponents extend the
classical one-dimensional KPZ exponents for nonzes
It is well known [2] that these three exponents are notand o's, as the classical KPZ case corresponds to2o
independent, and that under very general considerations ore0.

should expect the following scaling relation: Now, the SCE is applied in order to learn about the be-
havior of this system in more general contefdather dimen-
z=alp ) sions and cases whepe#20). SCE’s starting point is the

Fokker-Planck form of FKPZ, from which it constructs a
kself-consistent expansion of the distribution of the field con-
cerned.

The expansion is formulated in terms @f; and wq,
here ¢, is the two-point function in momentum space, de-
fined by ¢q:<hqh_.q>s (the subscn.pS' denotes steady state
averaging, andw, is the characteristic frequency associated

a+z7=2. (9) with hg. It is expected that for small enough ¢, andw,
are power laws i,

It can easily be checked that this symmetry holds in the case
of FKPZ as well, because the fractal Burgers equation is $q=Aq" and we=Bd, (10
evidently invariant under Galilean transformatifsee Ref. o ) )

[11], Eq. (7.8)]. Therefore, the last scaling relation is also Wherezis just the dynamic exponent, and the exporiés
relevant in this discussion. Hence both scaling relations retelated to the roughness exponenby

duce the number of unknown exponents to just et of

the three we started within some cases an extra scaling _ ﬂ (11)
relation is possibleffor example, in the case of the KPZ “mT

equation with long-range noise—see Ré¢fist—16), so that

the exponents can be obtained exactly by power counting. The main idea is to write the Fokker-Planck equation
Employing the terminology of the dynamic renormalization- ¢P/dt=0P in the form ¢P/dt=[0y+ O,;+O,]P, where

(this relation is a direct consequence of the Family-Vicse
scaling relatior{ 13]).

In addition, for the KPZ equation there is another scaling
relation that comes from a symmetry of the equation unde(N
infinitesimal tilting of the surfacéthis symmetry is just the
famous Galilean invariance of the Burgers equati@,
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Oy is to be considered zero order in some paramet€d, is TABLE I. A complete description of all the possible phases of
first order, andO, is second order. The evolution operator the FKPZ problem for any value o, p, and o. The first two

Oy is chosen to have a simple for®,=—=(d/dhg) columns give the scaling exponemtsindI’ for a_pgrtlcular_phase,
X[Dqgdldh_q+ wqhy], where Dy/w,=¢,. Note that at and the thllrd column states ea(.:h phase’s validity condition. N.ote
presentp, andwq are not known. Next | obtain an equation that"o(d) is Fhe numenc_al squUo_n of the transcendgntal equation
for the two-point function. The expansion has the fog F(I',2)=0 with the scaling relatiore=(d+4-T)/2—if such a

=gt Cq({Ppt{wy}), because the lowest order in the ex- solution exists.

pansion already yields the unknowfy . In the same way an

. . : . r Validity
expansion forwg, is also obtained in the formv,=aw,
+dq({#p} {wp}). Now, the two-point function and the char- 2—p 2—p+20 >0 andd>2-3p+2¢
acteristic frequency are thus determined by the two coupled-p 2—p o<0 andd>2-3p
equations 2—p d+2p 0<p<1 and
_ _ d>max2—3p,2—3p+ 20}
Cq({d)p}:{wp})_o and dq({d’p}'{wp})_o- (12 d+d—25 dtd+do >0, d<2+2¢ and
These equations can be solved exactly in the asymptotic 3 3 d+4;r4o>31“;(d)
L ; : ; : _ +4+40 d+4
limit to yield the reqwred scall'ng expongnts governing thed+4—T((d) T'o(d) T'y(d)>max G,—,d+2p
steady state behavior and the time evolution. Working to sec- 2 3 3
ond order in the expansion, one gets the two coupled integrat
equations
[Mgenl®d ¢ M g¢mM ¢mqm® t-(e-1)
Dq_yq¢q+22 T TETm o —aTm T Tmarmr F(F,z):—f do——— -
“m wq+w€+wm m wq+w€+wm tz+|e_t|z+1
B MaemMmeqPedq _ x[(e-DHt T+e-(e—t)le—t| "]
2> 0 (13
€,m (I)q+ (1)€+ W N = o
[t-(e—1)] A
+ | ddt—————tTe—t|"", (@15
and f t2+|e—t|7+1 et (19
M(qu’m"‘ Mm€q¢€
Vg~ wq= 22 Mgen Fot =0, (14 - , . , N
tm W¢T 0T Oq ande is a unit vector in an arbitrary direction.

. This solution is valid as long as the solutions of the last

where Dy=Doq %%, vq=vg? ?, and Mgm=N2JQ(f  equations satisfy the following conditiorf >max(d+4
-M) 8q.¢+m- In addition, in deriving Eq(14) | have used the ~+40)/3,(d+4)/3d+2p}.
Herring consistency equatidi23]. In fact Herring’s defini- It turns out that ford=1 the equatiorF(I",z(I'))=0 is
tion of w, is one of the many possibilities, each leading to aexactly solvable and yieldd’=2 and z=35 (it can be
different consistency equation. But it can be shown, as preshecked immediately by direct substitutjoin this case the
viously done in Ref[19], that this does not affect the expo- validity condition reads 2 maxX(5+40)/3,1+2p} or
nents(universality. equivalently 6<p<1/2 ando<1/4. By using Eq.(11) |

A detailed solution of Eqs(13) and (14) in the limit of  translate the results inie= 3 andz= 2 that are precisely the
smallg’s (i.e., large scalgdn the line of Refs[19,2( yields  exact results presented above.
a rich family of solutions that | shall describe immediately. It should also be mentioned that fde=2 such an exact

First, there are two kinds of weak-coupling solutions—solution in closed form cannot be found, and one has to solve
both with a dynamic exponert=2—p (they are called numerically the equatiof(I",z(I"))=0. For convenience |
weak-coupling because they are exactly the solutions obdenote the numerical value of this solution by(d). For
tained in the case of the fractal Edwards-Wilkinson equationgxample, in two dimensions | obtalfy(2)=2.59.
see Ref.[11]). Now, when the spatial correlations of the  The second strong-coupling solution is obtained by power
noise are relevani.e., wheno>0) | obtain the solutiod” counting, and it is relevant whan>0 (i.e., when the spatial
=2—p+20, provided thad>2—-3p+2¢. But if the spa- correlations of the noise are relevgnd<2+20, and
tial correlations of the noise are not relevdne., wheno F(I,z(I"))<0 [the last condition turns out to be equivalent
<0) | obtain the simpler solutioh'=2—p, provided that to the conditionl’>1I"¢(d) because from this value &f and

d>2-3p. on the functionF(I",z(I")) is negativé. This power-counting
The second type of solution is strong-coupling solutionssolution can be written in closed form and is given by
that obey the well known scaling relatia=(d+4—-1)/2 =(d+4—-20)/3 andl'=(d+4+40)/3=z+20.

obtained from Eq.(14) (this scaling relation is just the The third strong-coupling solutiofthat is in some sense
above-mentioned scaling relatiant-z=2 that is naturally the only “genuine” FKPZ solution, in the sense that it is the
obeyed by our analysisThe first strong-coupling solution is only solution that is dramatically influenced by the fractional
determined by the combination of the scaling relation and thé.aplacian, and at the same time is not a solution of the frac-
transcendental equatid®(I’,z) =0, whereF is given by tal Edwards-Wilkinson equatigris also obtained by power
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FIG. 1. The values of the scal-
ing exponentga) zand(b) I' as a
function of the fractional param-
eter p for uncorrelated noise
=0) in two dimensions.

Dynamic exponent z
Exponent T

[:X] 1
Fractional parameter p

05 1
Fractional parameter p

counting. More specifically, it is determined by the combina-problem @£f“) where the first phaséphase | in Fig. 1
tion of the scaling relatiore=(d+4—1I')/2 and the extra disappearssee the discussion below
relationd+4—2I'—z=2—p—T. This solution can be writ- At this point, the full picture of possible solutions might
ten in closed form a$'=d+2p andz=2-p. It turns out  seem too complex, so | want to suggest the following simple
that this phase is relevant whed>max2-3p,2-3p interpretation for the behavior of the fractal KPZ equation.
+207}. In addition, it is needed that(I',z(T")) is positive.  The starting point of this discussion was the introduction of

Therefore, this solution is possible only whBR<I'g(d). the fractional Laplacian into the KPZ equation. This imme-
Table | summarizes all the possible phases found in thigiately implies that faster relaxations are now possifaster
paper. in the sense that a smaller dynamical exponent is expected

In order to gain more insight on this system, it might be
interesting to specialize to two extreme cases: namely,
=0 ando#0 vsp#0 ando=0. The first casénamely,p
=0 ando#0) corresponds to the local KPZ problem with
long-range noise. This problem has been studied in the pa
using various methods—for example, DRG4—16, mode
coupling[24], and SCH20]. All methods agree on the basic
picture that for a large enough noise exponerdne obtains
a power-counting strong-coupling solution, given by (d
+4—20)/3 (z is the dynamic exponentThe controversy
between the different methods is over the values of the scajpare are several possible phases with this new fractional

ing exponents for smaller values of, and on the critical _dynamical exponenz=2—p, and the transition between

value oy, that separates between the two phases. Not surprigrese phases is controlled by the strength of dimensionless

ingly, the results given here agree with the previous SCFcoupIing constant.

result presented in Ref20]. _ These conclusions have an important implication for the
The second cas@amely,o#0 ando=0) corresponds to nher critical dimension of the FKPZ modgk., the dimen-

the frgctal KPZ problem with white noise that is the or_|g|nal sion above which the dynamical exponent is the same as that

equation suggested by Mann and Woyczyridlli]. Special- ot the finear theory namely, it tumns out that the FKPZ

izing the general picture of phases presented in Table 1 10 thgy ation always has an upper critical dimension that is de-

casecrz_o yields new phas_e dlagrams, namely, a separatg, oo by the relatioﬁo(dEEPZ)=dECKPZ+ 2 [or alterna-

phase diagram for every dimensidn For example, in two tively, using the roughness expon the upper critical

dimensions there are three possible phases: phase I, the Stadrﬂr'nension is the dimension wherep,(dF<%) = p]. Note
PZ =Pl

dard KPZ phase given by y(2)=2.59 that is valid for O . uc
<p=0.295: phase I, the weak-coupling phase giveniby that this result does not depend on the ongoing debate over

o . : ) wr: o the existence of the upper critical dimension for the KPZ
;rzcyn p_(t:git '"Snvasl'g“j(t)igﬁnﬁ’\)/ ;0652% ghzas?hlell[(, itsheo;glirkfle system(see Refs[25—-34]). Actually, it merely requires that

9 piing ong - p= P -~ the roughness exponent of the classical KPZ system becomes
for 0<p=1. In the first phase the dynamic exponentzis

. arbitrarily small in higher dimensions—an assumption that is
=1.705, while the other two phases share the same dynam ; -
: ; . . enerally acceptetbnly Tu[35] had a different conjectuye
exponent oz=2—p. The possible phases in two dlmenS|onsbc y ptetonly Tu [35] I jectuy

are presented in Fig. 1 As one can see, the results obtained using the SCE are
. . . . i neral an ver all ible val f the relevan
The described two-dimensionghnd white-noisg sce- quite general and cover all possible values of the relevant

. ite tvoical and in other di ) garameters;( ando) as well as dimensions. It is also easily
hario IS quite typical and appears in other dIMENSIONS age iy that these results recover the exact result obtained at
well—namely, there are usually three possible phases th

are possible for different values @f with possible phase %e beginning of this paper for the cage: 20 This situa-

" . . tion suggests that the SCE method is generally appropriate
transitions between thefas in the usual KPZ scenario—the when dealing with nonlinear continuum equations.

phase transition is controlled by the strength of the dimen-
sionless coupling constantMore precisely, this picture ex- | would like to thank Moshe Schwartz for useful discus-
tends up to the upper critical dimension of the original KPZsions.

when compared with the Edwards-Wilkinson equation. How-
ever, it is well known that already the KPZ nonlinearity in-
troduces faster relaxatioriat least for dimensions lower than
the upper critical dimensignTherefore, in the FKPZ sys-
?ém, the dynamics is controlled by the fastest “component”:
if the dynamical exponent of the classical KPZ system is
smaller than 2-p, then it dominates, otherwise the new
fractional dynamical exponemt=2—p controls the dynam-
ics. However, at this point the picture gets a little bit more
omplicated(just like in the classical KPZ cagenamely,
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