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Growing surfaces with anomalous diffusion: Results for the fractal Kardar-Parisi-Zhang equation
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In this paper I study a model for a growing surface in the presence of anomalous diffusion, also known as
the fractal Kardar-Parisi-Zhang equation~FKPZ!. This equation includes a fractional Laplacian that accounts
for the possibility that surface transport is caused by a hopping mechanism of a Levy flight. It is shown that for
a specific choice of parameters of the FKPZ equation, the equation can be solved exactly in one dimension, so
that all the critical exponents, which describe the surface that grows under FKPZ, can be derived for that case.
Afterwards, the self-consistent expansion~SCE! is used to predict the critical exponents for the FKPZ model
for any choice of the parameters and any spatial dimension. It is then verified that the results obtained using
SCE recover the exact result in one dimension. At the end a simple picture for the behavior of the fractal KPZ
equation is suggested and the upper critical dimension of this model is discussed.
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The Kardar-Parisi-Zhang~KPZ! equation@1# for surface
growth under ballistic deposition was introduced as an
tension of the Edwards-Wilkinson theory@2#. The interest in
the KPZ equation exceeds far beyond the interest in evolv
surfaces because of the following reasons.

~a! The KPZ system is known to be equivalent to a nu
ber of very different physical systems. Examples are the
rected polymer in a random medium, Schro¨dinger equation
~in imaginary time! for a particle in the presence of a pote
tial that is random in space and time, and the important B
gers equation from hydrodynamics@2#.

~b! The second reason, that is more important, to
mind, is that it serves as a relatively simple prototype
nonlinear stochastic field equations that are so commo
condensed matter physics.

The equation for the height of the surface at the poinrW

and timet, h(rW,t), is given by

]h

]t
5n¹2h1

l

2
~¹W h!21h~rW,t !, ~1!

where automatically the constant deposition rate is remo
andh(rW,t) is a noise term such that

^h~rW,t !&50,

^h~rW,t !h~rW8,t !&52D0d~rW2rW8!d~ t2t8!. ~2!

As can be seen in Eq.~1! the basic relaxation mechanis
in the KPZ equation is a Laplacian term that results fro
nearest neighbor hopping in the growing surface. During
past years, there has been a growing interest in other re
ational mechanisms@3–6#, namely, subdiffusive diffusion
that seems to appear in the context of charge transpo
amorphous semiconductors@7,8#, nuclear magnetic reso
nance diffusometry in disordered materials@9#, and the dy-
namics of a bead in polymer networks@10#. The theoretical
effort to account for such phenomena led to the formulat
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of the celebrated fractional Fokker-Planck equation~FFPE!
@3#. This equation includes a fractional~Riemann-Liouville!
operator instead of the standard derivative of the Fokk
Planck equation. Recently, Mann and Woyczynski@11# have
suggested that in order to account for experimental d
namely, experiments in which impurities were present on
growing surface@12#, a modification of the KPZ equation
has to be considered. They used the observation that
presence of an impurity can act as a strong trap for an a
tom migrating at room temperature to conjecture that t
process corresponds to Levy flights between trap sites. T
conjecture then served as a justification for the introduct
of a fractional Laplacian into the continuum equation of t
growing surface as another relaxation mechanism. Actua
the fractional Laplacian dominates the standard Laplacia
the KPZ equation in the scaling regime~i.e., in the large
scale limit!, so that the standard Laplacian can be igno
from the beginning. To summarize this exposition and to
more specific, the equation they eventually suggest to
scribe the growing surface in the presence of self-sim
hopping surface diffusion is the FKPZ equation given by

]h

]t
5n~Dah!1

l

2
~¹W h!21h~rW,t !, ~3!

where Da[2(2D)a/2 @or in Fourier space (DaF)(q)[
2(uqu2)a/2F(q)] is the fractional Laplacian, and in our con
text it is more convenient to choosea522r with 0<r
,2 ~where the special caser50 corresponds to the standa
KPZ equation!. In addition,h(rW,t) is a noise characterize
by

^h~rW,t !h~rW8,t !&52D0urW2rW8u2s2dd~ t2t8!. ~4!

Actually, Mann and Woyczynski@11# discussed the specifi
case of white noise that corresponds tos50 in the last equa-
tion, but since the more general case does not require sp
efforts we discuss the FKPZ problem with spatially corr
lated noise. Furthermore, an exact solution is possible o
for a special case with correlated noise, so that the m
general discussion is also interesting on that basis.
©2003 The American Physical Society07-1
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The proposed FKPZ equation generalizes the FFPE e
tion mentioned above, in that it is a field equation rather th
an equation for a single degree of freedom. Therefore,
understood that such a generalization is essential in orde
account for the dynamics of a whole medium experienc
anomalous diffusion, and not just an artificial problem. O
viously, the technical mathematical difficulties to be ov
come in this nonlinear case are formidable in comparison
those for the linear fractal kinetic equations.

However, in their paper Mann and Woyczynski@11# were
not able to predict the critical exponents that describe
surface that grows under FKPZ. But before I make any n
statements about this model let me summarize the var
quantities of interest.

A very important quantity of interest is the roughness e
ponenta that characterizes the surface in steady state.
roughness exponent is usually defined usingW(L,t) the
roughness of the surface@that is defined as the rms of th
height functionh(rW,t) in a system of linear sizeL]. Then, in
terms ofW(L,t), a is given by

W~L,t !}La. ~5!

Another important quantity of interest is the growth exp
nent b that describes the short time behavior of the rou
nessW(L,t) ~with flat initial conditions!

W~L,t !}tb. ~6!

Finally, I introduce the dynamic exponentz that describes
the typical relaxation time scale of the system~i.e., the de-
pendence of the equilibration time on the size of the syst!

tx}Lz. ~7!

It is well known @2# that these three exponents are n
independent, and that under very general considerations
should expect the following scaling relation:

z5a/b ~8!

~this relation is a direct consequence of the Family-Vics
scaling relation@13#!.

In addition, for the KPZ equation there is another scal
relation that comes from a symmetry of the equation un
infinitesimal tilting of the surface~this symmetry is just the
famous Galilean invariance of the Burgers equation! @2#,

a1z52. ~9!

It can easily be checked that this symmetry holds in the c
of FKPZ as well, because the fractal Burgers equation
evidently invariant under Galilean transformation@see Ref.
@11#, Eq. ~7.8!#. Therefore, the last scaling relation is al
relevant in this discussion. Hence both scaling relations
duce the number of unknown exponents to just one~out of
the three we started with!. In some cases an extra scalin
relation is possible~for example, in the case of the KP
equation with long-range noise—see Refs.@14–16#!, so that
the exponents can be obtained exactly by power count
Employing the terminology of the dynamic renormalizatio
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group ~DRG! approach this can be explained by saying th
certain terms in the dynamic action do not renormalize a
so an extra scaling relation arises~see Ref.@17#!. These kinds
of solutions are naturally available also in the present pr
lem. Whenever the exponents are obtained due to suc
extra condition it will be specifically pointed out.

In this paper I show that for a specific choice of para
eters of the FKPZ equation~namely,r52s), the equation
can be solved exactly in one dimension, so that all the c
cal exponents can be derived easily for that case. Afterwa
in order to give a more complete picture~i.e., for any dimen-
siond and any spatial correlation indexs) I apply a method
developed by Schwartz and Edwards@18–20# @also known
as the self-consistent-expansion~SCE! approach#. This
method has been previously applied successfully to the K
equation. The method gained much credit by being able
give a sensible prediction for the KPZ critical exponents
the strong-coupling phase, where many renormalizati
group approaches failed, as well as DRG@1,14# ~actually, it
can be shown that the strong-coupling regime is inaccess
by DRG even when it is used to all orders@21,22#!. It is then
verified that the results obtained using SCE recover the e
result in one dimension.

As mentioned above, for the specific caser52s in one
dimension an exact solution can be found for the FK
problem using the Fokker-Planck equation associated w
its Langevin form@i.e., Eq. ~3!#. This particular choice of
parameters corresponds to a situation where the fracti
exponentr equals the exponent 2s that describes the deca
of spatial correlations in the noise. Since this kind of ex
solution is familiar in the KPZ community I will simply state
the final results given bya51/2 andz53/2 @using the scal-
ing relation~9!#. Note that these critical exponents extend t
classical one-dimensional KPZ exponents for nonzeror ’s
and s ’s, as the classical KPZ case corresponds tor52s
50.

Now, the SCE is applied in order to learn about the b
havior of this system in more general contexts~other dimen-
sions and cases whererÞ2s). SCE’s starting point is the
Fokker-Planck form of FKPZ, from which it constructs
self-consistent expansion of the distribution of the field co
cerned.

The expansion is formulated in terms offq and vq ,
wherefq is the two-point function in momentum space, d
fined byfq5^hqh2q&S ~the subscriptS denotes steady stat
averaging!, andvq is the characteristic frequency associat
with hq . It is expected that for small enoughq, fq , andvq
are power laws inq,

fq5Aq2G and vq5Bqz, ~10!

wherez is just the dynamic exponent, and the exponentG is
related to the roughness exponenta by

a5
G2d

2
. ~11!

The main idea is to write the Fokker-Planck equati
]P/]t5OP in the form ]P/]t5@O01O11O2#P, where
7-2
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O0 is to be considered zero order in some parameterl, O1 is
first order, andO2 is second order. The evolution operat
O0 is chosen to have a simple formO052(q(]/]hq)
3@Dq]/]h2q1vqhq#, where Dq /vq5fq . Note that at
presentfq andvq are not known. Next I obtain an equatio
for the two-point function. The expansion has the formfq
5fq1cq($fp%,$vp%), because the lowest order in the e
pansion already yields the unknownfq . In the same way an
expansion forvq is also obtained in the formvq5vq
1dq($fp%,$vp%). Now, the two-point function and the cha
acteristic frequency are thus determined by the two coup
equations

cq~$fp%,$vp%!50 and dq~$fp%,$vp%!50. ~12!

These equations can be solved exactly in the asymp
limit to yield the required scaling exponents governing t
steady state behavior and the time evolution. Working to s
ond order in the expansion, one gets the two coupled inte
equations

Dq2nqfq12(
,,m

uMq,mu2f,fm

vq1v,1vm
22(

,,m

Mq,mM ,mqfmfq

vq1v,1vm

22(
,,m

Mq,mMm,qf,fq

vq1v,1vm
50 ~13!

and

nq2vq22(
,,m

Mq,m

M ,mqfm1Mm,qf,

v,1vm1vq
50, ~14!

where Dq5D0q22s, nq5nq22r, and Mq,m5l/2AV(,W

•mW )dq,,1m . In addition, in deriving Eq.~14! I have used the
Herring consistency equation@23#. In fact Herring’s defini-
tion of vq is one of the many possibilities, each leading to
different consistency equation. But it can be shown, as p
viously done in Ref.@19#, that this does not affect the expo
nents~universality!.

A detailed solution of Eqs.~13! and ~14! in the limit of
smallq’s ~i.e., large scales! in the line of Refs.@19,20# yields
a rich family of solutions that I shall describe immediatel

First, there are two kinds of weak-coupling solutions
both with a dynamic exponentz522r ~they are called
weak-coupling because they are exactly the solutions
tained in the case of the fractal Edwards-Wilkinson equati
see Ref.@11#!. Now, when the spatial correlations of th
noise are relevant~i.e., whens.0) I obtain the solutionG
522r12s, provided thatd.223r12s. But if the spa-
tial correlations of the noise are not relevant~i.e., whens
<0) I obtain the simpler solutionG522r, provided that
d.223r.

The second type of solution is strong-coupling solutio
that obey the well known scaling relationz5(d142G)/2
obtained from Eq.~14! ~this scaling relation is just the
above-mentioned scaling relationa1z52 that is naturally
obeyed by our analysis!. The first strong-coupling solution i
determined by the combination of the scaling relation and
transcendental equationF(G,z)50, whereF is given by
03160
d

tic

c-
al

e-
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s

e

F~G,z!52E ddt
tW•~ ê2 tW !

tz1uê2 tWuz11

3@~ ê• tW !t2G1ê•~ ê2 tW !uê2 tWu2G#

1E ddt
@ tW•~ ê2 tW !#2

tz1uê2 tWuz11
t2Guê2 tWu2G, ~15!

and ê is a unit vector in an arbitrary direction.
This solution is valid as long as the solutions of the la

equations satisfy the following condition:G.max$(d14
14s)/3,(d14)/3,d12r%.

It turns out that ford51 the equationF„G,z(G)…50 is
exactly solvable and yieldsG52 and z5 3

2 ~it can be
checked immediately by direct substitution!. In this case the
validity condition reads 2.max$(514s)/3,112r% or
equivalently 0,r,1/2 and s,1/4. By using Eq.~11! I
translate the results intoa5 1

2 andz5 3
2 that are precisely the

exact results presented above.
It should also be mentioned that ford>2 such an exact

solution in closed form cannot be found, and one has to so
numerically the equationF„G,z(G)…50. For convenience I
denote the numerical value of this solution byG0(d). For
example, in two dimensions I obtainG0(2)52.59.

The second strong-coupling solution is obtained by pow
counting, and it is relevant whens.0 ~i.e., when the spatia
correlations of the noise are relevant!, d,212s, and
F„G,z(G)…,0 @the last condition turns out to be equivale
to the conditionG.G0(d) because from this value ofG and
on the functionF„G,z(G)… is negative#. This power-counting
solution can be written in closed form and is given byz
5(d1422s)/3 andG5(d1414s)/35z12s.

The third strong-coupling solution~that is in some sense
the only ‘‘genuine’’ FKPZ solution, in the sense that it is th
only solution that is dramatically influenced by the fraction
Laplacian, and at the same time is not a solution of the fr
tal Edwards-Wilkinson equation! is also obtained by powe

TABLE I. A complete description of all the possible phases
the FKPZ problem for any value ofd, r, and s. The first two
columns give the scaling exponentsz andG for a particular phase,
and the third column states each phase’s validity condition. N
that G0(d) is the numerical solution of the transcendental equat
F(G,z)50 with the scaling relationz5(d142G)/2—if such a
solution exists.

z G Validity

22r 22r12s s.0 andd.223r12s
22r 22r s<0 andd.223r
22r d12r 0,r,1 and

d.max$223r,223r12s%

d1422s

3
d1414s

3

s.0, d,212s and
d1414s.3G0(d)

d142G0(d)
2

G0(d) G0~d!.maxH d1414s

3
,
d14

3
,d12rJ
7-3
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FIG. 1. The values of the scal
ing exponents~a! z and~b! G as a
function of the fractional param-
eter r for uncorrelated noise (s
50) in two dimensions.
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counting. More specifically, it is determined by the combin
tion of the scaling relationz5(d142G)/2 and the extra
relationd1422G2z522r2G. This solution can be writ-
ten in closed form asG5d12r and z522r. It turns out
that this phase is relevant whend.max$223r,223r
12s%. In addition, it is needed thatF„G,z(G)… is positive.
Therefore, this solution is possible only whenG,G0(d).

Table I summarizes all the possible phases found in
paper.

In order to gain more insight on this system, it might
interesting to specialize to two extreme cases: namelyr
50 andsÞ0 vs rÞ0 ands50. The first case~namely,r
50 andsÞ0) corresponds to the local KPZ problem wi
long-range noise. This problem has been studied in the
using various methods—for example, DRG@14–16#, mode
coupling@24#, and SCE@20#. All methods agree on the bas
picture that for a large enough noise exponents one obtains
a power-counting strong-coupling solution, given byz5(d
1422s)/3 (z is the dynamic exponent!. The controversy
between the different methods is over the values of the s
ing exponents for smaller values ofs, and on the critical
values0 that separates between the two phases. Not sur
ingly, the results given here agree with the previous S
result presented in Ref.@20#.

The second case~namely,rÞ0 ands50) corresponds to
the fractal KPZ problem with white noise that is the origin
equation suggested by Mann and Woyczynski@11#. Special-
izing the general picture of phases presented in Table I to
cases50 yields new phase diagrams, namely, a sepa
phase diagram for every dimensiond. For example, in two
dimensions there are three possible phases: phase I, the
dard KPZ phase given byG0(2)52.59 that is valid for 0
<r<0.295; phase II, the weak-coupling phase given byG
522r that is valid for anyr.0; and phase III, the ‘‘third’’
strong-coupling solution given byG5d12r that is possible
for 0,r<1. In the first phase the dynamic exponent isz
51.705, while the other two phases share the same dyna
exponent ofz522r. The possible phases in two dimensio
are presented in Fig. 1.

The described two-dimensional~and white-noise! sce-
nario is quite typical and appears in other dimensions
well—namely, there are usually three possible phases
are possible for different values ofs with possible phase
transitions between them~as in the usual KPZ scenario—th
phase transition is controlled by the strength of the dim
sionless coupling constant!. More precisely, this picture ex
tends up to the upper critical dimension of the original KP
03160
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problem (duc
KPZ) where the first phase~phase I in Fig. 1!

disappears~see the discussion below!.
At this point, the full picture of possible solutions migh

seem too complex, so I want to suggest the following sim
interpretation for the behavior of the fractal KPZ equatio
The starting point of this discussion was the introduction
the fractional Laplacian into the KPZ equation. This imm
diately implies that faster relaxations are now possible~faster
in the sense that a smaller dynamical exponent is expec!
when compared with the Edwards-Wilkinson equation. Ho
ever, it is well known that already the KPZ nonlinearity in
troduces faster relaxations~at least for dimensions lower tha
the upper critical dimension!. Therefore, in the FKPZ sys
tem, the dynamics is controlled by the fastest ‘‘componen
if the dynamical exponent of the classical KPZ system
smaller than 22r, then it dominates, otherwise the ne
fractional dynamical exponentz522r controls the dynam-
ics. However, at this point the picture gets a little bit mo
complicated~just like in the classical KPZ case!, namely,
there are several possible phases with this new fractio
dynamical exponentz522r, and the transition betwee
these phases is controlled by the strength of dimension
coupling constant.

These conclusions have an important implication for
upper critical dimension of the FKPZ model~i.e., the dimen-
sion above which the dynamical exponent is the same as
of the linear theory!; namely, it turns out that the FKPZ
equation always has an upper critical dimension that is
termined by the relationG0(duc

FKPZ)5duc
FKPZ12r @or alterna-

tively, using the roughness exponenta—the upper critical
dimension is the dimension whereaKPZ(duc

FKPZ)5r]. Note
that this result does not depend on the ongoing debate
the existence of the upper critical dimension for the KP
system~see Refs.@25–34#!. Actually, it merely requires tha
the roughness exponent of the classical KPZ system beco
arbitrarily small in higher dimensions—an assumption tha
generally accepted~only Tu @35# had a different conjecture!.

As one can see, the results obtained using the SCE
quite general and cover all possible values of the relev
parameters (r ands) as well as dimensions. It is also easi
verified that these results recover the exact result obtaine
the beginning of this paper for the caser52s. This situa-
tion suggests that the SCE method is generally appropr
when dealing with nonlinear continuum equations.

I would like to thank Moshe Schwartz for useful discu
sions.
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